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Abstract. In this paper we study a transmission problem for thermoelastic plates.
We prove that the problem is well-posed in the sense that there exists only one solution
which is as regular as the initial data. Moreover, we prove that the local thermal effect
is strong enough to produce uniform rate of decay of the solution. More precisely, there
exist positive constants C and 7 such that the total energy E(t) satisfies

E(t) < CE{0)e"7t.

1. Introduction. From the point of view of applications, the suppression of vibration
of elastic structures is one of the important topics in material science. For example,
engineers at the Ford Motor Company designed a constrained-layer damping patch which
was attached to an elastic plate. They compared the natural frequencies and mode shape
of the plate with and without the patch to ascertain the effect of the patch. Due to the
presence of the patches, the material properties of the structure, such as the elasticity
moduli, damping coefficient, and Poisson ratio, are changed (see [14]). In particular,
jump discontinuity at the location of the edges of the patches is usually introduced to
these properties. In this direction we will consider the model which defines the oscillation
of a plate which is composed of a thermoelastic part and an elastic part. This means
that the thermal constant is discontinuous on the plate, positive over the thermoelastic
part, and vanishing on the elastic part.

We will consider that the plate, in equilibrium, occupies a region Q which is a bounded
open set in Mn with boundary dfl — Ti U T2 where Ti, T2 are two smooth surfaces such
that Fi fl f2 =0. We assume that the plate's particles in are sensitive to change of
temperature and in its complementary part, \ they are not. Let us denote
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by To the common smooth surface between and ^2; a region SI of this type is given
by Fig. 1.

Fig. 1. The set f2

Denoting by u(x,t) and v(x,t) the vertical displacements of the plate and by 9(x,t)
the difference of temperature, the corresponding model can be written as follows:

PiU-tt ~ 7iAtitt + /?i A2u + fiA9 — 0 in Cli x R+, (1-1)
podt — /3qA9 + 7o$ — pAut = 0 in Six x M+, (1.2)

p2Vtt - l2&vtt + /?2A2i> = 0 in Sl2 x R+. (1.3)

We assume that the plate is clamped on the surfaces Ti, T2, i.e.,

f)u c)v
u = — =0 on Ti x ]R+, v = — =0 on x M+. (1-4)

av av
The transmission condition on the interface To is given by

c)i 1 Bv
u = v, — = —, /3iAu + fid — f32Av on T0 x K+, (1.5)

av av
dutt „ dAu d8 dvtt „ dAv , .-71-5— +Pi~w— = -72-^ on r0xl+ (1.6)
av av av av av

We consider the following condition for the temperature:

9 = 0 on Fo x 1+, ——I- \9 = 0 on Fj x R+, (1-7)
dv

(1.8)

and the initial data
w(0) = uo, ut(0) = u1, 9(0) = 0O in fix,

v(0) = w0, vt(0)=vi in 0,2-

Here, the coefficients pi, 7i, fa, and A are positive, // is different to zero, and uq, u\,9q, fo,
v\ are prescribed functions. To fix ideas we consider /i positive.

Controllability for transmission problems were studied by several authors; for example,
the transmission problem for the wave equation was studied by Lions [6]. He applied
the Hilbert Uniqueness Method (HUM) to show the exact controllability. Later, Lagnese
[5], also applying HUM, extended this result; he showed the exact controllability for
a class of hyperbolic systems which include the transmission problem for homogeneous
anisotropic materials. The exact controllability for the plate equation was proved by Liu
and Williams [9] and Aassila [1].
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Concerning asymptotic stability, second order transmission problems were studied by
Rivera and Oquendo [11], Liu and Williams [8], and Rivera and Ma To Fu [10], while
for beams we have the works of Rivera and Oquendo [12, 13]. Thermoelastic plates were
studied by Lagnese, Avalos, and Lasiecka. In [4], Lagnese obtained the exponential decay
of solutions with the aid of a further mechanical dissipation on the boundary and in [2],
Avalos and Lasiecka obtained the same result removing the boundary dissipation. It
seems to us that there is no result concerning the asymptotic stability of solution for
plates made of different types of materials. So to fill this gap we study this topic here.

The main result of this paper is to show that the dissipation given by the thermal
part of the plate is strong enough to produce uniform stability of the solution, no matter
how thin it is. To attain this goal we will assume that the material type in is more
stiff than that in fi2, that is

Pi > P2, 7i > 72 and ft < ft.

Additionally, some geometric assumptions on fi will be taken into account, as for example

(x — xq) ■ v(x) > So on r0,
(x — x0) ■ v(x) < 0 on r2,

for some xq S R™ and 5o > 0 small. In these conditions we will show that the total
energy associated to the model decays exponentially as time goes to infinity. The idea
we use to achieve our result is based on the energy method; to do so, we need that
the solution enjoys the regularity property. Therefore, in the next section of the article,
we will show that the solution of the above system has the m-regularity result. One of
the main difficulties we have in showing the exponential decay is due to the boundary
conditions. We avoid them using some localized multipliers and some technical ideas
involving the compact embedding of the spaces Hm~l C Hm.

The remaining part of this article is organized as follows. In the next section we will
show that the problem is well-posed in the sense of existence, uniqueness, and regularity
of the solution. To do this we will use the semigroup approach. Finally in Sec. 3 we will
prove that the solution of the system decays exponentially to zero.

2. Existence of solutions. To find a solution for the problem (1.1)—(1.8), we shall
use the semigroup approach. Let us start analyzing the associated stationary problem.
First we shall introduce some notation. Let us consider the following Hilbert spaces

H\ := {(0i,</>2) G H1(fii) x i/1(n2) : 0* = 0 on T,, 0i = 02 on r0},

H% := |(01,02) G [H2(ni) x H2(n2)} n4 : ^ = 0 on ri; ^ on r0J ,

H*:={4>eH\Sh) : 0 = 0 on Tq}, H° := L2(Sh),
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with the following inner products:

({wi,w2},{<t>i:= / {P\Wi<j>i +7iVwi • V(j)i)dx
Jo. i

+ / {p2W24>2 + 72Vtf2 * V02) dx,
Jq2

[ PiAwi Acfii dx + / 02Aw2A(j)2dx,

IJsh
I PoViv • V<£ 4- 70w4> dx + I /3q\w(/) dT,

(w,<j>)fj 0 / poW(j)dx.
jQi

Let us denote the dual space of H£ by f°r s = 1, 2 and the dual space of by
H^1. The following Lemma shows that the norm given by the inner product in H2 is
equivalent to the usual norm of x H2(fl2).

Lemma 2.1. Let us take (f,g) in L2(flx) x L2(tt2). Then there exists a unique couple

(u,v) G H2(fl 1) x H2(fl2)

solution of
A u — f on fii, At; = g on £l2,

satisfying the boundary conditions
du dv

u = 0 on I i. v = 0 on F2, u = v and —— = —— on 1 0 •
av dv

Moreover, there exists C > 0 such that

+ IMI/f2(r22) < C(ll/l|L2(ni) + ll<?IU2(n2))-

Proof. See [3]. d
The corresponding stationary transmission problem for the plate equation is given by

the equations
A 2u = f in fii, A v2 = g in Q2, (2-1)

satisfying the boundary condition

0 on r1; v = ~ = 0 on T2, (2.2)
dv av

du dv . . n . . dAu dAv ^ .
u = v, — = —, f31Au = (32Av, = P2~K~ on F0. (2.3)

av av av av
To find the variational formulation associated to this problem we multiply the first equa-
tion of (2.1) by and the second by f32<f>2 with {<j>i^<j>2) £ H2; next we integrate by
parts to obtain

/ PiAwiAcfri dx + / 02Aw2A<f>2dx = / (3if4>idx+ / f32g4>2dx.
JJQ2 " ̂ 2

The existence and uniqueness of weak and strong solution for this problem is given by

LEMMA 2.2. The following items hold:
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(1) If (/,<?) € H?2, then there exists a unique solution (u,v) £ H£ of (2.1)-(2.3).
Moreover, there exists C > 0 such that

||(w,v)||f/2 < C\\(f,g)\\H-2.

(2) Let m € Zq. If (f,g) € x Hm(p,2), then there exists a unique solution
(u,v) £ Hm+4(rii) x Hm+4(n2) of (2.1)-(2.3). Moreover, there exists C > 0
such that

IMlH™+4(ni) + llullff'"+4(n2) < C(||/Ili?m(fii) + Il5lltfm(n2))-
(3) If (f,g) £ , then there exists a unique solution (u,v) € Hs(ili) x H3(Vl2) of

(2.1)-(2.3). Moreover, there exists C > 0 such that

ll(u,^)lltf3(ni)xw3(o2) ̂ C\\(f,g)\\H-i.

Proof. Item 1 is a consequence of Lax-Milgram Theorem; item 2, for the case m = 0,
can be found in [9] and item 3 is a consequence of the Interpolation Theory. Item 2 is a
well known result of elliptic regularity (see [15] for the transmission problem for general
elliptic equations). In Appendix A of this paper we give a simple proof of this item when
/2i//?2 is small or large. □

Now, we shall write system (1.1)—(1.7) in the abstract form of semigroups following
the ideas of Lagnese [4]. Let us consider the operators

Ao : H2 —> H~2, Ai : H\ X H° -> H~l x H° and B0 : H2 x —> H~2 x H'1

given by

(A0{wi,w2},{4>i,(t>2}) ■= {{wi,w2},{<fo.,<fo})H* .
{A1{wi,w2,w3},{<j)i,(l)2,<t>3}) ■= ({wi,W2},{<Al,02})ffi, + {wz,(j>z)H°,

{B0{wi,w2,w3},{<j>i,<j>2,<t>3}) ■= / — Awi<j>3)dx + (w3,<f>3)Hi,
Ja 1

and let us denote by

•Si{<^11^2} := {^o{</>ij <^2}, 0}, <t>2i <^3} := ^4o{<^i; <^2}-

Multiplying equations (1.1), (1-3), and (1.2) by 0i, 4>2 and (p3 respectively with
{<j>i,<j>2, <^3} € £T2 x -^d and performing an integration by parts yields

(Ai-^{ut,vtje},{(f)1,(f>2,<f>3}) = -{Ao{u,v},{4>i,(j)2}) - {Bo{ut,Vt,6},{<j)l,4>2,4>3})-

The above identity can be written as

Aift{ut,vt,9} =-Bi{u,v} - Bo{ut,vt,0} in H^2 x HD\ (2.4)- dt

Taking into account that
A0jr{u,v} = A0{ut,vt},'dt1

and denoting by w — (u,v,ut,vt,0), Eq. (2.4) can be written in the following matrix
form

A0 0 \ dw / 0 —B2
0 Ai ) dt \ B\ Bq

w = 0 in Ht 2 x H~ 2 x 1.
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Denoting by

-(It)
let us introduce the linear operator A := —A XB in H H2 x H], x H° with domain

D(A) = {w e H2 x x Hi : {Ao{wi,w2},0} + B0{w3,w4,w5} e H^1 x H0}.

If we denote by

D0 := [w S [H*nH3(ni) x H3(n2)} x Hi x [i?2(fix) n #£] :

dw$
PiAwi = /32Aw2 on To and - + Xw5 = 0 on Ti}.

av J
it is clear that D0 C D(A) and Dq is dense in TL. The well-posedness of system (1.1)—(1.8)
is given by the following Theorem.

Theorem 2.3. The operator A is the generator of a semigroup of class Co on H.

Proof. We show that A_1B is maximal accretive; our conclusion will follow by the
well-known Lumer-Phillips's Theorem.
A_1B is accretive: Let w £ D(A), then

(A_1B«;, w)n = (A_1(-A0{w3,u;4}, {A0{wi,^2},0} + B0{w3,w4,w5}],w)n

= ({^3, w4},^r1[{j4o{wi,^2},0} + B0{w3,w4,w5}],w)n

= -({w3,w4}, {wi,w2})h2 + (Ao{wi,w2},{w3,w4})H-2xH2

+ (Bo{w3,w4,w5},{w3,w4,w5})(H-2xH-l)x{H2xHh)

= (w5,w5)Hi} > 0.

A_1B is maximal: We need to show that the operator I + A_1B is surjective of D(A)
on Ti. Since A is an isomorphism of H onto "Hf, it is sufficient to show that

A + B : D(A) —> TL' is surjective.

Given / <£ H', the equation (A + B)w = f is equivalent to find w G D(A) such that

A0{wi,w2} - A0{w3,w4} = (/i,/2) G H^2,
Ai{w3,w4,w5} + {A0{wi,w2},0} + B0{W3,W4,W5} = (f3,f4,f5) e iff1 x H°.

(2.5)
Substituting the first equation of (2.5) into the second equation, we get

A\{w3, w4, 105} + {^0{w3,w4},0} + B0{w3,w4,w5} = (/3 - fi,f4 - f2, h) e H~2 x H°.
(2.6)

T ^ JJD ' JJT A 11D > "",a"

G{w3,w4,w5} := A1{w3,w4,w5} + {^0{W3,W4},0} + B0{w3,w4,w5}

is continuous and satisfies

(G{w3,W4,W5},{w3,W4,W5})(H-2xH-ijx^H^xH^ = ||{u>3, W4, ^5}||/fi,XffO

+ Il{w3,w4}||^2 + WwsWh^

> \\{w3,w4,w5}\\2H^xHh.

Note that the operator G : H2 x H^ —+ HT 2 x HD1, given by
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Therefore, the Lax-Milgram Theorem implies that there exists

{w3,w4,w5} £ H2 x (2.7)

such that relation (2.6) is satisfied. Since Aq is a isomorphism of H2 on H^2, there exists

{W1,W2}£H$ (2.8)

such that a first equation of (2.5) is satisfied. The second equation of (2.5) implies that

{A0{wi,w2},0} + B0{w3,W4,w5} £ Ht1 x H°\

therefore w — (wi,..., w$) given by (2.7)-(2.8) belong in D(A) and satisfy (A + B)ui =

/■ □

3. Exponential decay. In this section we will show that the solution of the trans-
mission problem (1.1)—(1.8) decays exponentially to zero as time goes to infinity. In
Appendix B we prove that the functions in D{Am) are regular, so if we take regular
initial data in D{Am), then the solution is regular, too. Therefore we can apply multi-
plier techniques to this system. Through this section we denote by C a positive constant
which will assume different values in different places. We shall assume that there exists
Xq £ Rn such that the function m{x) : x — xq satisfies

m ■ v > <5o on F0,
m ■ v < 0 on r2, (3.1)

for <50 > 0 small. Let us consider the following equation:

pu>tt — "fAwtt +/3A2w — 0 in x IR+, (3-2)

with boundary condition

dvj
w —— 0 on (r2ur0) xK+. (3.3)

The energy associated to this system is given by

E(t,w) := i [ p\wt\2 +7|Vwt|2 +P\Aw\2dx.
1 Jvt2

It is known that if w is a weak solution of system (3.2)-(3.3), that is to say, w £

L°°(0, oo; H2(Q.2)) D VF1,oo(0, oo; H1(Vt2)), then —E(t,w) = 0 for any t > 0; therefore
the function

ti-*E(t,w) is constant. (3.4)

Some properties for the solution of this system, such as regularity of the trace and
observability inequality, are given by the following Lemma. A similar result also can be
found in [2, Lemma 2.3].

Lemma 3.1. Let us suppose that w £ L°°(0, oo; H2(Q,2)) H W1,oo(0, oo; H1^^) is a
solution of (3.2)-(3.3); then the following properties hold:
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(1) There exists C > 0 such that
T

\Aw\2 dT dt < C f E(t,w)dt,
io Jr2ur0 Jo

for T large enough.
(2) There exists C > 0 such that

E(t,w)dt<C [ I m ■ v\Aw\2 dT dt,

fJo

fJo
for T large enough.

/ o -T0

Proof. We will use multiplier techniques to show that the above inequalities hold
for strong solutions, that is, for w £ L°°(0, T; H4(£l2)) H VF1,oo(0, T; H3(Q,2))t so our
conclusion will follow using standard density arguments. Let us consider the vector field
h = (hi,..., hn) £ [C2(Q2)}n such that h(x) = v, Vx e F2 U F0. Multiplying Eq. (3.2)
by h ■ Vu; and integrating by parts, we get

y- [ pwth ■ Vw + 7Vwt • V(h ■ Vw) dxdt

2 / |Aw|2 dT — ̂  I divh(p\wt\~ + 7|Vu>t|2 — (3\Aw\2) dx
Jr2ur0 2 Jfi2

f ( dhkdwtdwt dhkdw\ -A. f . dw/ a 2/3Aw— — \dx-y / f3AwAhk—dx.
Jn2 V "x3 °xj vxk oxj axk J f—' Jnfe=i

Integrating over [0,T] using Young's inequality and (3.4), we obtain that

f f \Aw\2dTdt < C\ f E(t,w)dt + E(T,w) + E(0,w)\
Jo J r2ur0 [Jo J

{l E{t-w)dt + fl E(t, w) dt j> .< C

From this inequality the first part of this Lemma follows. To show the second part, we
multiply Eq. (3.2) by Kw := m(:r) • Vw + (n — 3)w/2 and integrate by parts to obtain

— [ (pwtKw + 7Vwt • VKw) dx = —- / 3p\wt\2 + 7|Vu>t|2 + (3\Aw\2 dxdt Jn 2 JQ

+ — f m ■ v\Aw\2 dT + ^- f m-v\Aw\2dT.
2 JTo 2 Jr2

Integrating over [0, T] using Young's inequality and hypothesis (3.1), we get

[ E(t, w) dt < ^ [ [ m-v\Aw\2dTdt + C{E(T,w) + E(0,w)}
Jo * Jo JVo

< ^ f [ m ■ v\Aw\2 dT dt +f E(t,w)dt.
2 Jo Jr0 ' Jo

Regrouping, we arrive at the following inequality:

2C
T1 — [ E(t,w)dt < ^ [ f m ■ v\Aw\2 dT dt.

0 J To
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Now, taking T large, our conclusion follows. □
Let us consider the functionals E (first order energy) and F given by

E(t, u, v, 0) =7,1 Pi\ut\2 +7i|Vwt|2 +p1\Au\2 + p0\6\2 dx1 Jiii

+ 7; / P2M2 + ^21V|2 + /?2|Ai>|2 dx,
1 J o2

F{t,u) := j \Vu\2 + \ut\2 dx,
Jn 1

and denote by £ and T as follows:

3 3

£(t:u.u.O) J2i:{t.u(i\v(i>.0{i>), f(t,u) := J2F(^uii))^ (3.5)
i=0 i=0

where , w= w. The next Lemma will play an important role in the sequel.

Lemma 3.2. Given 77 > 0, there exists a positive constant Cv > 0 such that

rT r>T 3 /.71 n

/ T(t,u)dt <rj £(t,u,v,6) dt + / / /30|V6>^|2 dxdt, (3.6)
J0 J 0 l=0 Jo Jn!

for any solution (u,v,6) of (1.1)—(1.8) such that (uq, vq, u\, v±, 80) € D(A5).

Proof. To establish our result we assume that the hypothesis of this Lemma is not true
and derive a contradiction. Let us suppose that the inequality (3.6) does not hold, that
is to say, there exist 770 > 0 and (uq , Vq , u", v", 9ft)nSN in D(A5) such that the solutions
(■un,vn,en) of (1.1)-(1.8) satisfy

3 J1

rjo [ £{t,un,vn,en)dt + ny] [ [ A,|W"W|2 dxdt < [ T{t,un)dt, (3.7)
J0 2=0 J J0

for any n £ N. Without loss of generality, since the system (1.1)-(1.7) is linear, we can
suppose that

f T{t,un)dt = 1. (3.8)
Jo

Hence the inequality (3.7) can be written as

r'l 3 pT p

% / £{t,un,vn,en)dt + ny^ / /30|vr(i)|2dxdt < 1, (3.9)
J0 ^ q J0 JQi

for any n € N. This inequality implies that (un^\vn^\0n^) is bounded in L2(0, T; H% x
H°) for i = 0,..., 3; therefore there exists a subsequence, which we still denote in the
same way, such that

{u"{i),v"{i),0n(i))(u^,v^,d^) in L2(0, T; H2 x H°).
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Since (un^\vn^\0n^) is a solution of (1.1)—(1.7), then (u^\v^\9^) is a solution too,
so it satisfies the equations

PiUtt — 7i Autt + /3\ A2u + iiAO = 0 in x R+, (3.10)
Po^t ~ PoAO + 7o# — pAut = 0 in fli x R+, (3-11)

p2Vtt ~ l2&Vtt + PiA2v = 0 in Sl2 x 1+, (3-12)

and the boundary conditions

gu
u — — =0 on Ti x R+, v = — = 0 on T2 x R+, (3.13)

ov ov
Ou Ov

u = v, -5-=-5-, AAu = /32Av on T0 x R+, (3.14)
ov ov

dutt n dAu d0 dvtt . dAv „ ,
~7i~gjj"+/3i + P-q^ — ~72~t^~ + P2 on To x R , (3.15)

009 = 0 on Tq x R+, ——X9 = 0 on T; x R+. (3.16)
ov

Using (3.8) and Lions-Aubin's Compactness Theorem (see [7]), we can prove that

T(t,u)dt = 1. (3.17)
/Jo

The inequality (3.9) implies that

V# = 0 in x R+.

Prom Poincare's inequality we have that 9 = 0 in f2i x R+. Equation (3.11) implies
that Aut = 0 in x R+. Differentiating Eq. (3.10) with respect to t we obtain that
Uttt — 0 in Cli x R+. Differentiating Eq. (3.12)-(3.14) in t we have that vUt is a weak
solution of (3.2)-(3.3), satisfying

Avttt = uttt = 0 on r0.
P2

Lemma 3.1 implies that Vttt = 0 in fi2 x R+. Differentiating Eqs. (3.10)-(3.16) in t,
we find that (ut,vt) satisfies the hypothesis of Lemma 2.2 with (/, g) = (0,0); therefore
(ut,Vt) = (0,0). In these conditions, from equations (3.10)-(3.16) we conclude that
(u,v) — (0,0). This is contradictory to (3.17), hence our conclusion follows. □

The exponential decay for regular solutions is given by the following theorem.

Theorem 3.3. Let us take (uo,vo,v,i,vi,0o) £ D(A3). If

Pi > P2, 7i > 72 and < fa, (3.18)

then there exist positive constants C and k such that

£(t,u,v,0) < C£(0,u,v,9)e~Kt,

for any solution (u,v,9) of (1.1)—(1.8).

We shall prove this result for initial data (u0, Vo, Ui, i>i, 9q) G D(A5); the general case
follows using a standard density argument. Let us denote by Bj(n2) := {x € Rn :
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infyen2 \y — x\ < (5} with S > 0 small and let us consider the non-negative functions
ipi, tpi, i = 1,..., 4, of class C°°(Rn) given by

= (? i! " '1 if 1 e b-i("2>
1 if x £ Rn \ Bisify) ' 1 1 0 if x e Rn \ B2is(^2)-

*'5ff i5f|

Fig. 2. The functions <pi, ipi

Decomposing the set f2i by = /7, U Vi with

£/i = f2i \-B1<5(f22), Vi = n Bisifti) for i = 1,... ,4,

we get that ipi = 1 in Ui and ipi = 1 in Vj. The proof of this Theorem will be a
consequence of the following lemmas. Let us denote by Ri the functional

Ri(t,u,9) / poipi9utdx.

Lemma 3.4. Given r) > 0 there exists a positive constant Cv such that

d
dt Ri(t,u,9) < V \ [ |Au|2 cJF + f \Au\2 + |Vut|2 dx

[Jvi Jn i

+CV ( \ut\2 + |V0|2dx - fi [ \Vut\2dx
Ju 1 Ju1

Proof. Multiplying Eq. (1.2) by ip\ut and integrating by parts, we get

d
dt^Ri(t,u,8) = po [ <p\9uttdx- f p0S79 ■ + 709(<piut) dx

J «/ 1

—fx / (pi\\7ut\2 dx — p / utV(fii ■ Vut dx. (3.19)
J Qi J Qi

Let w be the solution of the stationary problem

{pil ~ 7iA)t/> = pofi9 in Hi,
du)

w = 0 on r1; ——=0 on r0.
ou

From the Trace Theorem and the elliptic regularity it follows that there exists C > 0
such that

|\w
2

w/r ■£ dT^ci w2dx- (3-2°)
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Multiplying Eq. (1.1) by w and performing an integration by parts, we get

po f ipiOuttdx = pi I Au—— dr — 0i I AuAwdx + fi ( \78-X7wdx;
Jih JTi OU JQl ./fij

substitution of this identity into (3.19) yields

^-Ri(t,u,6) — /3\ I Au^-dF —/3\ f AuAwdx + u I Vf-Vwdx
dt JTl dp JQl Jni

- /30X>9 • V(ifiut) + i0d(piut)dx - fi / </?i|Vut|2dx
J J Qi

—ft / UfV^i • Vuj dx.
Jn i

Applying Young and Poincare's inequalities and (3.20), our conclusion follows. □
Let us consider a vector field h = (hi,..., hn) £ [C2(fi)]n satisfying

f -v(x) if xeTi
^ ( 0 if X e Bstth) '

and let us introduce the following functionals:

Ji(t,u) / p\Uth ■ Wu + 71VUt ■ V(h ■ Vw) dx,
Jn i

2t7
R2(t,u,9) := Ri(t,u,6) + — J\{t,u).

Pi
Lemma 3.5. Given 77 > 0 there exists a positive constant CVj > 0 such that

■j-R2(t,u,6) < 77C | f |Au|2 + |Vw^|2 dx 1 + f \Av\2 dx
dt I Jnt J J n2

+ Cv [ \ut\2 + |V#|2 dx — p f \\7ut\2dx.
J nx Vc/i

Proof. Multiplying Eq. (1.1) by h ■ Vm and integrating by parts, we get

[ divh\ut\~ dx + 71 / VUt ■ Vhi^—^ dx
Jn, J n, <9^
f div/z|Vut|2 dx — f |Au|2dr+^- f divh\Au\2 dx

Jn 1 2 ,/ri 2

-A [ Au(2V/ij • V^- + Ahi^-] dx + fi [ V0 ■ V(/i • Vu) dx.yni V ^ M

d r n \ Pl
dtJl{t'u) = ~2

2

Using Young and Poincare's inequality once more, we find that

^•/i('.«) < I \Au\2dT-|/r_ |A»P
| f (|Aw|2 + |Vut|2 + |V#|2) dx + f |Av|2dxl.
UfJi A)2 J
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Combining this inequality with Lemma 3.4, we conclude that

~R2{t,u,6) < rjC | f |Au|2 + |V«t|2 dxl + f |Ai>|2 dx
i» J ) J Q2

+ C„ f \ut\2+ \V9\2dx-p f |Vut|2 dx.
J n1 Jui

This completes the proof. □
Let us introduce the following functionals:

J2(t,u) := / piutip2U + iiS7ut ■ S7(ip2u)dx,
Jn

R3(t,u,0) := R2(t,u,9) + k0J2{t,u),

where the constant ko is given by (3.22).

Lemma 3.6. Given 77 > 0, there exists a positive constant Cv > 0 such that

[ \Au\2+ \Vut\2dx + Cv [ \Vu\2+ \ut\2+ \V9\2dx
Ju2 Aii

d D U Q\ S- k°Pi—R3{t,u,6) < - —

+r/C I f \Au\2 + |Vut|2 dxX + f \Av\2dx.
Uni J V02

Proof. Multiplying Eq. (1.1) by tp2u and integrating by parts, we get

d
J2(t,u) = pi / tp2\ut\2dx + 71 / Vip2 ■ Vutut dx + 71 / ip2\Wut\2 dxdt J Oj

—Pi / (p2\Au\2 dx — Pi / Au(2V(/32 • Vm + Atp2u) dx
J" ^1

—fj, / 9A(ip2u) dx.J
It follows that

-j-J2(t,u) < —^ I \Au\2 dx + C [ \Vut\2 dxdt 2 Jjj2 JUi

+7] f \Au\2dx + Cv f |Vu|2 + \S76\2 dx. (3.21)
J J x

Let ko be a positive constant satisfying

2

From Lemma 3.5 and inequality (3.21), we find that

d_
dt

H = k0 l^+C). (3.22)

Rs(t,u,9) < ( |Au|2 + |Vwt|2 dx + Cv f |Vu|2 + \ut\2 + |V#|2 dx
2 Ju2 Jo. 1

+77C | f \Au\2 + \Vut\2 dx\ + f \Av\2 dx,
IJQi J Jn2

from where our conclusion follows. □
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Let us denote by Ku := m-X7u+(n—3)u/2 and let us consider the following functionals:

J3(t,u,v) := f Piutip<tKu + 71 Vitt • V(i/>4-ftTu) dx
/Jfh

JJo.-.
+ / piVt^iKv 4- 72Vwt ■ V(ip4Kv) dx,

Jn2
R4(t,u,v,6) := R3(t,u,9) + kiJ3(t,u,v),

where the constant k\ is given by (3.25).

Lemma 3.7. There exist positive constants h? and C such that

^-ih(t,u,v,e) < -^-E{t,u,v,e) + c f {\Vu\2+ \ut\2+ \ve\2}dx.
dt I Jq1

Proof. Multiplying Eq. (1.1) by tp4(x)Ku, Eq. (1.3) by and integrating by
parts, we get

d̂
J3{t,u,v)

{pi - P2) f m ■ dT — —— I m-v\^7ut\2dT
Jrn 2 J rnTo

— Pi f Aum ■    dT + f m ■ v\Au\2 dT — ̂ f m ■ v\Av\2 dT
Jr0 °v 2 Jr0 2 Jr0

+ fi f V0 ■ S7(ipiKu) dx — f \ut\2 dx — ~ f \Vut\2dx — f \Au\2 dx
Jni 2 Jv4 2 Jv4 2 iv4

- [ £|ut|2(£r + 7i [ Vut • V(V>4^dx + ^ [ Vut • Vip4ut dx
* Ju4 JUi c>xi A JUi

- TT f £.\Vut\2 dx + ^- f £\Au\2 dx - 01 f AuA(ip4mi) dx

— 20\ [ AuV-^— • Vf^rrij) <ir —   [ Au(Atp4:u + 2'Vu-Vip4)dx
J U4 dxi 2 7u4

i [ m ■ v(p2\vt\2 +72|Vwj|2 +/?2|A?;|2)dr - ^ f \vt\2 dx
* Jr2 J^2

[ \Vvt\2 dx - ^ [ \Av\2 dx,
Jn, 2 Jn,

+ 2

72
2

(3.23)
where £ := div(i/>4m) — (n — 3)^4. The transmission boundary conditions imply that

„ f . dV(u-u) a f a d2(ll-v)—01 / A um     (ir = —pi / AumiVj——  dF
7r0 dl> Jr0 oxidxj

= —j3i / AurriiViV2 A{u — v) dT
JTa

= —/?i / Aum • i/(Au — Aw) dF
J To

— ̂ f m ■ v(\Au\2 — \Av\2) dT.
2 ./rn

< - —
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Substitution of the above inequality into the above identity (3.23), and using Young's
inequality, relations (3.18), and Lemma 2.1, we arrive at

d
dt Jz(t,u,v) < r] | f \Au\2 dx + ( |Ati|2 dx\ + Cv f \\79\2dx

L J J J J
+C f \ut\2 + \Vut\2 + \Au\2 dx + C [ |Vu|2 dx

Ju2 JQ i

[ \ut\2dx-^L ( \Vut\2dxf \Au\2dx
Z JVi * Jv4 1 JVi

[ \vt\2dx~Y [ \Vvt\2dx-~ f \Av\2 dx. (3.24)
z Jn, z Jn.2 L Jo2

Let ki be a positive constant such that

koPi = ki(C +1). (3.25)2

From Lemma 3.6 and inequality (3.24), it follows that the functional i?4 satisfies

(1 (|Au|2 + |Vwt|2) dx + J |Aw|2dx|

+CV [ {|Vu[2 + |ut|2 + |V0|2} dx
Jn i

-ki ( (\ut\2+ \Vut\2+ \Au\2)dx
•Wo

3t>»> f W*te-kJ2Lj |i,
Jv* 1 J v.d 1 JvA2

\u\2 dx
lv4 z JVi z Jv4 '

3klP2 f \vt\2 dx - f \Vvt\2dx - f \Av\2dx.
Jvio 1 J n, ^ Jet-,

Since V4 D V2, we have that Qi = U2 D V4. Therefore, there exists a small positive
constant &2 such that

%
dtRi (t,u,v,0) < r)C I / (|Am|2 + |Vw4|2) dx + f |Av|2cfel

i. J 1 J ni2 J

+CV f {\Vu\2 + \ut\2 + \V9\2} dx - k2E{t,u,v,0).
Jfh

Taking 77 small enough, our conclusion follows. □
Proof of Theorem 3.3: Multiplying Eq. (1.1) by ut, Eq. (1.2) by 6, Eq. (1.3) by vt,
and performing an integration by parts, we obtain that

1
dt'-E(t,u,v,0) = - [ (30\ve\2+ io\0\2dx- f (30\\e\2dY. (3.26)

JUi JTi

Let us define the Lyapunov's functional L, given by

L(t, u, v, 9) := NE(t, u, v, 6) + R^{t, u, v, 0),
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where N denotes a large positive constant to be fixed later. Taking N large and combining
Lemma 3.7 and identity (3.26), we get

~L(t,u,v,0) < -^E(t,u,v,0) - f p0\X/9\2dx + CF(t,u).
dt 11 Jq1

Since the system (1.1)-(1.8) is linear and (uo,Vq,ui,vi,9o) G D(A5), then (u^\ t)W, 9^)
are strong solutions for i — 1,2, 3; therefore, using the same procedure, we have

^L(t,u^,v{i),9{i)) < ^ [ p0\VO{i)\2dx + CF(t,u{i)).
dt 2 2 t/Qi

Denoting by £(t,u,v,9) = J2'-=i L{t, u^\ 9^), we conclude that

£(t,u,v,9) < -y£(£,u, v, 9) - y ^2 j Po\^9(l)\2 dx + CT(t,u),
2=0

where £ and T are given by (3.5). Integrating over [0, T], we get

7 fT
£(T,u,v,6) < £(0,u,v,6)—r1 / £(t,u,v,9)dt

2 Jo
n 3 r--J2 / 0o\V9^\2dxdt + C T(t,u)dt.
^ j_Q JO JQi J0

Using Lemma 3.2 with 77 small enough and taking N large enough, we obtain that

£(T,u,v,9) < £(0,u,v,0)—j £(t,u,v,9)dtf'Jo
1 rj-y

< £(0,u,v,9) ^—£(T,u,v,9). (3.27)

Using Young's inequality, we can prove that

N
—£(t,u,v,6) < £(t,u,v,9) < 2N£(t,u,v,9), (3.28)

for N large enough. Combining (3.27) and (3.28), we conclude that

koT
£{T,u,v,9) < £(0,u,v,9) - —-£(T,u,v,0).

Denoting by a := (1 + k-jT/(87V))-1, this inequality can be written as

£(T, u, v, 9) < a£(0, u, v, 9).

Since a e]0,1[, the semigroup property of the system (1.1)—(1.7) implies that there exist
positive constants C and k such that

£(t,u,v,0) < C£(0, u, v, 0)e~~Kt.

From (3.28) we conclude that

£(t,u,v,0) < C£(O,u,v,0)e~Kt,

from where our conclusions follow. □
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Corollary 3.8. If (uo, Vo, U\, V\, 9q) € x H\ x H°, then there exist positive constants
C, k such that

E(t, u, v, 0) < CE{0, u, v, 9)e~Kt

for any weak solution (u,v,0) of (1.1)—(1.8).

Proof. Let us consider 0o the solution of the elliptic problem

- f30A0O + 7o©o = po0q - pAu0 in Oi, (3.29)

0O = 0 on r0, + A0O = 0 on T1,
ov

and let (Uq,Vq) be the solution of the variational transmission problem

[ PiAUoAfdx + f foAVoAiPdx = + (3.30)
J Q,i J Q2

for every (1G Hwhere (/, g) G H^1 is given by

{/> <fi) = I p\u\<p + 71VU1 • Vip + pVOo ' Vtpdx,JJn 1

(5, i>) = [
Jq2

PiVitp + 71VW1 ■ Vipdx.

Let us define the following functions:

U(x,t) := / u(x, s) ds + Uq(x),
Jo

V{x,t) := / v(x, s) ds + Vo(x),
Jo

€>(x,t) := I 9(x, s) ds + 0o(x).
Jo

Since system (1.1)—(l.T) is linear, we have that (U, V, 0) also is solution of this system;
moreover, it verifies

(Ut,Vu@t) = (u,v,6) and (17(0), V(0), 0(0)) = (U0, V0, ©o).

From Lemma 2.2 applied to (3.29)-(3.30), it follows that there exists a constant C > 0
such that

1
Y^E(0,U{i\Vil\0(l)) < CE(Q,u,v,9).
2=0

Using the same above reasoning, we can make a solution ({7, V, 0) such that

3
([/(3),y(3),0(3)) = (u,v,6) and J2E(°>U{i\V{i\Oil)) <CE(0,u:v,0). (3.31)

2=0

Applying Theorem 3.3 to ([/, V, 0), we get that
3 3

U(i\ v{il 0(i)) < C5>(0, U(i\ F(z), Q^)e~kt.
2 = 0 2=0
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In view of (3.31), we conclude that

E(t,u,v,6) < CE(0,u,v,9)e~kt.

This completes the proof. □

Appendix A. In this section we give a simple proof of the elliptic regularity for the
stationary transmission problem.

Lemma 3.9. Let A be given by (A.6). If P1/P2 satisfies

%<l\ a !>x (a-i)
then item 2 of Lemma 2.2 holds.

Proof. Let us take (f,g) € Hm(Q 1) x and (w,z) <5 Im := ifm+7/2(r0) x
Hm+5/2(r0). Consider u £ Hm+i(Q.i) a unique solution of

A 2u — f in fix, (A.2)
du du

u= — = 0 on Ti, u = w and — = 2; on L0. (A.3)
ou du

Then (Au|r0, |ro) e m+3/2(r0) x i/m+1/2(r0). Now, let us consider v £ Hm+4(Q2)
the unique solution of

A2v = g in fi2, (A-4)
dv n a Pi \ j dAvv= — = 0 011 r2, Av=—Au and -^— = -5-^— on F0. (A.5)
du fa ov /32 ou

Then (u|r05 f^|r ) S Im. In these conditions we can define the operator Tfg : Im —> Im
given by

(w,z)~Tfg(w,z) := (wlr0.^;|ro)-

Our conclusion will follow, showing that there exists a fixed point to Tfr Let us take
(w\,Z\) and (tt>2,22) in Im and consider (Ui,Vi) £ Hm+4(fli) x Hm+4(£l2), i = 1,2
solutions of

A 2u,i = / in a

dui n r a dui rUi = ^r-= 0 on 1 1, ui = wl and 011 L0,
OU Of

A2Vi = g in fi2,

dVi n ^ A & A , dAvi Pi dAui T-Vi = — = 0 on r2, At>j = —Aui and —— = - -— on L0,
ou (j2 ou p2 ou

and denote by

(w,z) := (wi,zi) - (w2,z2),

u := u\— u2,

v := vi - v2.

It is not difficult to show that (u,v) satisfies (A.2)-(A.5) with (f,g) — (0,0). Therefore

Tfg(wi,Zi) - Tfg(w2, z2) = T00{w, z).
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Moreover, from the Trace Theorem and elliptic regularity it follows that there exist
Ai,..., A4 such that

ii3ooK4Him < Al^j|w||ffm+4(fJ2)

< AiA2^
P2

A IA"lr- ar r0 jH-m+3/2(ro)xffm + l/2(ro)

< AlA2A3~||lt||ijm+4(Q1)

< A1A2A3A4 11 (if j ,2f) 11 ]£r>»
P2

This implies that

\\Tfg{wl,Z1) -Tfg(W2,Z2)\\Him < AiNg[|(u>l,Zl) - (W2,«2}[llT«, (A.6)

where A = A1A2A3A4. If A^ < 1, we have that Tfg has a unique fixed point in Im. Using
this reasoning and swapping u and v in (A.2)-(A.5), we obtain the same result when
A|a < 1. Therefore Tjg has a unique fixed point when /?i//32 satisfies (A.l). □

Appendix B. In this section we prove that the functions belonging to D{Am) are
regular.

Lemma 3.10. We have that D(A) = D0 and for any m e N with m > 2 we get

D(Am) c Hm+2{Sl 1) x Hm+2{n2) x Hm+1{n 1) x Hm+1{ft2) x Hm+\Q 1).

Proof. Let us take w 6 D(A), then w 6 H2 x H2 x and

{Ao{w!, w2},0} + Bo{w3,w4,w5} = {fx5/25/3} € H^1 x H°. (B.l)

Multiplying this equation by {0, 0, <p} G H\ x Hwe obtain that

(«'5- <p)ll' = + / /J.Aw3(j)dx.
Jo. 1

Since fy + \iL\w3 £ L2(Sli), elliptic regularity implies that
r\

W5 € H2(Q 1) and + Xw5 = 0 on IV (B.2)

On the other hand, multiplying Eq. (B.l) by {</>i,</>2,0} & H2 x H°, we get

({m,W2},{4>l,<fa })h* = ({flj2},{(l)l,4>2})HT1KH^

+ / /iVws ■ V<^i dx V{01^2} £ H2.
Jq 1
  V '

<-F,{0i,02}>

Since {/i,/2} + ^ 6 ^t1; Lemma 2.2 implies that

{wi,w2} & x _ff3(f22) and .3] Ai/'i = /32Aw2 on Fq. (B.3)
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From (B.2)-(B.3) we have that w G Do; therefore, the first part of this Lemma is proved.
We shall prove the second part using induction. Let to G N with m > 2 and suppose
that

D(Am) c tfm+2(fti) x Hm+2(Sh) x //m+1(Qi) x Hm+1(Q2) x Hm+\ni),

and let us take w G D(Am+1) such that Aw = f G D(Am). Applying the operator -A,
we get

(-A){w3,W4}, {^o{wi, w2},0} + So{w3,W4,M;5}) = — (v40{/i, /2>, -4i{/3, A, /s})-

Hence we find that

{u>3,u>4} = {/1;/2} e Hm+\^) x Hm+2(n2), (B.4)

and
{Ao{wi,w2}, 0} + Bo{w3lw4,w5} = -A1{f3J4,f5}. (B.5)

Multiplying Eq. (B.5) by {0,0,0} G H,\, x we obtain that

(w5 = -(/5 A)h» + / l-lAw3(t>dx.

Since — /s + jiAw3 e i/m(f2i), elliptic regularity implies that

w5 € i7m+2(f2i). (B.6)

Multiplying Eq. (B.5) by {0i,02,O} G H?T x i?°, we get

({wi,W2},{01,<M)h2 = -({/3,/4},{01,^2})h| - / flW5A(/)idx. (B.7)
«/

Since {/3,/4,w5} G Hm+1(«i) x Hm+\il2) x //m+1(fii), we have that

, df3 df4 dw$ i
fe:=7'a7-12a7-''-areH

Let z be a function such that

2 G Hm+3(Q\) z=~=Az = Q on H T0. ^ = ( V ^ J) , (B.8)
av dv I on I o

and let us denote by {wi,w2} the solution of the stationary problem

A2wi = F := -^-[-pif3 + 7iA/3 - //,Aw5] - A2z in fii,
Pi

A~w2 = G := tt[—Pif\ + 72A/4] in 02,
P2

with boundary conditions

^ n t- ~ dfv2 n r1Wi = —— = 0 011 I !, w2 = —— = 0 on r2,
av av

dw 1 cta>2 _ _ ^ „ dAw2 „
w-'i = W2, , PiAwi = (32A w2, (3i —— = /?2—^— on r0.a// c/i/

Since {F, G} G i/m_1(Sli) x Hm~l (f22), Lemma 2.2 implies that

{u>i,tS2} £ tfm+3(Oi) x Jfm+3(n2). (B.9)
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The solution of variational equation (B.7) is unique; therefore w\ — z + u>i, w2 = w2-
From (B.8)-(B.9) we have

{w1,w2j € H'n+3(n 1) x Hm+3{n2). (B.10)

Now, from (B.4), (B.6), and (B.10), we conclude that

w e x Hm+3(02) x Hm+2{Qi) x Hm+2(n2) x Hm+2(fii),

which completes the proof. □
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