

A Translator from CRL2
representation of PowerPC Assembly

to ALF

Deepthi Devaki A R
EURECA Exchange Student

Mälardalen University, Sweden
Home University: Amrita Viswavidyapeetham, Kollam, India

Department of Computer Science and Engineering
ddi09001@student.mdh.se
deepthidevaki@gmail.com

Supervisor:Andreas Ermedahl
Examiner:Björn Lisper

July 7, 2009

mailto:ddi09001@student.mdh.se
mailto:deepthidevaki@gmail.com

Abstract

 Real Time systems are systems which must give accurate results within a
precise time period. These systems have now become an indispensable aspect of
our day to day lives. As the importance of real time system increases, the need to
ensure safety increases.

Imagine an intelligent sentry android with decision making ability which
guards a frontier. It has to make quick analysis of images in order to decide
whether it has to shoot, warn or say "howdy partner”. In such cases, it is desirable
to make a correct calculation (to identify friends and foes) and also to make a
correct timely behaviour after analysing data from its sensors. This is done by the
inbuilt software of the android. There lies the risk of the sentry robot not matching
the image within a given time and failing in functionality. For safety reasons, in
such real time applications, where meeting deadlines is critical, it is sought-after to
obtain the worst case execution time of programs.

Worst Case Execution Time (WCET) analysis finds the upper bound on the
execution time of a program. By obtaining this, we can design a system which
works fine even in the most stressed state. SWEdish Execution time Tool
(SWEET) is a tool for WCET analysis developed by the Mälardalen WCET
research group. SWEET performs static analyses on an intermediate code format
named ALF (Artist2 Language for WCET flow Analysis) and finds an upper bound
of the worst case execution time. aiT is another WCET tool developed by AbsInt
company for static analysis in real time system. They maintain a format known as
CRL (Control flow Representation Language) to represent various types of object
code formats in terms of control flow graphs.

 The main objective of this thesis work is to write a translator from

CRL2's representation of PowerPC assembler code to ALF.

Preface

Looking back at the six months I have spent in Sweden, right from the day I
landed to the day I have finally completed my thesis, it has been a long journey to
cherish.

As I reflect with my thesis done, I realize there are so many encouraging people I
met along the way who have helped me directly or indirectly in this work. It is with
immense gratitude that I write this page thanking all those noble souls without whose
help and support, this thesis would not have seen the light of the day.

First and foremost, it is my guide, Andreas Ermedahl I would like to thank. He
has been the friendliest and most approachable supervisor I have ever worked with. My
weekly meetings would never seem like serious meetings and were more of
discussions. He was always there to answer even when faced with minor problems. I
also thank him for his patience and interest in shaping my thesis report the way it is
today.

Next, it is my friend Nithya Vijay I owe my thanks to. Nithya and I have had
common problems to encounter in design phase of the thesis work before delving into
processor specific translation. Together, over the lunch table and lab rooms, we would
discuss and devise a generic solution and overcame the setbacks. Hence most of the
introductory parts in this report have been co-authored with her.

I also thank the other members of WCET team- Björn Lisper, Christer Sandberg,
Linus Källberg, Jan Gustafsson and others who would respond to the mails and gave
timely help.

 I also want to express my gratitude to Prof Sasikumar Punnekat, Mr.Radu Dobrin
and EURECA (www.mrtc.mdh.se/eureca<http://www.mrtc.mdh.se/eureca>) project
funded by the Erasmus Mundus External Cooperation Window (EMECW) of the
European Commission for the assistance and funding, which made my study in Sweden
a dream come true.

And of course, not to forget is my HOD Mr.KrishnaKumar, other faculties and my
friends in India, who have been supportive throughout.

And above all, it’s the blessing of AMMA-the divine power which has been with
me throughout and has helped me in successful completion of this thesis.

http://www.mrtc.mdh.se/eureca

Table of Contents
1. INTRODUCTION ... 5

1.1 REAL TIME SYSTEMS ... 5

HARD REAL TIME SYSTEM AND SOFT REAL TIME SYSTEM .. 5

1.2 WCET ANALYSIS .. 5

1.3 SWEET ... 6

1.4 AIT .. 6

1.5 ALF ... 7

1.6 CRL2 .. 8

1.7 CONTROL FLOW GRAPHS .. 8

1.8 COMPILERS AND TRANSLATORS ... 8

1.9 OVERVIEW OF THESIS .. 9

1.10 PURPOSE OF THE THESIS ... 10

2. ALF .. 11

2.1 MEMORY MODEL .. 11

PROGRAM MODEL ... 11

DATA MODEL .. 11

2.2 STRUCTURE OF AN ALF PROGRAM ... 12

3. POWERPC PROCESSOR ... 14

4. CRL2 .. 15

5. RELATED WORKS ... 18

6. PROBLEM FORMULATION ... 19

7. PROBLEM ANALYSIS ... 19

7.1 ISSUES ... 19

8. DESIGN OF THE TRANSLATOR .. 22

8.1 TRANSLATION STRATEGY .. 22

8.2 MEMORY MODEL .. 25

9. SOLUTION .. 27

10. RESULTS .. 30

11. RECOMMENDATION AND FUTURE WORK .. 31

12. SUMMARY AND CONCLUSION .. 31

13. BIBLIOGRAPHY .. 32

14. APPENDIX A .. 33

15. APPENDIX B .. 43

5

1.1.1.1. IntroductionIntroductionIntroductionIntroduction

1.11.11.11.1 Real Real Real Real TimeTimeTimeTime systems systems systems systems

Real time systems are systems which must give accurate results within a precise
time period. This means that the accuracy of the system depends not only on the logical
correctness of the output but also on the time the output is produced. Real time systems
need not to be fast, but it is required to produce a response within a specific time. It
should not be too quick nor too late. Real time systems are computer systems mostly
embedded in air craft controllers, nuclear power plants controllers, intelligent vehicle
highway systems etc.

Hard Real Time System and Soft Real Time SystemHard Real Time System and Soft Real Time SystemHard Real Time System and Soft Real Time SystemHard Real Time System and Soft Real Time System
Hard real time systems are systems which operate within the confines of a

stringent deadline missing which causes disastrous effects. For example, an air craft
controller is a hard real time system because a system failure may lead to a
catastrophe.

Consider the case of an anti-lock braking system in a car. The brakes should be
released in a short time to prevent the wheels from locking. Any delay in the response
of the system may lead to an accident. So it is crucial to verify the upper bound of the
execution time of this task.

Soft real time systems, on the other hand can tolerate some delays. A missed
deadline does not result in any disastrous events, but may cause minor inconvenience
to the users. A live video system is a good example of a soft real time system. A delay
in delivering of video frames may result in low quality, but the system can continue its
operation.

1.21.21.21.2 WCET analysisWCET analysisWCET analysisWCET analysis

The Worst case execution time of a program is the longest time it may take to
execute the program. The Best case execution time on the contrary is the shortest run
time for a program.

 As mentioned above, most of the hard real time systems are required to respond
to events in its environment within a fixed time period. Any failure to meet this deadline
may lead to catastrophic results.

6

 WCET analysis aids the analysis of real time systems. The analysis results can
be used to determine whether a particular task will meet the specified timing constraint
and thus provide timing guarantee for the overall system behavior. The WCET analysis
can typically be used in time critical applications like nuclear power plant controller,
flight control system, anti-lock braking system, artificial pacemaker etc.

1.31.31.31.3 SWEETSWEETSWEETSWEET

 SWEET (SWEdish Execution time Tool) is a prototype tool developed by
Mälardalen University WCET research group. Sweet performs analysis like automatic
flow analysis on Intermediate code, processor behavior analysis, instruction cache
analysis on level one cache, pipeline analysis and also determines the upper bounds of
execution time . The flow analysis determines the possible program flows or dynamic
behavior of the system. SWEET performs its flow analysis on intermediate code level.
This thesis work aims at supporting an intermediate code format called ALF. SWEET
low level analysis supports NECV850E and ARM9. The figure depicts the SWEET tool
architecture.

1.41.41.41.4 aiTaiTaiTaiT

aiT tool is a timing analysis tool developed by Absint Angewandte Informatik
GmbH. It is used to determine the upper bound of execution time of code snippets in
executables. Unlike SWEET, aiT works purely on executable. The use of executable
helps to retrieve information on register usage and instruction and data addresses
which are valuable for cache analysis and timing of memory accesses. The following
figure shows the architecture of aiT [9].

Figure 1-1 :Architecture of SWEET

7

1.51.51.51.5 ALFALFALFALF

ALF (ARTIST2 Language for Flow Analysis) is an intermediate format designed
for program analysis. ALF is used as the input for SWEET for WCET analysis. ALF is
designed to be possible to generate from a rich set of sources: linked binaries, source
code, compiler intermediate formats, and possibly more. This has certain implications
for ALF’s program model, which must encompass both high- and low-level constructs
while being as amenable to program analysis.

Figure 1-2: Architecture of aiT developed by AbsInt GmbH

8

1.61.61.61.6 CRL2CRL2CRL2CRL2

The aiT tool uses CRL2 format for storing control flow information. aiT
reconstructs the control flow information from the executable and converts it in to CRL
(refer Fig 2). CRL is a human-readable intermediate format designed to simplify
analysis and optimize at the executable/assembly level. CRL2 is a generic and
processor independent format usable for optimization of machine code, static analysis
(including WCET analysis) and assembly language. It supports the integrated
representation of control flow graph and intermediate analysis results. A C/C++ library
reads/writes CRL2 interface files in a text-representation format and provides an API to
the CRL2’s data structures used by the components of the timing-analysis tool suite.

1.71.71.71.7 Control Flow GraphsControl Flow GraphsControl Flow GraphsControl Flow Graphs

The Control flow graph is a representation of flow of a program. Each node in a
CFG represents a basic block. Usually there will be one CFG per procedure/function.
The CFG of a procedure stores information about its instruction in basic blocks. A basic
block is generally a linear piece of code without any jumps. The directed edges between
two nodes represent the control flow. The control flow graph is crucial for compiler
optimizations and static analysis of programs. A call graph (CG) represents possible
calls between functions. In CRL2 however, the CG is encapsulated in the CFG.

1.81.81.81.8 Compilers and TranslatorsCompilers and TranslatorsCompilers and TranslatorsCompilers and Translators

A language translator is a program which converts a program in one language to
another (Alfred V. Aho). The translation can be from any level (high level, assembly
code or binary) to any level. For example, a compiler is a translator which converts
source code to a low level language (assembly program or binary program).
Assemblers are translators whose source program is assembly program and target is in
machine program.

Figure 1-3 : Role of a translator

9

1.91.91.91.9 Overview of thesisOverview of thesisOverview of thesisOverview of thesis

The main objective of this thesis work is to write a translator from CRL2
Representation of PowerPC assembler code to ALF. The aiT tool reconstructs the
control flow from the binary executable code, annotates it with the required information
and translates it in to CRL2 code. This CRL2 format serves as the input for the
translator which converts it into ALF code. SWEET tool uses this ALF code for the flow
analysis.

Figure 1-4: Overview of Thesis. CRL2 to ALF translator is the output of this thesis

Figure 1-5: Overview of SWEET

1.101.101.101.10 Purpose of the ThesisPurpose of the ThesisPurpose of the ThesisPurpose of the Thesis

Flow analysis is a part of WCET analysis.
about the bound on the number of times a loop iterates, which functions get called , etc.
From the results of flow analysis, further study can be done on control flow information,
number of iterations etc. ALF is the input format for the flow analysis of SWEET. CRL2
code is generated from the executable binary code of a program. Till date, the
been no tool to convert this CRL2 code to ALF. Here lies the significance of this thesis
which translates the CRL to ALF. The generated ALF code can be fed into SWEET tool
for flow analysis. Flow analysis can also be done from the ALF code generated
from C code. The result of both analyses can be compared and provide grounds for
improving the accuracy of the WCET analysis.

The aiT tool is also benefited from the flow analysis results. They can use the
results for further analysis or can use

: Overview of SWEET

Purpose of the ThesisPurpose of the ThesisPurpose of the ThesisPurpose of the Thesis

Flow analysis is a part of WCET analysis. The flow analysis gives the information
about the bound on the number of times a loop iterates, which functions get called , etc.
From the results of flow analysis, further study can be done on control flow information,

etc. ALF is the input format for the flow analysis of SWEET. CRL2
code is generated from the executable binary code of a program. Till date, the
been no tool to convert this CRL2 code to ALF. Here lies the significance of this thesis
which translates the CRL to ALF. The generated ALF code can be fed into SWEET tool
for flow analysis. Flow analysis can also be done from the ALF code generated
from C code. The result of both analyses can be compared and provide grounds for
improving the accuracy of the WCET analysis.

The aiT tool is also benefited from the flow analysis results. They can use the
results for further analysis or can use them to compare their WCET analysis results.

10

The flow analysis gives the information
about the bound on the number of times a loop iterates, which functions get called , etc.
From the results of flow analysis, further study can be done on control flow information,

etc. ALF is the input format for the flow analysis of SWEET. CRL2
code is generated from the executable binary code of a program. Till date, there has
been no tool to convert this CRL2 code to ALF. Here lies the significance of this thesis
which translates the CRL to ALF. The generated ALF code can be fed into SWEET tool
for flow analysis. Flow analysis can also be done from the ALF code generated directly
from C code. The result of both analyses can be compared and provide grounds for

The aiT tool is also benefited from the flow analysis results. They can use the
them to compare their WCET analysis results.

11

2.2.2.2. ALFALFALFALF

ALF is a language to be used for flow analysis for WCET calculation. It is an
intermediate level language which is designed for analyzability rather than code
generation. The idea behind ALF is to have a generic language for WCET flow analysis,
which can be generated from all of the program representations like source code,
intermediate code and binary code [1].

Unlike many intermediate formats, ALF has a fully textual representation: it can
thus be seen as an ordinary programming language, although it is intended to be
generated by tools rather than written by hand.

2.12.12.12.1 Memory ModelMemory ModelMemory ModelMemory Model

ALF’s memory model distinguishes between program and data addresses. It is
essentially a memory model for relocatable, unlinked code. Program and data
addresses both have a symbolic base address, and a numerical offset. Program
addresses are called labels. The address spaces for code and data are disjoint. Only
data can be modified: thus, self-modifying programs cannot be modeled in ALF in a
direct way.

Program ModelProgram ModelProgram ModelProgram Model
An ALF program is a sequence of declarations, and its executable code is

divided into a number of function declarations. Within each function, the program is a
linear sequence of statements, with execution normally flowing from one statement to
the next. Statements may be tagged with labels. ALF has jumps, which can go to
dynamically calculated labels: this can be used to represent program control in low-level
code. In addition ALF also has structured function calls, which are useful when
representing high-level code.

Data ModelData ModelData ModelData Model
 ALF’s data memory is divided into frames. Each frame has a symbolic

base pointer (a frame reference) and a size. A data address pointing into a frame is
formed from the frame reference of the frame and an offset. The offset is a natural
number in the least addressable unit (LAU) of the ALF program. The LAU is always
declared: typically it is set to a byte (8 bits).Frames can be either statically or
dynamically allocated.

12

2.22.22.22.2 Structure of an ALF ProgramStructure of an ALF ProgramStructure of an ALF ProgramStructure of an ALF Program

An ALF program consists of the following declarations, in the following order:

Least-addressable-unit-declaration – specification of size, in bits, of the Least
Addressable Unit (for data and code memory, the underlying assumption is that they are
both equal)

Endianness-declaration – specification of little/big-endianness

Export-declarations – declaration(s) of exported symbols

Import-declarations – declaration(s) of imported symbols

Allocations – allocation of static data areas

Initializations – possible initialization of static data areas

Volatile-declarations – declaration(s) of memory addresses for volatile data
(which can change outside the control of the program)

Function-declarations – function (procedure) declaration(s), possibly including a
”main” procedure which then will provide the global entry point to the program

Apart from supporting flow analysis for WCET analysis tools, ALF can be used as
a generic representation for different binary formats. Thus, very generic tools for
analysis, manipulation, and reverse engineering of binary code may be possible to build
using ALF. Possible examples include generic binary readers that reconstruct control
flow graphs, and tools that can reconstruct arithmetic for long operators implemented
using instruction sets for shorter operators. The latter can be very useful when
performing flow analysis for binaries compiled for small embedded processors, where
the original arithmetics in the source code must be implemented using an instruction set
for short operators.

An Example of ALF Code

The following C code:

If (x > y) z = 42;

13

can be translated into the ALF code below:

The if statement is translated into a switch statement jumping to the exit label if
the (negated) test becomes true (returns one). The test uses the s_le operator (signed
less-than or equal), taking 32 bit arguments and returning a single bit (unsigned, size
one). Each variable is represented by a frame of size 32 bits.

{ switch { s_le 32 { load 32 { addr 32 { fref 32 x } {
dec_unsigned 32 0 } } }
{ load 32 { addr 32 { fref 32 y } { dec_unsigned 32 0 } } } }
{ target { dec_unsigned 1 1 }
{ label 32 { lref 32 exit } { dec_unsigned 32 0 } } } }
{ store { addr 32 { fref 32 z } { dec_unsigned 32 0 } }
with { dec_signed 32 42 } }
{ label 32 { lref 32 exit } { dec_unsigned 32 0 } }

14

3.3.3.3. PowerPC ProcessorPowerPC ProcessorPowerPC ProcessorPowerPC Processor

 PowerPC Architecture is a Reduced Instruction Set Architecture (RISC). The
PowerPC architecture consists of three layers [8]. They are the following.

• User Instruction Set Architecture – Defines the basic set of instructions and
registers.

• Virtual Environment Architecture - Describes the memory model for
multiprocessor environment, cache control instructions and other aspects of
virtual environment.

• Operating Environment Architecture - Defines the memory management model,
supervisor-level registers, synchronization requirements, and the exception
model.

 The PowerPC supports byte (8 bits), half word (16 bits), word (32 bits) and
double word (64 bits) access. The registers in PowerPC are categorized into General
Purpose Registers, Floating Point Registers and Special Purpose Registers. There are
thirty two 32 bit GPRs, thirty two 64bit FPRs, and many SPRs. Special Purpose
Registers include Instruction Address Register, Count Register, Condition Register, Link
Register, Integer Exception Register and Processor Version Register.

The PowerPC architecture defines register to register operations for most of the
instructions. The source operands are provided as registers or immediate values. The
load and store instructions transfer data between register and memory. There are about
more than 200 instructions categorized into integer arithmetic, integer comparison, load
and store, floating point arithmetic, floating point comparison, integer logical and branch
instructions. One of the important concerns in this thesis is converting each of these
instructions into ALF statements.

15

4.4.4.4. CRL2CRL2CRL2CRL2

CRL2 is a generic and processor independent format usable for optimization of
machine code, static analysis (including WCET analysis) and assembly language. () It
has a very structured approach. The outer most layer is the graph. The graph consists
of several routines which can be invoked by other routines. The instructions inside a
routine are structured into blocks, where each block represents a linear piece of code
which follows sequential execution without any jumps or jump targets. The control flow
is represented as edges between the blocks. Each instruction contains in it a specific
operation and related attributes. These attributes display the mnemonic, assembly
code, genname, architecture, operands and many more. The meaning of each
instruction can be derived from the op_id attribute of the operation.

The following is a code snippet from a CRL2 representation of PowerPC
assembly code.

routine r0: address=0x40fc,
gui_analysis_task=?loc("c:\\loop.apd\\a3-548-a3.ais" 11, {'0'=1}),
instruction_set="common", loop_scc=0*[], loops=1*[/*55*/r1],
name="main", persistent_id=1, section=".text",
surface_address="0x40fc" {
 block b0 (start): persistent_id=2 {
 edge e57 (linear) -> b2;
 }
 block b1 (end): persistent_id=3;
 block b2: address=0x40fc, instruction_set="common",
persistent_id=4, surface_address="0x40fc" {
 edge e58 -> b9;
 instruction i59 0x40fc:4: bytes=4*[0x39, 0x80, 0x00, 0x01
], file="loop.c", lines=2*[/*22*/1, /*31*/2], lines_start=2*[
/*58*/1, /*67*/2], surface_address="0x40fc" { operation o60 "li
r12, +1": arch='UISA', assembly="addi $, $, $", dst=1*[/*66*/'r12'
], form='D', genname='addi', op_id=0x738000000, optype=3*[/*45*/
'GPRegAll', /*53*/'GPRegZero', /*61*/'signed'], persistent_id
=5,src=3*[/*24*/1='zero', /*34*/+1]; }
 }
 block b9 (call): address=0x40fc, loop_call=1,
persistent_id=0x14, surface_address="0x40fc" {
 edge e89 (local) -> b10;
 edge e90 (call) -> r1;
 }}

16

Some of the attributes n the above example is explained below [6].

Routine:-

address: This is the bus address of the instruction before address translation by
MMUs. An empty routine also has an address. It is assigned conceptually by
closest correspondence and is likely (but not necessary) to be equal to an
address of some non-empty block.

name: The human readable name of the routine as extracted from e.g. an
executable's symbol table.

Block:-

address: This is the bus address of the instruction before address translation by
MMUs. Empty blocks still have an address. It is assigned conceptually by closest
correspondence and is likely (but not necessary) to be equal to an address of
some non-empty block.

instructions_set : For multiple instruction set architectures, it indicates the
instruction set of this particular instruction.

block_type: At some nodes, this field defines the type of block. For example, a
call block.

Instruction:-

address : This field is same as that of routine and block.

instructions_set: For multiple instruction set architectures, it indicates the
instruction set of this particular instruction.

width: It shows the instruction width in bytes

Operation:-

op_id : It is a unique numerical identification of the operation. It can be used to
map semantics to the operation in an analysis.

genname: A symbolic identification of the operation. It need not be unique, but it
is defined to identify a conceptual class of operation, for instance, a family of
'add' instructions.

17

ext : It gives the list of extensions of an operation

src : It is a vector of symbol or numeric source resources of an operation.

dst: Destination resources of an operation.

op : Any operand resource of an operation is referred by this field. The indices
correspond to the 'src' and 'dst' vectors. Further, in rare cases, there can be
operands that exist conceptually, or are listed for consistency reasons. In these
cases it may happen that only the 'op' entry exists, but neither a 'src' nor 'dst'
resource is available.

mnemonic : It gives a human-readable textual representation of the operation

Besides the attributes explained above, blocks have edges which denote the
control flow in the program. An edge has a target block or routine. The type of an edge
determines the type of control flow. It can be a function call represented by a call edge,
or a conditional jump represented by true edge or false edge. A true edge means that
the edge is taken if the condition is true. Similarly a false edge is taken if the condition is
false. Similarly there are other types of edges namely zero edge, delay edge, impasse
edge, normal edge etc.

The CRL2 library is a library for exchanging the control flow graphs. It supports
mixed C++ and C usage. In the implementation of CRL2 to ALF translator, CRL2 library
is used for reading CRL2 code and getting the necessary information

18

5.5.5.5. Related WorksRelated WorksRelated WorksRelated Works

A very closely related work going in parallel was the translation of NECv850
binary executable to ALF done by Nithya Vijay. After analyzing the common features of
PowerPC and NECv850, a common design for the translator was jointly undertaken.

Another related work in this field was done by Samuel Petersson in his MSc
thesis work: Porting the Bound-T WCET tool to Lego Mindstorms and the Asterix RTOS
[7]. Bound-T is another WCET tool which analyses the binary executable to find the
WCET. His thesis describes how he ported the Bound-T WCET tool to the Lego
Mindstorms and the H8/300 processor. He made a semantic interpretation of H8/300
instructions in terms of Presburger operations. Presburger tool is used for WCET flow
analysis. The thesis also describes how the resulting Bound-T version was used to
analyze and derive timing bounds for selected parts of the Asterix OS. The resulting
Bound-T tool version is used in real-time courses given at the School of Innovation,
Design and Engineering at Mälardalen University.

A partial thesis work done by Per Wolde with the aim of making SWEET to use
the AIR/CRL2 format which facilitates exchange WCET analysis results between aiT
and SWEET tools can also be considered as relevant work in this regard.

No MSc thesis work has however to this date been resulting from this work.

19

6.6.6.6. Problem FormulationProblem FormulationProblem FormulationProblem Formulation

To obtain the WCET flow analysis results from PowerPC assembler code, it has
to be converted to ALF format as ALF and NIC are the only two formats which can be
input to SWEET’s flow analysis. So there arose a need to write a translator which
converts CRL2's representation of PowerPC assembler code to ALF. The extracted flow
information can then be used together with timing information derived by the timing
analysis part of WCET tool, to derive a WCET bound.

To develop this, firstly it is required to write a code which extract information from
the CRL2 PowerPC code representation.

Next, it is required to make a semantic interpretation of CRL2 PowerPC
assembler code constructs in terms of ALF code and data structures. Basically, for each
type of PowerPC assembler instruction or data construct found in the CRL2 format, a
corresponding ALF code or data construct should be created. Moreover, some
PowerPC hardware resources, such as registers and different memory areas, need to
be represented by some ALF data structures.

Also, to allow SWEET's analysis results to be given back to CRL2, a mapping
between the different constructs in the CRL2 and ALF formats should be maintained.

7.7.7.7. Problem AnalysisProblem AnalysisProblem AnalysisProblem Analysis

Before deriving a solution the following issues need to be considered.

7.17.17.17.1 IssuesIssuesIssuesIssues

The PowerPC CRL2 to ALF translator should translate each PowerPC instruction
to corresponding ALF statement(s). While performing this all vital information required
must be retained.CRL2 format contains several information like hardware architecture
details, cache size, clock rate, etc which are irrelevant for flow analysis. These details
can be ignored while translating into ALF.

A chief matter of concern is the effect of an instruction execution on the
values/flags stored in registers and other hardware resources. The execution of one
instruction may alter the value in registers such as condition register, program status
word register, exception register; etc .The ALF representation is complete only if the
affected registers are also represented. That is because, the execution of succeeding
instruction may depend on the earlier values stored in some of these registers.

20

As an example, consider the PowerPC UISA instruction beq.

 beq crX, target

The beq instruction checks whether the EQ bit of crX (condition register) is set
or not. If EQ is set then control is branched to target. The EQ bit may be set by the
previous compare instruction or add instruction. Hence, care must be taken to represent
all the implicit updates and access of registers in ALF translation.

Some of the registers are updated by PowerPC hardware. For example, the
overflow bit is set by the hardware when integer operations such as add results in an
out of range value. Likewise, the exception registers are set when an exception crops
up during the execution of an instruction. This exception, detected by the hardware is
hard to be identified by the software. Simulation of such operations in ALF is a matter of
concern.

Another important matter to be taken care of while designing the translator is the
direct memory reference. Direct memory reference in a program can occur in several
ways. The data memory can be directly referenced for reading data from a particular
location.

 For example: - lwzx r1, r2, r3.

The lwzx instruction loads the word in memory referenced by the address
(r2+r3) into register r1.

The data memory can also be referenced for storing some data in a specific
location.

For example: - stwu r1, 4(r2)

The instruction stwu stores the data in register r1 to the memory referred by
(r2+4).

Another instance of direct memory reference is in the case of branch statements
where the target address specifies an absolute or relative value. When the same code
is translated into ALF the target address should pick the ALF instruction corresponding
to the referred PowerPC instruction. In some cases the next instruction address is
calculated with respect to current instruction address. So the correspondence of the
instruction address in PowerPC CRL2 and ALF should be maintained.

21

An additional major concept related to memory model in a processor is the
endianness. Endianness is the byte ordering for representing data in the memory.

"Little Endian" means that the low-order byte of the number is stored in memory
at the lowest address, and the high-order byte at the highest address. (The little end
comes first.) For example, a 4 byte integer

 0X18369524

will be arranged in memory as follows:

 Base Address+0 24
 Base Address+1 95
 Base Address+2 36
 Base Address+3 18

"Big Endian" means that the high-order byte of the number is stored in memory at
the lowest address, and the low-order byte at the highest address. (The big end comes
first.) The above integer would then be stored as:

 Base Address+0 18
 Base Address+1 36
 Base Address+2 95
 Base Address+3 24

The endianness plays a key role where direct memory access is concerned.
There are a few instructions in PowerPC which access a single byte or half word by
directly specifying the address.

For example consider the instruction lbz r1, 1(r2).

The lbz instruction loads one byte from the address (r2+1) into r1. Suppose
register r2 contains the base address specified in the above example. If memory model
is little endian then r2+1 refers to 95. If it is big endian then r2+1 refers to 36. So the
memory model of ALF code should be compatible with that of PowerPC assembly code.

22

8.8.8.8. Design of the TranslatorDesign of the TranslatorDesign of the TranslatorDesign of the Translator

Considering all the issues mentioned in the previous section, we now discuss the
different strategies to design the crl2 to ALF translator.

8.18.18.18.1 Translation StrategyTranslation StrategyTranslation StrategyTranslation Strategy

The translation process consists of two modules.

(i) Analysis of CRL2 code
(ii) Code Generation.

The analysis module retrieves information such as instruction, operands, and
control flow from the crl2 code. The Code Generation module produces ALF code using
the information given by the analysis phase. The following figure illustrates the
translation procedure.

Figure 8-1: Design of CRL2 to ALF Translator

23

(i)(i)(i)(i) AnalysisAnalysisAnalysisAnalysis
During analysis, the data describing each CRL item is passed to the Code

Generation Module where these data is processed to produce the equivalent ALF
structure.

To generate ALF statement for an operation, data on the semantics of the
operation and operands are required. It is during analysis these information are
collected. The semantics of instruction are learned from the processor manuals and are
used to translate instructions to ALF code. But for a complete ALF program, the
information about instructions alone will not suffice. Information about routines, blocks
and edges also need to be extracted during this phase. How these extracted data is
used in producing Alf statement is discussed in the subsequent sections.

(i i)(i i)(i i)(i i) Code GenerationCode GenerationCode GenerationCode Generation
Code Generation is responsible for producing the ALF code semantically

equivalent to the CRL2 representation. The Code generation phase consists of two
steps.

(i) Finding the appropriate ALF template

(ii) Converting the template to ALF code.

The data acquired during analysis is used to locate the matching ALF template.
These templates, which are provided externally to the code generator, have incomplete
ALF statements of the counter CRL structure. The missing elements in ALF templates
are filled using the data provided by analysis module. For example, the template for an
instruction will have the semantics of its operation but its operands are unknown until it
is obtained from the analysis phase. The following sections discuss how each CRL item
is mapped to ALF structures.

CRL RoutineCRL RoutineCRL RoutineCRL Routine

Comparing the structures of both ALF and CRL2, we can see that the CRL
routine and ALF functions are identical. When a routine/function is invoked from a point
of execution, the control is returned to the same point after its execution. Therefore, a
CRL routine can be mapped to a corresponding ALF function.

CRL BlockCRL BlockCRL BlockCRL Block

A CRL block represents a linear piece of code which follows a sequential
execution without any jumps or jump targets. As ALF does not include any explicit

24

representation of a control flow graph, it does not have any structure equivalent to CRL
block. However, considering the normal structure in a program, a set of instructions
constitute a block. Similarly, in ALF, a set of instructions can be thought of as a block
and they can be identified by giving a particular label complementing the block name.

CRL EdgeCRL EdgeCRL EdgeCRL Edge

Edges are important elements in a control flow graph and are used to describe
the control flow in the program. ALF does not have any equivalent structure to represent
the control flow. Hence, edges cannot be directly mapped to any ALF structure.
However, the information contained in a CRL edge can be effectively used to resolve
the targets in branching statements.

CRL Instruction CRL Instruction CRL Instruction CRL Instruction

Each CRL block comprises of several instructions which in turn contains in it a
specific operation. An instruction can be matched to ALF statement(s) which does the
same operation. So, it is possible to write the equivalent ALF statements by
understanding the semantics of the instruction.

Structure of Mapping TablStructure of Mapping TablStructure of Mapping TablStructure of Mapping Tableeee

Suitable mapping information must be available to help in matching of
instructions and ALF templates. The mapping information can be provided in the
following two ways.

(i) A table consisting of each assembly instruction and its corresponding ALF
statement

(ii) Separate text files containing equivalent ALF template for each assembly
instruction.

In the former method a separate parser for parsing the mapping table file has to
be built. The parsing may take a considerable amount of execution time. As the number
of instructions in the input CRL2 code increases the total time taken for parsing also
magnifies. As a result, in case of large programs, the performance may be affected.

In the latter method, where a dedicated file is kept for each assembly instruction,
the task of searching the mapping file is given to OS. The mapping file for an instruction
is stored in a file named by its “genname”. The “genname” is a CRL2 attribute which
serves as a symbolic identifier of an operation. It may or may not be same for a class of
instructions.

25

 For example, the Power PC instructions addi, li, la, subi are of same
class and have been assigned the same genname “addi”. Consequently the mapping
file for all the four instructions is named as “addi.map”. In NEC instructions, add_imm
and add_reg are two different gennames for the same basic operation of addition.

Thus, to get the equivalent ALF statement of an assembly instruction we just
have to read the corresponding text file. No separate parsing functions are required as
the file handling is done by the OS. So this method is better compared to the previous
one in terms of performance and reliability.

Structure of Instruction TemplateStructure of Instruction TemplateStructure of Instruction TemplateStructure of Instruction Template

 The mapping file of each instruction consists of its equivalent Alf template. The
value of certain objects in the ALF template depends on the input CRL2 instruction,
such as operands in the instruction. Hence, some particular representation must be
used to represent those dynamic data. The code generator reads the template and fills
in all the missing information and produces the complete ALF statement.

8.28.28.28.2 Memory ModelMemory ModelMemory ModelMemory Model

Both the PowerPC architecture uses register-to-register operations for most
computational instructions. There are load and store instructions which transfer data
between memory and registers. For representing these instruction in ALF, its operands
– registers and memory – also has to be modeled. The simplest and accurate way of
representing registers are using the variables. In ALF data area is represented as
frames. Each frame has a symbolic base pointer (frame reference or fref) and an offset.
The registers of PowerPC processor can be represented using these frames, with their
names as fref and the size allocated. So the General Purpose register r1 in the
PowerPC processor will be represented in ALF as fref r1 with size 32 bits.

Main memory can be represented in a similar way as registers, but with a small
difference. It is accessed by its address and its size may vary. The data in the memory
can be accessed in different ways. It can be accessed as byte or as a word or as a half
word at a time. Consider the following example:-

Address 1000 1001 1002 1003

Data b8 12 8c 05

Figure 8-2: Memory Layout of a 32 bit data

26

The above table shows one word in memory. To access as a single byte, we can
use instructions like lbz and lbzu to read b8 first, followed by12, then 8c and finally
05 . By using specific instructions like lha, lhz it is possible to load half words. In
that case the memory is accessed two bytes at a time. As a result, b812 is read at a
time if the operand to instruction lha is 1000. Finally we have instructions to load a
word at time, such as lwz, lwzu etc. In this case if the operand is 1000, then
b8128c05 is read all together at a time.

 Since it is difficult to have a frame for each byte in memory, it is efficient to have
a single frame to represent the whole memory. The data in it can be accessed using its
address as the offset to the frame base pointer.

The data area in ALF will look like the following

Main Memory

00

01

02

03

04

.

.

.

.
98

99
SPR

GPR .
.
.
.

R1

.

.

.

.

SPR1

Rn

SPRn

R2

Figure 8-3 : Memory Layout in ALF

27

9.9.9.9. SolutionSolutionSolutionSolution

A working model of the design discussed in the previous section was
implemented in C++. It made heavy use of the libcrl2 library for the information
exchange to and from CRL2 format. Using libcrl2 library the CRL2 file is read into a CRL
graph. Once the graph is read, we can write code that traverses through each routine,
block, instruction, and operation in CRL2 to generate the equivalent ALF statements or
operations.

As discussed in the previous section, CRL routines are equivalent to ALF
functions. So an ALF statement for a function is generated for each routine in the graph.
An example crl2 routine and its equivalent ALF function is shown in the following
example.

{ func { label 32 { lref 32 f_main } { dec_unsigned 32 0 } }

 { arg_decls }

 { scope

 { decls }

 { inits }

 { stmts

 }

 }

}

routine r0: address=0x40fc, gui_analysis_task=?loc("c:\\loop.apd\\a3-548-a3.ais"

11, {'0'=1}),instruction_set="common", loop_scc=0*[], loops=1*[/*55*/r1], name="main",

persistent_id=1, section=".text", surface_address="0x40fc" {block b0 (start):

persistent_id=2 { //other elements of routine ... }

28

In the given example, the stmts field is filled with the ALF equivalents of blocks
and instructions.

We have implemented the solution using a template of instructions. For an
operation, ALF statement(s) semantically equivalent to the CRL operation is generated.
Problem here is that the same CRL2 instruction should always generate the same ALF
code except that the CRL2 operand (values) should be dynamically translated to
corresponding ALF operand values .The equivalent ALF template is stored in a file
named by the concatenation of genname and op_id of the CRL operation.
Unfortunately, a single Alf statement may not always be sufficient to fully represent the
semantics of the operation. Consequently, one single instruction in CRL may be
converted to a set of ALF statements.

In the ALF template the operands are represented as $src and $dst so that it
can be replaced by the exact values given in the CRL operation. Consider the following
example.

This is CRL2 representation of add instruction in PowerPC

The ALF template equivalent to add instruction is the following.

{ store
 { addr 32 { fref 32 $dst1 } { dec_unsigned 32 0 } } with
 { add 32
 { load 32 { addr 32 { fref 32 $src1 } { dec_unsigned 32 0 }}}
 { load 32 { addr 32 { fref 32 $src2 } { dec_unsigned 32 0 }}}
 { dec_unsigned 1 0 }
 }
}

instruction i66 0x4104:4: bytes=4*[0x7c, 0x63, 0x62, 0x14],
file="loop.c", lines_single=5, lines_start_single=5,
surface_address="0x4104" {
operation o67 "add r3, r3, r12": arch='UISA', assembly="add $, $,
$", dst=1*[/*71*/'r3'], form='XO', genname='add',
op_id=0xf7c000214, optype=3*[/*52*/'GPRegAll', /*60*/'GPRegAll',
/*68*/'GPRegAll'], persistent_id=8,src=3*[/*24*/1='r3',
/*34*/'r12']; }

29

The translator program reads this template and replaces all the $dst[i] by ith
string in the ‘dst’ attribute of CRL2. Similarly all $src[i] is replaced by i th string in the
‘src’ attribute. In the example mentioned above, $dst1 is replaced by r3 and $src1
and $src2 by r3 and r12 respectively. Before replacing the operands, the alias table
is checked to see and if there is any aliasing for the operand. If there is, then its alias is
placed in the template instead of the original operand. Also a label name is assigned to
each instruction to aid in mapping back the ALF statement(s) to the CRL instruction.
The label name is generated using the routine name, block persistent id and instruction
address. Therefore the final ALF statement equivalent to the above CRL instruction will
be as follows

There are cases in which a CRL2 statement must be realized by a set of ALF
statements which include jumps or branches within it. In such cases, a label name is
generated to denote the branch location. Every label in the template is represented as
$label_<labelname> where labelname can be any string. To overcome the label name
conflicts which may arise when the instruction repeats in the same routine, a distinct
label count is appended to the label name. This makes the label name unique.

Besides the instructions, the CRL blocks also have details of edges in them. The
information on edges is used to resolve the targets of the branch instructions. For each
edge type, the equivalent ALF branch statement is generated. For a call edge, a

{ label 32 { lref 32 label_main.L1_0x10_0x4104 }

{ dec_unsigned 32 0 } }

{ store { addr 32 { fref 32 r3 } { dec_unsigned 32 0 } } with

{ add 32 { load 32 { addr 32 { fref 32 r3 } { dec_unsigned 32 0 }
} }

{ load 32 { addr 32 { fref 32 r12 } { dec_unsigned 32 0 } } }

 { dec_unsigned 1 0 } } }

30

function call statement is produced which calls the target function of the call edge. This
is shown in the following example.

The edge e90 is transformed into an ALF call statement as follows.

Here ‘main.L1’ is the name of the routine in crl2.

The other type of edges found when a conditional jump statement occurs is the
true edge and the false edge. The true edge corresponds to the path followed when the
condition evaluates to true and the false edge corresponds to the path taken when the
condition evaluates to false. A true or false edge follows a conditional branch instruction
in the code. The ALF statement for this branch instruction evaluates the condition and
stores the result in a flag variable. When a true edge or false edge arises, an ALF
statement is generated which checks this flag and does the branching accordingly.

The other types of edges include: normal, local, zero, delay, impasse and return
edges. An unconditional jump statement to its target is generated in cases of the
normal, local, zero, impasse and delay edges. The same holds here i.e., the targets of
branch/jump statements can depend on the value of an expression. Thus the branch
information is actually analysis results and not the code itself.

These features discussed above constitute the core of the solution.

10.10.10.10. ResultsResultsResultsResults

The result of this thesis is a working translator that can convert CRL2
representation of NECv850 into ALF code.

An example CRL2 file is given in Appendix A and its equivalent Alf file is given in
Appendix B.

{ call { label 32 { lref 32 f_main.L1 } { dec_unsigned 32 0 } } result }

block b9 (call): address=0x40fc, loop_call=1, persistent_id=0x14,
surface_address="0x40fc" {
 edge e89 (local) -> b10;
 edge e90 (call) -> r1;

 }

31

11.11.11.11. Recommendation and Future WorkRecommendation and Future WorkRecommendation and Future WorkRecommendation and Future Work

This project is still not fully complete. There is much to do and many challenges
to be overcome.

Firstly, the translation from CRL2 to ALF has not yet been fully implemented and
validated. There are many register bits and flags to be set but were ignored, as it was
irrelevant with respect to flow analysis. But in circumstances where running of ALF
program is important, the translator generated output program is not guaranteed to
work. The translation can be thought to be complete only if the complete semantics of
the CRL2 code is reflected in the ALF version including registers, flags etc.

Secondly, though a generic solution has been devised, it is currently tested for
the CRL representation of the PowerPC and assemblers only. Thus the solution has not
been tested upon other binary codes from other platforms.

Thirdly, an effort has to be made to maintain the same control structures in ALF
as in that of CRL2.

I believe that the above mentioned reforms could be implemented in the
translator as future work.

12.12.12.12. Summary and ConclusionSummary and ConclusionSummary and ConclusionSummary and Conclusion

The current version of the WCET analysis tool SWEET analyzes the intermediate
format of the NIC research compiler. Since the NIC complier only supports one target
platform it severely restricts SWEETs usage. After the completion of the presented
thesis works; it will be possible for SWEET to reform WCET flow analysis upon binary
codes thus making SWEET much more easily portable to different target platforms. The
translator developed can convert the binary executable into ALF which can be input into
SWEET.

32

13.13.13.13. BibliographyBibliographyBibliographyBibliography

[1] ALF – A Language for WCET Flow Analysis. Jan Gustafsson, Andreas
Ermedahl, Bjorn Lisper,Christer Sandberg, and Linus Kallberg. 2009. 2009.

[2] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools.

[3] Andreas Ermedahl, Jan Gustafsson, and Bjorn Lisper. ALF (ARTIST2
Language for Flow Analysis) Specification. s.l. : Dept. of Computer Science
and Electronics, M¨alardalen University, Västerås, Sweden. ARTICLE
VERSION: Id : articlemain.tex, v1.302009/01/0122 : 33 : 32blrExp.

[4] CRL Library. [Online] AbsInt Anganwadle Informatik.
http://www.absint.com/artist2/doc/crl2/html/.

[5] CRL2 Basic Attributes. [Online] AbsInt Angenwandle Informatik.
http://www.absint.com/artist2/doc/crl2/html/doc_attributes.html.

[6] Ermedahl, Andreas. 2003. A Modular tool Architecture for Worst-Case
Execution Time Analysis. 2003.

[7] Petterson, Samuel. 2005. Porting the Bound-T WCET tool to Lego Mindstorms
and the Asterix RTOS. 2005.

[8] 1999. RCPU, RISC Central Processing Unit Refernce Manual. s.l. : Motorola,
1999.

[9] Reinhold Heckmann, Christian Ferdinand - AbsInt Angewandte Informatik
GmbH. Worst-Case Execution Time Prediction by Static Program Analysis.
AbsInt. [Online] AbsInt. http://www.absint.com.

[10] The worst-case execution-time problem—overview of methods and survey of
tools,. 2008. 2008, ACM Transactions on Embedded Computing Systems
(TECS), vol 7, nr 3, p1---53, ACM .

[11] WCET Project/SWEET. WCET . [Online]
http://www.mrtc.mdh.se/projects/wcet/sweet.html .

[12] Vijay, Nithya. 2009. A translator from CRL2 Representation of NECv850E to
ALF. 2009.

33

14.14.14.14. Appendix AAppendix AAppendix AAppendix A

A sample CRL2 file

crl
 specification 'f375656e-a41e-4623-aac9-b5dbb261c4bd'
 implementation '18399358-21ba-45b1-8339-33592c28f594'
 version 2 1 5 1003000 103773;

attributes global
 entry: routine,
 start: routine[];

attributes routine
 end: block,
 external: bool,
 public: bool,
 start: block;

attributes block
 buddy: block,
 type: enum;

attributes edge
 linear: bool,
 source: block,
 target: block,
 type: enum;

attributes instruction
 address: address<64>,
 bytes: unsigned<8>[],
 width: unsigned<64>;

attributes operation
 mnemonic: symbol;

attributes data
 external: bool,
 public: bool;

attributes bytes
 address: address<64>,
 content: unsigned<8>[],
 width: unsigned<64>;

global g1: attribute_change_code=4, attribute_safety_code=4, cache=1*[
/*71*/2*{

34

 data=7*{ associativity=8, line_size=0x20, may="none", must="empty",
pers="none", policy="plruppc", size=0x8000 },
 instruction=7*{ associativity=8, line_size=0x20, may="none",
must="empty", pers="none", policy="plruppc",
 size=0x8000 } }], clock_rate=0x2625a00..0x2625a00,
compiler_name="GCC",
 decoder_name="PowerPC", errors=0, gui_assume_aligned_data_accesses=1,
gui_calculate_cum_wcet=1,
 gui_fpath_analysis=1, gui_xml_verbosity={},
input_file_name="webdemo.elf", loop_back_edges=0*@{},
 loop_block_copy=8*[/*24*/'file', /*38*/'lines', /*53*/'lines_single',
/*75*/
 'address', /*15*/'surface_address', /*40*/'base_address', /*62*/'page',
/*76*/
 'no_page'], loop_routine_copy=10*[/*40*/'default_loop_iteration',
/*72*/'restrict_loop_iteration', /*105*/
 'default_read_access', /*27*/'default_write_access',
/*57*/'restrict_read_access', /*87*/
 'restrict_write_access', /*29*/'base_default_read_access',
/*63*/'base_default_write_access', /*98*/
 'base_restrict_read_access', /*33*/'base_restrict_write_access'],
loop_scc_all=0*@{},
 loop_transformation=1, mapping="VIVU-4,len=infinity,def-unroll=2",
persistent_id_next=0x28,
 processed=1*[/*18*/2*{ progname="exec2crl", time=?gmt(2009-06-18-10-24-
10) }],
 reader_name="ELF 32", recursion_scc=0*[], recursions=0*[], start=1*[
/*73*/r0],
 tlb_dcache_associativity=2, tlb_dcache_line_size=0x1000,
tlb_dcache_may="none", tlb_dcache_miss_penalty=0,
 tlb_dcache_must="empty", tlb_dcache_pers="chaos",
tlb_dcache_policy="tlb", tlb_dcache_size=0x80000, tlb_icache_associativity=2,
 tlb_icache_line_size=0x1000, tlb_icache_may="none",
tlb_icache_miss_penalty=0, tlb_icache_must="empty",
 tlb_icache_pers="chaos", tlb_icache_policy="tlb",
tlb_icache_size=0x80000, user_tw_taken=1, warnings=0;

routine r0: address=0x18003a0, gui_analysis_task=?loc("c:\\program
files\\absint\\advanced
analyzer\\ppc\\b103773\\examples\\gcc\\00_webdemo\\webdemo.apd\\a3-1428-
a3.ais" 12, {'0'=1}),
 instruction_set="common", loop_scc=0*[], name="main", persistent_id=1,
section=".text",
 surface_address="0x18003a0" {
 block b0 (start): persistent_id=2 {
 edge e57 (linear) -> b2;
 }
 block b1 (end): persistent_id=3;
 block b2: address=0x18003a0, instruction_set="common", persistent_id=4,
surface_address="0x18003a0" {
 edge e61 (true, linear) -> b3;

35

 instruction i63 0x18003a0:4: bytes=4*[0x94, 0x21, 0xff, 0xd0],
file="webdemo.c",
 lines=13*[/*23*/0x1c, /*35*/0x1d, /*47*/0x1e, /*59*/0x1f,
/*71*/0x20, /*83*/
 0x21, /*18*/0x22, /*30*/0x23, /*42*/0x24, /*54*/0x25, /*66*/0x26,
/*78*/
 0x27, /*18*/0x28], lines_start=13*[/*49*/0x1c, /*61*/0x1d,
/*73*/0x1e, /*85*/
 0x1f, /*18*/0x20, /*30*/0x21, /*42*/0x22, /*54*/0x23, /*66*/0x24,
/*78*/
 0x25, /*18*/0x26, /*30*/0x27, /*42*/0x28],
surface_address="0x18003a0" {
 operation o64 "stwu r1, -48(r1)": arch='UISA', assembly="stwu $,
$($)", cat=1*{ mem_write },
 dst=4*[/*24*/2='r1', /*34*/'Mem'], form='D',
genname='stwu', op_id=0x794000000, optype=3*[/*80*/
 'GPRegAll', /*18*/'signed', /*26*/'GPRegBase'],
persistent_id=7, src=3*[/*61*/'r1', /*69*/-48, /*77*/
 'r1'];
 }
 instruction i65 0x18003a4:4: bytes=4*[0x7c, 0x08, 0x02, 0xa6],
file="webdemo.c",
 lines_single=0x28, surface_address="0x18003a4" {
 operation o66 "mfspr r0, lr": arch='UISA', assembly="mfspr $, $",
dst=1*[/*68*/'r0'], form='XFX',
 genname='mfspr', op_id=0xf7c0002a6, optype=2*[
/*45*/'GPRegAll', /*53*/'SPReg'], persistent_id=8, src=2*[/*88*/
 1='lr'];
 }
 instruction i67 0x18003a8:4: bytes=4*[0x93, 0xe1, 0x00, 0x2c],
file="webdemo.c",
 lines_single=0x28, surface_address="0x18003a8" {
 operation o68 "stw r31, +44(r1)": arch='UISA', assembly="stw $,
$($)", cat=1*{ mem_write },
 dst=4*[/*24*/3='Mem'], form='D', genname='stw',
op_id=0x790000000, optype=3*[/*72*/'GPRegAll', /*80*/
 'signed', /*18*/'GPRegZero'], persistent_id=9, src=3*[
/*53*/'r31', /*61*/+44, /*69*/'r1'];
 }
 instruction i69 0x18003ac:4: bytes=4*[0x90, 0x01, 0x00, 0x34],
file="webdemo.c",
 lines_single=0x28, surface_address="0x18003ac" {
 operation o70 "stw r0, +52(r1)": arch='UISA', assembly="stw $,
$($)", cat=1*{ mem_write },
 dst=4*[/*24*/3='Mem'], form='D', genname='stw',
op_id=0x790000000, optype=3*[/*72*/'GPRegAll', /*80*/
 'signed', /*18*/'GPRegZero'], persistent_id=0xa, src=3*[
/*55*/'r0', /*63*/+52, /*71*/'r1'];
 }
 instruction i71 0x18003b0:4: bytes=4*[0x7c, 0x3f, 0x0b, 0x78],
file="webdemo.c",

36

 lines_single=0x28, surface_address="0x18003b0" {
 operation o72 "mr r31, r1": arch='UISA', assembly="or $, $, $",
dst=1*[/*66*/'r31'], form='X',
 genname='or', op_id=0xf7c000378, optype=3*[/*45*/'GPRegAll',
/*53*/'GPRegAll', /*61*/'GPRegAll'], persistent_id=0xb,
 src=3*[/*24*/1='r1', /*34*/'r1'];
 }
 instruction i73 0x18003b4:4: bytes=4*[0x90, 0x7f, 0x00, 0x18],
file="webdemo.c",
 lines_single=0x28, surface_address="0x18003b4" {
 operation o74 "stw r3, +24(r31)": arch='UISA', assembly="stw $,
$($)", cat=1*{ mem_write },
 dst=4*[/*24*/3='Mem'], form='D', genname='stw',
op_id=0x790000000, optype=3*[/*72*/'GPRegAll', /*80*/
 'signed', /*18*/'GPRegZero'], persistent_id=0xc, src=3*[
/*55*/'r3', /*63*/+24, /*71*/'r31'];
 }
 instruction i75 0x18003b8:4: bytes=4*[0x90, 0x9f, 0x00, 0x1c],
file="webdemo.c",
 lines_single=0x28, surface_address="0x18003b8" {
 operation o76 "stw r4, +28(r31)": arch='UISA', assembly="stw $,
$($)", cat=1*{ mem_write },
 dst=4*[/*24*/3='Mem'], form='D', genname='stw',
op_id=0x790000000, optype=3*[/*72*/'GPRegAll', /*80*/
 'signed', /*18*/'GPRegZero'], persistent_id=0xd, src=3*[
/*55*/'r4', /*63*/+28, /*71*/'r31'];
 }
 instruction i77 0x18003bc:4: bytes=4*[0x38, 0x00, 0x00, 0x00],
file="webdemo.c",
 lines=8*[/*22*/0x29, /*34*/0x2a, /*46*/0x2b, /*58*/0x2c,
/*70*/0x2d, /*82*/
 0x2e, /*18*/0x2f, /*30*/0x30], lines_start=8*[/*60*/0x29,
/*72*/0x2a, /*84*/
 0x2b, /*18*/0x2c, /*30*/0x2d, /*42*/0x2e, /*54*/0x2f, /*66*/0x30
], surface_address="0x18003bc" {
 operation o78 "li r0, +0": arch='UISA', assembly="addi $, $, $",
dst=1*[/*65*/'r0'], form='D',
 genname='addi', op_id=0x738000000, optype=3*[
/*45*/'GPRegAll', /*53*/'GPRegZero', /*61*/'signed'], persistent_id=0xe,
 src=3*[/*24*/1='zero', /*34*/+0];
 }
 instruction i79 0x18003c0:4: bytes=4*[0x90, 0x1f, 0x00, 0x10],
file="webdemo.c",
 lines_single=0x30, surface_address="0x18003c0" {
 operation o80 "stw r0, +16(r31)": arch='UISA', assembly="stw $,
$($)", cat=1*{ mem_write },
 dst=4*[/*24*/3='Mem'], form='D', genname='stw',
op_id=0x790000000, optype=3*[/*72*/'GPRegAll', /*80*/
 'signed', /*18*/'GPRegZero'], persistent_id=0xf, src=3*[
/*55*/'r0', /*63*/+16, /*71*/'r31'];
 }

37

 instruction i81 0x18003c4:4: bytes=4*[0x80, 0x1f, 0x00, 0x08],
file="webdemo.c",
 lines_single=0x31, lines_start_single=0x31,
surface_address="0x18003c4" {
 operation o82 "lwz r0, +8(r31)": arch='UISA', assembly="lwz $,
$($)", cat=1*{ mem_read },
 dst=1*[/*24*/'r0'], form='D', genname='lwz',
op_id=0x780000000, optype=3*[/*70*/'GPRegAll', /*78*/
 'signed', /*18*/'GPRegZero'], persistent_id=0x10, src=4*[
/*56*/1=+8, /*66*/'r31', /*74*/'Mem'];
 }
 instruction i83 0x18003c8:4: bytes=4*[0x3d, 0x20, 0x01, 0x86],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003c8" {
 operation o84 "lis r9, 0x1860000@h": arch='UISA', assembly="addis
$, $, $@h", dst=1*[/*75*/
 'r9'], form='D', genname='addis', op_id=0x73c000000,
optype=3*[/*56*/'GPRegAll', /*64*/'GPRegZero', /*72*/'unsigned'],
 persistent_id=0x11, src=3*[/*44*/1='zero', /*54*/0x1860000
];
 }
 instruction i85 0x18003cc:4: bytes=4*[0x39, 0x29, 0x89, 0x1c],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003cc" {
 operation o86 "addi r9, r9, -30436": arch='UISA', assembly="addi
$, $, $", dst=1*[/*75*/
 'r9'], form='D', genname='addi', op_id=0x738000000,
optype=3*[/*56*/'GPRegAll', /*64*/'GPRegZero', /*72*/'signed'],
 persistent_id=0x12, src=3*[/*44*/1='r9', /*54*/-30436];
 }
 instruction i87 0x18003d0:4: bytes=4*[0x54, 0x00, 0x10, 0x3a],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003d0" {
 operation o88 "slwi r0, r0, 2": arch='UISA', assembly="rlwinm $,
$, $, $, $", dst=1*[/*70*/'r0'], form='M',
 genname='rlwinm', op_id=0x754000000, optype=5*[
/*45*/'GPRegAll', /*53*/'GPRegAll', /*61*/'unsigned', /*69*/'unsigned',
/*77*/
 'unsigned'], persistent_id=0x13, src=5*[/*48*/1='r0',
/*58*/2, /*66*/0, /*74*/0x1d];
 }
 instruction i89 0x18003d4:4: bytes=4*[0x7d, 0x20, 0x4a, 0x14],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003d4" {
 operation o90 "add r9, r0, r9": arch='UISA', assembly="add $, $,
$", dst=1*[/*70*/'r9'], form='XO',
 genname='add', op_id=0xf7c000214, optype=3*[
/*45*/'GPRegAll', /*53*/'GPRegAll', /*61*/'GPRegAll'], persistent_id=0x14,
 src=3*[/*24*/1='r0', /*34*/'r9'];
 }

38

 instruction i91 0x18003d8:4: bytes=4*[0x80, 0x09, 0x00, 0x00],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003d8" {
 operation o92 "lwz r0, +0(r9)": arch='UISA', assembly="lwz $,
$($)", cat=1*{ mem_read },
 dst=1*[/*24*/'r0'], form='D', genname='lwz',
op_id=0x780000000, optype=3*[/*70*/'GPRegAll', /*78*/
 'signed', /*18*/'GPRegZero'], persistent_id=0x15, src=4*[
/*56*/1=+0, /*66*/'r9', /*74*/'Mem'];
 }
 instruction i93 0x18003dc:4: bytes=4*[0x7c, 0x09, 0x03, 0xa6],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003dc" {
 operation o94 "mtspr ctr, r0": arch='UISA', assembly="mtspr $,
$", dst=1*[/*69*/'ctr'], form='XFX',
 genname='mtspr', op_id=0xf7c0003a6, optype=2*[/*45*/'SPReg',
/*53*/'GPRegAll'], persistent_id=0x16,
 src=2*[/*24*/1='r0'];
 }
 instruction i95 0x18003e0:4: bytes=4*[0x80, 0x1f, 0x00, 0x0c],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003e0" {
 operation o96 "lwz r0, +12(r31)": arch='UISA', assembly="lwz $,
$($)", cat=1*{ mem_read },
 dst=1*[/*24*/'r0'], form='D', genname='lwz',
op_id=0x780000000, optype=3*[/*70*/'GPRegAll', /*78*/
 'signed', /*18*/'GPRegZero'], persistent_id=0x17, src=4*[
/*56*/1=+12, /*66*/'r31', /*74*/'Mem'];
 }
 instruction i97 0x18003e4:4: bytes=4*[0x7c, 0x03, 0x03, 0x78],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003e4" {
 operation o98 "mr r3, r0": arch='UISA', assembly="or $, $, $",
dst=1*[/*65*/'r3'], form='X',
 genname='or', op_id=0xf7c000378, optype=3*[/*45*/'GPRegAll',
/*53*/'GPRegAll', /*61*/'GPRegAll'], persistent_id=0x18,
 src=3*[/*24*/1='r0', /*34*/'r0'];
 }
 instruction i99 0x18003e8:4: bytes=4*[0x4e, 0x80, 0x04, 0x21],
call_block=b3,
 file="webdemo.c", lines_single=0x31, surface_address="0x18003e8"
{
 operation o100 "bctrl": arch='UISA', assembly="bcctrl $", cat=3*{
call, computed, taken },
 computed=1, conditional=0, dst=3*[/*49*/2='lr'], form='XL',
genname='bcctrl', op_id=0x74e800421,
 optype=1*[/*27*/'unsigned'], persistent_id=0x19, src=2*[
/*65*/0x14, /*73*/'ctr'],
 type='call';
 }
 }

39

 block b3 (call): address=0x18003a0, call_instruction=i99, more_calls=1,
 no_calls=1, persistent_id=5, surface_address="0x18003a0" {
 edge e60 (local, linear) -> b4;
 }
 block b4 (return): address=0x18003a0, persistent_id=6,
surface_address="0x18003a0" {
 edge e62 -> b5;
 }
 block b5: address=0x18003ec, instruction_set="common",
persistent_id=0x1a,
 surface_address="0x18003ec" {
 edge e102 (true) -> b1;
 instruction i103 0x18003ec:4: bytes=4*[0x7c, 0x69, 0x1b, 0x78],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003ec" {
 operation o104 "mr r9, r3": arch='UISA', assembly="or $, $, $",
dst=1*[/*66*/'r9'], form='X',
 genname='or', op_id=0xf7c000378, optype=3*[/*45*/'GPRegAll',
/*53*/'GPRegAll', /*61*/'GPRegAll'], persistent_id=0x1b,
 src=3*[/*24*/1='r3', /*34*/'r3'];
 }
 instruction i105 0x18003f0:4: bytes=4*[0x80, 0x1f, 0x00, 0x10],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003f0" {
 operation o106 "lwz r0, +16(r31)": arch='UISA', assembly="lwz $,
$($)", cat=1*{ mem_read },
 dst=1*[/*24*/'r0'], form='D', genname='lwz',
op_id=0x780000000, optype=3*[/*70*/'GPRegAll', /*78*/
 'signed', /*18*/'GPRegZero'], persistent_id=0x1c, src=4*[
/*56*/1=+16, /*66*/'r31', /*74*/'Mem'];
 }
 instruction i107 0x18003f4:4: bytes=4*[0x7c, 0x09, 0x02, 0x14],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003f4" {
 operation o108 "add r0, r9, r0": arch='UISA', assembly="add $, $,
$", dst=1*[/*71*/'r0'],
 form='XO', genname='add', op_id=0xf7c000214, optype=3*[
/*52*/'GPRegAll', /*60*/'GPRegAll', /*68*/'GPRegAll'], persistent_id=0x1d,
 src=3*[/*24*/1='r9', /*34*/'r0'];
 }
 instruction i109 0x18003f8:4: bytes=4*[0x90, 0x1f, 0x00, 0x10],
file="webdemo.c",
 lines_single=0x31, surface_address="0x18003f8" {
 operation o110 "stw r0, +16(r31)": arch='UISA', assembly="stw $,
$($)", cat=1*{ mem_write },
 dst=4*[/*24*/3='Mem'], form='D', genname='stw',
op_id=0x790000000, optype=3*[/*72*/'GPRegAll', /*80*/
 'signed', /*18*/'GPRegZero'], persistent_id=0x1e, src=3*[
/*56*/'r0', /*64*/+16, /*72*/'r31'];
 }

40

 instruction i111 0x18003fc:4: bytes=4*[0x80, 0x1f, 0x00, 0x10],
file="webdemo.c",
 lines_single=0x32, lines_start_single=0x32,
surface_address="0x18003fc" {
 operation o112 "lwz r0, +16(r31)": arch='UISA', assembly="lwz $,
$($)", cat=1*{ mem_read },
 dst=1*[/*24*/'r0'], form='D', genname='lwz',
op_id=0x780000000, optype=3*[/*70*/'GPRegAll', /*78*/
 'signed', /*18*/'GPRegZero'], persistent_id=0x1f, src=4*[
/*56*/1=+16, /*66*/'r31', /*74*/'Mem'];
 }
 instruction i113 0x1800400:4: bytes=4*[0x54, 0x00, 0xc2, 0x3e],
file="webdemo.c",
 lines_single=0x32, surface_address="0x1800400" {
 operation o114 "srwi r0, r0, 8": arch='UISA', assembly="rlwinm $,
$, $, $, $", dst=1*[/*71*/'r0'],
 form='M', genname='rlwinm', op_id=0x754000000, optype=5*[
/*52*/'GPRegAll', /*60*/'GPRegAll', /*68*/'unsigned', /*76*/
 'unsigned', /*18*/'unsigned'], persistent_id=0x20, src=5*[
/*56*/1='r0', /*66*/0x18, /*74*/8, /*82*/
 0x1f];
 }
 instruction i115 0x1800404:4: bytes=4*[0x7c, 0x03, 0x03, 0x78],
file="webdemo.c",
 lines=2*[/*22*/0x33, /*34*/0x34], lines_start=2*[/*64*/0x33,
/*76*/
 0x34], surface_address="0x1800404" {
 operation o116 "mr r3, r0": arch='UISA', assembly="or $, $, $",
dst=1*[/*66*/'r3'], form='X',
 genname='or', op_id=0xf7c000378, optype=3*[/*45*/'GPRegAll',
/*53*/'GPRegAll', /*61*/'GPRegAll'], persistent_id=0x21,
 src=3*[/*24*/1='r0', /*34*/'r0'];
 }
 instruction i117 0x1800408:4: bytes=4*[0x81, 0x61, 0x00, 0x00],
file="webdemo.c",
 lines_single=0x34, surface_address="0x1800408" {
 operation o118 "lwz r11, +0(r1)": arch='UISA', assembly="lwz $,
$($)", cat=1*{ mem_read },
 dst=1*[/*24*/'r11'], form='D', genname='lwz',
op_id=0x780000000, optype=3*[/*70*/'GPRegAll', /*78*/
 'signed', /*18*/'GPRegZero'], persistent_id=0x22, src=4*[
/*56*/1=+0, /*66*/'r1', /*74*/'Mem'];
 }
 instruction i119 0x180040c:4: bytes=4*[0x80, 0x0b, 0x00, 0x04],
file="webdemo.c",
 lines_single=0x34, surface_address="0x180040c" {
 operation o120 "lwz r0, +4(r11)": arch='UISA', assembly="lwz $,
$($)", cat=1*{ mem_read },
 dst=1*[/*24*/'r0'], form='D', genname='lwz',
op_id=0x780000000, optype=3*[/*70*/'GPRegAll', /*78*/

41

 'signed', /*18*/'GPRegZero'], persistent_id=0x23, src=4*[
/*56*/1=+4, /*66*/'r11', /*74*/'Mem'];
 }
 instruction i121 0x1800410:4: bytes=4*[0x7c, 0x08, 0x03, 0xa6],
file="webdemo.c",
 lines_single=0x34, surface_address="0x1800410" {
 operation o122 "mtspr lr, r0": arch='UISA', assembly="mtspr $,
$", dst=1*[/*69*/'lr'], form='XFX',
 genname='mtspr', op_id=0xf7c0003a6, optype=2*[/*45*/'SPReg',
/*53*/'GPRegAll'], persistent_id=0x24,
 src=2*[/*24*/1='r0'];
 }
 instruction i123 0x1800414:4: bytes=4*[0x83, 0xeb, 0xff, 0xfc],
file="webdemo.c",
 lines_single=0x34, surface_address="0x1800414" {
 operation o124 "lwz r31, -4(r11)": arch='UISA', assembly="lwz $,
$($)", cat=1*{ mem_read },
 dst=1*[/*24*/'r31'], form='D', genname='lwz',
op_id=0x780000000, optype=3*[/*70*/'GPRegAll', /*78*/
 'signed', /*18*/'GPRegZero'], persistent_id=0x25, src=4*[
/*56*/1=-4, /*66*/'r11', /*74*/'Mem'];
 }
 instruction i125 0x1800418:4: bytes=4*[0x7d, 0x61, 0x5b, 0x78],
file="webdemo.c",
 lines_single=0x34, surface_address="0x1800418" {
 operation o126 "mr r1, r11": arch='UISA', assembly="or $, $, $",
dst=1*[/*67*/'r1'], form='X',
 genname='or', op_id=0xf7c000378, optype=3*[/*45*/'GPRegAll',
/*53*/'GPRegAll', /*61*/'GPRegAll'], persistent_id=0x26,
 src=3*[/*24*/1='r11', /*34*/'r11'];
 }
 instruction i127 0x180041c:4: bytes=4*[0x4e, 0x80, 0x00, 0x20],
file="webdemo.c",
 lines_single=0x34, surface_address="0x180041c" {
 operation o128 "blr": arch='UISA', assembly="bclr $", cat=4*{
computed, predictable,
 return, taken }, computed=1, conditional=0, form='XL',
genname='bclr', op_id=0x74e800020,
 optype=1*[/*27*/'unsigned'], persistent_id=0x27, src=2*[
/*65*/0x14, /*73*/'lr'],
 type='branch_or_return';
 }
 }
}

data d12: address=0x18000b4, byte_order='x3210', executable=0,
file_size=0x20, mem_size=0x20,
 name=".note.ABI-tag", readable=1, surface_address="0x18000b4",
type='data', writable=0 {
 bytes by13 0x18000b4:32: content=32*[0x00, 0x00, 0x00, 0x04, 0x00, 0x00,
0x00,

42

 0x10, 0x00, 0x00, 0x00, 0x01, 0x47, 0x4e, 0x55, 0x00, 0x00, 0x00,
0x00, 0x00,
 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00,
0x12];
}

data d14: address=0x18000d4, byte_order='x3210', executable=1,
file_size=0x28, mem_size=0x28,
 name=".init", readable=1, surface_address="0x18000d4", type='code',
writable=0 {
 bytes by15 0x18000d4:40: content=40*[0x94, 0x21, 0xff, 0xe0, 0x7c, 0x08,
0x02,
 0xa6, 0x90, 0x01, 0x00, 0x24, 0x48, 0x00, 0x00, 0x45, 0x48, 0x00,
0x01, 0x31,
 0x48, 0x05, 0x7d, 0x05, 0x80, 0x01, 0x00, 0x24, 0x7c, 0x08, 0x03,
0xa6, 0x38,
 0x21, 0x00, 0x20, 0x4e, 0x80, 0x00, 0x20];
}

43

15.15.15.15. Appendix BAppendix BAppendix BAppendix B

A Sample ALF file

{ alf
 { macro_defs
 }
 { least_addr_unit 8
 } big_endian
 { exports
 { frefs
 }
 { lrefs
 { lref 32 f_main }
 }
 }
 { imports
 { frefs
 }
 { lrefs
 }
 }
 { decls
 /* General Purpose Registers */
 { alloc 32 r0 32 }
 { alloc 32 r1 32 }
 { alloc 32 r2 32 }
 { alloc 32 r3 32 }
 { alloc 32 r4 32 }
 { alloc 32 r5 32 }
 { alloc 32 r6 32 }
 { alloc 32 r7 32 }
 { alloc 32 r8 32 }
 { alloc 32 r9 32 }
 { alloc 32 r10 32 }
 { alloc 32 r11 32 }
 { alloc 32 r12 32 }
 { alloc 32 r13 32 }
 { alloc 32 r14 32 }
 { alloc 32 r15 32 }
 { alloc 32 r16 32 }
 { alloc 32 r17 32 }
 { alloc 32 r18 32 }

44

 { alloc 32 r19 32 }
 { alloc 32 r20 32 }
 { alloc 32 r21 32 }
 { alloc 32 r22 32 }
 { alloc 32 r23 32 }
 { alloc 32 r24 32 }
 { alloc 32 r25 32 }
 { alloc 32 r26 32 }
 { alloc 32 r27 32 }
 { alloc 32 r28 32 }
 { alloc 32 r29 32 }
 { alloc 32 r30 32 }
 { alloc 32 r31 32 }
 { alloc 32 zero 32 }

 /* Special Purpose Registers */
 { alloc 32 f0 64 }
 { alloc 32 f1 64 }
 { alloc 32 f2 64 }
 { alloc 32 f3 64 }
 { alloc 32 f4 64 }
 { alloc 32 f5 64 }
 { alloc 32 f6 64 }
 { alloc 32 f7 64 }
 { alloc 32 f8 64 }
 { alloc 32 f9 64 }
 { alloc 32 f10 64 }
 { alloc 32 f11 64 }
 { alloc 32 f12 64 }
 { alloc 32 f13 64 }
 { alloc 32 f14 64 }
 { alloc 32 f15 64 }
 { alloc 32 f16 64 }
 { alloc 32 f17 64 }
 { alloc 32 f18 64 }
 { alloc 32 f19 64 }
 { alloc 32 f20 64 }
 { alloc 32 f21 64 }
 { alloc 32 f22 64 }
 { alloc 32 f23 64 }
 { alloc 32 f24 64 }
 { alloc 32 f25 64 }
 { alloc 32 f26 64 }

45

 { alloc 32 f27 64 }
 { alloc 32 f28 64 }
 { alloc 32 f29 64 }
 { alloc 32 f30 64 }
 { alloc 32 f31 64 }

 /* Floating Point Status and Control Register */
 { alloc 32 fpscr 32 }

 /* Condition Register */
 { alloc 32 cr0 8 }
 { alloc 32 cr1 8 }
 { alloc 32 cr2 8 }
 { alloc 32 cr3 8 }
 { alloc 32 cr4 8 }
 { alloc 32 cr5 8 }
 { alloc 32 cr6 8 }
 { alloc 32 cr7 8 }

 /* Integer Exception Register */
 { alloc 32 xer 32 }

 /* Link Register */
 { alloc 32 lr 32 }

 /* Count Register */
 { alloc 32 ctr 32 }

 { alloc 32 Mem 1024 }

 /* Temporary variables used in generated ALf statements */
 { alloc 32 temp_1 32 }
 { alloc 32 temp_2 32 }
 { alloc 32 temp_3 32 }
 { alloc 32 temp_4 32 }
 { alloc 32 temp_5 32 }
 { alloc 32 temp_6 32 }
 { alloc 32 temp_7 32 }
 { alloc 32 temp_8 32 }
 { alloc 32 branch_flag 32 }
 { alloc 32 temp_8bit_1 8 }
 { alloc 32 temp_8bit_2 8 }
 { alloc 32 temp_8bit_3 8 }

46

 { alloc 32 temp_8bit_4 8 }
 { alloc 32 temp_64bit_1 64 }
 }
 { inits
 { init { ref zero { dec_unsigned 32 0 } } { dec_signed 32 0
} }
 }
 { funcs
 { func { label 32 { lref 32 f_main } { dec_unsigned 32 0 } }
 { arg_decls }
 { scope
 { decls }
 { inits }
 { stmts
 { label 32 { lref 32 label_main_0x2 } { dec_unsigned
32 0 } } { null }
 { jump { label 32 { lref 32 label_main_0x4 } {
dec_unsigned 32 0 } } leaving 0 }
 { label 32 { lref 32 label_main_0x3 } { dec_unsigned
32 0 } } { null } { return }
 { label 32 { lref 32 label_main_0x4 } { dec_unsigned
32 0 } } { null }
 { label 32 { lref 32 label_main_0x4_0x18003a0 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r1 } { dec_unsigned 32 0 } } } { dec_signed 32 { minus 48 } }
} } { store { addr 32 { fref 32 r1 } { dec_unsigned 32 0 } }
with { load 32 { addr 32 { fref 32 temp_1 } { dec_unsigned 32 0
} } } } { store { addr 32 { fref 32 Mem } { load 32 { addr 32 {
fref 32 temp_1 } { dec_unsigned 32 0 } } } } with { load 32 {
addr 32 { fref 32 r1 } { dec_unsigned 32 0 } } } }
 { label 32 { lref 32 label_main_0x4_0x18003a8 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r1 } { dec_unsigned 32 0 } } } { dec_signed 32 44 } } } {
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 {
fref 32 r31 } { dec_unsigned 32 0 } } } }
 { label 32 { lref 32 label_main_0x4_0x18003ac } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r1 } { dec_unsigned 32 0 } } } { dec_signed 32 52 } } } {
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32

47

temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 {
fref 32 r0 } { dec_unsigned 32 0 } } } }
 { label 32 { lref 32 label_main_0x4_0x18003b0 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r31 } {
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32
r1 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 r1
} { dec_unsigned 32 0 } } } } }
 { label 32 { lref 32 label_main_0x4_0x18003b4 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 24 } } } {
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 {
fref 32 r3 } { dec_unsigned 32 0 } } } }
 { label 32 { lref 32 label_main_0x4_0x18003b8 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 28 } } } {
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 {
fref 32 r4 } { dec_unsigned 32 0 } } } }
 { label 32 { lref 32 label_main_0x4_0x18003bc } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r0 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 zero } { dec_unsigned 32 0 } } } { dec_signed 32 0 } {
dec_unsigned 1 0 } } }
 { label 32 { lref 32 label_main_0x4_0x18003c0 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 16 } } } {
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 {
fref 32 r0 } { dec_unsigned 32 0 } } } }
 { label 32 { lref 32 label_main_0x4_0x18003c4 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 8 } {
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } {
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } {
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } }
} }
 { label 32 { lref 32 label_main_0x4_0x18003c8 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r9 } {

48

dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 zero } { dec_unsigned 32 0 } } } { dec_signed 32 25559040 } {
dec_unsigned 1 0 } } }
 { label 32 { lref 32 label_main_0x4_0x18003cc } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r9 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r9 } { dec_unsigned 32 0 } } } { dec_signed 32 { minus 30436
} } { dec_unsigned 1 0 } } }
 { label 32 { lref 32 label_main_0x4_0x18003d0 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { if { u_lt 32 { dec_unsigned 32 29 }
{ dec_unsigned 32 0 } } { or 32 { select 64 0 31 { l_shift 64 {
hex_val 64 00000001FFFFFFFF } { sub 32 { dec_unsigned 32 31 } {
dec_unsigned 32 0 } } } } { select 64 32 63 { r_shift 64 {
hex_val 64 0FFFFFFFF10000000 } { dec_unsigned 32 29 } } } } {
not 32 { or 32 { select 64 0 31 { l_shift 64 { hex_val 64
00000000FFFFFFFF } { sub 32 { dec_unsigned 32 31 } {
dec_unsigned 32 29 } } } } { select 64 32 63 { r_shift 64 {
hex_val 64 0FFFFFFFF00000000 } { dec_unsigned 32 0 } } } } } } }
{ store { addr 32 { fref 32 temp_2 } { dec_unsigned 32 0 } }
with { select 64 0 32 { l_shift 64 { conc 32 32 { load 32 { addr
32 { fref 32 r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32
{ fref 32 r0 } { dec_unsigned 32 0 } } } } { dec_unsigned 32 2 }
} } } { store { addr 32 { fref 32 r0 } { dec_unsigned 32 0 } }
with { and 32 { load 32 { addr 32 { fref 32 temp_2 } {
dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } } } }
 { label 32 { lref 32 label_main_0x4_0x18003d4 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r9 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32
r9 } { dec_unsigned 32 0 } } } { dec_unsigned 1 0 } } }
 { label 32 { lref 32 label_main_0x4_0x18003d8 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r9 } { dec_unsigned 32 0 } } } { dec_signed 32 0 } {
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } {
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } {
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } }
} }
 { label 32 { lref 32 label_main_0x4_0x18003e0 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref

49

32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 12 } {
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } {
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } {
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } }
} }
 { label 32 { lref 32 label_main_0x4_0x18003e4 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r3 } {
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32
r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 r0
} { dec_unsigned 32 0 } } } } }
 { switch { load 32 { addr 32 { fref 32 branch_flag }
{ dec_unsigned 32 0 } } } { target { dec_unsigned 32 1 } { label
32 { lref 32 label_main_0x5 } { dec_unsigned 32 0 } } } }
 { label 32 { lref 32 label_main_0x5 } { dec_unsigned
32 0 } } { null }
 { jump{ label 32 { lref 32 label_main_0x6 } {
dec_unsigned 32 0 } } leaving 0 }
 { label 32 { lref 32 label_main_0x6 } { dec_unsigned
32 0 } } { null }
 { jump { label 32 { lref 32 label_main_0x1a } {
dec_unsigned 32 0 } } leaving 0 }
 { label 32 { lref 32 label_main_0x1a } { dec_unsigned
32 0 } } { null }
 { label 32 { lref 32 label_main_0x1a_0x18003ec } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r9 } {
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32
r3 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 r3
} { dec_unsigned 32 0 } } } } }
 { label 32 { lref 32 label_main_0x1a_0x18003f0 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 16 } {
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } {
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } {
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } }
} }
 { label 32 { lref 32 label_main_0x1a_0x18003f4 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r0 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r9 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32
r0 } { dec_unsigned 32 0 } } } { dec_unsigned 1 0 } } }
 { label 32 { lref 32 label_main_0x1a_0x18003f8 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {

50

dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 16 } } } {
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 {
fref 32 r0 } { dec_unsigned 32 0 } } } }
 { label 32 { lref 32 label_main_0x1a_0x18003fc } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 16 } {
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } {
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } {
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } }
} }
 { label 32 { lref 32 label_main_0x1a_0x1800400 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { if { u_lt 32 { dec_unsigned 32 31 }
{ dec_unsigned 32 8 } } { or 32 { select 64 0 31 { l_shift 64 {
hex_val 64 00000001FFFFFFFF } { sub 32 { dec_unsigned 32 31 } {
dec_unsigned 32 8 } } } } { select 64 32 63 { r_shift 64 {
hex_val 64 0FFFFFFFF10000000 } { dec_unsigned 32 31 } } } } {
not 32 { or 32 { select 64 0 31 { l_shift 64 { hex_val 64
00000000FFFFFFFF } { sub 32 { dec_unsigned 32 31 } {
dec_unsigned 32 31 } } } } { select 64 32 63 { r_shift 64 {
hex_val 64 0FFFFFFFF00000000 } { dec_unsigned 32 8 } } } } } } }
{ store { addr 32 { fref 32 temp_2 } { dec_unsigned 32 0 } }
with { select 64 0 32 { l_shift 64 { conc 32 32 { load 32 { addr
32 { fref 32 r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32
{ fref 32 r0 } { dec_unsigned 32 0 } } } } { dec_unsigned 32 24
} } } } { store { addr 32 { fref 32 r0 } { dec_unsigned 32 0 } }
with { and 32 { load 32 { addr 32 { fref 32 temp_2 } {
dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } } } }
 { label 32 { lref 32 label_main_0x1a_0x1800404 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r3 } {
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32
r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 r0
} { dec_unsigned 32 0 } } } } }
 { label 32 { lref 32 label_main_0x1a_0x1800408 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r1 } { dec_unsigned 32 0 } } } { dec_signed 32 0 } {
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r11 } {
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } {

51

load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } }
} }
 { label 32 { lref 32 label_main_0x1a_0x180040c } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r11 } { dec_unsigned 32 0 } } } { dec_signed 32 4 } {
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } {
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } {
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } }
} }
 { label 32 { lref 32 label_main_0x1a_0x1800414 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } {
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref
32 r11 } { dec_unsigned 32 0 } } } { dec_signed 32 { minus 4 } }
{ dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r31 } {
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } {
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } }
} }
 { label 32 { lref 32 label_main_0x1a_0x1800418 } {
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r1 } {
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32
r11 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32
r11 } { dec_unsigned 32 0 } } } } }
 { switch { load 32 { addr 32 { fref 32 branch_flag }
{ dec_unsigned 32 0 } } } { target { dec_unsigned 32 1 } { label
32 { lref 32 label_main_0x3 } { dec_unsigned 32 0 } } } }
 }
 }
 }
 }
}

	1. Introduction
	1.1 Real Time systems
	Hard Real Time System and Soft Real Time System

	1.2 WCET analysis
	1.3 SWEET
	1.4 aiT
	1.5 ALF
	1.6 CRL2
	1.7 Control Flow Graphs
	1.8 Compilers and Translators
	1.9 Overview of thesis
	1.10 Purpose of the Thesis

	2. ALF
	2.1 Memory Model
	Program Model
	Data Model

	2.2 Structure of an ALF Program

	3. PowerPC Processor
	4. CRL2
	5. Related Works
	6. Problem Formulation
	7. Problem Analysis
	7.1 Issues

	8. Design of the Translator
	8.1 Translation Strategy
	
	Analysis
	Code Generation
	CRL Routine
	CRL Block
	CRL Edge
	CRL Instruction
	Structure of Mapping Table
	Structure of Instruction Template

	8.2 Memory Model

	9. Solution
	10. Results
	11. Recommendation and Future Work
	12. Summary and Conclusion
	13. Bibliography
	14. Appendix A
	15. Appendix B

