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Abstract 

 
 Real Time systems are systems which must give accurate results within a 
precise time period. These systems have now become an indispensable aspect of 
our day to day lives. As the importance of real time system increases, the need to 
ensure safety increases.  
 

Imagine an intelligent sentry android with decision making ability which 
guards a frontier. It has to make quick analysis of images in order to decide 
whether it has to shoot, warn or say "howdy partner”. In such cases, it is desirable 
to make a correct calculation (to identify friends and foes) and also to make a 
correct timely behaviour after analysing data from its sensors. This is done by the 
inbuilt software of the android.  There lies the risk of the sentry robot not matching 
the image within a given time and failing in functionality. For safety reasons, in 
such real time applications, where meeting deadlines is critical, it is sought-after to 
obtain the worst case execution time of programs.  
 

Worst Case Execution Time (WCET) analysis finds the upper bound on the 
execution time of a program. By obtaining this, we can design a system which 
works fine even in the most stressed state. SWEdish Execution time Tool 
(SWEET) is a tool for WCET analysis developed by the Mälardalen WCET 
research group. SWEET performs static analyses on an intermediate code format 
named ALF (Artist2 Language for WCET flow Analysis) and finds an upper bound 
of the worst case execution time. aiT is another WCET tool developed by AbsInt 
company for static analysis in real time system. They maintain a format known as 
CRL (Control flow Representation Language) to represent various types of object 
code formats in terms of control flow graphs.  

 
 The main objective of this thesis work is to write a translator from 

CRL2's representation of PowerPC assembler code to ALF.   
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1.1.1.1. IntroductionIntroductionIntroductionIntroduction    

  

1.11.11.11.1 Real Real Real Real TimeTimeTimeTime    systems systems systems systems         

Real time systems are systems which must give accurate results within a precise 
time period. This means that the accuracy of the system depends not only on the logical 
correctness of the output but also on the time the output is produced. Real time systems 
need not to be fast, but it is required to produce a response within a specific time. It 
should not be too quick nor too late. Real time systems are computer systems mostly 
embedded in air craft controllers, nuclear power plants controllers, intelligent vehicle 
highway systems etc.  

Hard Real Time System and Soft  Real Time SystemHard Real Time System and Soft  Real Time SystemHard Real Time System and Soft  Real Time SystemHard Real Time System and Soft  Real Time System    
Hard real time systems are systems which operate within the confines of a 

stringent deadline missing which causes disastrous effects. For example, an air craft 
controller is a hard real time system because a system failure may lead to a 
catastrophe.  

Consider the case of an anti-lock braking system in a car. The brakes should be 
released in a short time to prevent the wheels from locking. Any delay in the response 
of the system may lead to an accident. So it is crucial to verify the upper bound of the 
execution time of this task. 

Soft real time systems, on the other hand can tolerate some delays. A missed 
deadline does not result in any disastrous events, but may cause minor inconvenience 
to the users. A live video system is a good example of a soft real time system. A delay 
in delivering of video frames may result in low quality, but the system can continue its 
operation. 

1.21.21.21.2 WCET analysisWCET analysisWCET analysisWCET analysis        

The Worst case execution time of a program is the longest time it may take to 
execute the program. The Best case execution time on the contrary is the shortest run 
time for a program.  

 As mentioned above, most of the hard real time systems are required to respond 
to events in its environment within a fixed time period. Any failure to meet this deadline 
may lead to catastrophic results.  
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 WCET analysis aids the analysis of real time systems. The analysis results can 
be used to determine whether a particular task will meet the specified timing constraint 
and thus provide timing guarantee for the overall system behavior. The WCET analysis 
can typically be used in time critical applications like nuclear power plant controller, 
flight control system, anti-lock braking system, artificial pacemaker etc.    

1.31.31.31.3 SWEETSWEETSWEETSWEET    

 SWEET (SWEdish Execution time Tool) is a prototype tool developed by 
Mälardalen University WCET research group. Sweet performs analysis like automatic 
flow analysis on Intermediate code, processor behavior analysis, instruction cache 
analysis on level one cache, pipeline analysis and also determines the upper bounds of 
execution time . The flow analysis determines the possible program flows or dynamic 
behavior of the system. SWEET performs its flow analysis on intermediate code level. 
This thesis work aims at supporting an intermediate code format called ALF. SWEET 
low level analysis supports NECV850E and ARM9. The figure depicts the SWEET tool 
architecture. 

 

 

    

1.41.41.41.4 aiTaiTaiTaiT    

aiT tool is a timing analysis tool developed by Absint Angewandte Informatik 
GmbH. It is used to determine the upper bound of execution time of code snippets in 
executables. Unlike SWEET, aiT works purely on executable. The use of executable 
helps to retrieve information on register usage and instruction and data addresses 
which are valuable for cache analysis and timing of memory accesses. The following 
figure shows the architecture of aiT [9].  

  

Figure 1-1 :Architecture of SWEET 
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1.51.51.51.5 ALFALFALFALF    

ALF (ARTIST2 Language for Flow Analysis) is an intermediate format designed 
for program analysis. ALF is used as the input for SWEET for WCET analysis. ALF is 
designed to be possible to generate from a rich set of sources: linked binaries, source 
code, compiler intermediate formats, and possibly more. This has certain implications 
for ALF’s program model, which must encompass both high- and low-level constructs 
while being as amenable to program analysis.  
  

Figure 1-2: Architecture of aiT developed by AbsInt GmbH 
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1.61.61.61.6     CRL2CRL2CRL2CRL2    

The aiT tool uses CRL2 format for storing control flow information. aiT 
reconstructs the control flow information from the executable and converts it in to CRL 
(refer Fig 2). CRL is a human-readable intermediate format designed to simplify 
analysis and optimize at the executable/assembly level. CRL2 is a generic and 
processor independent format usable for optimization of machine code, static analysis 
(including WCET analysis) and assembly language. It supports the integrated 
representation of control flow graph and intermediate analysis results. A C/C++ library 
reads/writes CRL2 interface files in a text-representation format and provides an API to 
the CRL2’s data structures used by the components of the timing-analysis tool suite.  

1.71.71.71.7 Control Flow GraphsControl Flow GraphsControl Flow GraphsControl Flow Graphs    

The Control flow graph is a representation of flow of a program. Each node in a 
CFG represents a basic block. Usually there will be one CFG per procedure/function. 
The CFG of a procedure stores information about its instruction in basic blocks. A basic 
block is generally a linear piece of code without any jumps. The directed edges between 
two nodes represent the control flow.  The control flow graph is crucial for compiler 
optimizations and static analysis of programs. A call graph (CG) represents possible 
calls between functions. In CRL2 however, the CG is encapsulated in the CFG.  

1.81.81.81.8 Compilers and TranslatorsCompilers and TranslatorsCompilers and TranslatorsCompilers and Translators    

A language translator is a program which converts a program in one language to 
another (Alfred V. Aho). The translation can be from any level (high level, assembly 
code or binary) to any level. For example, a compiler is a translator which converts 
source code to a low level language (assembly program or binary program). 
Assemblers are translators whose source program is assembly program and target is in 
machine program. 

 

Figure 1-3 : Role of a translator 
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1.91.91.91.9 Overview of thesisOverview of thesisOverview of thesisOverview of thesis    

The main objective of this thesis work is to write a translator from CRL2 
Representation of PowerPC assembler code to ALF. The aiT tool reconstructs the 
control flow from the binary executable code, annotates it with the required information 
and translates it in to CRL2 code. This CRL2 format serves as the input for the 
translator which converts it into ALF code. SWEET tool uses this ALF code for the flow 
analysis.  

 

 

 

 

Figure 1-4: Overview of Thesis. CRL2 to ALF translator is the output of this thesis 



 

 

 

 

Figure 1-5: Overview of SWEET

              

1.101.101.101.10 Purpose of the ThesisPurpose of the ThesisPurpose of the ThesisPurpose of the Thesis

Flow analysis is a part of WCET analysis. 
about the bound on the number of times a loop iterates, which functions get called , etc.
From the results of flow analysis, further study can be done on control flow information, 
number of iterations etc. ALF is the input format for the flow analysis of SWEET. CRL2 
code is generated from the executable binary code of a program. Till date, the
been no tool to convert this CRL2 code to ALF. Here lies the significance of this thesis 
which translates the CRL to ALF. The generated ALF code can be fed into SWEET tool 
for flow analysis. Flow analysis can also be done from the ALF code generated
from C code. The result of both analyses can be compared and provide grounds for 
improving the accuracy of the WCET analysis. 

The aiT tool is also benefited from the flow analysis results. They can use the 
results for further analysis or can use
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Flow analysis is a part of WCET analysis. The flow analysis gives the information 
about the bound on the number of times a loop iterates, which functions get called , etc.
From the results of flow analysis, further study can be done on control flow information, 

etc. ALF is the input format for the flow analysis of SWEET. CRL2 
code is generated from the executable binary code of a program. Till date, the
been no tool to convert this CRL2 code to ALF. Here lies the significance of this thesis 
which translates the CRL to ALF. The generated ALF code can be fed into SWEET tool 
for flow analysis. Flow analysis can also be done from the ALF code generated
from C code. The result of both analyses can be compared and provide grounds for 
improving the accuracy of the WCET analysis.  

The aiT tool is also benefited from the flow analysis results. They can use the 
results for further analysis or can use them to compare their WCET analysis results. 
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The flow analysis gives the information 
about the bound on the number of times a loop iterates, which functions get called , etc. 
From the results of flow analysis, further study can be done on control flow information, 

etc. ALF is the input format for the flow analysis of SWEET. CRL2 
code is generated from the executable binary code of a program. Till date, there has 
been no tool to convert this CRL2 code to ALF. Here lies the significance of this thesis 
which translates the CRL to ALF. The generated ALF code can be fed into SWEET tool 
for flow analysis. Flow analysis can also be done from the ALF code generated directly 
from C code. The result of both analyses can be compared and provide grounds for 

The aiT tool is also benefited from the flow analysis results. They can use the 
them to compare their WCET analysis results.  
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2.2.2.2. ALFALFALFALF    

ALF is a language to be used for flow analysis for WCET calculation. It is an 
intermediate level language which is designed for analyzability rather than code 
generation. The idea behind ALF is to have a generic language for WCET flow analysis, 
which can be generated from all of the program representations like source code, 
intermediate code and binary code [1]. 

Unlike many intermediate formats, ALF has a fully textual representation: it can 
thus be seen as an ordinary programming language, although it is intended to be 
generated by tools rather than written by hand. 

2.12.12.12.1 Memory ModelMemory ModelMemory ModelMemory Model    

ALF’s memory model distinguishes between program and data addresses. It is 
essentially a memory model for relocatable, unlinked code. Program and data 
addresses both have a symbolic base address, and a numerical offset. Program 
addresses are called labels. The address spaces for code and data are disjoint. Only 
data can be modified: thus, self-modifying programs cannot be modeled in ALF in a 
direct way.    

Program ModelProgram ModelProgram ModelProgram Model     
An ALF program is a sequence of declarations, and its executable code is 

divided into a number of function declarations. Within each function, the program is a 
linear sequence of statements, with execution normally flowing from one statement to 
the next. Statements may be tagged with labels. ALF has jumps, which can go to 
dynamically calculated labels: this can be used to represent program control in low-level 
code. In addition ALF also has structured function calls, which are useful when 
representing high-level code.  

Data ModelData ModelData ModelData Model     
 ALF’s data memory is divided into frames. Each frame has a symbolic 

base pointer (a frame reference) and a size. A data address pointing into a frame is 
formed from the frame reference of the frame and an offset. The offset is a natural 
number in the least addressable unit (LAU) of the ALF program. The LAU is always 
declared: typically it is set to a byte (8 bits).Frames can be either statically or 
dynamically allocated. 
 
     



12 

 

 

 

2.22.22.22.2 Structure of an ALF ProgramStructure of an ALF ProgramStructure of an ALF ProgramStructure of an ALF Program    

An ALF program consists of the following declarations, in the following order: 

Least-addressable-unit-declaration – specification of size, in bits, of the Least 
Addressable Unit (for data and code memory, the underlying assumption is that they are 
both equal) 

Endianness-declaration – specification of little/big-endianness 

Export-declarations – declaration(s) of exported symbols 

Import-declarations – declaration(s) of imported symbols 

Allocations – allocation of static data areas 

Initializations – possible initialization of static data areas 

Volatile-declarations – declaration(s) of memory addresses for volatile data 
(which can change outside the control of the program) 

Function-declarations – function (procedure) declaration(s), possibly including a 
”main” procedure which then will provide the global entry point to the program 

 

Apart from supporting flow analysis for WCET analysis tools, ALF can be used as 
a generic representation for different binary formats. Thus, very generic tools for 
analysis, manipulation, and reverse engineering of binary code may be possible to build 
using ALF. Possible examples include generic binary readers that reconstruct control 
flow graphs, and tools that can reconstruct arithmetic for long operators implemented 
using instruction sets for shorter operators. The latter can be very useful when 
performing flow analysis for binaries compiled for small embedded processors, where 
the original arithmetics in the source code must be implemented using an instruction set 
for short operators. 

 
An Example of ALF Code 
 
The following C code: 
 

  
If (x > y) z = 42; 
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can be translated into the ALF code below: 
 

 
 

The if statement is translated into a switch statement jumping to the exit label if 
the (negated) test becomes true (returns one). The test uses the s_le operator (signed 
less-than or equal), taking 32 bit arguments and returning a single bit (unsigned, size 
one). Each variable is represented by a frame of size 32 bits. 

 

 
     

{ switch { s_le 32 { load 32 { addr 32 { fref 32 x } { 
dec_unsigned 32 0 } } } 
{ load 32 { addr 32 { fref 32 y } { dec_unsigned 32 0 } } } } 
{ target { dec_unsigned 1 1 } 
{ label 32 { lref 32 exit } { dec_unsigned 32 0 } } } } 
{ store { addr 32 { fref 32 z } { dec_unsigned 32 0 } } 
with { dec_signed 32 42 } } 
{ label 32 { lref 32 exit } { dec_unsigned 32 0 } } 
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3.3.3.3. PowerPC ProcessorPowerPC ProcessorPowerPC ProcessorPowerPC Processor    

 PowerPC Architecture is a Reduced Instruction Set Architecture (RISC). The 
PowerPC architecture consists of three layers [8]. They are the following. 

• User Instruction Set Architecture – Defines the basic set of instructions and 
registers. 

• Virtual Environment Architecture - Describes the memory model for 
multiprocessor environment, cache control instructions and other aspects of 
virtual environment. 

• Operating Environment Architecture - Defines the memory management model, 
supervisor-level registers, synchronization requirements, and the exception 
model. 

 The PowerPC supports byte (8 bits), half word (16 bits), word (32 bits) and 
double word (64 bits) access. The registers in PowerPC are categorized into General 
Purpose Registers, Floating Point Registers and Special Purpose Registers. There are 
thirty two 32 bit GPRs, thirty two 64bit FPRs, and many SPRs. Special Purpose 
Registers include Instruction Address Register, Count Register, Condition Register, Link 
Register, Integer Exception Register and Processor Version Register.  

The PowerPC architecture defines register to register operations for most of the 
instructions. The source operands are provided as registers or immediate values. The 
load and store instructions transfer data between register and memory. There are about 
more than 200 instructions categorized into integer arithmetic, integer comparison, load 
and store, floating point arithmetic, floating point comparison, integer logical and branch 
instructions. One of the important concerns in this thesis is converting each of these 
instructions into ALF statements. 
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4.4.4.4. CRL2CRL2CRL2CRL2    

CRL2 is a generic and processor independent format usable for optimization of 
machine code, static analysis (including WCET analysis) and assembly language. () It 
has a very structured approach. The outer most layer is the graph. The graph consists 
of several routines which can be invoked by other routines. The instructions inside a 
routine are structured into blocks, where each block represents a linear piece of code 
which follows sequential execution without any jumps or jump targets. The control flow 
is represented as edges between the blocks. Each instruction contains in it a specific 
operation and related attributes. These attributes display the mnemonic, assembly 
code, genname, architecture, operands and many more. The meaning of each 
instruction can be derived from the op_id attribute of the operation. 

The following is a code snippet from a CRL2 representation of PowerPC 
assembly code. 

 

routine r0: address=0x40fc, 
gui_analysis_task=?loc("c:\\loop.apd\\a3-548-a3.ais" 11, {'0'=1}),     
instruction_set="common", loop_scc=0*[], loops=1*[ /*55*/r1 ], 
name="main", persistent_id=1,     section=".text", 
surface_address="0x40fc" { 
    block b0 (start): persistent_id=2 { 
        edge e57 (linear) -> b2; 
    } 
    block b1 (end): persistent_id=3; 
    block b2: address=0x40fc, instruction_set="common", 
persistent_id=4, surface_address="0x40fc" { 
        edge e58 -> b9; 
        instruction i59 0x40fc:4: bytes=4*[ 0x39, 0x80, 0x00, 0x01 
], file="loop.c", lines=2*[ /*22*/1, /*31*/2 ], lines_start=2*[ 
/*58*/1, /*67*/2 ], surface_address="0x40fc" { operation o60 "li 
r12, +1": arch='UISA', assembly="addi $, $, $", dst=1*[ /*66*/'r12' 
], form='D', genname='addi', op_id=0x738000000, optype=3*[ /*45*/ 
'GPRegAll', /*53*/'GPRegZero', /*61*/'signed' ], persistent_id 
=5,src=3*[ /*24*/1='zero', /*34*/+1 ];       }        
    }    
    block b9 (call): address=0x40fc, loop_call=1, 
persistent_id=0x14, surface_address="0x40fc" { 
        edge e89 (local) -> b10; 
        edge e90 (call) -> r1; 
    }} 
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Some of the attributes n the above example is explained below [6].  

Routine:- 

address: This is the bus address of the instruction before address translation by 
MMUs. An empty routine also has an address. It is assigned conceptually by 
closest correspondence and is likely (but not necessary) to be equal to an 
address of some non-empty block.   

name: The human readable name of the routine as extracted from e.g. an 
executable's symbol table. 

Block:- 

address: This is the bus address of the instruction before address translation by 
MMUs. Empty blocks still have an address. It is assigned conceptually by closest 
correspondence and is likely (but not necessary) to be equal to an address of 
some non-empty block.  

instructions_set : For multiple instruction set architectures, it indicates the 
instruction set of this particular instruction.  

block_type: At some nodes, this field defines the type of block. For example, a 
call block. 

Instruction:- 

address : This field is same as that of routine and block. 

instructions_set: For multiple instruction set architectures, it indicates the 
instruction set of this particular instruction.  

width: It shows the instruction width in bytes 

Operation:- 

op_id : It is a unique numerical identification of the operation. It can be used to 
map semantics to the operation in an analysis.  

genname: A symbolic identification of the operation. It need not be unique, but it 
is defined to identify a conceptual class of operation, for instance, a family of 
'add' instructions.  
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ext : It gives the list of extensions of an operation  

src : It is a vector of symbol or numeric  source resources of an operation. 

dst: Destination resources of an operation. 

op : Any operand resource of an operation is referred by this field. The indices 
correspond to the 'src' and 'dst' vectors. Further, in rare cases, there can be 
operands that exist conceptually, or are listed for consistency reasons. In these 
cases it may happen that only the 'op' entry exists, but neither a 'src'  nor 'dst' 
resource is  available. 

mnemonic : It gives a human-readable textual representation of the operation 

Besides the attributes explained above, blocks have edges which denote the 
control flow in the program. An edge has a target block or routine. The type of an edge 
determines the type of control flow. It can be a function call represented by a call edge, 
or a conditional jump represented by true edge or false edge. A true edge means that 
the edge is taken if the condition is true. Similarly a false edge is taken if the condition is 
false. Similarly there are other types of edges namely zero edge, delay edge, impasse 
edge, normal edge etc. 

The CRL2 library is a library for exchanging the control flow graphs. It supports 
mixed C++ and C usage. In the implementation of CRL2 to ALF translator, CRL2 library 
is used for reading CRL2 code and getting the necessary information  
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5.5.5.5. Related WorksRelated WorksRelated WorksRelated Works    

A very closely related work going in parallel was the translation of NECv850 
binary executable to ALF done by Nithya Vijay. After analyzing the common features of 
PowerPC and NECv850, a common design for the translator was jointly undertaken. 

Another related work in this field was done by Samuel Petersson in his MSc 
thesis work: Porting the Bound-T WCET tool to Lego Mindstorms and the Asterix RTOS 
[7]. Bound-T is another WCET tool which analyses the binary executable to find the 
WCET. His thesis describes how he ported the Bound-T WCET tool to the Lego 
Mindstorms and the H8/300 processor. He made a semantic interpretation of H8/300 
instructions in terms of Presburger operations. Presburger tool is used for WCET flow 
analysis. The thesis also describes how the resulting Bound-T version was used to 
analyze and derive timing bounds for selected parts of the Asterix OS. The resulting 
Bound-T tool version is used in real-time courses given at the School of Innovation, 
Design and Engineering at Mälardalen University. 

A partial thesis work done by Per Wolde with the aim of making SWEET to use 
the AIR/CRL2 format which facilitates exchange WCET analysis results between aiT 
and SWEET tools can also be considered as relevant work in this regard. 

No MSc thesis work has however to this date been resulting from this work. 
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6.6.6.6. Problem FormulationProblem FormulationProblem FormulationProblem Formulation    

To obtain the WCET flow analysis results from PowerPC assembler code, it has 
to be converted to ALF format as ALF and NIC are the only two formats which can be 
input to SWEET’s flow analysis. So there arose a need to write a translator which 
converts CRL2's representation of PowerPC assembler code to ALF. The extracted flow 
information can then be used together with timing information derived by the timing 
analysis part of WCET tool, to derive a WCET bound. 

To develop this, firstly it is required to write a code which extract information from 
the CRL2 PowerPC code representation.  

Next, it is required to make a semantic interpretation of CRL2 PowerPC 
assembler code constructs in terms of ALF code and data structures. Basically, for each 
type of PowerPC assembler instruction or data construct found in the CRL2 format, a 
corresponding ALF code or data construct should be created. Moreover, some 
PowerPC hardware resources, such as registers and different memory areas, need to 
be represented by some ALF data structures. 

Also, to allow SWEET's analysis results to be given back to CRL2, a mapping 
between the different constructs in the CRL2 and ALF formats should be maintained.  

7.7.7.7. Problem AnalysisProblem AnalysisProblem AnalysisProblem Analysis    

Before deriving a solution the following issues need to be considered. 

7.17.17.17.1 IssuesIssuesIssuesIssues    

The PowerPC CRL2 to ALF translator should translate each PowerPC instruction 
to corresponding ALF statement(s). While performing this all vital information required 
must be retained.CRL2 format contains several information like hardware architecture 
details, cache size, clock rate, etc which are irrelevant for flow analysis. These details 
can be ignored while translating into ALF. 

A chief matter of concern is the effect of an instruction execution on the 
values/flags stored in registers and other hardware resources. The execution of one 
instruction may alter the value in registers such as condition register, program status 
word register, exception register; etc .The ALF representation is complete only if the 
affected registers are also represented. That is because, the execution of succeeding 
instruction may depend on the earlier values stored in some of these registers.  
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As an example, consider the PowerPC UISA instruction beq.  

 beq crX, target 
 

The beq instruction checks whether the EQ bit of crX (condition register) is set 
or not. If EQ is set then control is branched to target. The EQ bit may be set by the 
previous compare instruction or add instruction. Hence, care must be taken to represent 
all the implicit updates and access of registers in ALF translation. 

Some of the registers are updated by PowerPC hardware. For example, the 
overflow bit is set by the hardware when integer operations such as add results in an 
out of range value. Likewise, the exception registers are set when an exception crops 
up during the execution of an instruction. This exception, detected by the hardware is 
hard to be identified by the software. Simulation of such operations in ALF is a matter of 
concern. 

Another important matter to be taken care of while designing the translator is the 
direct memory reference. Direct memory reference in a program can occur in several 
ways.  The data memory can be directly referenced for reading data from a particular 
location. 

 For example: - lwzx r1, r2, r3. 

The lwzx instruction loads the word in memory referenced by the address 
(r2+r3) into register r1. 

The data memory can also be referenced for storing some data in a specific 
location. 

For example: - stwu r1, 4(r2) 

The instruction stwu stores the data in register r1 to the memory referred by 
(r2+4). 

Another instance of direct memory reference is in the case of branch statements 
where the target address specifies an absolute or relative value. When the same code 
is translated into ALF the target address should pick the ALF instruction corresponding 
to the referred PowerPC instruction. In some cases the next instruction address is 
calculated with respect to current instruction address. So the correspondence of the 
instruction address in PowerPC CRL2 and ALF should be maintained.  
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An additional major concept related to memory model in a processor is the 
endianness. Endianness is the byte ordering for representing data in the memory.  

"Little Endian" means that the low-order byte of the number is stored in memory 
at the lowest address, and the high-order byte at the highest address. (The little end 
comes first.) For example, a 4 byte integer  

    0X18369524 

will be arranged in memory as follows:  

    Base Address+0   24 
    Base Address+1   95 
    Base Address+2   36 
    Base Address+3   18 

 

"Big Endian" means that the high-order byte of the number is stored in memory at 
the lowest address, and the low-order byte at the highest address. (The big end comes 
first.) The above integer would then be stored as:  

    Base Address+0   18 
    Base Address+1   36 
    Base Address+2   95 
    Base Address+3   24 

 

The endianness plays a key role where direct memory access is concerned. 
There are a few instructions in PowerPC which access a single byte or half word by 
directly specifying the address.  

For example consider the instruction lbz r1, 1(r2).  

The lbz instruction loads one byte from the address (r2+1) into r1. Suppose 
register r2 contains the base address specified in the above example. If memory model 
is little endian then r2+1 refers to 95. If it is big endian then r2+1 refers to 36. So the 
memory model of ALF code should be compatible with that of PowerPC assembly code. 
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8.8.8.8. Design of the TranslatorDesign of the TranslatorDesign of the TranslatorDesign of the Translator    

Considering all the issues mentioned in the previous section, we now discuss the 
different strategies to design the crl2 to ALF translator.  

8.18.18.18.1 Translation StrategyTranslation StrategyTranslation StrategyTranslation Strategy    

The translation process consists of two modules. 

(i) Analysis of CRL2 code  
(ii) Code Generation. 

The analysis module retrieves information such as instruction, operands, and 
control flow from the crl2 code. The Code Generation module produces ALF code using 
the information given by the analysis phase. The following figure illustrates the 
translation procedure. 

 

 

Figure 8-1: Design of CRL2 to ALF Translator 
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( i )( i )( i )( i ) AnalysisAnalysisAnalysisAnalysis    
During analysis, the data describing each CRL item is passed to the Code 

Generation Module where these data is processed to produce the equivalent ALF 
structure.  

To generate ALF statement for an operation, data on the semantics of the 
operation and operands are required. It is during analysis these information are 
collected. The semantics of instruction are learned from the processor manuals and are 
used to translate instructions to ALF code. But for a complete ALF program, the 
information about instructions alone will not suffice. Information about routines, blocks 
and edges also need to be extracted during this phase. How these extracted data is 
used in producing Alf statement is discussed in the subsequent sections. 

( i i )( i i )( i i )( i i ) Code GenerationCode GenerationCode GenerationCode Generation    
Code Generation is responsible for producing the ALF code semantically 

equivalent to the CRL2 representation. The Code generation phase consists of two 
steps. 

(i) Finding the appropriate ALF template  

(ii) Converting the template to ALF code.  

The data acquired during analysis is used to locate the matching ALF template. 
These templates, which are provided externally to the code generator, have incomplete 
ALF statements of the counter CRL structure. The missing elements in ALF templates 
are filled using the data provided by analysis module. For example, the template for an 
instruction will have the semantics of its operation but its operands are unknown until it 
is obtained from the analysis phase. The following sections discuss how each CRL item 
is mapped to ALF structures. 

CRL RoutineCRL RoutineCRL RoutineCRL Routine    

Comparing the structures of both ALF and CRL2, we can see that the CRL 
routine and ALF functions are identical. When a routine/function is invoked from a point 
of execution, the control is returned to the same point after its execution. Therefore, a 
CRL routine can be mapped to a corresponding ALF function. 

CRL BlockCRL BlockCRL BlockCRL Block    

A CRL block represents a linear piece of code which follows a sequential 
execution without any jumps or jump targets. As ALF does not include any explicit 
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representation of a control flow graph, it does not have any structure equivalent to CRL 
block. However, considering the normal structure in a program, a set of instructions 
constitute a block. Similarly, in ALF, a set of instructions can be thought of as a block 
and they can be identified by giving a particular label complementing the block name.  

CRL EdgeCRL EdgeCRL EdgeCRL Edge    

Edges are important elements in a control flow graph and are used to describe 
the control flow in the program. ALF does not have any equivalent structure to represent 
the control flow. Hence, edges cannot be directly mapped to any ALF structure. 
However, the information contained in a CRL edge can be effectively used to resolve 
the targets in branching statements. 

CRL Instruction CRL Instruction CRL Instruction CRL Instruction     

Each CRL block comprises of several instructions which in turn contains in it a 
specific operation. An instruction can be matched to ALF statement(s) which does the 
same operation. So, it is possible to write the equivalent ALF statements by 
understanding the semantics of the instruction.  

Structure of Mapping TablStructure of Mapping TablStructure of Mapping TablStructure of Mapping Tableeee    

Suitable mapping information must be available to help in matching of 
instructions and ALF templates. The mapping information can be provided in the 
following two ways. 

(i) A table consisting of each assembly instruction and its corresponding ALF 
statement  

(ii) Separate text files containing equivalent ALF template for each assembly 
instruction.  

In the former method a separate parser for parsing the mapping table file has to 
be built. The parsing may take a considerable amount of execution time. As the number 
of instructions in the input CRL2 code increases the total time taken for parsing also 
magnifies. As a result, in case of large programs, the performance may be affected.  

In the latter method, where a dedicated file is kept for each assembly instruction, 
the task of searching the mapping file is given to OS. The mapping file for an instruction 
is stored in a file named by its “genname”. The “genname” is a CRL2 attribute which 
serves as a symbolic identifier of an operation. It may or may not be same for a class of 
instructions. 
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 For example, the Power PC instructions addi, li, la, subi are of same 
class and have been assigned the same genname “addi”. Consequently the mapping 
file for all the four instructions is named as “addi.map”. In NEC instructions, add_imm 
and add_reg are two different gennames for the same basic operation of addition.  

Thus, to get the equivalent ALF statement of an assembly instruction we just 
have to read the corresponding text file. No separate parsing functions are required as 
the file handling is done by the OS. So this method is better compared to the previous 
one in terms of performance and reliability.  

Structure of Instruction TemplateStructure of Instruction TemplateStructure of Instruction TemplateStructure of Instruction Template    

 The mapping file of each instruction consists of its equivalent Alf template. The 
value of certain objects in the ALF template depends on the input CRL2 instruction, 
such as operands in the instruction. Hence, some particular representation must be 
used to represent those dynamic data. The code generator reads the template and fills 
in all the missing information and produces the complete ALF statement. 

8.28.28.28.2 Memory ModelMemory ModelMemory ModelMemory Model    

Both the PowerPC architecture uses register-to-register operations for most 
computational instructions. There are load and store instructions which transfer data 
between memory and registers. For representing these instruction in ALF, its operands 
– registers and memory – also has to be modeled. The simplest and accurate way of 
representing registers are using the variables. In ALF data area is represented as 
frames. Each frame has a symbolic base pointer (frame reference or fref) and an offset. 
The registers of PowerPC processor can be represented using these frames, with their 
names as fref and the size allocated. So the General Purpose register r1 in the 
PowerPC processor will be represented in ALF as fref r1 with size 32 bits.  

Main memory can be represented in a similar way as registers, but with a small 
difference. It is accessed by its address and its size may vary. The data in the memory 
can be accessed in different ways. It can be accessed as byte or as a word or as a half 
word at a time. Consider the following example:- 

Address 1000 1001 1002 1003 

Data b8 12 8c 05 

Figure 8-2: Memory Layout of a 32 bit  data 
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The above table shows one word in memory. To access as a single byte, we can 
use instructions like lbz and lbzu to read b8 first, followed by12, then 8c and finally 
05 . By using specific instructions like lha, lhz it is possible to load half words. In 
that case the memory is accessed two bytes at a time. As a result, b812 is read at a 
time if the operand to instruction lha is 1000. Finally we have instructions to load a 
word at time, such as lwz, lwzu etc. In this case if the operand is 1000, then 
b8128c05 is read all together at a time. 

 Since it is difficult to have a frame for each byte in memory, it is efficient to have 
a single frame to represent the whole memory. The data in it can be accessed using its 
address as the offset to the frame base pointer.  

The data area in ALF will look like the following 
 

 

 

 

 

 

 

 

 

 

  

     

Main Memory 

00 

01 

02 

03 

04 

. 

. 

. 

. 
98 

99 
SPR 

GPR . 
. 
. 
. 

R1 

. 

. 

. 

. 

SPR1 

Rn 

SPRn 

R2 
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9.9.9.9. SolutionSolutionSolutionSolution    

A working model of the design discussed in the previous section was 
implemented in C++. It made heavy use of the libcrl2 library for the information 
exchange to and from CRL2 format. Using libcrl2 library the CRL2 file is read into a CRL 
graph. Once the graph is read, we can write code that traverses through each routine, 
block, instruction, and operation in CRL2 to generate the equivalent ALF statements or 
operations. 

As discussed in the previous section, CRL routines are equivalent to ALF 
functions. So an ALF statement for a function is generated for each routine in the graph. 
An example crl2 routine and its equivalent ALF function is shown in the following 
example. 

 

 

 

{ func { label 32 { lref 32 f_main } { dec_unsigned 32 0 } } 

 { arg_decls } 

 { scope  

  { decls } 

  { inits } 

  { stmts 

  } 

 }   

} 

routine r0: address=0x40fc, gui_analysis_task=?loc("c:\\loop.apd\\a3-548-a3.ais" 

11, {'0'=1}),instruction_set="common", loop_scc=0*[], loops=1*[ /*55*/r1 ], name="main", 

persistent_id=1,     section=".text", surface_address="0x40fc" {block b0 (start): 

persistent_id=2 {  ...    ... //other elements of routine   ...   } 
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In the given example, the stmts field is filled with the ALF equivalents of blocks 
and instructions.  

We have implemented the solution using a template of instructions. For an 
operation, ALF statement(s) semantically equivalent to the CRL operation is generated. 
Problem here is that the same CRL2 instruction should always generate the same ALF 
code except that the CRL2 operand (values) should be dynamically translated to 
corresponding ALF operand values .The equivalent ALF template is stored in a file 
named by the concatenation of genname and op_id of the CRL operation. 
Unfortunately, a single Alf statement may not always be sufficient to fully represent the 
semantics of the operation. Consequently, one single instruction in CRL may be 
converted to a set of ALF statements.  

In the ALF template the operands are represented as $src and $dst so that it 
can be replaced by the exact values given in the CRL operation. Consider the following 
example. 

This is CRL2 representation of add instruction in PowerPC 

 

The ALF template equivalent to add instruction is the following. 

 

{ store  
 { addr 32 { fref 32 $dst1 }  { dec_unsigned 32 0 } } with  
 { add 32  
 { load 32 { addr 32 { fref 32 $src1 } { dec_unsigned 32 0 }}} 
 { load 32 { addr 32 { fref 32 $src2 } { dec_unsigned 32 0 }}} 
 { dec_unsigned 1 0 } 
 }  
}  
 

instruction i66 0x4104:4: bytes=4*[ 0x7c, 0x63, 0x62, 0x14 ], 
file="loop.c", lines_single=5, lines_start_single=5, 
surface_address="0x4104" {  
operation o67 "add r3, r3, r12": arch='UISA', assembly="add $, $, 
$", dst=1*[ /*71*/'r3' ], form='XO', genname='add', 
op_id=0xf7c000214, optype=3*[ /*52*/'GPRegAll', /*60*/'GPRegAll', 
/*68*/'GPRegAll' ], persistent_id=8,src=3*[ /*24*/1='r3', 
/*34*/'r12' ];        } 
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The translator program reads this template and replaces all the $dst[i] by ith 
string in the ‘dst’ attribute of CRL2. Similarly all $src[i] is replaced by i th string in the 
‘src’ attribute. In the example mentioned above, $dst1 is replaced by r3 and $src1 
and $src2 by r3 and r12 respectively.  Before replacing the operands, the alias table 
is checked to see and if there is any aliasing for the operand. If there is, then its alias is 
placed in the template instead of the original operand. Also a label name is assigned to 
each instruction to aid in mapping back the ALF statement(s) to the CRL instruction. 
The label name is generated using the routine name, block persistent id and instruction 
address. Therefore the final ALF statement equivalent to the above CRL instruction will 
be as follows 

 

 

There are cases in which a CRL2 statement must be realized by a set of ALF 
statements which include jumps or branches within it. In such cases, a label name is 
generated to denote the branch location. Every label in the template is represented as 
$label_<labelname> where labelname can be any string. To overcome the label name 
conflicts which may arise when the instruction repeats in the same routine, a distinct 
label count is appended to the label name. This makes the label name unique.  

Besides the instructions, the CRL blocks also have details of edges in them. The 
information on edges is used to resolve the targets of the branch instructions. For each 
edge type, the equivalent ALF branch statement is generated. For a call edge, a 

{ label 32 { lref 32 label_main.L1_0x10_0x4104 } 

{ dec_unsigned 32 0 } } 

{ store { addr 32 { fref 32 r3 } { dec_unsigned 32 0 } } with   

{ add 32 { load 32 { addr 32 { fref 32 r3 } { dec_unsigned 32 0 } 
} } 

{ load 32 { addr 32 { fref 32 r12 } { dec_unsigned 32 0 } } } 

  { dec_unsigned 1 0 } } }  
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function call statement is produced which calls the target function of the call edge. This 
is shown in the following example. 

 

The edge e90 is transformed into an ALF call statement as follows. 

 

Here ‘main.L1’ is the name of the routine in crl2. 

The other type of edges found when a conditional jump statement occurs is the 
true edge and the false edge. The true edge corresponds to the path followed when the 
condition evaluates to true and the false edge corresponds to the path taken when the 
condition evaluates to false. A true or false edge follows a conditional branch instruction 
in the code. The ALF statement for this branch instruction evaluates the condition and 
stores the result in a flag variable. When a true edge or false edge arises, an ALF 
statement is generated which checks this flag and does the branching accordingly.  

The other types of edges include: normal, local, zero, delay, impasse and return 
edges. An unconditional jump statement to its target is generated in cases of the 
normal, local, zero, impasse and delay edges. The same holds here i.e., the targets of 
branch/jump statements can depend on the value of an expression. Thus the branch 
information is actually analysis results and not the code itself. 

These features discussed above constitute the core of the solution. 

10.10.10.10. ResultsResultsResultsResults    

The result of this thesis is a working translator that can convert CRL2 
representation of NECv850 into ALF code. 

An example CRL2 file is given in Appendix A and its equivalent Alf file is given in 
Appendix B.     

{ call { label 32 { lref 32 f_main.L1 } { dec_unsigned 32 0 } } result }  

block b9 (call): address=0x40fc, loop_call=1, persistent_id=0x14, 
surface_address="0x40fc" { 
         edge e89 (local) -> b10; 
         edge e90 (call) -> r1; 

              } 
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11.11.11.11. Recommendation and Future WorkRecommendation and Future WorkRecommendation and Future WorkRecommendation and Future Work    

This project is still not fully complete. There is much to do and many challenges 
to be overcome.  

Firstly, the translation from CRL2 to ALF has not yet been fully implemented and 
validated. There are many register bits and flags to be set but were ignored, as it was 
irrelevant with respect to flow analysis. But in circumstances where running of ALF 
program is important, the translator generated output program is not guaranteed to 
work. The translation can be thought to be complete only if the complete semantics of 
the CRL2 code is reflected in the ALF version including registers, flags etc. 

Secondly, though a generic solution has been devised, it is currently tested for 
the CRL representation of the PowerPC and assemblers only. Thus the solution has not 
been tested upon other binary codes from other platforms. 

Thirdly, an effort has to be made to maintain the same control structures in ALF 
as in that of CRL2.  

I believe that the above mentioned reforms could be implemented in the 
translator as future work. 

    

12.12.12.12. Summary and ConclusionSummary and ConclusionSummary and ConclusionSummary and Conclusion    

The current version of the WCET analysis tool SWEET analyzes the intermediate 
format of the NIC research compiler. Since the NIC complier only supports one target 
platform it severely restricts SWEETs usage. After the completion of the presented 
thesis works; it will be possible for SWEET to reform WCET flow analysis upon binary 
codes thus making SWEET much more easily portable to different target platforms. The 
translator developed can convert the binary executable into ALF which can be input into 
SWEET. 
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14.14.14.14. Appendix AAppendix AAppendix AAppendix A    

A sample CRL2 file 

crl 
    specification  'f375656e-a41e-4623-aac9-b5dbb261c4bd' 
    implementation '18399358-21ba-45b1-8339-33592c28f594' 
    version 2 1 5 1003000 103773; 
 
attributes global 
    entry: routine, 
    start: routine[]; 
 
attributes routine 
    end: block, 
    external: bool, 
    public: bool, 
    start: block; 
 
attributes block 
    buddy: block, 
    type: enum; 
 
attributes edge 
    linear: bool, 
    source: block, 
    target: block, 
    type: enum; 
 
attributes instruction 
    address: address<64>, 
    bytes: unsigned<8>[], 
    width: unsigned<64>; 
 
attributes operation 
    mnemonic: symbol; 
 
attributes data 
    external: bool, 
    public: bool; 
 
attributes bytes 
    address: address<64>, 
    content: unsigned<8>[], 
    width: unsigned<64>; 
 
 
global g1: attribute_change_code=4, attribute_safety_code=4, cache=1*[ 
/*71*/2*{  
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        data=7*{ associativity=8, line_size=0x20, may="none", must="empty", 
pers="none", policy="plruppc", size=0x8000 },  
        instruction=7*{ associativity=8, line_size=0x20, may="none", 
must="empty", pers="none", policy="plruppc",  
                size=0x8000 } } ], clock_rate=0x2625a00..0x2625a00, 
compiler_name="GCC",  
    decoder_name="PowerPC", errors=0, gui_assume_aligned_data_accesses=1, 
gui_calculate_cum_wcet=1,  
    gui_fpath_analysis=1, gui_xml_verbosity={}, 
input_file_name="webdemo.elf", loop_back_edges=0*@{},  
    loop_block_copy=8*[ /*24*/'file', /*38*/'lines', /*53*/'lines_single', 
/*75*/ 
    'address', /*15*/'surface_address', /*40*/'base_address', /*62*/'page', 
/*76*/ 
    'no_page' ], loop_routine_copy=10*[ /*40*/'default_loop_iteration', 
/*72*/'restrict_loop_iteration', /*105*/ 
    'default_read_access', /*27*/'default_write_access', 
/*57*/'restrict_read_access', /*87*/ 
    'restrict_write_access', /*29*/'base_default_read_access', 
/*63*/'base_default_write_access', /*98*/ 
    'base_restrict_read_access', /*33*/'base_restrict_write_access' ], 
loop_scc_all=0*@{},  
    loop_transformation=1, mapping="VIVU-4,len=infinity,def-unroll=2", 
persistent_id_next=0x28,  
    processed=1*[ /*18*/2*{ progname="exec2crl", time=?gmt(2009-06-18-10-24-
10) } ],  
    reader_name="ELF 32", recursion_scc=0*[], recursions=0*[], start=1*[ 
/*73*/r0 ],  
    tlb_dcache_associativity=2, tlb_dcache_line_size=0x1000, 
tlb_dcache_may="none", tlb_dcache_miss_penalty=0,  
    tlb_dcache_must="empty", tlb_dcache_pers="chaos", 
tlb_dcache_policy="tlb", tlb_dcache_size=0x80000, tlb_icache_associativity=2,  
    tlb_icache_line_size=0x1000, tlb_icache_may="none", 
tlb_icache_miss_penalty=0, tlb_icache_must="empty",  
    tlb_icache_pers="chaos", tlb_icache_policy="tlb", 
tlb_icache_size=0x80000, user_tw_taken=1, warnings=0; 
 
routine r0: address=0x18003a0, gui_analysis_task=?loc("c:\\program 
files\\absint\\advanced 
analyzer\\ppc\\b103773\\examples\\gcc\\00_webdemo\\webdemo.apd\\a3-1428-
a3.ais" 12, {'0'=1}),  
    instruction_set="common", loop_scc=0*[], name="main", persistent_id=1, 
section=".text",  
    surface_address="0x18003a0" { 
    block b0 (start): persistent_id=2 { 
        edge e57 (linear) -> b2; 
    } 
    block b1 (end): persistent_id=3; 
    block b2: address=0x18003a0, instruction_set="common", persistent_id=4, 
surface_address="0x18003a0" { 
        edge e61 (true, linear) -> b3; 
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        instruction i63 0x18003a0:4: bytes=4*[ 0x94, 0x21, 0xff, 0xd0 ], 
file="webdemo.c",  
            lines=13*[ /*23*/0x1c, /*35*/0x1d, /*47*/0x1e, /*59*/0x1f, 
/*71*/0x20, /*83*/ 
            0x21, /*18*/0x22, /*30*/0x23, /*42*/0x24, /*54*/0x25, /*66*/0x26, 
/*78*/ 
            0x27, /*18*/0x28 ], lines_start=13*[ /*49*/0x1c, /*61*/0x1d, 
/*73*/0x1e, /*85*/ 
            0x1f, /*18*/0x20, /*30*/0x21, /*42*/0x22, /*54*/0x23, /*66*/0x24, 
/*78*/ 
            0x25, /*18*/0x26, /*30*/0x27, /*42*/0x28 ], 
surface_address="0x18003a0" { 
            operation o64 "stwu r1, -48(r1)": arch='UISA', assembly="stwu $, 
$($)", cat=1*{ mem_write },  
                dst=4*[ /*24*/2='r1', /*34*/'Mem' ], form='D', 
genname='stwu', op_id=0x794000000, optype=3*[ /*80*/ 
                'GPRegAll', /*18*/'signed', /*26*/'GPRegBase' ], 
persistent_id=7, src=3*[ /*61*/'r1', /*69*/-48, /*77*/ 
                'r1' ]; 
        } 
        instruction i65 0x18003a4:4: bytes=4*[ 0x7c, 0x08, 0x02, 0xa6 ], 
file="webdemo.c",  
            lines_single=0x28, surface_address="0x18003a4" { 
            operation o66 "mfspr r0, lr": arch='UISA', assembly="mfspr $, $", 
dst=1*[ /*68*/'r0' ], form='XFX',  
                genname='mfspr', op_id=0xf7c0002a6, optype=2*[ 
/*45*/'GPRegAll', /*53*/'SPReg' ], persistent_id=8, src=2*[ /*88*/ 
                1='lr' ]; 
        } 
        instruction i67 0x18003a8:4: bytes=4*[ 0x93, 0xe1, 0x00, 0x2c ], 
file="webdemo.c",  
            lines_single=0x28, surface_address="0x18003a8" { 
            operation o68 "stw r31, +44(r1)": arch='UISA', assembly="stw $, 
$($)", cat=1*{ mem_write },  
                dst=4*[ /*24*/3='Mem' ], form='D', genname='stw', 
op_id=0x790000000, optype=3*[ /*72*/'GPRegAll', /*80*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=9, src=3*[ 
/*53*/'r31', /*61*/+44, /*69*/'r1' ]; 
        } 
        instruction i69 0x18003ac:4: bytes=4*[ 0x90, 0x01, 0x00, 0x34 ], 
file="webdemo.c",  
            lines_single=0x28, surface_address="0x18003ac" { 
            operation o70 "stw r0, +52(r1)": arch='UISA', assembly="stw $, 
$($)", cat=1*{ mem_write },  
                dst=4*[ /*24*/3='Mem' ], form='D', genname='stw', 
op_id=0x790000000, optype=3*[ /*72*/'GPRegAll', /*80*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0xa, src=3*[ 
/*55*/'r0', /*63*/+52, /*71*/'r1' ]; 
        } 
        instruction i71 0x18003b0:4: bytes=4*[ 0x7c, 0x3f, 0x0b, 0x78 ], 
file="webdemo.c",  
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            lines_single=0x28, surface_address="0x18003b0" { 
            operation o72 "mr r31, r1": arch='UISA', assembly="or $, $, $", 
dst=1*[ /*66*/'r31' ], form='X',  
                genname='or', op_id=0xf7c000378, optype=3*[ /*45*/'GPRegAll', 
/*53*/'GPRegAll', /*61*/'GPRegAll' ], persistent_id=0xb,  
                src=3*[ /*24*/1='r1', /*34*/'r1' ]; 
        } 
        instruction i73 0x18003b4:4: bytes=4*[ 0x90, 0x7f, 0x00, 0x18 ], 
file="webdemo.c",  
            lines_single=0x28, surface_address="0x18003b4" { 
            operation o74 "stw r3, +24(r31)": arch='UISA', assembly="stw $, 
$($)", cat=1*{ mem_write },  
                dst=4*[ /*24*/3='Mem' ], form='D', genname='stw', 
op_id=0x790000000, optype=3*[ /*72*/'GPRegAll', /*80*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0xc, src=3*[ 
/*55*/'r3', /*63*/+24, /*71*/'r31' ]; 
        } 
        instruction i75 0x18003b8:4: bytes=4*[ 0x90, 0x9f, 0x00, 0x1c ], 
file="webdemo.c",  
            lines_single=0x28, surface_address="0x18003b8" { 
            operation o76 "stw r4, +28(r31)": arch='UISA', assembly="stw $, 
$($)", cat=1*{ mem_write },  
                dst=4*[ /*24*/3='Mem' ], form='D', genname='stw', 
op_id=0x790000000, optype=3*[ /*72*/'GPRegAll', /*80*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0xd, src=3*[ 
/*55*/'r4', /*63*/+28, /*71*/'r31' ]; 
        } 
        instruction i77 0x18003bc:4: bytes=4*[ 0x38, 0x00, 0x00, 0x00 ], 
file="webdemo.c",  
            lines=8*[ /*22*/0x29, /*34*/0x2a, /*46*/0x2b, /*58*/0x2c, 
/*70*/0x2d, /*82*/ 
            0x2e, /*18*/0x2f, /*30*/0x30 ], lines_start=8*[ /*60*/0x29, 
/*72*/0x2a, /*84*/ 
            0x2b, /*18*/0x2c, /*30*/0x2d, /*42*/0x2e, /*54*/0x2f, /*66*/0x30 
], surface_address="0x18003bc" { 
            operation o78 "li r0, +0": arch='UISA', assembly="addi $, $, $", 
dst=1*[ /*65*/'r0' ], form='D',  
                genname='addi', op_id=0x738000000, optype=3*[ 
/*45*/'GPRegAll', /*53*/'GPRegZero', /*61*/'signed' ], persistent_id=0xe,  
                src=3*[ /*24*/1='zero', /*34*/+0 ]; 
        } 
        instruction i79 0x18003c0:4: bytes=4*[ 0x90, 0x1f, 0x00, 0x10 ], 
file="webdemo.c",  
            lines_single=0x30, surface_address="0x18003c0" { 
            operation o80 "stw r0, +16(r31)": arch='UISA', assembly="stw $, 
$($)", cat=1*{ mem_write },  
                dst=4*[ /*24*/3='Mem' ], form='D', genname='stw', 
op_id=0x790000000, optype=3*[ /*72*/'GPRegAll', /*80*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0xf, src=3*[ 
/*55*/'r0', /*63*/+16, /*71*/'r31' ]; 
        } 
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        instruction i81 0x18003c4:4: bytes=4*[ 0x80, 0x1f, 0x00, 0x08 ], 
file="webdemo.c",  
            lines_single=0x31, lines_start_single=0x31, 
surface_address="0x18003c4" { 
            operation o82 "lwz r0, +8(r31)": arch='UISA', assembly="lwz $, 
$($)", cat=1*{ mem_read },  
                dst=1*[ /*24*/'r0' ], form='D', genname='lwz', 
op_id=0x780000000, optype=3*[ /*70*/'GPRegAll', /*78*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0x10, src=4*[ 
/*56*/1=+8, /*66*/'r31', /*74*/'Mem' ]; 
        } 
        instruction i83 0x18003c8:4: bytes=4*[ 0x3d, 0x20, 0x01, 0x86 ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003c8" { 
            operation o84 "lis r9, 0x1860000@h": arch='UISA', assembly="addis 
$, $, $@h", dst=1*[ /*75*/ 
                'r9' ], form='D', genname='addis', op_id=0x73c000000, 
optype=3*[ /*56*/'GPRegAll', /*64*/'GPRegZero', /*72*/'unsigned' ],  
                persistent_id=0x11, src=3*[ /*44*/1='zero', /*54*/0x1860000 
]; 
        } 
        instruction i85 0x18003cc:4: bytes=4*[ 0x39, 0x29, 0x89, 0x1c ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003cc" { 
            operation o86 "addi r9, r9, -30436": arch='UISA', assembly="addi 
$, $, $", dst=1*[ /*75*/ 
                'r9' ], form='D', genname='addi', op_id=0x738000000, 
optype=3*[ /*56*/'GPRegAll', /*64*/'GPRegZero', /*72*/'signed' ],  
                persistent_id=0x12, src=3*[ /*44*/1='r9', /*54*/-30436 ]; 
        } 
        instruction i87 0x18003d0:4: bytes=4*[ 0x54, 0x00, 0x10, 0x3a ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003d0" { 
            operation o88 "slwi r0, r0, 2": arch='UISA', assembly="rlwinm $, 
$, $, $, $", dst=1*[ /*70*/'r0' ], form='M',  
                genname='rlwinm', op_id=0x754000000, optype=5*[ 
/*45*/'GPRegAll', /*53*/'GPRegAll', /*61*/'unsigned', /*69*/'unsigned', 
/*77*/ 
                'unsigned' ], persistent_id=0x13, src=5*[ /*48*/1='r0', 
/*58*/2, /*66*/0, /*74*/0x1d ]; 
        } 
        instruction i89 0x18003d4:4: bytes=4*[ 0x7d, 0x20, 0x4a, 0x14 ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003d4" { 
            operation o90 "add r9, r0, r9": arch='UISA', assembly="add $, $, 
$", dst=1*[ /*70*/'r9' ], form='XO',  
                genname='add', op_id=0xf7c000214, optype=3*[ 
/*45*/'GPRegAll', /*53*/'GPRegAll', /*61*/'GPRegAll' ], persistent_id=0x14,  
                src=3*[ /*24*/1='r0', /*34*/'r9' ]; 
        } 
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        instruction i91 0x18003d8:4: bytes=4*[ 0x80, 0x09, 0x00, 0x00 ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003d8" { 
            operation o92 "lwz r0, +0(r9)": arch='UISA', assembly="lwz $, 
$($)", cat=1*{ mem_read },  
                dst=1*[ /*24*/'r0' ], form='D', genname='lwz', 
op_id=0x780000000, optype=3*[ /*70*/'GPRegAll', /*78*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0x15, src=4*[ 
/*56*/1=+0, /*66*/'r9', /*74*/'Mem' ]; 
        } 
        instruction i93 0x18003dc:4: bytes=4*[ 0x7c, 0x09, 0x03, 0xa6 ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003dc" { 
            operation o94 "mtspr ctr, r0": arch='UISA', assembly="mtspr $, 
$", dst=1*[ /*69*/'ctr' ], form='XFX',  
                genname='mtspr', op_id=0xf7c0003a6, optype=2*[ /*45*/'SPReg', 
/*53*/'GPRegAll' ], persistent_id=0x16,  
                src=2*[ /*24*/1='r0' ]; 
        } 
        instruction i95 0x18003e0:4: bytes=4*[ 0x80, 0x1f, 0x00, 0x0c ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003e0" { 
            operation o96 "lwz r0, +12(r31)": arch='UISA', assembly="lwz $, 
$($)", cat=1*{ mem_read },  
                dst=1*[ /*24*/'r0' ], form='D', genname='lwz', 
op_id=0x780000000, optype=3*[ /*70*/'GPRegAll', /*78*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0x17, src=4*[ 
/*56*/1=+12, /*66*/'r31', /*74*/'Mem' ]; 
        } 
        instruction i97 0x18003e4:4: bytes=4*[ 0x7c, 0x03, 0x03, 0x78 ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003e4" { 
            operation o98 "mr r3, r0": arch='UISA', assembly="or $, $, $", 
dst=1*[ /*65*/'r3' ], form='X',  
                genname='or', op_id=0xf7c000378, optype=3*[ /*45*/'GPRegAll', 
/*53*/'GPRegAll', /*61*/'GPRegAll' ], persistent_id=0x18,  
                src=3*[ /*24*/1='r0', /*34*/'r0' ]; 
        } 
        instruction i99 0x18003e8:4: bytes=4*[ 0x4e, 0x80, 0x04, 0x21 ], 
call_block=b3,  
            file="webdemo.c", lines_single=0x31, surface_address="0x18003e8" 
{ 
            operation o100 "bctrl": arch='UISA', assembly="bcctrl $", cat=3*{ 
call, computed, taken },  
                computed=1, conditional=0, dst=3*[ /*49*/2='lr' ], form='XL', 
genname='bcctrl', op_id=0x74e800421,  
                optype=1*[ /*27*/'unsigned' ], persistent_id=0x19, src=2*[ 
/*65*/0x14, /*73*/'ctr' ],  
                type='call'; 
        } 
    } 
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    block b3 (call): address=0x18003a0, call_instruction=i99, more_calls=1,  
        no_calls=1, persistent_id=5, surface_address="0x18003a0" { 
        edge e60 (local, linear) -> b4; 
    } 
    block b4 (return): address=0x18003a0, persistent_id=6, 
surface_address="0x18003a0" { 
        edge e62 -> b5; 
    } 
    block b5: address=0x18003ec, instruction_set="common", 
persistent_id=0x1a,  
        surface_address="0x18003ec" { 
        edge e102 (true) -> b1; 
        instruction i103 0x18003ec:4: bytes=4*[ 0x7c, 0x69, 0x1b, 0x78 ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003ec" { 
            operation o104 "mr r9, r3": arch='UISA', assembly="or $, $, $", 
dst=1*[ /*66*/'r9' ], form='X',  
                genname='or', op_id=0xf7c000378, optype=3*[ /*45*/'GPRegAll', 
/*53*/'GPRegAll', /*61*/'GPRegAll' ], persistent_id=0x1b,  
                src=3*[ /*24*/1='r3', /*34*/'r3' ]; 
        } 
        instruction i105 0x18003f0:4: bytes=4*[ 0x80, 0x1f, 0x00, 0x10 ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003f0" { 
            operation o106 "lwz r0, +16(r31)": arch='UISA', assembly="lwz $, 
$($)", cat=1*{ mem_read },  
                dst=1*[ /*24*/'r0' ], form='D', genname='lwz', 
op_id=0x780000000, optype=3*[ /*70*/'GPRegAll', /*78*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0x1c, src=4*[ 
/*56*/1=+16, /*66*/'r31', /*74*/'Mem' ]; 
        } 
        instruction i107 0x18003f4:4: bytes=4*[ 0x7c, 0x09, 0x02, 0x14 ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003f4" { 
            operation o108 "add r0, r9, r0": arch='UISA', assembly="add $, $, 
$", dst=1*[ /*71*/'r0' ],  
                form='XO', genname='add', op_id=0xf7c000214, optype=3*[ 
/*52*/'GPRegAll', /*60*/'GPRegAll', /*68*/'GPRegAll' ], persistent_id=0x1d,  
                src=3*[ /*24*/1='r9', /*34*/'r0' ]; 
        } 
        instruction i109 0x18003f8:4: bytes=4*[ 0x90, 0x1f, 0x00, 0x10 ], 
file="webdemo.c",  
            lines_single=0x31, surface_address="0x18003f8" { 
            operation o110 "stw r0, +16(r31)": arch='UISA', assembly="stw $, 
$($)", cat=1*{ mem_write },  
                dst=4*[ /*24*/3='Mem' ], form='D', genname='stw', 
op_id=0x790000000, optype=3*[ /*72*/'GPRegAll', /*80*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0x1e, src=3*[ 
/*56*/'r0', /*64*/+16, /*72*/'r31' ]; 
        } 
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        instruction i111 0x18003fc:4: bytes=4*[ 0x80, 0x1f, 0x00, 0x10 ], 
file="webdemo.c",  
            lines_single=0x32, lines_start_single=0x32, 
surface_address="0x18003fc" { 
            operation o112 "lwz r0, +16(r31)": arch='UISA', assembly="lwz $, 
$($)", cat=1*{ mem_read },  
                dst=1*[ /*24*/'r0' ], form='D', genname='lwz', 
op_id=0x780000000, optype=3*[ /*70*/'GPRegAll', /*78*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0x1f, src=4*[ 
/*56*/1=+16, /*66*/'r31', /*74*/'Mem' ]; 
        } 
        instruction i113 0x1800400:4: bytes=4*[ 0x54, 0x00, 0xc2, 0x3e ], 
file="webdemo.c",  
            lines_single=0x32, surface_address="0x1800400" { 
            operation o114 "srwi r0, r0, 8": arch='UISA', assembly="rlwinm $, 
$, $, $, $", dst=1*[ /*71*/'r0' ],  
                form='M', genname='rlwinm', op_id=0x754000000, optype=5*[ 
/*52*/'GPRegAll', /*60*/'GPRegAll', /*68*/'unsigned', /*76*/ 
                'unsigned', /*18*/'unsigned' ], persistent_id=0x20, src=5*[ 
/*56*/1='r0', /*66*/0x18, /*74*/8, /*82*/ 
                0x1f ]; 
        } 
        instruction i115 0x1800404:4: bytes=4*[ 0x7c, 0x03, 0x03, 0x78 ], 
file="webdemo.c",  
            lines=2*[ /*22*/0x33, /*34*/0x34 ], lines_start=2*[ /*64*/0x33, 
/*76*/ 
            0x34 ], surface_address="0x1800404" { 
            operation o116 "mr r3, r0": arch='UISA', assembly="or $, $, $", 
dst=1*[ /*66*/'r3' ], form='X',  
                genname='or', op_id=0xf7c000378, optype=3*[ /*45*/'GPRegAll', 
/*53*/'GPRegAll', /*61*/'GPRegAll' ], persistent_id=0x21,  
                src=3*[ /*24*/1='r0', /*34*/'r0' ]; 
        } 
        instruction i117 0x1800408:4: bytes=4*[ 0x81, 0x61, 0x00, 0x00 ], 
file="webdemo.c",  
            lines_single=0x34, surface_address="0x1800408" { 
            operation o118 "lwz r11, +0(r1)": arch='UISA', assembly="lwz $, 
$($)", cat=1*{ mem_read },  
                dst=1*[ /*24*/'r11' ], form='D', genname='lwz', 
op_id=0x780000000, optype=3*[ /*70*/'GPRegAll', /*78*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0x22, src=4*[ 
/*56*/1=+0, /*66*/'r1', /*74*/'Mem' ]; 
        } 
        instruction i119 0x180040c:4: bytes=4*[ 0x80, 0x0b, 0x00, 0x04 ], 
file="webdemo.c",  
            lines_single=0x34, surface_address="0x180040c" { 
            operation o120 "lwz r0, +4(r11)": arch='UISA', assembly="lwz $, 
$($)", cat=1*{ mem_read },  
                dst=1*[ /*24*/'r0' ], form='D', genname='lwz', 
op_id=0x780000000, optype=3*[ /*70*/'GPRegAll', /*78*/ 



41 

 

 

 

                'signed', /*18*/'GPRegZero' ], persistent_id=0x23, src=4*[ 
/*56*/1=+4, /*66*/'r11', /*74*/'Mem' ]; 
        } 
        instruction i121 0x1800410:4: bytes=4*[ 0x7c, 0x08, 0x03, 0xa6 ], 
file="webdemo.c",  
            lines_single=0x34, surface_address="0x1800410" { 
            operation o122 "mtspr lr, r0": arch='UISA', assembly="mtspr $, 
$", dst=1*[ /*69*/'lr' ], form='XFX',  
                genname='mtspr', op_id=0xf7c0003a6, optype=2*[ /*45*/'SPReg', 
/*53*/'GPRegAll' ], persistent_id=0x24,  
                src=2*[ /*24*/1='r0' ]; 
        } 
        instruction i123 0x1800414:4: bytes=4*[ 0x83, 0xeb, 0xff, 0xfc ], 
file="webdemo.c",  
            lines_single=0x34, surface_address="0x1800414" { 
            operation o124 "lwz r31, -4(r11)": arch='UISA', assembly="lwz $, 
$($)", cat=1*{ mem_read },  
                dst=1*[ /*24*/'r31' ], form='D', genname='lwz', 
op_id=0x780000000, optype=3*[ /*70*/'GPRegAll', /*78*/ 
                'signed', /*18*/'GPRegZero' ], persistent_id=0x25, src=4*[ 
/*56*/1=-4, /*66*/'r11', /*74*/'Mem' ]; 
        } 
        instruction i125 0x1800418:4: bytes=4*[ 0x7d, 0x61, 0x5b, 0x78 ], 
file="webdemo.c",  
            lines_single=0x34, surface_address="0x1800418" { 
            operation o126 "mr r1, r11": arch='UISA', assembly="or $, $, $", 
dst=1*[ /*67*/'r1' ], form='X',  
                genname='or', op_id=0xf7c000378, optype=3*[ /*45*/'GPRegAll', 
/*53*/'GPRegAll', /*61*/'GPRegAll' ], persistent_id=0x26,  
                src=3*[ /*24*/1='r11', /*34*/'r11' ]; 
        } 
        instruction i127 0x180041c:4: bytes=4*[ 0x4e, 0x80, 0x00, 0x20 ], 
file="webdemo.c",  
            lines_single=0x34, surface_address="0x180041c" { 
            operation o128 "blr": arch='UISA', assembly="bclr $", cat=4*{ 
computed, predictable,  
                    return, taken }, computed=1, conditional=0, form='XL', 
genname='bclr', op_id=0x74e800020,  
                optype=1*[ /*27*/'unsigned' ], persistent_id=0x27, src=2*[ 
/*65*/0x14, /*73*/'lr' ],  
                type='branch_or_return'; 
        } 
    } 
} 
 
data d12: address=0x18000b4, byte_order='x3210', executable=0, 
file_size=0x20, mem_size=0x20,  
    name=".note.ABI-tag", readable=1, surface_address="0x18000b4", 
type='data', writable=0 { 
    bytes by13 0x18000b4:32: content=32*[ 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 
0x00,  
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        0x10, 0x00, 0x00, 0x00, 0x01, 0x47, 0x4e, 0x55, 0x00, 0x00, 0x00, 
0x00, 0x00,  
        0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 
0x12 ]; 
} 
 
data d14: address=0x18000d4, byte_order='x3210', executable=1, 
file_size=0x28, mem_size=0x28,  
    name=".init", readable=1, surface_address="0x18000d4", type='code', 
writable=0 { 
    bytes by15 0x18000d4:40: content=40*[ 0x94, 0x21, 0xff, 0xe0, 0x7c, 0x08, 
0x02,  
        0xa6, 0x90, 0x01, 0x00, 0x24, 0x48, 0x00, 0x00, 0x45, 0x48, 0x00, 
0x01, 0x31,  
        0x48, 0x05, 0x7d, 0x05, 0x80, 0x01, 0x00, 0x24, 0x7c, 0x08, 0x03, 
0xa6, 0x38,  
        0x21, 0x00, 0x20, 0x4e, 0x80, 0x00, 0x20 ]; 
} 
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15.15.15.15. Appendix BAppendix BAppendix BAppendix B    

A Sample ALF file 

{ alf  
  { macro_defs  
  }  
  { least_addr_unit 8  
  } big_endian 
  { exports  
    { frefs  
    }  
    { lrefs  
      { lref 32 f_main } 
    }  
  }  
  { imports  
    { frefs  
    }  
    { lrefs  
    }  
  }  
  { decls  
    /* General Purpose Registers */ 
    { alloc 32 r0 32 } 
    { alloc 32 r1 32 } 
    { alloc 32 r2 32 } 
    { alloc 32 r3 32 } 
    { alloc 32 r4 32 } 
    { alloc 32 r5 32 } 
    { alloc 32 r6 32 } 
    { alloc 32 r7 32 } 
    { alloc 32 r8 32 } 
    { alloc 32 r9 32 } 
    { alloc 32 r10 32 } 
    { alloc 32 r11 32 } 
    { alloc 32 r12 32 } 
    { alloc 32 r13 32 } 
    { alloc 32 r14 32 } 
    { alloc 32 r15 32 } 
    { alloc 32 r16 32 } 
    { alloc 32 r17 32 } 
    { alloc 32 r18 32 } 
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    { alloc 32 r19 32 } 
    { alloc 32 r20 32 } 
    { alloc 32 r21 32 } 
    { alloc 32 r22 32 } 
    { alloc 32 r23 32 } 
    { alloc 32 r24 32 } 
    { alloc 32 r25 32 } 
    { alloc 32 r26 32 } 
    { alloc 32 r27 32 } 
    { alloc 32 r28 32 } 
    { alloc 32 r29 32 } 
    { alloc 32 r30 32 } 
    { alloc 32 r31 32 } 
    { alloc 32 zero 32 } 
     
    /* Special Purpose Registers */ 
    { alloc 32 f0 64 } 
    { alloc 32 f1 64 } 
    { alloc 32 f2 64 } 
    { alloc 32 f3 64 } 
    { alloc 32 f4 64 } 
    { alloc 32 f5 64 } 
    { alloc 32 f6 64 } 
    { alloc 32 f7 64 } 
    { alloc 32 f8 64 } 
    { alloc 32 f9 64 } 
    { alloc 32 f10 64 } 
    { alloc 32 f11 64 } 
    { alloc 32 f12 64 } 
    { alloc 32 f13 64 } 
    { alloc 32 f14 64 } 
    { alloc 32 f15 64 } 
    { alloc 32 f16 64 } 
    { alloc 32 f17 64 } 
    { alloc 32 f18 64 } 
    { alloc 32 f19 64 } 
    { alloc 32 f20 64 } 
    { alloc 32 f21 64 } 
    { alloc 32 f22 64 } 
    { alloc 32 f23 64 } 
    { alloc 32 f24 64 } 
    { alloc 32 f25 64 } 
    { alloc 32 f26 64 } 
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    { alloc 32 f27 64 } 
    { alloc 32 f28 64 } 
    { alloc 32 f29 64 } 
    { alloc 32 f30 64 } 
    { alloc 32 f31 64 } 
     
    /* Floating Point Status and Control Register */ 
    { alloc 32 fpscr 32 } 
     
    /* Condition Register */ 
    { alloc 32 cr0 8 } 
    { alloc 32 cr1 8 } 
    { alloc 32 cr2 8 } 
    { alloc 32 cr3 8 } 
    { alloc 32 cr4 8 } 
    { alloc 32 cr5 8 } 
    { alloc 32 cr6 8 } 
    { alloc 32 cr7 8 } 
     
    /* Integer Exception Register */ 
    { alloc 32 xer 32 } 
     
    /* Link Register */ 
    { alloc 32 lr 32 } 
     
    /* Count Register */ 
    { alloc 32 ctr 32 } 
     
    { alloc 32 Mem 1024 } 
     
    /* Temporary variables used in generated ALf statements */ 
    { alloc 32 temp_1 32 } 
    { alloc 32 temp_2 32 } 
    { alloc 32 temp_3 32 } 
    { alloc 32 temp_4 32 } 
    { alloc 32 temp_5 32 } 
    { alloc 32 temp_6 32 } 
    { alloc 32 temp_7 32 } 
    { alloc 32 temp_8 32 } 
    { alloc 32 branch_flag 32 } 
    { alloc 32 temp_8bit_1 8 } 
    { alloc 32 temp_8bit_2 8 } 
    { alloc 32 temp_8bit_3 8 } 
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    { alloc 32 temp_8bit_4 8 } 
    { alloc 32 temp_64bit_1 64 } 
  }  
  { inits  
    { init { ref zero { dec_unsigned 32 0 } } { dec_signed 32 0 
} }  
  }  
  { funcs 
    { func { label 32 { lref 32 f_main } { dec_unsigned 32 0 } } 
      { arg_decls }  
      { scope   
        { decls }  
        { inits }  
        { stmts  
          { label 32 { lref 32 label_main_0x2 } { dec_unsigned 
32 0 } }  { null }  
            { jump { label 32 { lref 32 label_main_0x4 } { 
dec_unsigned 32 0 } }  leaving 0 }  
          { label 32 { lref 32 label_main_0x3 } { dec_unsigned 
32 0 } }  { null }  { return }  
          { label 32 { lref 32 label_main_0x4 } { dec_unsigned 
32 0 } }  { null }  
            { label 32 { lref 32 label_main_0x4_0x18003a0 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r1 } { dec_unsigned 32 0 } } } { dec_signed 32 { minus 48 } } 
} } { store { addr 32 { fref 32 r1 } { dec_unsigned 32 0 } } 
with { load 32 { addr 32 { fref 32 temp_1 } { dec_unsigned 32 0 
} } } } { store { addr 32 { fref 32 Mem } { load 32 { addr 32 { 
fref 32 temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { 
addr 32 { fref 32 r1 } { dec_unsigned 32 0 } } } }  
            { label 32 { lref 32 label_main_0x4_0x18003a8 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r1 } { dec_unsigned 32 0 } } } { dec_signed 32 44 } } } { 
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32 
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 { 
fref 32 r31 } { dec_unsigned 32 0 } } } }  
            { label 32 { lref 32 label_main_0x4_0x18003ac } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r1 } { dec_unsigned 32 0 } } } { dec_signed 32 52 } } } { 
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32 
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temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 { 
fref 32 r0 } { dec_unsigned 32 0 } } } }  
            { label 32 { lref 32 label_main_0x4_0x18003b0 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r31 } { 
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32 
r1 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 r1 
} { dec_unsigned 32 0 } } } } }  
            { label 32 { lref 32 label_main_0x4_0x18003b4 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 24 } } } { 
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32 
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 { 
fref 32 r3 } { dec_unsigned 32 0 } } } }  
            { label 32 { lref 32 label_main_0x4_0x18003b8 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 28 } } } { 
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32 
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 { 
fref 32 r4 } { dec_unsigned 32 0 } } } }  
            { label 32 { lref 32 label_main_0x4_0x18003bc } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r0 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 zero } { dec_unsigned 32 0 } } } { dec_signed 32 0 } { 
dec_unsigned 1 0 } } }  
            { label 32 { lref 32 label_main_0x4_0x18003c0 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 16 } } } { 
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32 
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 { 
fref 32 r0 } { dec_unsigned 32 0 } } } }  
            { label 32 { lref 32 label_main_0x4_0x18003c4 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 8 } { 
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } { 
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } { 
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } } 
} }  
            { label 32 { lref 32 label_main_0x4_0x18003c8 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r9 } { 
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dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 zero } { dec_unsigned 32 0 } } } { dec_signed 32 25559040 } { 
dec_unsigned 1 0 } } }  
            { label 32 { lref 32 label_main_0x4_0x18003cc } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r9 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r9 } { dec_unsigned 32 0 } } } { dec_signed 32 { minus 30436 
} } { dec_unsigned 1 0 } } }  
            { label 32 { lref 32 label_main_0x4_0x18003d0 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { if { u_lt 32 { dec_unsigned 32 29 } 
{ dec_unsigned 32 0 } } { or 32 { select 64 0 31 { l_shift 64 { 
hex_val 64 00000001FFFFFFFF } { sub 32 { dec_unsigned 32 31 } { 
dec_unsigned 32 0 } } } } { select 64 32 63 { r_shift 64 { 
hex_val 64 0FFFFFFFF10000000 } { dec_unsigned 32 29 } } } } { 
not 32 { or 32 { select 64 0 31 { l_shift 64 { hex_val 64 
00000000FFFFFFFF } { sub 32 { dec_unsigned 32 31 } { 
dec_unsigned 32 29 } } } } { select 64 32 63 { r_shift 64 { 
hex_val 64 0FFFFFFFF00000000 } { dec_unsigned 32 0 } } } } } } } 
{ store { addr 32 { fref 32 temp_2 } { dec_unsigned 32 0 } } 
with { select 64 0 32 { l_shift 64 { conc 32 32 { load 32 { addr 
32 { fref 32 r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32 
{ fref 32 r0 } { dec_unsigned 32 0 } } } } { dec_unsigned 32 2 } 
} } } { store { addr 32 { fref 32 r0 } { dec_unsigned 32 0 } } 
with { and 32 { load 32 { addr 32 { fref 32 temp_2 } { 
dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } } } }  
            { label 32 { lref 32 label_main_0x4_0x18003d4 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r9 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 
r9 } { dec_unsigned 32 0 } } } { dec_unsigned 1 0 } } }  
            { label 32 { lref 32 label_main_0x4_0x18003d8 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r9 } { dec_unsigned 32 0 } } } { dec_signed 32 0 } { 
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } { 
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } { 
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } } 
} }  
            { label 32 { lref 32 label_main_0x4_0x18003e0 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
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32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 12 } { 
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } { 
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } { 
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } } 
} }  
            { label 32 { lref 32 label_main_0x4_0x18003e4 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r3 } { 
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32 
r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 r0 
} { dec_unsigned 32 0 } } } } }  
            { switch { load 32 { addr 32 { fref 32 branch_flag } 
{ dec_unsigned 32 0 } } } { target { dec_unsigned 32 1 } { label 
32 { lref 32 label_main_0x5 } { dec_unsigned 32 0 } }  } } 
          { label 32 { lref 32 label_main_0x5 } { dec_unsigned 
32 0 } }  { null }  
            { jump{ label 32 { lref 32 label_main_0x6 } { 
dec_unsigned 32 0 } }  leaving 0 }  
          { label 32 { lref 32 label_main_0x6 } { dec_unsigned 
32 0 } }  { null }  
            { jump { label 32 { lref 32 label_main_0x1a } { 
dec_unsigned 32 0 } }  leaving 0 }  
          { label 32 { lref 32 label_main_0x1a } { dec_unsigned 
32 0 } }  { null }  
            { label 32 { lref 32 label_main_0x1a_0x18003ec } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r9 } { 
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32 
r3 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 r3 
} { dec_unsigned 32 0 } } } } }  
            { label 32 { lref 32 label_main_0x1a_0x18003f0 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 16 } { 
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } { 
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } { 
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } } 
} }  
            { label 32 { lref 32 label_main_0x1a_0x18003f4 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r0 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r9 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 
r0 } { dec_unsigned 32 0 } } } { dec_unsigned 1 0 } } }  
            { label 32 { lref 32 label_main_0x1a_0x18003f8 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
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dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 16 } } } { 
store { addr 32 { fref 32 Mem } { load 32 { addr 32 { fref 32 
temp_1 } { dec_unsigned 32 0 } } } } with { load 32 { addr 32 { 
fref 32 r0 } { dec_unsigned 32 0 } } } }  
            { label 32 { lref 32 label_main_0x1a_0x18003fc } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r31 } { dec_unsigned 32 0 } } } { dec_signed 32 16 } { 
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } { 
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } { 
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } } 
} }  
            { label 32 { lref 32 label_main_0x1a_0x1800400 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { if { u_lt 32 { dec_unsigned 32 31 } 
{ dec_unsigned 32 8 } } { or 32 { select 64 0 31 { l_shift 64 { 
hex_val 64 00000001FFFFFFFF } { sub 32 { dec_unsigned 32 31 } { 
dec_unsigned 32 8 } } } } { select 64 32 63 { r_shift 64 { 
hex_val 64 0FFFFFFFF10000000 } { dec_unsigned 32 31 } } } } { 
not 32 { or 32 { select 64 0 31 { l_shift 64 { hex_val 64 
00000000FFFFFFFF } { sub 32 { dec_unsigned 32 31 } { 
dec_unsigned 32 31 } } } } { select 64 32 63 { r_shift 64 { 
hex_val 64 0FFFFFFFF00000000 } { dec_unsigned 32 8 } } } } } } } 
{ store { addr 32 { fref 32 temp_2 } { dec_unsigned 32 0 } } 
with { select 64 0 32 { l_shift 64 { conc 32 32 { load 32 { addr 
32 { fref 32 r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32 
{ fref 32 r0 } { dec_unsigned 32 0 } } } } { dec_unsigned 32 24 
} } } } { store { addr 32 { fref 32 r0 } { dec_unsigned 32 0 } } 
with { and 32 { load 32 { addr 32 { fref 32 temp_2 } { 
dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } } } }  
            { label 32 { lref 32 label_main_0x1a_0x1800404 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r3 } { 
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32 
r0 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 r0 
} { dec_unsigned 32 0 } } } } }  
            { label 32 { lref 32 label_main_0x1a_0x1800408 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r1 } { dec_unsigned 32 0 } } } { dec_signed 32 0 } { 
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r11 } { 
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } { 
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load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } } 
} }  
            { label 32 { lref 32 label_main_0x1a_0x180040c } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r11 } { dec_unsigned 32 0 } } } { dec_signed 32 4 } { 
dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r0 } { 
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } { 
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } } 
} }  
            { label 32 { lref 32 label_main_0x1a_0x1800414 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 temp_1 } { 
dec_unsigned 32 0 } } with { add 32 { load 32 { addr 32 { fref 
32 r11 } { dec_unsigned 32 0 } } } { dec_signed 32 { minus 4 } } 
{ dec_unsigned 1 0 } } } { store { addr 32 { fref 32 r31 } { 
dec_unsigned 32 0 } } with { load 32 { addr 32 { fref 32 Mem } { 
load 32 { addr 32 { fref 32 temp_1} { dec_unsigned 32 0 } } } } 
} }  
            { label 32 { lref 32 label_main_0x1a_0x1800418 } { 
dec_unsigned 32 0 } } { store { addr 32 { fref 32 r1 } { 
dec_unsigned 32 0 } } with { or 32 { load 32 { addr 32 { fref 32 
r11 } { dec_unsigned 32 0 } } } { load 32 { addr 32 { fref 32 
r11 } { dec_unsigned 32 0 } } } } }  
            { switch { load 32 { addr 32 { fref 32 branch_flag } 
{ dec_unsigned 32 0 } } } { target { dec_unsigned 32 1 } { label 
32 { lref 32 label_main_0x3 } { dec_unsigned 32 0 } }  } } 
        } 
      } 
    } 
  } 
} 
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