
A Translator of Actor Prolog to Java

Alexei A. Morozov1,2, Alexander F. Polupanov1, and Olga S. Sushkova1

1 Kotel’nikov Institute of Radio Engineering and Electronics of RAS, Mokhovaya 11,
Moscow, Russia

2 Moscow State University of Psychology & Education, Sretenka 29, Moscow, Russia
morozov@cplire.ru, sashap55@mail.ru, o.sushkova@mail.ru

http://www.fullvision.ru/actor prolog

Abstract. Actor Prolog is a concurrent object-oriented logic language
developed in [1]. We demonstrate a state-of-the-art translator of Ac-
tor Prolog to Java developed in the framework of the Intelligent Visual
Surveillance Logic Programming project [2]. The translator implements
a set of high-level and low-level code optimization methods and gener-
ates a kind of the idiomatic (i.e., well-readable) source code in Java, that
ensures a high speed, robustness, and openness of the executable code.
Some applications of the Actor Prolog to Java translator are demon-
strated, in particular, the real-time intelligent video surveillance, Actor
Prolog with Java3D linking, and logic programming of Java applets.

1 Introduction

Industrial applications of a logic programming language impose a number of
strong and contradictory requirements to the logic programming system, i.e.,
speed, robustness, and openness of the executable code. These requirements
are contradictory, since a considerable code optimization implies application of
complex compilation algorithms and a low-level code generation that may be
the sources of difficult-to-locate errors, memory leaks, and unstable operation
of the executable code. Even if the compiler is well-debugged the continuous
development of built-in classes and libraries is a constant potential source of
such errors. Thus, there is a fundamental contradiction between the openness
and the optimization of the programming system.

In applications we use a compilation of the Actor Prolog language (see
[3,4,5,6]) to Java because we are sure that modern processors are fast enough to
neglect the speed of the executable code for the sake of robustness, readability,
and openness of the logic programs. Moreover, using an industrial Java virtual
machine as a basis for a logic programming system ensures its flexibility and fast
adaptation to the new operating systems and processor architectures.

The Actor Prolog language is significantly different from the conventional
Clocksin&Mellish Prolog. In fact, Turbo-Prolog style domain and predicate dec-
larations of Actor Prolog are of importance for the industrial application pro-
gramming and is helpful for the executable code optimization, but, on the other
hand, object-oriented features and supporting concurrent programming make
the translation to be a non-trivial problem.



The compilation schema of the Actor Prolog language is described in Sec-
tion 2. A brief comparison with other approaches to the logic languages compi-
lation is represented in Section 3. Some applications of the Actor Prolog to Java
translator are described in Section 4.

2 The Compilation Schema

The state-of-the-art compilation schema of the Actor Prolog system includes the
following steps [6]:

1. Source text scanning and parsing. Methods of thinking translation preventing
unnecessary processing of already translated source files are implemented.
That is, after the update of source codes, the compiler tries to use informa-
tion collected / computed during its previous run.

2. Inter-class links analysis. On this stage of global analysis, the translator col-
lects information about usage of separate classes in the program, including
data types of arguments of all class instance constructors. This informa-
tion is necessary for the global flow analysis and the global optimization of
the program. In particular, this information is used to eliminate all unused
predicates from the executable code.

3. Type check. The translator checks data types of all predicate arguments and
arguments of all class instance constructors.

4. Determinism check. The translator checks whether predicates are determin-
istic or non-deterministic. A special kind of so-called imperative predicates
is supported, that is, the compiler can check whether a predicate is deter-
ministic and never fails.

5. A global flow analysis. The compiler tracks flow patterns of all predicates in
all classes of the program.

6. Generation of an intermediate Java code.

7. Translation of this Java code by a standard Java compiler.

The determinism check ensures a possibility to use different optimization
methods for different kinds of predicates:

1. The imperative predicates check is the most complex stage in the translation
schema, because it requires a check of all separate clauses as well as a mutual
influence of the clauses / predicates. This check is of the critical importance,
since the imperative predicates, as a rule, constitute the main part of the pro-
gram and the check ensures a deep optimization of these predicates. Clauses
of the imperative predicates are translated to Java procedures directly.

2. The deterministic predicates are translated to Java procedures too. All clau-
ses of one deterministic predicate correspond to a single Java procedure.
Backtracking is implemented using a special kind of light-weight Java ex-
ceptions.

3. The non-deterministic predicates are implemented using a standard method
of continuation passing. Clauses of one predicate correspond to one or several
automatically generated Java classes.



The tail recursion optimization is implemented for recursive predicates. Re-
cursive predicates are implemented using the while Java command. Note that
Actor Prolog supports the explicit definition of ground / non-ground domains
and the translator uses this information for a deep optimization of Java code.

Example 1. Let p be an imperative predicate that calls another imperative
predicate q. The q predicate calls the built-in writeln predicate that outputs the
text message “Hi, Berlin!”:

p:-

q.

q:-

writeln("Hi, Berlin!").

The translator converts these predicates to procedures impProcP s617 0 and
impProcQ s618 0. The names of these Java procedures are created automati-
cally and contain information about determinism of the source predicates (the
imp prefix), the names of the source predicates (P and Q), and the arity of the
predicates (both predicates are of arity 0). The s617 and s193 infixes contain
auxiliary information: the s letter indicates that a predicate is plain (but not
an imitation of a function) and a number is a unique code that is necessary for
unambiguous representation of predicates with non-English names.

public void impProcP_s617_0(ChoisePoint iX) {

impProcQ_s618_0(iX);

}

public void impProcQ_s618_0(ChoisePoint iX) {

impProcWriteln_s193_1_i1(

iX,new PrologString("Hi, Berlin!"));

}

Note that the name of the Java procedure corresponding to the writeln

predicate is coded in accordance with the same rules, but this predicate is of
arity 1 and its name contains additional information about the argument: the
letter i in the i1 postfix indicates that the argument is input and the number 1
in the postfix is a unique code of the domain (data type) of this argument. The
text string is implemented in Java as an instance of a special class PrologString.
The iX variable of the ChoisePoint class contains auxiliary information during
the execution of the program.

Example 2. Let p be a deterministic predicate that calls a deterministic pred-
icate q.

p:-

q.



The translator converts the p predicate in the same way. The name of the cor-
responding Java procedure contains the det prefix. In addition, this Java proce-
dure supports the Backtracking exception that is used for the implementation of
backtracking during the execution of the program. Note that the Backtracking

class implements a special kind of light-weight Java exceptions, that is, an in-
stance of this class does not contain information about the current state of the
stack frames for the current thread. Thus, the backtracking operates quite fast
in Actor Prolog.

public void detProcP_s617_0(ChoisePoint iX)

throws Backtracking {

detProcQ_s618_0(iX);

}

Example 3. Let p be a non-deterministic predicate that calls the q non-deter-
ministic predicate.

p:-

q.

The translator converts the p predicate to the NondetProcP s617 0 class
using a standard method of continuation passing. The name of correspond-
ing Java class contains the Nondet prefix and is created in accordance with
the rules of Java procedure naming mentioned above. The constructor of the
NondetProcP s617 0 class has one argument of the Continuation class. This
auxiliary class represents continuations.

The execute method of the class implements execution of the p predicate and
can raise the Backtracking exception when the predicate fails. The procedure
creates a new instance of the NondetProcQ s618 0 class that implements the q

non-deterministic predicate and calls the execute method of this object.

class NondetProcP_s617_0 extends Continuation {

private Continuation c1;

NondetProcP_s617_0(Continuation aC) {

c0= aC;

}

public void execute(ChoisePoint iX)

throws Backtracking {

c1= new NondetProcQ_s618_0(c0);

c1.execute(iX);

}

}

Example 4. Let p be an imperative predicate that calls the q non-deterministic
predicate. Let p contains two clauses. Let p contains a cut in the first clause
after the call of the q predicate.



p:-

q,!.

p:-

writeln("P").

q:-

writeln("Q").

The translator converts the p predicate to the impProcP s694 0 Java pro-
cedure and the And 1 1 P s694 0 auxiliary Java class. Two clauses of the p

predicate are implemented in Java using the try − catch construct. The first
clause is converted to the following commands:

1. Create an instance of the And 1 1 P s694 0 class.
2. Then create an instance of the NondetProcQ s695 0 class corresponding to

the q predicate.
3. Call the execute method of this continuation.

If the q predicate fails, the Backtracking exception is raised. This exception is
to be processed by the catch construct. The further execution of the procedure
depends on the state of the newIx auxiliary variable that indicates whether
the backtracking of the first clause is allowed. This variable contains an in-
stance of the ChoisePoint class that can be modified inside the q predicate
by the cut operation. If the backtracking is allowed, the procedure frees the
trail of the program and calls the impProcWriteln s205 1 i1 procedure that
outputs the P text string. If the backtracking is disabled, the procedure raises
the ImperativeProcedureFailed run-time exception. Note that the translator
checks the usage of cuts in the text of Actor Prolog program and ensures that
this situation never occurs.

public void impProcP_s694_0(ChoisePoint iX) {

Continuation c1;

Continuation c2;

ChoisePoint newIx;

newIx= new ChoisePoint(iX);

try {

c1= new And_1_1_P_s694_0(c0,iX);

c2= new NondetProcQ_s695_0(c1);

c2.execute(newIx);

} catch (Backtracking b1) {

if (newIx.isEnabled()) {

newIx.freeTrail();

impProcWriteln_s205_1_i1(

newIx,new PrologString("P"));

} else {

throw new ImperativeProcedureFailed();

}

}

}



The And 1 1 P s694 0 class implements further execution of the first clause
of the p predicate after successful completion of the q predicate. Note that the
translator converts the cut operation to the call of the disable method of the iX

auxiliary variable that contains information about variable bindings and possible
backtracking.

class And_1_1_P_s694_0 extends Continuation {

private ChoisePoint pS;

And_1_1_P_s694_0(

Continuation aC, ChoisePoint aCP) {

c0= aC;

pS= aCP;

}

public void execute(ChoisePoint iX) throws Backtracking {

iX.disable(pS);

c0.execute(iX);

}

}

The described compilation schema ensures a high performance of the exe-
cutable code (see Table. 2). Deterministic and imperative predicates with ground
arguments are optimized quite well (for instance, the NREV test demonstrates
more than 100 millions lips). At the same time, the programs that exploit exten-
sively non-deterministic predicates work slowly (QUERY). This is a fundamental
disadvantage of the approach based on the continuation passing and translation
to the high-level intermediate language, because it cannot handle possible run-
time optimization of Prolog stacks. Arithmetical predicates work fast enough in
Actor Prolog (PRIMES, QSORT, and TAK), but there is a possibility for better
optimization of symbolic computations (DERIV, POLY 10).

The translator creates Java classes corresponding to the classes of an object-
oriented Actor Prolog program. Given external Java classes can be declared as
ancestors of these automatically created classes and this is the basic principle
of the implementation of built-in classes [8] and integration of Actor Prolog
programs with external libraries. The possibility of easy extension of the Actor
Prolog programming system by new built-in classes is a benefit of the selected
implementation strategy. For instance, the Java2D and the Java3D libraries are
connected with the Actor Prolog system in this way.

Our approach to Prolog and Java merging has the following advantages in
comparison with an approach where a logic program and a Java program commu-
nicate through an interface as two separate black boxes (e.g., a Prolog program
and a Java program exchange data through a Prolog-Java interface such as in
SWI Prolog [7]):

1. Portability of the programs. The translator generates Java applets that can
operate in any computer without preliminary installation of Actor Prolog;
only Java is necessary.



Test Iter. No. Actor Prolog SWI-Prolog

NREV 3,000,000 109,677,895 lips 15,792,155 lips
CRYPT 100,000 1.820880 ms 1.98979 ms
DERIV 10,000,000 0.055460 ms 0.0105815 ms
POLY 10 10,000 3.750600 ms 4.4257 ms
PRIMES 100,000 0.037340 ms 0.14196 ms
QSORT 1,000,000 0.043129 ms 0.063976 ms
QUEENS(9) 10,000 19.219600 ms 32.4248 ms
QUERY 10,000 3.135300 ms 0.4056 ms
TAK 10,000 3.913400 ms 11.1182 ms

Table 1. Prolog benchmark testing: Actor Prolog to Java translator vs. SWI-
Prolog [7] v. 7.2.2, Intel Core i5-2410M, 2.30 GHz, Win7, 64-bit. Benchmarks
time is measured in milliseconds per iteration. The LIPS abbreviation means the
number of logical inferences per second.

2. Reliability and stability of the programs. The single language approach always
ensures better reliability and stability of the application programs.

3. Safety of the programs. All Java features that ensure safety of the programs
are available.

4. Readability of the intermediate code. The intermediate code can be easily
inspected by a human if necessary.

5. Availability of all Java means. Java Internet protocols, Java2D, Java3D, and
other Java libraries are available.

6. Portability of the logic programming system. The use of industrial virtual ma-
chine is a basis for quick adaptation to new operating systems and processor
architectures.

The main disadvantages of the developed approach are the following:

1. The executable code is slow in comparison to the translation to C approach.
2. Only static optimization of the code is possible, because Java implements

no advanced run-time optimization methods developed in the logic program-
ming area.

3. The logic programming system depends on Java virtual machine.

3 Comparison with Other Approaches

Application of a compilation schema based on C / C++ intermediate code gen-
eration (Mercury [9], KLIC [10], wamcc [11]) was recognized as an appropriate
way to obtain maximal speed of the executable code. On the other hand, gen-
eration of Java intermediate code (Actor Prolog, PrologCafe [12], KLIJava [13],
SAE-Prolog [14], jProlog [15]) ensures platform independence of the application
software and guarantees absence of difficult-to-locate errors caused by memory



leaks and out-of-range array operations. We have chosen the second compilation
schema to ensure robustness, readability, and openness of the executable code.

In contrast to conventional approaches, we use neither WAM (PrologCafe,
wamcc) nor binarization of the logic program (jProlog, BinProlog [16]). The Ac-
tor Prolog compiler generates a kind of the idiomatic source code (SAE-Prolog,
P# [17]), but in contrast to the SAE-Prolog project [14] we use domain and
predicate declarations to process non-deterministic, deterministic, and impera-
tive predicates in different ways. In contrast to the P# project [17] we implement
non-idiomatic predicate calls from idiomatic predicates and vice versa.

4 Applications of the Translator

The main application and a test basis of the Actor Prolog to Java translator is
the intelligent visual surveillance, that is, a real-time intelligent analysis of video
streams and an intelligent monitoring of anomalous human behaviour [18,6,19,2].
The idea of the logic programming approach is in usage of logical rules for
description and analysis of people activities. We solve the problem of anomalous
human activity recognition using a logic program that describes a given scenario
of complex people behaviour (see examples in Fig. 1).

(a) (b)

Fig. 1. (a) An example of CAVIAR [20] video with a case of a street offence:
one person attacks another. (b) An example of BEHAVE [21] video with a case
of a street offence: one group attacks another. These cases of street offences are
detected by logic programs. All probable participants of conflicts are marked by
yellow rectangles. The tracks are designated by lines.

Let us consider a short fragment of a logic program to demonstrate some
issues of logical description of video scenes. The is a running person predicate
checks whether a term E corresponds to fuzzy definition of a running person:

is_a_running_person(E):-

E == { frame1:T1,

frame2:T2,

mean_velocity:V,

wr2_mean:M,



wr2_skewness:S,

mean_standardized_area:A,

wr2_cardinality:C|_},

is_a_fast_object(T1,T2,V),

fast_object_is_a_runner(A,M,S,C).

The E term is an underdetermined set [3] that is a special data structure intro-
duced in Actor Prolog. This term represents an unordered set of named attributes
of a track segment of an object in a video scene: numbers of the first and the
last frames (frame1, frame2); the average speed of the object in this segment
of the track (mean velocity); a number of statistical metrics [19] describing the
motion of the object (wr2 mean, wr2 skewness, mean standardized area, and
wr2 cardinality). Note that in the Actor Prolog language, the == operator cor-
responds to the = ordinary unification of the standard Prolog. In accordance
with the rule, the E term corresponds to the running person if and only if:

1. It is recognised as a fast object, i.e., the speed and the length of the track
segment satisfy the fuzzy definition of the fast object (see the rule below).

2. The values of given statistical metrics satisfy the fuzzy definition of the
running pedestrian.

The values of fuzzy thresholds used in the rules were computed on the basis of
BEHAVE [21] video samples.

is_a_fast_object(T1,T2,V):-

M1== ?fuzzy_metrics(V,1.7,0.7),

D== (T2 - T1) / 25,

M2== ?fuzzy_metrics(D,0.5,0.25),

M1 * M2 >= 0.5.

fast_object_is_a_runner(A,M,S,C):-

MC== ?fuzzy_metrics(C,7,2),

MA== 1 - ?fuzzy_metrics(A,2.75,0.75),

MM== 1 - ?fuzzy_metrics(M,0.49,0.10),

MS== ?fuzzy_metrics(S,0.25,1.00),

MA * MM * MS * MC >= 0.1.

Actor Prolog implements a non-standard functional notation, namely, the ?
prefix informs the compiler that the fuzzy metrics term is a call of a function,
but not a data structure. An auxiliary function that calculates the value of the
fuzzy metrics is represented below. The first argument of the function is a value
to be checked, the second argument is a value of a fuzzy threshold, and the third
one is the width of the threshold ambiguity area. The = delimiter defines an
extra output argument that is a result to be returned by the function:

fuzzy_metrics(X,T,H) = 1.0 :-

X >= T + H,!.

fuzzy_metrics(X,T,H) = 0.0 :-

X <= T - H,!.

fuzzy_metrics(X,T,H) = V :-

V== (X-T+H) * (1 / (2*H)).



Another area of application of the translator is in linking Actor Prolog with
Java3D [22]. Java3D is a scene graph based 3D application programming inter-
face / graphics library. Recently a group of enthusiasts has ported this library
to the JOGL graphics platform [23], that is, it uses only JOGL on all computer
platforms and a Java applet can use Java3D capabilities on any computer with-
out preliminary installation of the Java3D library. We have developed a built-in
class of the Actor Prolog language that is a wrapper of Java3D [8] and provided
a set of examples of logic programming 3D graphics (see Fig. 2).

(a) (b)

Fig. 2. Examples of the scientific visualization based on the Actor Prolog lan-
guage and the Java3D graphics: (a) Visualization of results of a neurophysiologic
experiment. (b) Creation of dynamic 3D diagrams.

An advantage of the translation to Java is in the access to all Java security
features including protection of Java applets. Recent versions of the Actor Pro-
log system ensure automatic signing of created JAR files, that facilitates logic
programming Web applications based on Java applets (see Fig. 3).

(a) (b)

Fig. 3. Examples of Java applets generated by Actor Prolog: (a) A Web agent
that communicates with the Rambler search engine. (b) An expert system for
selection of oil production methods with a SADT [24] based user interface.

An open source Java library of Actor Prolog built-in classes including the
video processing features and Java2D / Java3D wrappers is published in the
GitHub repository [8].



5 Conclusions

A translator of Actor Prolog to Java was developed. The state-of-the-art compi-
lation schema of the Actor Prolog system includes a type check, a determinism
check, and a global flow analysis. This compilation schema ensures a high per-
formance of the executable code. We use a compilation from the Actor Prolog
language to Java, because, from our point of view, using an industrial Java
virtual machine as a basis for the logic programming system ensures its sta-
bility, flexibility, and quick adaptation to new operating systems and processor
architectures. The open source Java library of Actor Prolog built-in classes is
published in GitHub [8]. Application domains of the translator include but are
not limited to the real-time intelligent monitoring of anomalous people activities,
the logical description and analysis of people behaviour (see the Web Site [2]),
3D scientific visualization, and logic programming Web applications.

Acknowledgements

The valuable comments of the anonymous referees are gratefully appreciated.
We acknowledge a partial financial support from the Russian Foundation for

Basic Research, grant No 13-07-92694.

References

1. Morozov, A.A.: Actor Prolog Web Site. [Online] Available from:
http://www.cplire.ru/Lab144 (2004)

2. Morozov, A.A., Sushkova, O.S.: The intelligent visual surveillance logic program-
ming Web Site. [Online] Available from: http://www.fullvision.ru/actor prolog/
(2014)

3. Morozov, A.A.: Actor Prolog: an object-oriented language with the classical declar-
ative semantics. In Sagonas, K., Tarau, P., eds.: IDL 1999, Paris, France (1999)
39–53

4. Morozov, A.A.: Logic object-oriented model of asynchronous concurrent compu-
tations. Pattern Recognition and Image Analysis 13 (2003) 640–649

5. Morozov, A.A.: Operational approach to the modified reasoning, based on the
concept of repeated proving and logical actors. In Salvador Abreu, V.S.C., ed.:
CICLOPS 2007, Porto, Portugal (2007) 1–15

6. Morozov, A.A., Polupanov, A.F.: Intelligent visual surveillance logic programming:
Implementation issues. In Ströder, T., Swift, T., eds.: CICLOPS-WLPE 2014.
Number AIB-2014-09 in Aachener Informatik Berichte, RWTH Aachen University
(2014) 31–45

7. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and
Practice of Logic Programming 12 (2012) 67–96

8. Morozov, A.A.: A GitHub repository containing source codes of Actor Prolog
built-in classes. [Online] Available from: https://github.com/Morozov2012/actor-
prolog-java-library (2014)

9. Henderson, F., Somogyi, Z.: Compiling Mercury to high-level C code. In: CC 2002,
Grenoble, France (2002)



10. Fujise, T., Chikayama, T., Rokusava, K., Nakase, A.: KLIC: A portable implemen-
tation of KL1. In: FGCS 1994, Tokyo, ICOT (1994) 66–79

11. Codognet, P., Diaz, D.: wamcc: Compiling Prolog to C. In Sterling, L., ed.: ICLP
1995, MIT Press (1995) 317–331

12. Banbara, M., Tamura, N., Inoue, K.: Prolog Cafe: A Prolog to Java translator
system. In Umeda, M., Wolf, A., Bartenstein, O., Geske, U., Seipel, D., Takata,
O., eds.: Declarative Programming for Knowledge Management. LNAI 4369, Hei-
delberg, Springer (2006) 1–11

13. Kuramochi, S.: KLIJava home page. [Online] Available from:
http://www.ueda.info.waseda.ac.jp/˜satoshi/klijava/klijava-e.html (1999)

14. Eichberg, M.: Compiling Prolog to idiomatic Java. In Gallagher, J.P., Gelfond,
M., eds.: ICLP 2011, Saarbrücken/Wadern, Dagstuhl Publishing (2011) 84–94

15. Demoen, B., Tarau, P.: jProlog home page. [Online] Available from:
http://people.cs.kuleuven.be/˜bart.demoen/PrologInJava/ (1997)

16. Tarau, P.: The BinProlog experience: Architecture and implementation choices for
continuation passing Prolog and first-class logic engines. Theory and Practice of
Logic Programming 12 (2012) 97–126

17. Cook, J.J.: Optimizing P#: Translating Prolog to more idiomatic C#. In: CI-
CLOPS 2004. (2004) 59–70

18. Morozov, A.A., Vaish, A., Polupanov, A.F., Antciperov, V.E., Lychkov, I.I., Al-
fimtsev, A.N., Deviatkov, V.V.: Development of concurrent object-oriented logic
programming system to intelligent monitoring of anomalous human activities. In
Jr., A.C., Plantier, G., Schultz, T., Fred, A., Gamboa, H., eds.: BIODEVICES
2014, SCITEPRESS (2014) 53–62

19. Morozov, A.A., Polupanov, A.F.: Development of the logic programming approach
to the intelligent monitoring of anomalous human behaviour. In Paulus, D., Fuchs,
C., Droege, D., eds.: OGRW2014, Koblenz, University of Koblenz-Landau (2015)
82–85

20. Fisher, R.: CAVIAR test case scenarios. The EC funded project IST 2001 37540.
[Online] Available from: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ (2007)

21. Fisher, R.: BEHAVE: Computer-assisted prescreening of video streams for
unusual activities. The EPSRC project GR/S98146. [Online] Available from:
http://groups.inf.ed.ac.uk/vision/BEHAVEDATA/INTERACTIONS/ (2013)

22. Morozov, A.A.: A demo on linking Java3D with Actor Prolog. [Online] Avail-
able from: http://forum.jogamp.org/Demo-on-linking-Java3D-with-Actor-Prolog-
tt4028018.html (2013)

23. Gothel, S.: The JOGL project Web Site. [Online] Available from:
http://forum.jogamp.org (2015)

24. Morozov, A.A.: Visual logic programming based on the SADT diagrams. In Dahl,
V., Niemela, I., eds.: ICLP 2007. LNCS 4670, Heidelberg, Springer (2007) 436–437


