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ABSTRACT

, A new computational model for neutral particle transport in the outer regions of a

diverted tokamak plasma chamber is presented. The model is based on the calculation of

transmission and escape probabilities using first-flight integral transport theory and the

balancing of fluxes across the surfaces bounding the various regions. The geometrical

complexity of the problem is included in precomputed probabilities which depend only on

the mean free path of the region.
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1. INTRODUCTION

, The transport of neutral atoms and molecules of fuel and impurity species in the

"outer regions"--the edge plasma, the scrape-off layer (SOL), the divertor channels,

and the plasma chamber and divertor plenums--of a diverted tokamak is a

computational problem the practical significance of which is growing in recognition.

There are indications that conditions in the plasma edge may control the energy

confinement of the bulk plasma, and such conditions in turn may be influenced by the

neutral population in the outer regions. More directly, the interaction among neutrals

and plasma ions and electrons in the outer regions is being relied on to "radiatively

cool" the latter and thereby reduce the heat load on the dJivertor collection plate, which

is presently predicted to be excessive in next-generation devices such as ITER.

The importance of neutral particle transport in the outer regions of plasmas has

• long been recognized by specialists, and a variety of computational models have been

used, as reviewed in Ref. [1]. Thus, it is incumbent upon anyone who would introduce

" a new computational model, which is the purpose of this paper, to comment upon the

. existing models and to indicate why a new model is needed.

There are three general categories of neutral transport computa6onal models,

Ii_ based on: 1) approximation to the integral form of the transport equation; 2)

approximation to the differential form of the transport equation; or 3) simulation of

particle transport by following a large number of randomly-generated particle histories

and statistically averaging the results (Monte Carlo).
The integral transport equation [2] states that, for a given source of particles,

_il those particles going in a given direction are exponentially attenuated as the integral of

i the inverse mean-free-path (mfp) along the direction of flight. For a fixed source,solution is a straightforward matter of geometry. However, when one of the processes

i that attenuates the neutrals results in other neutrals with different energy and direction,
this process constitutes a secondary neutral source which is distributed in space, and



so on for tertiary, quartiary, etc. neutral sources. Charge-exchange is one such

process for neutrals in the outer regions of a plasma. Thus, the solution of the integral

transport equation must proceed iteratively, with an approximate evaluation of the

distributed source and an exact solution of the particle transport from the approximate

source constituting the iteration step. Because of the coupling among ali spatial points

that is inherent to the integral transport formulation, this iterative solution can become

very computationaUy intensive for any but the simplest situations. In practice (e.g. [3],

the integral transport solution is obtained for the attenuation of particles coming from

a fixed source, such as reflection from the wall, and secondary distributed sources are

neglected. Such a treatment is satisfactory when the ionization rate is much greater

than the charge-exchange rate, but is poor when the two rates are comparable, which

is the case in many parts of the outer regions of a plasma.

Approximations based on the differential formulation of the transport equation

have been highly developed for neutron transport in connection with nuclear reactor

calculations, where they proved to be more practically useful than approximations

based on the integral formulation, in general. Two general classes of approximation

were developed, distinguished by the treatment of the angular dependence. In the

spherical harmonics, or Pn, method (e.g. [4]), the angular dependence of the neutral

distribution is expanded in spherical harmonics, and moments equations are generated

by integrating over angle and making use of orthogonality relations. In principle, any

degree of angular anisotropy an be treated by taking enough moments. In practice,

these methods found their greatest application in one-dimensional problems where a

few Legendre polynomials sufficed to represent the angular distribution. In the

discrete ordinates, or Sn, method (e.g. [5]), the transport equation is only solved at a

few angular directions (ordinates), with integrals over angle that enter these equations

being approximated by a quadrature involving values at these ordinates and a

quadrature weight, the choice of which is quite important. When the angular

2

......... , i, ,,i _l i ,i ii,, , i iiiI i



distribution can be represented b) a linearly anisotropic spherical harmonics

, approximation or by a two-ordinate discrete ordinates approximation, the lowest order

! approximation that results is diffusion theory (e.g. [6]. These approximations to the

differential transport equation also must be solved iteratively, but because the coupling

among spatial points is nearest-neighbor, the iterative procedure is more tractable than

for the integral formulation. The diffusion approximation is widely used in neutron

transport for lD, 2D and 3D calculations in which the linear anisotropy assumption is

valid, and higher order discrete ordinates approximations are the method commonly

employed in lD and 2D problems when higher order anisotropy in the angular

distribution must be included.

Discrete ordinates codes that had been developed for neutron transport were

applied to calculate neutral transport in the edge of simple plasma models represented

• by slab or cylindrical geometry several years ago (e.g. [7]-[9]), but this method does

not seem to have been applied recently or extended to the more complex geometry of

the outer regions of a diverted tokamak plasma. The diffusion approximation has been

applied to plasma outer region calculations recently (e.g. [10]), but the diffusion

theory assumption of linear anisotropy in the angular distribution would seem to be

invalid in many cases of interest (e.g. the reflection of ions from a wall as neutrals, the

interface between a divertor channel in which there is ionization and charge-exchange

and a plenum region in which there is free-streaming). We are not aware of an

application of Pn or double-P n methods. Double P1 methods, in which the angular

distribution is assumed isotropic within each of two hemispheres, would seem to offer

significant advances in accuracy over diffusion theory in lD situations. Because of the

inherent 2D geometry and angular anisotropy, the discrete ordinates methods would

seem to be the best suited of the approximations based on the differential transport

" formulation for application to neutral transport in the plasma outer regions.
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Monte Carlo calculations simulate the fates of many, randomly generated

particles to obtain an averaged solution for the transport of a population of neutral -

particles. This methodology (e.g. [11]) is highly developed, and, because of previous

emphasis upon applications to coml:_lexgeometries, has good capability to represent

the geometrical complexity of the plasma and divertor chambers. Monte Carlo has

been extensively applied to the computation of neutral particle transport in the outer

regions of diverted tokamaks (e.g. [12, 13]). Extreme high accuracy can be obtained

with Monte Carlo, provided the basic reactic_n rate parameters are well known and

provided that a sufficient number of histories are simulated that the statistical

uncertainty in the averaged solution is acceptably small. This latter proviso can lead to

particularly demanding computational requirements when the Monte Carlo solution is

part of a neutral-charged particle iterative solution procedure, since convergence of

the outer neutral-charged particle iteration can be destroyed by statistical fluctuations

in the Monte Carlo solutions on successive iterates. Monte Carlo will probably remain

as the ultimate method for neutral particle transport in diverted tokamak plasmas in

cases where high accuracy in a complex geometry is required and computational time

is a secondary consideration. However, for routine calculations, the discrete ordinates

method and the method to be presented in this paper would seem to have certain

computational advantages.

The method which is proposed in this paper utilizes the integral transport method

to do what is does best, calculate the uncollided neutral flux that is transmitted from

one surface to another. The secondary source in the intervening region is then found

by subtraction, and the collided neutral flux through surrounding surfaces is then

calculated from an escape probability formulated from integral transport theory. The

concept is to break the outer regions of a diverted tokamak plasma up into a relatively

small number of complex geometric regions and to do a balance on the fluxes crossing

the surfaces bounding these regions, using surface-to-surface transmission probabilities

4

nt



calcula:ed with integral transport theory and region-to-surface escape probabilities

• based on the repeated application of first-flight transport calculations of escape

probabilities. With a few plausible assumptions, the transmission and escape

probabilities depend only upon the geometry and the mfp of the region, so that

complex geometries can be represented in precomputed transmission and escape

probabilities which can be stored as a function of rnfp and looked up at run time,

thereby eliminating the computational penalty of complex geometry. With another

plausible assumption, the region-to-surface escape probabilities can be written as

simple expressions involving the surface area, volume and rnfp of the region. The

most limiting assumption on the method is that of uniform properties (or at least

known property variation) within a region, which places a lower limit on the number

of regions required.

, This paper is organized as foUows. Definitions of quantities involved in neutral

transport are given in section 2, and a representative geometric model for the outer

i " regions of a diverted tokamak is given in section 3. The fluxes across surfaces are

constructed from uncollided fluxes across other surfaces and from collided fluxes

emerging from adjacent regions in section 4. The solution of the resulting flux

equations and the use of that solution in a particle balance are indicated in section 5.

The methodology for calculating transmission probabilities, escape probabilities and

the plasma albedo are given in sections 6-8, respectively. A discussion of assumptions

and applications in section 9 concludes the paper. Explicit expressions for the

calculation of transmission probabilities in the model problem geometry are given in

appendices.

2. DEFINITIONS

Fa_ b --- neutral flux from region a _ region b

6
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1.

Tb_c - transmission coefficient expressing the probability that neutral,

particles incident into region b from region a emerge from,

region b into region c without a collision event

Pb - escape probability that a neutral particle "bom" in region b

(external source, charge-exchange event, electron

recombination) will escape from region b without being ionized

Ab_ c - probability that a neutral particle "bom" in and escaping from

region b escapes into adjacent region c

Crab = albedo of region b - the probability that a neutral particle

entering region b from region a (or its neutral progeny) re-

emerges from region b into region a

Rwb - reflection coefficient for wall bounding region b - probability

that a neutral (or charged) particle incident upon the wall is °

.reflected as a neutral particle.
Q

fpb = fraction of neutrals striking the "wall" bounding region b that

are removed by pumping

3. MODEL GEOMETRY

A representative geometry of the plasma, SOL, divertor and plenum regions

within the plasma and divertor chambers is illustrated for a axisymmetric tokamak with

a single null divertor configuration in Fig. 1.

A simple' geometric model which should represent the actual geometry of Fig. 1

reasonably well is illustrated in Fig. 2. The divertor channel has been divided into a

presheath region (1 and 2) which extends a few mfp in front of the collector plate, in

which intense neutral-charged particle interactions take piace, and a channel (3 and 4)

extending up to the throat (5). All of these regions can be represented by trapezoids.

The divertor plenum (6-8) can be represented rather exactly by regions bounded by o
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straight lines. The SOL (9-12) and the plasma chamber (13-16) can be represented

• approximately by concentric annular segments to allow for treating poloidal

asymmetries. The model of Fig. 2 is for the purpose of illustration-the actual

geometric model that would be used in any given calculation would depend on the
6

configuration and the geometrical accuracy required.
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Fig. 1: Single Null Diverter Geometry (Not to scale)
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Fig. 2: Geometric Model for Outer

Regions Neutral Calculation



4. FLUXES ACROSS SURFACES

• The formalism is developed for a neutral hydrogenic atomic species.

Modifications to allow treatment of a neutral impurity species are discussed in a

subsequent section.

With respect to Fig. 2, the neutral flux emerging from region i into adjacent

region j consists of: 1) the sum of the neutral fluxes that entered region i from all

adjacent regions times the probabilities that these fluxes emerge without collision into

regionj

i

k

i

where _- the sum over ali regions k that are contiguous to region i; plus 2) the sum
k

tt

of all neutral fluxes that entered region i from ali adjacent regions and that had a

. collision in region i

i i /Fk-i l _,T]-I
k l

-= that the collision was a charge-exchange
times the probability A_x (oW)icx +(oW)ion

event, times the probability (Pi) that the charge-exchange neutral or its progeny

eventually escapes from region i, times the probability (Ai_j) that a neutral particle

escaping from region i enters region j; plus 3) the probability that a neutral particle

introduced into region i extemaUy (Si) escapes into region j (PiAi_j).



i i

i i 1-___T_-I SiexPiAi-j (1)Fi-j=___Fk-i T__j+AcxPiAi- j + .
k l

The flux from a region i in the plasma edge into the adjacent SOL region j is

Ii- j = txjiFj_ i (2)

Thus, it is not necessary to explicitly treat the plasma inside the separatrix in the

neutral calculation; rather it is treated as an albedo boundary cmdition on the inner

surface of the SOL.

The neutral flux into region i from a bounding wall region iw is the sum of: 1)

the neutral flux from region i to the wall, _iven by Eq. (1), times the probability

(1 -fpi) that this incident flux is not pump_ _,_:,_;times the probability (Rwi) that this

iw
incident flux is reflected from the wall; plus 2) the ion flux (_plate) incident upon the

divertor plate--for the presheath regions only--times the reflection coefficient (Rwi)

rk_ " " " "= T__iw + A_.xPiAi_iw 1- T__I + SexPiAi_iw
l

iw
+ dPplateRwi_iw,ps

(3)

where 15= 1 for the presheath and = 0 otherwise.

V_o,
The transmission probabilities, T_'_j,involve mean free paths k = n(ow) which

should be evaluated using the neutral speed (vk) that is characteristic of the region k

from which the neutral has emerged, and using ni(o'v)i for the region i.

li
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" _ni nzJ(o_J(fir)ion = (fir)ion + (ffV)?on+ X. ni, "cx
J

= (ffv)i°n+(l+-Z)(Oal)i°n+-_ _zJ(oV)Jx (6)

where (_ ---nzZ2 / ni and Xzj - nzj / hz, with nz and nzj and being the total and j - th

charge state implwity densities, and (c'V)Jcxis the charge-exchange rate between the

neutral hydrogenic species and the j-th impurity charge state.

5. S_LUTION STEPS

With the assumptions: 1) the plasma properties are uniform (or at least vary in a

known way) within a region; 2) the incident neutral flux is isotropic over the inward

, hemisphere; and 3) the incident-neutral flux is uniformly distributed over the surface,

the transtrtission and escape probabilities depend only on mean-free-path and geometry

of the region. Since geometry is fLxedthe transmission and escape probabilities can be

precomputed as a function of _, and looked up from a table at run time. Fixed, but

non-uniform plasma properties and incident neutral flux distribution, and a prespecified
|

Y_ anisotropic angular distribution, could be accommodated within a precomputed table,=

.m

• but it is unlikely that the knowledge of these non-unifoi.'aities and anisotropies would

be good enough to make this worthwhile.

, 2N equations, where N is the number of interfaces, of the type of Eqs. (1)-(3)

d obtain. These equations have the general form£

+_ _ = Sex + _plate
(7)

i =

_' and the general solution
i •

+ ] (8)_M-I[s _.*r= +i -- ex plate
_m
-li

9 "
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The reflected neutral flux consists of two components: 1) a fraction X of neutrals

that are reflected with a fraction g of the speed of the incident neutral/ion; and 2) a

fraction (1-X) that thermalize in the wall, are re-emitted as molecules, then dissociate

to produce neutrals with the Franck-Condon speed v F¢.

riw_ --(g) F(FC)(1-Z) (4)= ,gx iw-i + i_-i

When calculating the transmission probabilities for these reflected neutrals across

presheath region i, a neutral speed gv_ should be used to evaluate the mfp for the first

component, and a neutral speed vfrc should be used to evaluate the mfp for the

second component.

The total ionization rate in region i consists of the ionization of external source

neutrals and of neutrals flowing into region i from adjacent re.gions, after zero, one,

two, three,.., charge-exchange events

i i Z[A_x(I_F/)]Ii = Six + Fk_ i 1- T__l aiin
k n=o

rk_,-1- &
_ k !

- l_Acx(l_ pi ) (5)

!
where Ai n - 1-Aicx .

| The presence of impurities is taken into account by def'ming an effective

ionization rate in terms of the plasma ion concentration, ni

i

:l .
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The neutral particle balance equation in each region is

• Nj=S_x- (rj__-r__j)-N"°"_o.)/o.Nj (9>
k

which has the steady-state solution

• J

S_ex-X(r_-,-r,-j)
k (10)

Nj = Nion(o.v)iJo"

The numericalsolutionstepsarc:

I) evaluatethetransmissionand escapeprobabilitiesfromprccomputcdtables,

usingtheplasmadensitiesandtcrnpemturcstocalculate_,;

2) solveEq.(7)forl"byinvertingM;

3) use_rinEq.(I0)toobtainthesteady-stateneutralcontentorinEq.(9)to

advanccthedynamicsolution.

4t

6. TRANSMISSION PROBABILITY
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| - Fig. 3: Surface-to-Surface Transmission
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With reference to Fig. 3, we are interested in calculating the probability that a
Ii

flux of neutrals incident upon side 1 of the region emerges uncoUided through side 3,

for example. We call this probability the transmission probability TI_3.

The uncollided neutral flux is given by

cp(l) =cp(o)e -i/z" (11)

where

Vo (12)_,---

ni(<OV}io n +<ffV}CX)

and I is the path length from the point of entry into the region.

If the distribution of the incident flux along side 1 is FI(_I,_), then the

transmissionprobability is

f_l.max _,_ f_max (_1) ._ -i(_)/X,-,

T1-3 .p_n U_lJ_min([1) a_e ll(_l,_)___ , (13) -

pmd_L_d*r_(_,*)

Thean_e_*min(_)and*max(_l)areth_minimum_d maximumangl_s

subtended at _1 by the side 3. Now l(_) represents the path length from point _1 on

side 1 to point {2 on side 2, as shown in Fig. (3).

If the incident particle distribution is isotropic over the inward hemisphere, then

F1 ({1,_) ''> FI ({ 1) / _ and Eq. (13) reduces to

TI_ 3 =-- I_l_minaxd_l]"l(_l)lf _max(_l) d_e -1(_)/_n "l'rain(g1) (14)

_:| 14
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q

We furtber define the local transmission probability that an isotropically distributed

, neutral incident at point _1 on side 1 emerges uncoUided through side 3

1 [_max(_l) d_e-l(¢)/;_ (15)
tl-3 (_1) - _J_min(_l)

If the incident flux is uniformly ddstributed along side 1, then the transmission

probability reduces to

__3= _l_mi_x d_l tl_3(_l)/(_[nax __[nin) (16)

For a fixed geometry, this quantity depends only on _,. Transmission probabilities are

calculated in the appendices for the geometry of Fig. 2.

7. ESCAPE PROBABILITY

a

[]

|

Fig. 4: Escape Probability Geometry

A neutral particle introduced externally or created by charge-exchange, with an

isotropic distribution, at point ro has a probability

. Po(ro) = 1 f2ne-l(ro,,)/_.dq (17)
2_ .,o
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of escaping from the region uncollided, where now l(ro,O) is the chord length from ro

to the surface in the direction denoted by t_.

If S(ro) is the distribution of particles 'born" in the region, then

Po - [ droS(ro )Po(ro) _ droS(ro) (18)

is the average probability that a particle born in the region will escape without having a

collision.

If S(ro) = const., Po may be evaluated analytically or numerically. Results are

given in Ref. [2] for a number of simple shapes. When the dimensions of the region

are large relative to the mfp, considerations of average chord length and reciprocity [2]

lead to the simple approximation

SL

PO_ nv (19)

where L is given by Eq. (12), and S and V are the surface area and volume of the

region. This result is valid when the region is large compared to a mean-free-path,

Z.((4V / S. In the other extreme, k))4V / S, the escape probability must approach

unity. This suggests that the rational approximation

1
l+Po_l. (20)

be used to evaluate the escape probability.

The particle may escape from the region uncollided, with probability Po; its

progeny may escape after one co_sion, with probability (1-P o)Acx Po; etc. The total

escape probability for a neutral particle or its neutral progeny is

P= Po+ (1- eo )Acx + (1- eo )2 (Acx)2 eo +''"

=Po _(acx(1-Po)) n= l_acx(POl_Po) • (21)i1=0

a
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The distribution of escaping neutral particles among contiguous regions can be

, estimated from considerations of surface area (length in a 2D model) and the motion

of the progenitor ion in the case of a charge-exchange neutral. An ion moves along a

field line with its thermal speed; if there is a net ion flow, VII, then

i ioonVii=" oof(vll)vlldvll+ f(vn)vldvu---n-Vth+ n+vth (22)

where n+ and n- are the number of ions moving parallel and anti-parallel,

respectively, to the field direction. Ion motion perpendicular to the field line has no

preferential direction. Thus, the relative probability that a charge-exchange neutral

will escape from i into region j depends on the relative length _ij) of the interface

between regions i and j and on the orientation of that interface with respect to the

magnetic field

Ai_ j = const. Lij(a + (nii "flij)Vll/ Vth) (23)

where /lll is the unit vector along the field line and f_ij is the normal unit vector to Lij

- pointing from region i to region j. The constant is determined from the requirement
_w

i

EAi_j =1.

8. PLASMA ALBEDO

Neutrals crossing the separatrix from the SOL into the plasma edge region will

either be ionized immediately or will undergo a sequence of charge-exchange events

terminating in ionization, with the result that a negligible number of neutrals penetrate

beyond the pl_tsmaedge region. However, some of the charge-exchange neutrals will

iI re-emerge from the plasma edge back into the SOL.

II
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Treating the plasma as an infinite half space for neutrals entering from the SOL

and making use of the diffusion theory approximation, the plasma albedo is, by

analogy to the neutron diffusion theory result [14],

2 -1 1)1/2
Fedge_SOL 1---_(acx-

O_edge_SOL -- = , (24)
Acx

FSOL-edg e 1+_33(-1-1)112

where Acx is the charge-exch_mge probability in the plasma edge region.

9. MoD,rFICATIONS TO TREAT A NEUTRAL IMPURITY SPECIES

The principal modification of the above formalism that is required in order to

treat the transport of neutral impurity atoms is the replacement of the expression for

the neutral flux from the wall into region i given by Eq. (3) with
i.

z _f_iYw i i-,__ i ,k_/w +I"_w-i = E 1 a a-z ,ri,a (25)
a

ai'a°a^q" (a-_'ri'a )) _i'ap'aAq" I }
cx " l "_t-zw " k-I + "ex " z "-_-av +

l

E miw,b vb-z_
"*'plate I wi "-'iw,ps

b

The sums over a and b are over ali neutral and ionic species, respectively. The

quantities Ya7z and yb_z are the sputtering yields of impurity neutrals of species z per

neutral of species a or ion of species b, respectively, striking the wall of region i.

Equation (25) can be generalized to have a different sputtering yield for each

component of the neutral flux to the wall, evaluated for the energy corresponding to



n

the region of origin of the neutral flux component. The other quantities have been

, defined previously without the species-dependent superscripts a and b.

10. DISCUSSION

The appeal of the proposed model is its ability to accurately calculate neutral

transport in a complex 2D geometry with relatively few equations, because the

geometrical complexity enters via transmission and escape probabilities which can be

precomputed as a function of mfp and obtained from tables at run time. The

geometrical model of Fig. 2 serves to quantify the number of equations that might be

involved in a typical application. There are 2 flux equations for each "internal" surface

and 1 flux equation for each "external" surface bounded by either the plasma or the

wall, for a total of 64 equations. The coupling among surface fluxes is nearest-

neighbor, so the matrix M of Eq. (7) is relatively sparse.

'i While the geometric model of Fig. 2 is composed of regions that are bounded by

| straight lines and arcs of circles, and the transmission probabilities given in the

appendices are for such a geometry, this is not a limitation on the model. Once the

geometry is specified, no matter how complex, the transmission and escape

= probabilities can be precomputed numerically and only a table lookup is needed at run

time.

The transmission probabilities are exact, subject to three assumptions: 1) uniform

mfp; 2) isotropic angular distribution of the incident flux over the inward hemisphere;

and 3) uniform distribution of the incident flux over the surface. Ali of these

assumptions can be removed by generalizing to known variations. The first

assumption is not so limiting as it appears to be, since the transmission calculated with

an exponentially varying density between two surfaces is the same as would be

• calculated using the average density. The second assumption should be valid except

19
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near comers joining regions of very different rnfp. The consequences of the third

assumption would be ameliorated by subdividing surfaces, if necessary.

The first-flight escape probabilities are exact, subject to three assumptions: 1)

uniform mfp; 2) isotropic angular distribution of "secondary" charge-exchange and

external source neutrals; and 3) uniform spatial distribution of charge-exchange and

external source neutrals. Again, the first assumption is not as limiting as it seems. The

second assumption is quite plausible. The third assumption is perhaps questionable for

virgin source neutrals and first-collision charge-exchange neutrals in some regions, but

is quite plausible for those neutrals escaping after two or more charge-exchange

-. _ is subject to the further
events. Note, however, that the simple expression Po 4V

assumption that the region is large compared to a mfp.

The methodology proposed in this paper lends itself to taking into account

differences in the speeds of neutrals that originate in different regions and thus using

the correct mean free paths in determining transmission and attenuation. This is an

intrinsic advantage of an integral transport based method over a differential transport

based method, which would require an additional modeling of energy transfer (e.g. a

multigroup model).

It is felt that the methodology proposed in this paper can lead to both relatively

simple neutral transport models that can be used with simple "2-point" plasma models

of the SOL and divertor for scoping and parameter studies and to detailed neutral

transport models that can be used with lD and 2D plasma models of the SOL and

divertor for detailed analysis of experiment and divertor design. Such models should

be able to obtain greater accuracy for a given computational time than other models

presently available for the calculation of neutral transport in the outer regions of a

diverted tokamak. Computational studies in support of this conjecture will be

published in the future.
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APPENDIX A: TRANSMISSION PROBABILITIES FOR

STRAIGHTLINE GEOMETRIES
ql

For a region bounded by straight linesegments, two situations can be

distinguished: 1) transmission between adjacent, intersecting sides; and 2) transmission

between non-adjacent, non-intersecting sides. The transmission probabilities are

calculated under the assumption that the incident flux is isotropic over the incident

hemisphere and uniform over the incident surface.

1. Adjacent. Intersecting Sides with Included Angle Oij

•
i

I Li I

i Fig. A.I: Adjacent Side
|

The local transmission probability for a point ({i) on side i to side j, as defined by

Eq. (15), is given by

ti_j(_i)= I _LoJd_je-_jsinOij 'ksin_l (A.1)

where

" _l(_i'_j)=COt-11_isin _jOij COt0ij] (A.2)
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and (_i) is the distance along side i measured from the intersection.

2. N0n-Adiacent. Non-Intersecting Sides

.

/

/

i ].
I I i I

Fig. A.2: Non-Adjacent Sides

The local wansmission probability, given by Eq. (15), from a point (_i) on side i

to side j is given by

1 jofLJd_je-(l± +gj sinotj )/_,sin02ti-j(_i)
(A.3)

7_

where

dd2(_i' _j ) = c°t-lI _j c°s°tj - _i + l± c°tOilIi + _j sin otj (A.4)

and _j is measured along side j from left to right.
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The total transmission probability of Eq. (16) is given by

" Ti_j = _" d_iti_j(_i)[ Li (A.5)

for both cases.



APPENDIX B: TRANSMISSION PROBABILITIES FOR

ANNULAR SEGMENTS

II Ro_

I R;n I 4

3

I

2
I

Fig. B.I: Annular Segment Geometry

The geometry of an annular segment can be characterized by the angle (AO)

subtended by the segment and by the inner (Rin) and outer (Rout) ra_ of the

segment. The calculation of transmission probabilities must take into account the facts

that some points on each surface cannot be "seen" by a straight Unc-of-sight from

some points on another surface and that there is transmission from an inwardly

concave outer surface to itself. The transmission probabilities are calculated under the

assumptions that the angular distribution of the incident flux is isotropic over the

inward hemisphere and that the spatial distribution of the incident flux is uniform over

the surface. Fig. B. 1 illustrates the annular segment geometry.

l*

!
!
! 26



i , , iL, , Lt, i IlL , in , .... ,, .... a i, , , dL ,,

I. Transmission from an Outer. Concave-Inward Surface (i.e. side 1)

t

The local self-transmission probability, defined by Eq. (12), for a point (Rout,O)

on the outer surface 1 to surface 1 is given by

11 -2Rou t h_-)/_.
tl_l(0)= 1 fOmax(O) s

-_ joY,in(O) dO'e (B.1)

where

Olmlin(0) = larger°f0 °r 0+2c°s-l/Rin !
\ Rout }

01mlax(0)=lesser°f A0 °r 0+2c°s-l/Rin ! (B.2)
\ Rout j

• The local transmission probability from a point (Rout,O) on the outer surface 1

a

to the radial surface 4 is given by

| 141 f_max(0) sin0/ksin(_+0)
i tl_4(0) = dd_e-R°ut (B.3)

--J,hl4 /0_!1 _min_ s

where

-- _lm4in(0)= larger °f (2-c°s-1 RoutRinl°rc°t-l[ R°ut-Rin/' _ sin 0 + 2 sin 201

(_lm4ax(0) = larger of _lm4in(0) or (2- O) (B.4)

The local transmission probability to the other radial surface 2 is obtained from

Eqs. (B.3) and (B.4) by replacing 0 --->A0-0 and 4 -->2.

The local transmission probability from a point (Rout,O) on the outer surface 1

to the inner surface 3 is given by

13 , 13 ,

tl_3(0 ) = 1 ['(]max ((])d0,.,-Rin sin(0-0 )/_.sin_ ((],0)-e- . (B.5)
n

I "
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where

I 1 "013(e,e'): cot -1 ,Rin sR°(-__O,) - cot(e-e') (B.6)

and

l s -,f"in=/O_in(O) = larger of 0 or O+ t,R-_7_,J-2J

L gout J 2jk

The total transmission probabilities, given by Eq. (16), for transmission from the

outer surface to surface j are evaluated from

i

TI_j = Io_e detl-j(e)l AO (B.8)
k

2. Transmission from an Inner. Convex-Inward Surface (i.e. side 3)
l

" The local transmission probability from a point (Rin,O) on the inner surface 3 to

the radial surface 4 is given by

t3_4 (0) = 1 f_m34ax
"_J4_in(O)(O)d_e_Rin sin0/Z.sin(_+0) (B.9)

where
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7[

. _.(e)=_

,3m4ax(O)= larger of _;--or cot'1[ Rin -cotO]
2 LRout sin 0 (B. 10)

The local transmission probability from a point on the inner surface to the other

radial surface 2 is given by Eqs. (B.9)-(B.10) with the replacement

0---_A0-0 and 4--+ 2.

The local transmission probability from a point (Rin,O) on the inner surface 3 to

the outer surface ! is given by

31 0
• 1 l'0max()do,-RoutSin(O-O')/_,cosO:31(O,O')

t3_i (0) = ._ j0_r_n(0) _ (B.11)

J

where
7.

i Rou t COS(0, 0')

i

I e_in(e)= larger ofo or e _+sin -1

;! 2 Rout

! O3mlax(0)=lesser of A or (0 + /t - sin-1 Rin ]

2 Rout / (B.13)

_t

I.
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The total transmission probability for transmission from the inner surface 3 to a

surface j is given by

T3_j = fao0 dOt3_j(O)[ AO (B. 14)

3. Iransmission from a Radial Surface (e.g. side 2)

The local transmission probability for a point (Rout -_,A0) on the radial surface

2 to the inner surface 3 is given by

t2_3(_2) = 1 lA203t_ xdOe-(R°ut-_2)lX23(sin#23e°t(AO-O)+c°s¢) (B.15)
71;_Umin_,q2 )

where

ab

[ R°ut-_2 - cot(A0- 0)1 (B.16)¢23(_2'0) = c°t-l[ Rin sin(A0-0)

and

023n(_2) = larger °f 0 °r A0-c°s-l( RoutRin)-_2 (B. 17)

The local transmission probability for a point (Rout-_2,AO) on the radial

surface 2 to the outer surface 1 is given by

1 fAO sin(A0_0)/_.sin_21
t2_l(_2)=--j021 ,_ )dOe-R2 (B.18)/I; mini, q2

where

30
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t

• LRout sin (A0-0)

and

021in (_2) = larger of 0 or AO- 2cos'lr , R_ 1 (B.20)_,Rout - _2

The local transmission probability from a point (Rou t -_2,A0) on the radial

surface 2 to the opposite radial surface 4 is given by

1 [_ax (_2) d_4e-(Rout-_4)sinAO/ksin_24 (B.21)
t2-4(_2) = _'_o

where

:i
" [ _"ou,-.L_-co,Ao]i t_24(_2'_4)= c°t-lL(Rout -_4)sin AO (B.22)

_nax(_2) = lesser of (Rout -Rin) or ( larger of 0 or Rout -sin(¢_ n+ AO) )(B.23)

I where

!i! t_24(_2) = cot-1 [ _/iR°ut-_2)2-R?n] (B.24)
• Rin

,lD
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The local transmission probability for a point (Rou t -_4,0 = 0) on the radial

surface 4 to the opposite radial surface 2 is given by Eqs. (B.21) - (B.24) with the

replacement AO- 0 --->0 and the interchange of the 2 and 4 subscripts on _.

The various total transmission coefficients are given by

T2_j = _R°ut -Rin d_2t2_j(_2 ) / (Rout - Rin). (B.25)
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