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Abstract. In this paper we study a transmission problem for thermoelastic plates.
We prove that the problem is well-posed in the sense that there exists only one solution
which is as regular as the initial data. Moreover, we prove that the local thermal effect
is strong enough to produce uniform rate of decay of the solution. More precisely, there
exist positive constants C and - such that the total energy E(t) satisfies

E(t) < CE(D)e ™.

1. Introduction. From the point of view of applications, the suppression of vibration
of elastic structures is one of the important topics in material science. For example,
engineers at the Ford Motor Company designed a constrained-layer damping patch which
was attached to an elastic plate. They compared the natural frequencies and mode shape
of the plate with and without the patch to ascertain the effect of the patch. Due to the
presence of the patches, the material properties of the structure, such as the elasticity
moduli, damping coefficient, and Poisson ratio, are changed (see [14]). In particular,
jump discontinuity at the location of the edges of the patches is usually introduced to
these properties. In this direction we will consider the model which defines the oscillation
of a plate which is composed of a thermoelastic part and an elastic part. This means
that the thermal constant is discontinuous on the plate, positive over the thermoelastic
part, and vanishing on the elastic part.

We will consider that the plate, in equilibrium, occupies a region € which is a bounded
open set in R™ with boundary 92 = T’y UT3 where 'y, T'; are two smooth surfaces such
that I'y N Ty = 0. We assume that the plate’s particles in Q; are sensitive to change of
temperature and in its complementary part, Qy = Q\ Q;, they are not. Let us denote
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by I'g the common smooth surface between §2; and {23; a region 2 of this type is given
by Fig. 1.

==
Fic. 1. The set Q

Denoting by u(z,t) and v(z,t) the vertical displacements of the plate and by 0(z,1)
the difference of temperature, the corresponding model can be written as follows:

pruge — Augy + FrA%u+pAd = 0 in Q xR, (1.1)
pobi — BoAO +v0f — pAu; = 0 in Q x RT, (1.2)
PavUs — ’]QA’U“ +,62&2v = 0 in Qg X R+. (13)
We assume that the plate is clamped on the surfaces I'y, T's, i.e.,
5] )
uZB_EZO on I'; xRT, v=§:—}=0 on Ty xRT. (1.4)
The transmission condition on the interface I'y is given by
a d :
=, 3—3 = 6—2‘ BiAu+ b = BoAv on Ty x RY, (1.5)
Ouyy 0Au oo du dAv
“716—;'*:31—67“*#5;:— 2 ,}tt 15'2 on Ty xR™. (1.6)
We consider the following condition for the temperature:
#=0 on TygxRT, §—8+/\6—0 on I'i xRT, (1.7)

and the initial data

U(O] = Uuq, ut(U) = Uy, 9(0) = 90 in Ql.

v(0) =vg, v(0)=v; in . (1.8)

Here, the coefficients p;, i, 8, and A are positive, u is different to zero, and ug, u1, 6y, vo,
vy are prescribed functions. To fix ideas we consider p positive.

Controllability for transmission problems were studied by several authors; for example,
the transmission problem for the wave equation was studied by Lions [6]. He applied
the Hilbert Uniqueness Method (HUM) to show the exact controllability. Later, Lagnese
[5], also applying HUM, extended this result; he showed the exact controllability for
a class of hyperbolic systems which include the transmission problem for homogeneous
anisotropic materials. The exact controllability for the plate equation was proved by Liu
and Williams [9] and Aassila [1].
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Concerning asymptotic stability, second order transmission problems were studied by
Rivera and Oquendo [11], Liu and Williams [8], and Rivera and Ma To Fu [10], while
for beams we have the works of Rivera and Oquendo {12, 13]. Thermoelastic plates were
studied by Lagnese, Avalos, and Lasiecka. In [4], Lagnese obtained the exponential decay
of solutions with the aid of a further mechanical dissipation on the boundary and in {2],
Avalos and Lasiecka obtained the same result removing the boundary dissipation. It
seems to us that there is no result concerning the asymptotic stability of solution for
plates made of different types of materials. So to fill this gap we study this topic here.

The main result of this paper is to show that the dissipation given by the thermal
part of the plate is strong enough to produce uniform stability of the solution, no matter
how thin it is. To attain this goal we will assume that the material type in §2; is more
stiff than that in 2, that is

p12>p2, M =72 and By < 0.
Additionally, some geometric assumptions on 2 will be taken into account, as for example

(x—xg) - v(x)>6 on Ty,
(x —xp)-v(z) <0 on Ty,

for some zg € R™ and dg > 0 small. In these conditions we will show that the total
energy associated to the model decays exponentially as time goes to infinity. The idea
we use to achieve our result is based on the energy method; to do so, we need that
the solution enjoys the regularity property. Therefore, in the next section of the article,
we will show that the solution of the above system has the m-regularity result. One of
the main difficulties we have in showing the exponential decay is due to the boundary
conditions. We avoid them using some localized multipliers and some technical ideas
involving the compact embedding of the spaces H™~! ¢ H™.

The remaining part of this article is organized as follows. In the next section we will
show that the problem is well-posed in the sense of existence, uniqueness, and regularity
of the solution. To do this we will use the semigroup approach. Finally in Sec. 3 we will
prove that the solution of the system decays exponentially to zero.

2. Existence of solutions. To find a solution for the problem (1.1)-(1.8), we shall
use the semigroup approach. Let us start analyzing the associated stationary problem.
First we shall introduce some notation. Let us consider the following Hilbert spaces

H = {(¢1,02) € H} () x HY(Q3) : ¢; =0o0n Ty, ¢1 = ¢ on T},
0¢; 01 O nFO}

e =0only, =——=—-—o0

H = { ¢1,02) € [H*(h) x H*(Q)] N Hy o o

Hé = {¢€H1(Ql) : =0 on Do}, HY .= L?(Q)),
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with the following inner products:

({7U17w2}a{¢1,¢2})1-1,1r = /Q(P1w1¢1+’hvwl'v¢1)dl’

+/ (p2wad2 + v2Vwy - Vo) dr,
Q2

({wi,we} {d1, @2z <= Bi1AwiAd dr + | BoAwyAdy dx,
o Qs
(ol = [ oVwVorwods+ [ Bodwod,
Q) I
(w, (b)Ho = / powcb dx.
1951

Let us denote the dual space of H3 by H;® for s = 1,2 and the dual space of H} by
Hy'. The following Lemma shows that the norm given by the inner product in H2 is
equivalent to the usual norm of H2();) x H%().

LEMMA 2.1. Let us take (f,g) in L?(2;) x L2(€2;). Then there exists a unique couple
(U,’U) S HQ(Ql) X HQ(QQ)
solution of
Au=f on £, Av=g on €,

satisfying the boundary conditions

ou Ov
u=0 on Iy, v=0 on I's, u=v and — =— on T,
av  Ov
Moreover, there exists C' > 0 such that
lull g2 (an) + vl a2(00) < CUIfllLz(,) + 19llz2(00))-
Proof. See [3]. O
The corresponding stationary transmission problem for the plate equation is given by
the equations

A2y =f in Q, Av? =g in $§, (2.1)
satisfying the boundary condition
ou v
uzazo on Iy, vzazO on I'g, (2.2)
ou v dAu 0Av
u="v, 5 = 5, ﬁlAu = ﬁgA’U, ﬁlw = /82 v on FO. (23)

To find the variational formulation associated to this problem we multiply the first equa-
tion of (2.1) by B1¢1 and the second by Ba¢y with (¢1,¢) € HZ; next we integrate by
parts to obtain

By Aw; Aoy dz + / By A Dby da = / By fér do + / 82902 dz.
Q Qo [95Y (92

The existence and uniqueness of weak and strong solution for this problem is given by

LEMMA 2.2. The following items hold:
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(1) If (f,g9) € Hg?, then there exists a unique solution (u,v) € H2 of (2.1)-(2.3).
Moreover, there exists C > 0 such that

1, W)z, < CUI(f 9| a2

2) Let m € Z7. If (f,g) € H™(Q1) x H™(§,), then there exists a unique solution
0
(u,v) € H™4(Q1) x H™4(Qy) of (2.1)-(2.3). Moreover, there exists C > 0
such that

lull gty + vl amesa) < CUFlam @) + 19l @2)-

(3) If (f,9) € H;', then there exists a unique solution (u,v) € H3(€;) x H3(Qy) of
(2.1)-(2.3). Moreover, there exists C > 0 such that
[[(w, V)| 31y x 3 (022) < C”(f,g)“H;L

Proof. Ttem 1 is a consequence of Lax-Milgram Theorem; item 2, for the case m = 0,
can be found in [9] and item 3 is a consequence of the Interpolation Theory. Item 2 is a
well known result of elliptic regularity (see [15] for the transmission problem for general
elliptic equations). In Appendix A of this paper we give a simple proof of this item when
01/ 02 is small or large. a

Now, we shall write system (1.1)—(1.7) in the abstract form of semigroups following
the ideas of Lagnese [4]. Let us consider the operators

Ag: H: — H7? A :HLxH°— H'xH® and By:HZx H} — Hp? x Hy!
given by
(Ao{wi, wob, {¢1,02}) = ({wi,wa},{¢1,02})m2,
(Ar{wy, w2, w3}, {91, b2, ¢3}) (w1, wa}, {1, ¢2}) 1 + (w3, ¢3) o,

(Bo{w1, w2, ws}, {¢1, b2, d3}) /Q pwsAgr — Awi¢3) dr + (ws, ¢3)H11),

It

and let us denote by

B1{¢1, 2} = {Ao{é1, ¥2},0}, Bo{o1, ¢2, ¢3} := Ao{d1, 92}

Multiplying equations (1.1), (1.3), and (1.2) by &1, ¢2 and ¢3 respectively with
{1, P2, P3} € H% x HY and performing an integration by parts yields

(A1 2 {us, v, 60}, {1, b2, 93}y = —(Aof{u, v}, {¢1, d2}) — (Bo{ue,ve, 0}, {¢1, ¢2, b3}).
The above identity can be written as
Alﬁ{ut,vt,ﬁ} = —Bl{u,v} - Bo{ut,vt,H} in H,ITQ X HSI (24)

Taking into account that

Aoad—t{U,U} = AO{utvvt}v
and denoting by w = (u,v,us,v¢,6), Eq. (2.4) can be written in the following matrix
form

dt

(AO 0 >dw+( 0 _B2>w:0 in Hi2x Hy?x H5'.

0 Al Bl BO
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Ay O 0 -—-By
A = ]B =
( 0 A > ’ ( By B )
let us introduce the linear operator A := —A~!B in H := H2 x H}: x H° with domain

D(A) = {'w S H% X H% X Hé : {A(){wl,'lUQ},O} -+ Bo{wg,w4,w5} S Hr;l X HO}

Denoting by

If we denote by

Dy = {we[HENH Q) x H Q)] x HE x [HA(Q) N H})] -
8w5

EY + /\w5 =0on Fl},

it is clear that Dy C D(A) and Dy is dense in H. The well-posedness of system (1.1)-(1.8)

is given by the following Theorem.

BiAwy; = BoAws, on Ty and

THEOREM 2.3. The operator A is the generator of a semigroup of class Cy on H.

Proof. We show that A~'B is maximal accretive; our conclusion will follow by the
well-known Lumer-Phillips’s Theorem.
A~'B is accretive: Let w € D(A), then

(A7 Bw,w)y = (A™'[-Ao{ws, ws}, {Ao{wi, w2},0} + Bo{ws, ws, ws}], w)x
= ({ws,wa}, AT [{Ao{w1,wa}, 0} + Bo{ws, wq, ws}], w)x
= —({’LU3,'U)4},{’LU1,U)2})H% + <A0{w1»w2}: {w37w4}>HT"2)<H%
+(Bo{w3,w4,w5}7{w37w47w5}>(H;2xH61)X(H%xH11))
= (w5,w5)H11) > 0.

A™'B is maximal: We need to show that the operator I + A~'B is surjective of D(A)
on H. Since A is an isomorphism of H onto H', it is sufficient to show that
A+B : D(A)—-H  issurjective.

Given f € H’, the equation (A + B)w = f is equivalent to find w € D(A) such that

Aofwr, wa} — Ao{ws,ws} = (f1,fo) € Hy?,

Ar{ws, wa, ws} + {Ag{wy, w2},0} + Bof{ws, wa, ws} = (fs, fa, f5) € Hy' x HO.
(2.5)

Substituting the first equation of (2.5} into the second equation, we get

Ar{ws, wy, ws} + {Ao{ws, wa}, 0} + Bo{ws, wa, ws} = (f3 — f1, fa— fo, fs) € Hy 2 x HO.
(2.6)
Note that the operator G : H2 x HL — Hy? x Hg', given by

G{ws, wy, w5} := Ar{ws, wa, ws} + {Ao{ws, wa},0} + Bo{ws, wa, ws}
is continuous and satisfies
<G{w3’w4’w5}v{w3’w4’w5}>(H,§2><H6‘)><(H2F><H11)) = “{U)3$w4’w5}||%-1,}‘xj-[0

+H{w3,w4}||i1% + stlliﬁ

AV

||{w37w4,w5}||§{%be‘
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Therefore, the Lax-Milgram Theorem implies that there exists
{ws, wyg,ws} € H2 x H) (2.7)
such that relation (2.6) is satisfied. Since Ay is a isomorphism of H2 on Hy 2, there exists
{wi, w2} € HZ (2.8)
such that a first equation of (2.5) is satisfied. The second equation of (2.5) implies that
{Ao{wr,ws},0} + Bo{ws, ws,ws} € Hy' x HY

therefore w = (wy,...,ws) given by (2.7)—(2.8) belong in D(A) and satisfy (A + B)w =
f. O

3. Exponential decay. In this section we will show that the solution of the trans-
mission problem (1.1)-(1.8) decays exponentially to zero as time goes to infinity. In
Appendix B we prove that the functions in D(A™) are regular, so if we take regular
initial data in D(A™), then the solution is regular, too. Therefore we can apply multi-
plier techniques to this system. Through this section we denote by C' a positive constant
which will assume different values in different places. We shall assume that there exists
zo € R™ such that the function m(z) : ¢ — xy satisfies

m-v >0y on Iy,

m-v<0 on Iy, (3.1)
for g > 0 small. Let us consider the following equation:
pwy — YAwy + BA%w = 0 in Q, x RT, (3.2)
with boundary condition
w= Z—Z) =0 on ([aUTy) xR*. (3.3)

The energy associated to this system is given by

1
B(tw) =5 [ sl + 5Vl + Blouf da.

It is known that if w is a weak solution of system (3.2)-(3.3), that is to say, w €
L>(0,00; H2(22)) N WH>(0, 00; H(23)), then %E(t,w) = 0 for any ¢ > 0; therefore
the function

t— E(t,w) is constant. (3.4)
Some properties for the solution of this system, such as regularity of the trace and

observability inequality, are given by the following Lemma. A similar result also can be
found in [2, Lemma 2.3].

LEMMA 3.1. Let us suppose that w € L*(0,00; H2(Q22)) N WH°(0,00; H(,)) is a
solution of (3.2)—(3.3); then the following properties hold:
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(1) There exists C > 0 such that

T , T
/ / |Aw|? dT dt < C/ E(t,w)dt,
0 JTauly 0

for T large enough.
(2) There exists C' > 0 such that

T T
/ E(t.w)dt < C/ m - v|Aw|? dT dt,
0 0 Ty

for T large enough.

Proof. We will use multiplier techniques to show that the above inequalities hold
for strong solutions, that is, for w € L>(0,T; H*(Qy)) N W1°(0,T; H*(Q2)), so our
conclusion will follow using standard density arguments. Let us consider the vector field
h = (h1,...,hs) € [C*(2)]" such that h(z) = v, Vo € 'y UTy. Multiplying Eq. (3.2)
by h- Vw and integrating by parts, we get

d
— pwih - Vw +yVw, - V(h - Vw) dx

dt Qs
' 1
- B |Aw|? dT — -/ divh(plw? + 4|\Vw|? — BlAw|?) da
2 Ul 2 Q2
Ohy Ow; Owy Oh, Ow ” ow
R 98Aw—— —— | dx — AwAh,— dz.
+/Qz (7895]- bz, 0mr PP, e ) ; el

Integrating over [0, T] using Young’s inequality and (3.4), we obtain that

T
E/ / |Aw|? dT dt
2 0 Ul

IN

T ~ ~ ~
C’{/ E(t,w)dt + E(T,w) —i—E(O,w)}

0

T o (T .
C{/o E(t,w)dt—l-f/o E(t,w)dt}.

From this inequality the first part of this Lemma follows. To show the second part, we
multiply Eq. (3.2) by Kw := m(z) - Vw + (n — 3)w/2 and integrate by parts to obtain

IN

d 1
n (pwi Kw + yVw, - VKw)dr = -3 / 3plwe)® 4+ v|Vwe|? + B|Aw|? dx
) Q

+[—3/ m - v|Awl|? dT" + g/ m - v|Aw|? drl.
2 P(] 2 F2
Integrating over [0, T) using Young’s inequality and hypothesis (3.1), we get

T T
/ E(t,w)dt < ﬁ/ /m.u[Aw|2drdt+C{E(T,w)+E(o,w)}
0 2 ¢} Iy

T T
< é/ m~1/|Aw|2dth+E/ E(t,w)dt.
2Jo Jr, T Jo

Regrouping, we arrive at the following inequality:

T T
<1 _ g) / E(t,w)dt < é/ m- 1/|Aw|2dF dt.
T 0 2 0 JI'y
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Now, taking T large, our conclusion follows. O
Let us consider the functionals F (first order energy) and F given by

1
E(t,u,v,0) := 5/ p1luel® + 71|V |? + 81| Aul® + pol6|* dz
(931

1
43 [ palul? 4l Vol + Bl ol da,
Q2

F(t,u) = /|Vu|2+|ut|2d:v,
12

and denote by £ and F as follows:

3 3

E(t,u,v,6) := ZE(t,u(i),v(i),G(i)), F(t,u) = ZF(t,u(i)), (3.5)
i=0 i=0

d'w

where w9 = Erel w(® = w. The next Lemma will play an important role in the sequel.

LEMMA 3.2. Given > 0, there exists a positive constant C, > 0 such that

T T 3 T
/ F(t,au)dt < n / E(t,u,v,0)dt+Cp Y / / Bo|VOD? dxdt,  (3.6)
0 0 i=0 0 1231

for any solution (u,v,8) of (1.1)-(1.8) such that (ug,ve, u1,v1,8) € D(A5).

Proof. To establish our result we assume that the hypothesis of this Lemma is not true
and derive a contradiction. Let us suppose that the inequality (3.6) does not hold, that
is to say, there exist 79 > 0 and (uf, v}, u}, v}, 0% )nen in D(A®) such that the solutions
(u™,v™, 6") of (1.1)-(1.8) satisfy

T 3 T _ T
no/ g(t,un,v",on)dt+nz/ / BolVO 2 dadt < /]—"(t,u")dt, (3.7)
0 =0 Y0 Y 0

for any n € N. Without loss of generality, since the system (1.1)-(1.7) is linear, we can
suppose that

T
/ F(t,u")dt = 1. (3.8)
0

Hence the inequality (3.7) can be written as

T 3 T .
no/ S(t,u”,v",@”)dt-{—nZ/ / BolVOr D2 dadt < 1, (3.9)
0 ico Y0 Jo

for any n € N. This inequality implies that (u"(i), O Gn(i)) is bounded in L2(0, T; H2 x
HY) for i = 0,...,3; therefore there exists a subsequence, which we still denote in the
same way, such that

(@D, 0" @ gy (D O 9D) in L2(0,T; H2 x HO).
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Since (u*@ v 7)) is a solution of (1.1)~(1.7), then (uf®,v®, 6®) is a solution too,
so it satisfies the equations

priee — AUy + F1A%u +pA8 = 0 in Q) x R, (3.10)
pobs — BoAO + 700 — pAu; = 0 in Q; x RT, (3.11)
P2t — V2Avy + BoA%v = 0 in Qp x RY, (3.12)
and the boundary conditions
0

u:a—:j:O on I'; xRT, v:%:() on Iy xRT, (3.13)
U= v, % = g_Z’ BiAu = BAv on Ty xRT, (3.14)

ou 0Au 00 Ov OAv
N ——-8: + 5 5, tHhE, = —728—; + B2 5, o Tox RY, (3.15)

9

=0 on TIyxRT, g;+)\9=0 on I'i xRT. (3.16)

Using (3.8) and Lions-Aubin’s Compactness Theorem (see [7]), we can prove that

T
/ F(t,u)dt = 1. (3.17)
0
The inequality (3.9) implies that
V=0 in Ql x RT.

From Poincaré’s inequality we have that § = 0 in ©; x R*. Equation (3.11) implies
that Auy = 0 in ©; x R*. Differentiating Eq. (3.10) with respect to t we obtain that
uge = 0 in ©; x RT. Differentiating Eq. (3.12)-(3.14) in ¢ we have that vy is a weak
solution of (3.2)-(3.3), satisfying

Avttt = &Aum =0 on Fo.

Ba

Lemma 3.1 implies that vy, = 0 in Q2 x R*. Differentiating Eqgs. (3.10)-(3.16) in ¢,

we find that (u,,v;) satisfies the hypothesis of Lemma 2.2 with (f, g) = (0, 0); therefore

(us,v¢) = (0,0). In these conditions, from equations (3.10)-(3.16) we conclude that

(u,v) = (0,0). This is contradictory to (3.17), hence our conclusion follows. a
The exponential decay for regular solutions is given by the following theorem.

THEOREM 3.3. Let us take (ug, vo,u1,v1,00) € D(A®). If

P >p2, M=y and B <, (3.18)

then there exist positive constants C and « such that
Et,u,v,0) < CE0,u,v,0)e ",
for any solution (u,v,8) of (1.1)—(1.8).

We shall prove this result for initial data (ug, vo, u1, v1,60) € D(A%); the general case
follows using a standard density argument. Let us denote by Bs(€2) = {z € R™ :
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infyeq, |y — x| < 8} with § > 0 small and let us consider the non-negative functions
@i, Ui, 1 =1,...,4, of class C(R™) given by

[0 if z€Bis»() oy J 1 if x€Bis()
“"*”‘{1 if z€R"\Bis(Q) Y@ =10 i z € R™\ Bais(Q2).

Fi1c. 2. The functions ¢, ¥

Decomposing the set €, by €; = U; U V; with
U«j:Q1\B"5(QQ), V;Zﬂi nBig(Qg) for 1':1,...,4.,

we get that ¢, = 1 in U; and ¢¥; = 1 in V;. The proof of this Theorem will be a
consequence of the following lemmas. Let us denote by R; the functional

R](t, u, 3) = f pgqslﬁut dz.

0,

LEMMA 3.4. Given 7 > 0 there exists a positive constant C, such that
iRl(t,u,G) < n {/ |Au|? dT +/ |Aul? + [Vug|? dx}
dt Iy 0

+Cy [ uP + (VP do—p [ [Vl da.
2] Uy
Proof. Multiplying Eq. (1.2) by ¢ u; and integrating by parts, we get

d
&Rﬂt, u,f8) = Po/ p10uy dax — BoVE - v(‘Plut) = 709(‘}01%) dx
Q] QI

—,u/ 01| Vug|? dz — ,u/ u Vi, - Vuy dx. (3.19)
1951 123}
Let w be the solution of the stationary problem

(I —A)w = pop16 in
ow

w=0 on I't, — =0 on Ty

v
From the Trace Theorem and the elliptic regularity it follows that there exists C' > 0

such that
ow|*
2 —
llwllFr2eq,) + ]1"1 }Bu

d <C | |0)*dz. (3.20)
2
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Multiplying Eq. (1.1) by w and performing an integration by parts, we get

ow

Do / p10uydr = [ Au—dI’ — 3; AuAwdxz + p Vo . Vwdz;
o r ov o R

substitution of this identity into (3.19) yields

8—wdl“—ﬁl AuAwdxr + Vo - Vwdzx
Ov o N

BoVO - V(prus) + vob(prue) do — u/ 01| Vue|? da
Q

d
ERl(t,u,H) = ﬁl - Au

231

—u/ wVr - Vug dx.
o

Applying Young and Poincaré’s inequalities and (3.20), our conclusion follows.
Let us consider a vector field h = (hy, ..., h,) € [C*(Q)]" satisfying

| —v(z) if zeT
) = { 0 if xe Blz;(Qg)

and let us introduce the following functionals:

Ji(t,u) = / prush - Vu+ v Vug - V(b - Vu) de,
193}

Rg(t, U, 9)

Rl(tﬂu,e) + 2_nJ1(tvu)
B

LeMMA 3.5. Given n > 0 there exists a positive constant C, > 0 such that

%Rz(t,u,e) < nC{ |Aul? + | Vul? dz} + |Av|? dz
o)

Q2
4 cn/ ual? + V8P dr —p [ Va2 da.
Ql Ul

Proof. Multiplying Eq. (1.1) by h - Vu and integrating by parts, we get
d P1 . 2 / duy
—Jy(t = —= divh d Vug - Vhj—d
pr (¢, u) o, ivhjug|* dz + 7 o, Uy 92, 4

[ ik Vu2dz - 2 [ jAwfzdr + &/ divh|Aul? dz

2 1P 2 r, 2 13}

—ﬁl/ Au <2Vhi gy Ahi@> de+p | VO-V(h-Vu)dae.
O, Ox; Ot; Q,

Using Young and Poincaré’s inequality once more, we find that

d ,61 2
_— < _—
dtJl(t,u) 5 /1"1 |Au}* dT

ro{ [ (80P + 19w+ [90R)ds + [ (a0fas}
(93}

Q2
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Combining this inequality with Lemma 3.4, we conclude that

%Rg(t,u,ﬁ) < nC’{ |Au? + |V |? dac} +/ |Av|? dz
Qs

Q

+ Cy lwg|? + |VO2dx — p | |Vug|® dz.

o U
This completes the proof. 0
Let us introduce the following functionals:
Jo(t,u) = / pruspau + 11 Vug - V(pou) dr,
Q
R3(t,u,0) = Ra(t,u,8)+ koJa(t,u),

where the constant kg is given by (3.22).

LEMMA 3.6. Given n > 0, there exists a positive constant C,, > 0 such that

d k
—R3(t,u,0) < ——O-ﬁ—l/ |Au|2+|Vutl2dm+C,7/ |Vul? + |us|* + |VO]? dz
dt 2 Ju, a

+770{ |Aul? + |Vut|2dac} +/ |Av|? da.
Q2

Q

Proof. Multiplying Eq. (1.1) by ¢2u and integrating by parts, we get
d
—Ja(t,u) = Pl/ palug|” dz + ’71/ Vg - Vugus d +’71/ 02|V |* dz
dt o o foN

- / | Aul? dx — Au(2V s - Vu + Apou) dx
ol ol

—,u/ OA{pou) dz.
1931
It follows that

d
—Jo(t,u) < —&/ |Au|2da:+C/ |V |? dz
2 Ua U

dt -
+1 |Aul|? dz + C,,/ |Vul? + |V8|? dz. (3.21)
Ql Ql
Let kg be a positive constant satisfying
u=ko (% + C’) . (3.22)

From Lemma 3.5 and inequality (3.21), we find that

£IZ‘FB\'S(t’uaO) S _E(;ﬁ

/ |Au|2+[Vut|2da:+C,,/ Vul + fusl? + |V6]2 da
it o o,
+nC {/ |Au|? + |V |2 d:v} +/ |Av|? di,
Q1 QQ

from where our conclusion follows. O
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Let us denote by Ku := m-Vu+(n—3)u/2 and let us consider the following functionals:

Ja(t,u,v) = /P1Ut1/J4Ku+71Vut'V(¢4KU)d$
Q)

+/ p2vs s Kv + v Vv, - V(4 Kv) dz,
Qo

Ry(t,u,v,0) = R3(t,u,b)+ kiJ3(t,u,v),
where the constant k; is given by (3.25).

LEMMA 3.7. There exist positive constants k; and C such that

k
%R4(t7uav»0) < ——22E(t,u,?),0)+0/ {|vu|2+ |ut|2+ |ve|2}da:
1491

Proof. Multiplying Eq. (1.1) by ¢4(z)Ku, Eq. (1.3) by ¥4(z)Kv, and integrating by
parts, we get

d
?d—tJB(t,u’v)
= _lp=p2) m - v|ug|* dl’ — (n =) m - v|Vu|? dT
2 To 2 To
-5 Aum - Mdl‘+& m - v|Aul? dF—gz m - v|Av|* dl’
o (")l/ 2 To 2 To
+pu V8 - V(s Ku)dx — 3p1 |ug|? dz — n |Vu|? dz — h |Au|? dz
1931 2 Vs 2 Vs 2 Vi
P1 2 6ut (TL - 3)71
— = | &w|*dr4+m [ Vu - V(@am)—de + ——— | Vu, - Vgu,dr
2 Us Uy 6.771 2 Us
_ ?1/ £1Vu.|? dx + @l/ £|Auf? dz — Bl/ LN
2 Uy 2 Us Uy 61‘1‘
—o [ 2w 2 (pm e — =3B / Au(Agu + 2Vu - Vipy) dz
U, 31,‘1 2 U,
1 2 2 2 302 2
+§ m - v(p2|ve]® + 2| Vue|* + B2|Av| )dF_T |ve|“ d
Fz Q2
2 |V |2 dz - &/ |Av|? da,
2 Jo, 2 Ja,
(3.23)
where ¢ := div(¢4m) — (n — 3)34. The transmission boundary conditions imply that
— 2y —
B NP Clull) S N (NP ol Chul) Y
To ov T, O0x;0z;

—ﬁl/ Aumiul-l/?A(u —v)dl’
Co

= -0 Aum - v(Au — Av)dl
To

—% /FO m - v(|Aul® — |Av|?) dT.

IA
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Substitution of the above inequality into the above identity (3.23), and using Young’s
inequality, relations (3.18), and Lemma 2.1, we arrive at

—J3(tuv) < n{/ |Au|2dz+/ |Av|2dx}+C’/ |V8|? dz
Q

+C/ lug)? + |Vue > + |Au)?dz + C | |Vul?dz
2

3
;’1 |t|2dx—““/ |Vutl2dx—ﬁl/ |Au|? do

3”/ s 2 [ 1upas- 2 [ i @21

Let k; be a positive constant such that

ko1
2

From Lemma 3.6 and inequality (3.24), it follows that the functional Ry satisfies

=k (C+1). (3.25)

d
£R4(t,u,v,0) < nC{/ (|Au)? + |Vue)?) dz + |Av|? dm}
1971

Q2
+Cn/ {IVul]® + [ue]* + |V6|* } d
971
—kl/ (uel? + | Ve + |Auf?) de
Ua
_3kip g2 ds — kl%/ V|2 dz — klﬂl/ Auf? do
> 2

_3kipe fun|? dz — k172/ Vou? dz — klﬂz/ Av[2 da.
2 Qs

Since V4 D V5, we have that Q1 = Us N V4. Therefore, there exists a small positive
constant k9 such that

4 Rt v, 0) < nc{/ (|Au|2+|Vut[2)d:c+/ |Av|2dac}
dt Q, Q2

+C,7/ {IVul® + | |* + |V0]*} dz — ko E(t,u,v,6).
1931
Taking 7 small enough, our conclusion follows. a

Proof of Theorem 3.3: Multiplying Eq. (1.1) by us, Eq. (1.2) by 6, Eq. (1.3) by v,
and performing an integration by parts, we obtain that

iE(t,u,u,a)z— ﬁ0|V9|2+70|0|2dx—/ BoA|6)? dT. (3.26)
dt Ql rl

Let us define the Lyapunov’s functional L, given by

L(t,u,v,0) ;== NE(t,u,v,8) + Ra(t,u,v,8),
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where IV denotes a large positive constant to be fixed later. Taking IV large and combining

Lemma 3.7 and identity (3.26), we get
iL(t,u,v,@) < —@E(t,u,v,ﬁ) _N Bo|VO|? dx + CF(t,u).
dt 2 2 Ja,

Since the system (1.1)—(1.8) is linear and (ug, vg, u1,v1,600) € D(A®), then (v, v g0
are strong solutions for i = 1,2, 3; therefore, using the same procedure, we have

d Ny s k N oo N . .
EL(t,u(l),v(l),H(’)) < ——2E(t u® ® gy > Bo|VOD 2 dx + CF(t,ul?).
(3

Denoting by L(t,u,v,8) = Z L Lt u® 0@ 90 we conclude that

d .
()2
%E(t,u,v,()) < ———E(t u, v, 0) E o, Bo|VO\Y|* dx + CF(t,u),

where £ and F are given by (3.5). Integrating over [0, T], we get

LT, u,v,0) < C(Ouv()———/ E(t,u,v,0)dt

——Z/ /30|V9(”|2d:rdt+0/ F(t,u)dt.
(931

Using Lemma, 3.2 with 1 small enough and taking N large enough, we obtain that

T
L(T,u,v,8) < E(O,u,v,0)~%/ E(t,u,v,0)dt
0

T
< L(0,u,v,6) — '”Te(:r,u,v,e). (3.27)
Using Young’s inequality, we can prove that
—gé‘(t,u,v,g) < L(t,u,v,0) <2NE(t,u,v,0), (3.28)

for N large enough. Combining (3.27) and (3.28), we conclude that
L{T,u,v,0) < L0, u,v,0) — I;Q—]\?C(T, u, v, 8).
Denoting by « := (1 + k2T/(8N))~!, this inequality can be written as
L(T,u,v,0) <aLl(0,u,v,8).

Since a €]0, 1[, the semigroup property of the system (1.1)—(1.7) implies that there exist
positive constants C and k such that

L(t,u,v,0) < CLO,u,v,0)e ",
From (3.28) we conclude that
E(t,u,v,0) < CE0,u,v,H)e ",

from where our conclusions follow. ]
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COROLLARY 3.8. If (ug, vo, u1,v1,6p) € H2 x HLx HY, then there exist positive constants
C, k such that

E(t,u,v,0) < CE(0,u,v,0)e” "
for any weak solution (u,v,#) of (1.1)-(1.8).

Proof. Let us consider © the solution of the elliptic problem

— ﬂ(]A@O + ’)’0@0 = po()o — IU,A’U,O in Ql, (329)
©y=0 on Iy, %4—)\@0:0 on Iy,

and let (Up, V) be the solution of the variational transmission problem

1 J €2

for every (p,v) € H2, where (f,g) € Hy' is given by

.g) = / prag + 11 Vuy - Vo + V0, - Vi da,
o

(g.%) / pry +v1 Vo - Vi da.
Q.

Let us define the following functions:
ot

Uz, t) := /0 u(x, s)ds + Up(x),
Viz,t) = /0 v(xz,s)ds + Vo(x),

O(z,t) ::/0 O(x,s)ds + Og(x).

Since system (1.1)-(1.7) is linear, we have that (U, V,0) also is solution of this system;
moreover, it verifies

(Ut, ‘/t,@t) = (u,v,ﬁ) and (U(O), V(O),@(O)) = (Uo, V(), (")0)

From Lemma 2.2 applied to (3.29)—(3.30), it follows that therc exists a constant C > 0
such that

1
> E0,UY,v®, 09) < CE(0,u,v,0).
i=0
Using the same above reasoning, we can make a solution (U, V, ©) such that

3
(U, v®,09) = (u,v,0) and Y _EO,UV,V?,09) < CE(O,u,v.0). (3.31)
i=0
Applying Theorem 3.3 to (U, V,0), we get that

3
E(t,U",v® eM) <> EO,UD, vV 00)e

3
=0 i=0
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In view of (3.31), we conclude that
E(t,u,v,6) < CE(O,u,v,G)e_“.
This completes the proof. a

Appendix A. In this section we give a simple proof of the elliptic regularity for the
stationary transmission problem.

LEMMA 3.9. Let A be given by (A.6). If 3;/3 satisfies

B 1 B
E < X or E > A, (Al)

then item 2 of Lemma 2.2 holds.

Proof. Let us take (f,g) € H™(Q1) x H™(2) and (w,z2) € I™ := H™7/2(Ty) x
H™+5/2(Ty). Consider u € H™*4(€2;) a unique solution of

A?u=f in @, (A.2)
u:g—:j:O on 'y, wu=w and %zz on Ty (A.3)
Then (Au|r,, 28¢ Fo) € H™H3/2(Tg) x H™+1/2(T). Now, let us consider v € H™+4(€y)
the unique solution of
A2 =g in Q, (A4)
A 3, 0A
v = % =0 on Iy, Av= %Au and 68U1) = ;—;a—l/u on [y. (A.5)

Then (v|p0, %Iro) € I'™. In these conditions we can define the operator T, : I — I™
given by

dv
(w,z) — Tpy(w, 2) := (1J|FU, E‘F,,)'

Our conclusion will follow, showing that there exists a fixed point to Tyy. Let us take
(w1,21) and (ws,22) in I™ and consider (u;,v;) € H™ Q) x H™T4(Qy), i = 1,2
solutions of

A2’1Li = f in Ql,

811,2' 8ui
U; = £y =0 on Fl, U; = W; and o =2z; oOon F(),
A%v; =g in Qo
. 8’1]1‘ 8A’U,‘ . ﬁaAul

B
—= A — i
£y 0 on Iy, v 3, Au; and £ . ov

and denote by

(% on Fo,

(w,2) = (w1,21) — (we, 22),
u = Uy — us,
Vo= v — Us.

It is not difficult to show that (u,v) satisfies (A.2)-(A.5) with (f, g) = (0,0). Therefore

Trg(wr,21) — Trg(wa, 22) = Too(w, 2).
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Moreover, from the Trace Theorem and elliptic regularity it follows that there exist
Al, ..., Aq such that

&

IToo(w, 2)len < A lvllirsaqan)
oA
< AR (Aum,—“ )
B2 ov Iy Hm+3/2(0y)x Hm+1/2(Ty)
B
S /\1)\2)\35—;||u||1_1m+4(91)
B
< A ez Ay [[(w, 2)||1m-
B2
This implies that
B
1Tg (w1, 21) — Trg(wa, 22)[| o < AB—;II(W,Zl) — (w2, 22) [l . (A.6)

where A = A\ A2 3y, If /\% < 1, we have that Ty, has a unique fixed point in I"*. Using
this reasoning and swapping u and v in {A.2)-(A.5), we obtain the same result when
/\% < 1. Therefore T4 has a unique fixed point when 0, /5, satisfies (A.1). 0

Appendix B. In this section we prove that the functions belonging to D(A™) arc
regular.

LEMMA 3.10. We have that D(A) = Dy and for any m € N with m > 2 we get
D(A™) € H™2(Q)) x H™2(0Qs) x H™ Q) x H™TH(Qy) x H™TH(Q,).
Proof. Let us take w € D(A), then w € HZ x H2 x H} and
{Ao{w1, w2},0} + Bo{ws, wa, ws} = {f1, fo, fs} € Hy' x H. (B.1)
Multiplying this equation by {0,0,¢} € HL x H}, we obtain that

(ws, &)y = (f3, @) mo + / pAwzd dz.

IR
Since f3 + pAws € L?(Q1), elliptic regularity implies that

D
Ul}/ + A wy =0on I';. (B.2)

ws € H(2;) and
On the other hand, multiplying Eq. (B.1) by {¢1,¢2,0} € H2 x HY, we get
({w17w2}»{¢1a¢2})H% = ({fl,fz},{¢1~¢2}>y%le%

+ / uNVws -Vordr V{p1¢} € HE.
Q,

(F{¢1.02})

Since {f1, fo} + F € Hy', Lemma 2.2 implies that
{wi,wa} € H3(Ql) x H3(Q) and f1Aw; = fzAws, on Ty, (B.3)
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From (B.2)-(B.3) we have that w € Dy; therefore, the first part of this Lemma is proved.
We shall prove the second part using induction. Let m € N with m > 2 and suppose
that '

D(Am) C H"H_Q(Ql) % H7n+2(92) x Hm-{-l(Ql) % Hm+1(Q2) X Hm+1(Ql)»
and let us take w € D(A™*!) such that Aw = f € D(A™). Applying the operator —A,

we get,
(—Ao{wg. w4}, {Ao{wl.wg}. O} + B(){'lL‘g. Wy, 1L‘5}) = —(Ao{fl, fQ} Al{f(g, f4, fs})
Hence we find that
{ws,wi} = {f1. fo} € H™ (1) x H™2(Qy), (B.4)

and

{A(){?Ul, 'U,'Q}.O} + Bo{’IU3. Wy, ’11,75} = —Al{fg, f4. fs} (B5)
Multiplying Eq. (B.5) by {0.0,¢} € Hi x H]. we obtain that

(1L’5. (D)HII) = —(f5. (»b)H” +/ ILI,A‘UJ;;(Z) dr.
&y

Since — f5 + pAwz € H™ (), clliptic regularity iinplies that

wy € H™T2(). (B.6)
Multiplying Eq. (B.5) by {#1.$2.0} € H2 x H". we get
({wi,wa} {dr 02wz = —({fs. fah {d1. 02}y —/ nwsAgydr.  (B.7)
2,

Since {fs, fr.ws} € H™THQ)) x HMTH(§y) x H™H1(§2;), we have that
Ofs Ofy Ows,

—Yos— — i

o o Mo

hoi= € H™™3(Ty).

Let z be a function such that

. 0z OAz 0 on Iy
P m+3 =" = 2 = . - = . B.
€eH (21) £y A 0 on I')nly o { @%h on Ty (B.8)
and let us denote by {1, w2} the solution of the stationary problem
1
A%y = F = 7[—/)11"3 +11Af3 — pAws] — A%z in Q,
1
N 1 .
AQ’LUQ =G = /3—[—[)2f4 + 'YQAf_l] m Qg,
2
with boundary conditions
dw Ow
= % =0 on I, Wy = —(;% =0 on Iy
. - ow o . . AW OAW
wp = wao, % = 01‘11/2- /7)1 A’IU] = ﬁgA’lUg. ﬁ] a:’l = /32 811102 on F().

Since {F,G} € H™ () x H™™1(y), Lemma 2.2 implics that

{10} € H™3(Q1) x H™3(Qy). (B.9)
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The solution of variational equation (B.7) is unique; thercfore wy = z + Wy, we = ws.
From (B.8)-(B.9) we have

{wy,wa} € H™3(Q) x H™3(Qy). (B.10)

Now, from (B.4), (B.6), and (B.10), we conclude that

w e H™3(Q1) x H™P3(Qy) x H™P2(Q)) x H™2(Qy) x H™H(Q),

which completes the proof. a
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