
143

A transparent runtime data distribution engine

for OpenMP1

Dimitrios S. Nikolopoulosa,∗,

Theodore S. Papatheodoroub,

Constantine D. Polychronopoulosa,

Jesús Labartac and Eduard Ayguadéc

aComputer and Systems Research Laboratory,

University of Illinois at Urbana-Champaign, 1308

West Main Street, Urbana, IL 61801, USA

E-mail: {dsn,cdp}@csrd.uiuc.edu
bDepartment of Computer Engineering and

Informatics, University of Patras, GR26500, Patras,

Greece

E-mail: tsp@hpclab.ceid.upatras.gr
cDepartment of Computer Architecture, Technical

University of Catalonia, c/Jordi Girona 1-3, 08034,

Barcelona, Spain

E-mail: {jesus,eduard}@ac.upc.es

This paper makes two important contributions. First, the pa-

per investigates the performance implications of data place-

ment in OpenMP programs running on modern NUMA mul-

tiprocessors. Data locality and minimization of the rate of re-

mote memory accesses are critical for sustaining high perfor-

mance on these systems. We show that due to the low remote-

to-local memory access latency ratio of contemporary NUMA

architectures, reasonably balanced page placement schemes,

such as round-robin or random distribution, incur modest per-

formance losses. Second, the paper presents a transparent,

user-level page migration engine with an ability to gain back

any performance loss that stems from suboptimal placement

of pages in iterative OpenMP programs. The main body of

the paper describes how our OpenMP runtime environment

uses page migration for implementing implicit data distribu-

tion and redistribution schemes without programmer inter-

vention. Our experimental results verify the effectiveness of

the proposed framework and provide a proof of concept that

it is not necessary to introduce data distribution directives in

OpenMP and warrant the simplicity or the portability of the

programming model.

∗Corresponding author.
1An earlier version of this paper [29] appeared in the IEEE/ACM

Supercompting’2000 Conference and won the Best Technical Paper

Award.

1. Introduction

Parallel processing is experiencing a convergence

of both architectures and programming models into

few well-established paradigms [10]. Parallel pro-

gramming in particular seems to converge into two

paradigms, namely message-passing and shared-

memory. Message-passing is the programming model

of choice for multiprocessors with distributed physical

memory and disjoint address spaces, where the pro-

cessors on a node2 can access only the node’s local

memory. Shared-memory on the other hand, is the

programming model of choice for single-address-space

multiprocessors, in which cache coherence protocols or

virtual memory mechanisms provide the programmer

with the abstraction of a shared memory space, equally

accessible by the processors.

The fundamental difference between message-

passing and shared-memory is the means used by the

programmer to express interprocessor communication.

In message-passing, the programmer has to explicitly

distribute data and computation among processors. It is

the programmer’s responsibility to implement the com-

munication required to synchronize concurrent tasks

and exchange data, via explicit send and receive state-

ments. In the shared-memory programming paradigm,

since all data lies in a single address space, processors

communicate directly via loads and stores in shared

memory. Parallelism is expressed by assigning code

fragments to computational threads and inserting the

synchronization commands needed to ensure correct

execution. The scheduling of threads to processors is

performed transparently to the programmer.

Both message-passing and shared-memory program-

ming paradigms have been successfully standardized.

Message-passing standards such as PVM and MPI have

already reached a mature point of use [33]. More re-

2We use the general term node to denote the building block of

a state-of-the-art multiprocessor. A node typically includes a few

processors, memory and a communication assist.

Scientific Programming 8 (2000) 143–162

ISSN 1058-9244 / $8.00 2000, IEEE. Reprinted with permission from Proceedings of IEEE Supercomputing 2000, 4–10 November 2000,

Dallas, Texas, USA.

144 D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP

cently, a joint effort of several hardware and software

vendors resulted to the development of OpenMP [30],

a flat shared-memory programming model which is im-

plemented as an extension to FORTRAN, C and C++
and is portable across the whole spectrum of shared-

memory multiprocessor architectures.

It is a common belief that shared-memory program-

ming models are simpler and more intuitive to use com-

pared to message-passing. This is true because the

shared-memory paradigm hides the details of the ar-

chitecture and the system support software from the

programmer. This in turn enables the programmer to

focus on the parallelism of the problem, rather than on

the subtleties of the underlying hardware/software in-

terface. On the flip side of the coin, it is also a fact that

at medium and large processor scales, the level of per-

formance attained by programs written with a shared-

memory programming model is not nearly as good as

the level of performance attained by their message-

passing counterparts. This phenomenon is observed

on non-uniform memory access (NUMA) multiproces-

sors, in which although the node memories are accessi-

ble by all processors, the actual memory access latency

is non-uniform. A remote memory access costs several

times as much as a local memory access.

Sustaining high performance on a NUMA archi-

tecture requires the localization of memory accesses.

Briefly put, data should be placed in memory so that

each processor accesses data from a local memory mod-

ule (i.e., residing on the processor’s node), whenever

the processor misses in the cache.3 Shared-memory

programming paradigms in general lack the means to

perform this task. The obvious way to accomplish that,

is to extend the programming model with data distri-

bution commands analogous to the commands used in

data-parallel programming paradigms, such as HPF. In-

deed, some researchers have shown that such an exten-

sion, along with some hand-crafted optimizations for

reducing the cost of orchestrating parallelism, is suf-

ficient to scale single-address-space programs to hun-

dreds of processors [16,18].

It is interesting to note that vendors of commer-

cial NUMA multiprocessors have realized the impor-

tance of data distribution and implemented HPF-like,

platform-specific data distribution mechanisms, as ex-

tensions to FORTRAN and C [8]. Unfortunately,

OpenMP, which is nowadays the de facto standard

3Placing data for better utilization of the cache itself is also a pre-

requisite for efficient shared-memory parallel programming. How-

ever, the related issues are out of the scope of this paper.

for programming shared-memory multiprocessors,pro-

vides no means for data distribution. As a consequence,

some vendors are proposing the introduction of data

distribution directives in OpenMP [4,21,23], as the way

to achieve the desired levels of memory access locality

in the programming model.

1.1. The problem

The thesis of this paper is that the introduction of

data distribution directives contradicts the fundamental

design principles of OpenMP and shared-memory pro-

gramming models in general, by compromising their

simplicity and portability.

The basic design principle behind OpenMP is that

the details of the architecture and the operating system

should be entirely hidden from the programmer and

the same OpenMP program should be able to run with-

out modifications on different shared-memory archi-

tectures manufactured by different vendors [30]. This

principle is compromised to a significant extent with the

introduction of data distribution directives. Data dis-

tribution is inherently platform-dependent and as such,

hard to standardize and incorporate seamlessly in a pro-

gramming model. It is more likely that each vendor

will propose and implement its own set of data distri-

bution directives, customized to specific features of the

in-house architecture, such as the topology, the number

of processors per node, the available intra and internode

bandwidth, intricacies of the system software and so

on. Furthermore, data distribution directives constitute

dead code for non-NUMA architectures, a fact which

raises an issue of code portability.

Regarding the ease of programming, data distri-

bution has always been a burden for programmers.

Data distribution commands are subtle and hard to un-

derstand and use. Defining flexible data distribution

schemes to minimize communication is a daunting task,

even for regular applications. A programmer is not

likely to opt for a parallel programming model based

on shared-memory, if the effort required to parallelize

a code is similar to that of a programming model based

on message-passing.

The problem addressed in this paper is how to intro-

duce the functionality required to effectively distribute

data in OpenMP, without any modification to the pro-

gramming model. More specifically, the problem is to

devise an automatic, transparent mechanism that per-

forms the tasks of a manual data distribution tool, with-

out exporting the actual data distribution interface to

the programmer.

D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP 145

1.2. Contributions of the paper

This first question that this paper comes to answer is

up to what extent can data distribution affect the perfor-

mance of OpenMP programs on NUMA architectures.

To answer this question, we conduct a thorough inves-

tigation of alternative data placement schemes in the

OpenMP implementations of the NAS benchmarks [19]

on the SGI Origin2000 [22]. These implementations

are tuned specifically for the Origin2000 memory hier-

archy and obtain maximum performance with the first-

touch page placement strategy of IRIX, the Origin2000

operating system. Assuming that first-touch is the “op-

timal” page placement scheme for the OpenMP im-

plementations of the NAS benchmarks, we assess the

performance impact of three alternative, non-optimal

schemes, namely round-robin, random and the worst-

case page placement.

Our findings suggest that data distribution can in-

deed have a significant impact on the performance of

OpenMP programs, although this impact is not as pro-

nounced as expected for balanced distributions of pages

among nodes. This result stems primarily from techno-

logical factors, since modern NUMA multiprocessors

are equipped with communication networks and coher-

ence protocols that achieve a very low remote-to-local

memory access latency ratio [22].

The second contribution of this paper is a user-level

runtime system that transparently injects data distribu-

tion capabilities in OpenMP programs. The system

uses dynamic page migration, a technique with roots

in the early dance-hall shared-memory architectures [1,

7,15]. The idea behind dynamic page migration is to

track the reference rates from each node to each page

in memory and move each page to the node that ref-

erences the page more frequently. Read-only pages

can be replicated in multiple nodes. Page migration

and replication are a direct analogue to multiprocessor

cache coherence, with the virtual memory page serving

as the coherence unit.

Page migration has been proposed merely as a

kernel-level mechanism for improving the data locality

of applications with dynamic memory reference pat-

terns [15,34]. In this work, dynamic page migration is

put in a radically different context. In particular, page

migration is no longer considered as an optimization.

It is rather used as the vehicle of a transparent data

distribution engine.

The key for leveraging dynamic page migration as

a data distribution technique is the exploitation of the

iterative structure of the majority of parallel codes, in

conjunction with information provided by the compiler.

We show that at least in the case of popular codes like

the NAS benchmarks, a smart page migration engine

can be as effective as a system that performs accurate

initial data distribution, without any performance loss.

Data redistribution across phases with different mem-

ory access patterns can also be approximated transpar-

ently to the programmer, using our page migration en-

gine. The runtime overhead of page migration needs to

be carefully amortized in this case, since it may easily

outweigh the earnings from reducing the number of re-

mote memory accesses. This problem would occur in

any dynamic data distribution system, therefore we do

not consider it as a major limitation.

To the best of our knowledge, the techniques pre-

sented in this paper for approximating data distribution

and redistribution with dynamic page migration at run-

time are novel. A second novelty is the implementa-

tion of these techniques, which is carried out entirely at

user-level with the use of only a few operating system

services. Our implementation not only enables the ex-

ploration of parameters in the page migration policies,

but also makes our framework directly available to the

community, without requiring any modifications to the

architecture, the operating system, or the source code

of OpenMP programs.

The remainder of this paper is organized as follows.

A brief overview of OpenMP is given in Section 2.

We present results that exemplify the sensitivity of

OpenMP programs to data placement in Section 3. Our

user-level page migration engine is outlined in Sec-

tion 4. Section 5 provides detailed experimental results.

We overview related work in Section 6 and conclude

the paper in Section 7.

2. An overview of OpenMP

The OpenMP application programming interface

(API) [30] provides a directive-based paradigm for

programming parallel applications on shared-memory

multiprocessors. OpenMP has recently attracted ma-

jor interest from both the industry and the academia,

due to two strong inherent advantages, simplicity and

portability.

In OpenMP, parallelism is expressed with compiler

directives that enclose loops or regions of code that can

be executed in parallel. An OpenMPPARALLEL direc-

tive triggers the creation of a group of threads destined

to execute concurrently the code enclosed between the

PARALLEL and the corresponding END PARALLEL

146 D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP

directive. This computation can be divided among the

threads that belong to the group via two worksharing

constructs, expressed with the DO and SECTIONS di-

rectives. The DO-END DO pair of directives encapsu-

lates parallel loops, the iterations of which are sched-

uled on different processors according to a scheduling

scheme defined in the SCHEDULE clause of the direc-

tive. The SECTIONS-END SECTIONS pair of direc-

tives encapsulates disjoint blocks of code delimited by

SECTION directives. Each block of code is assigned

to a different thread for parallel execution.

OpenMP uses the fork/join execution model. An

OpenMP program starts executing with one thread de-

noted as the master. Upon encountering a PARALLEL

construct, the master creates a group of slave threads, to

execute the code surrounded by the PARALLEL-END

PARALLEL directives. The group of threads that par-

ticipate in the execution of parallel loops and sections

is transparently scheduled on multiple physical proces-

sors by the operating system. Upon completion of a

parallel region, the master synchronizes with the slaves

at an implicit barrier.

OpenMP programs are portable across the whole

range of shared-memory architectures, including small-

scale SMPs, scalable NUMA multiprocessors and clus-

ters of workstations or SMPs [17,24,30]. The OpenMP

API hides entirely the details of the architecture and

the operating system from the programmer. The pro-

grammer does not need to worry about the actual im-

plementation of shared memory (software or hard-

ware), interprocessor communication, the location of

data in shared memory, the topology of the system,

the interface for creating, scheduling and synchroniz-

ing threads, or the internals of the operating system

scheduler. These details are hidden behind the runtime

backend of OpenMP. Therefore, OpenMP offers an

intuitive, incremental approach for developing parallel

programs. Users can begin with an optimized sequen-

tial version of their code and start adding manually or

semi-automatically parallelization directives, up to a

point at which they get the desired performance.

2.1. OpenMP performance characteristics

OpenMP has recently become a subject of criticism

because the simplicity of the programming model is of-

ten traded for performance. Experience with real codes

suggests that it is difficult to scale an OpenMP pro-

gram to tens or hundreds of processors and that com-

plex OpenMP codes tend to scale worse than the corre-

sponding MPI codes [2,13,31]. Some researchers have

Table 1

Access latency to the different levels of the Origin2000 memory

hierarchy

Level Distance in hops Contented latency

(ns.)

L1 cache 0 5.5

L2 cache 0 56.9

local memory 0 329

remote memory 1 564
remote memory 2 759

remote memory 3 862

pin-pointed this effect as a problem of the overhead

of managing parallelism in OpenMP, which includes

thread creation and synchronization. This overhead is

an important performance limitation because it deter-

mines the critical task size, that is, the minimum thread

granularity that obtains speedup from parallel execu-

tion. One way to deal with this problem in OpenMP is

to coarsen the granularity of parallel loops and sections,

in order to minimize the frequency of expensive man-

agement operations, such as thread creation and syn-

chronization [19]. A second performance limitation of

OpenMP programs is the cache miss ratio. The layout

of data in memory should be carefully optimized, in

order to maximize the reuse of data blocks from the

processor caches. Although sophisticated cache-aware

programming is difficult, modern compiler technology

provides several program transformations for exploit-

ing various types of cache locality in shared-memory

multiprocessors [35].

The overhead of managing parallelism and cache

reuse are both important performance considerations.

However, it has been shown that scaling the perfor-

mance of shared-memory programs on a large num-

ber of processors requires some additional ad-hoc pro-

grammer interventions, the most important of which is

proper distribution of data between nodes [16,18]. Data

distribution is required to maximize the locality of ref-

erences to main memory. This optimization is of vital

importance on contemporary NUMA multiprocessors,

in which remote memory accesses can increase mem-

ory latency by a factor of three to five. The OpenMP

API provides no means for controlling the distribution

and placement of data.

3. Sensitivity of OpenMP to data placement

Modern NUMA multiprocessors are characterized

by their deep memory hierarchies. These hierarchies

include at least four levels, namely the L1 cache, the L2

cache, local node memory and remote node memory.

D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP 147

The memory hierarchy can be logically subdivided fur-

ther, if the remote node memory is classified accord-

ing to the distance (in interconnection network hops)

between the accessing processor and the accessed node.

Table 1 shows the contented memory access laten-

cies to the memory hierarchy of the SGI Origin2000,

a popular contemporary NUMA multiprocessor [10].

The numbers are taken from a 16-node system. The

nodes of the Origin2000 are organized in a fat hyper-

cube topology with two nodes on each edge. The L1

cache latency differs from the L2 cache latency by one

order of magnitude. The difference between the latency

of the L2 cache and local memory accounts for another

order of magnitude. For each additional hop that a

memory accesses traverses, the latency is increased by

100 to 200 ns. The ratio of remote to local memory

access latency ranges between 2:1 and 3:1.

The non-uniformity of memory access latency de-

mands locality optimizations along the complete mem-

ory hierarchy of NUMA systems. These optimizations

should take into account not only cache locality, but

also locality of references to main memory. The latter

can be achieved if the virtual memory pages of the pro-

gram are mapped to physical memory frames so that

each thread is more likely to access local rather than

remote memory upon L2 cache misses.

Page placement in NUMA systems is primarily a task

of the operating system. Previous research came up

with solutions for achieving satisfactory data locality

at the page level, with simple page placement schemes

implemented in the kernel [9,25]. However, the mem-

ory access traces of parallel programs do not and can

not always conform to the page placement strategy of

the operating system. The problem is pronounced in

OpenMP, because the programming model is oblivious

of the placement of data in memory. This section inves-

tigates the performance impact of theoretically inop-

portune page placement schemes on the performance

of the NAS benchmarks.

3.1. Experimental setup

We used the OpenMP implementations of five of

the NAS benchmarks, BT, SP, CG, MG and FT [19],

to investigate the aforementioned issues. BT and SP

are simulated CFD applications. Their main compu-

tational part solves Navier-Stokes equations in three

dimensions. The programs differ in the factorization

method used in the solvers. CG, MG and FT are com-

putational kernels from real applications. CG approx-

imates the smallest eigenvalue of a large sparse matrix

using the conjugate-gradient method. MG computes

the solution of a 3-D Poisson equation, using a V-cycle

multigrid method. FT computes a 3-D Fast Fourier

Transform. All codes are iterative and repeat the same

parallel computation for a number of iterations corre-

sponding to time steps. The specific implementations

of the NAS benchmarks are well-tuned to exploit the

characteristics of the memory system of the SGI Ori-

gin2000 and exhibit satisfactory scalability up to 32

processors [19].

The OpenMP implementations of the NAS bench-

marks are optimized to achieve good data locality with

the first-touch page placement scheme [25]. First-touch

places each virtual memory page in the same node with

the processor that reads or writes the page first during

the course of execution. First-touch is the default page

placement scheme used in IRIX. The NAS benchmarks

conform to first-touch, by executing a cold-start iter-

ation of the complete parallel computation before the

main time-stepping loop. The calculations of the cold-

start iteration are discarded, but the executed parallel

regions perform an implicit distribution of pages on a

first-touch basis.

We conducted the following experiment to assess the

impact of different page placement schemes. Assum-

ing that first-touch is the best page placement strategy

for the benchmarks, we ran the codes using three alter-

native page placement schemes, namely round-robin,

random and worst-case page placement.

Round-robin page placement can be activated by set-

ting the DSM PLACEMENT variable of the IRIX run-

time environment. To emulate random page placement,

we utilized the user-level page placement and migra-

tion capabilities of IRIX [32]. IRIX enables the user

to virtualize the physical memory of the system and

use a namespace for placing virtual memory pages to

specific nodes. The namespace is composed of entities

called Memory Locality Domains (MLDs). A MLD

is the abstract representation of the physical memory

of a node in the system. The user can associate an

MLD with each node and place or migrate pages be-

tween MLDs, to implement application-specific mem-

ory management schemes.

Random page placement is emulated as follows. Be-

fore executing the cold-start iteration, we invalidate the

pages of the shared arrays used in the benchmarks by

calling mprotect()4 with the PROT NONE parame-

4mprotect is the UNIX system call for controlling access rights

to memory pages.

148 D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP

ter. We install a SIGSEGV signal handler to override

the default handling of memory access violations in

IRIX. Upon receiving a segmentation violation fault for

a page, the handler maps the page to a randomly se-

lected node, using the corresponding MLD as a handle.

The NAS benchmarks with which we experimented

have resident set sizes in the order of a few thousand

pages,5 therefore a simple random generator is suffi-

cient to produce a well balanced distribution of pages.

The worst-case page placement is emulated by en-

abling first-touch and forcing the cold-start iteration of

the parallel computation to run on one processor. With

this modification, the virtual pages of the arrays ac-

cessed during the parallel computation are placed on

a single node. This placement maximizes the num-

ber of remote memory accesses. Assuming a uniform

distribution of secondary cache misses among proces-

sors and a system with n nodes, a fraction of sec-

ondary cache misses equal to n−1

n
is satisfied from re-

mote memory modules. For a system with 8 nodes this

amounts to 87.5% of the memory accesses and for a

system with 16 nodes to 93.75% of the memory ac-

cesses. A second important, albeit implicit, effect of

placing all pages on one node is the exacerbation of

contention. All processors except the ones on the node

that hosts the data contend to access the memory mod-

ules of a single node throughout the execution of the

program.

Note that the worst-case page placement described

previously is not totally unrealistic. On the contrary,

it corresponds to the allocation performed by a buddy

system, which places pages with a best-fit strategy on

nodes with sufficient free memory resources. Some

compilers use this memory allocation scheme.

The IRIX kernel includes a competitive page migra-

tion engine which can be activated on a per-programba-

sis [22] by setting the DSM MIGRATION environment

variable. We use this option in the experiments and

compare the results obtained with and without the IRIX

page migration engine. This is done primarily to inves-

tigate if the IRIX page migration engine is capable of

improving the performance of page placement schemes

which are inferior to first-touch. The implementation

of page migration in IRIX follows closely the design

presented in [34] for the Stanford FLASH multipro-

cessor. Each physical memory frame is equipped with

a set of 11-bit hardware counters. Each set of coun-

ters contains one counter per node and some additional

5We used the class A problem sizes in the experiments.

logic to compare counters. The counters track the num-

ber of accesses from each node to each frame in mem-

ory. The additional circuitry detects when the number

of accesses from a remote node exceeds the number

of accesses from the node that hosts the page by more

than a predefined threshold. In that case, the hardware

counters deliver an interrupt to a local processor. The

interrupt handler runs a page migration policy, which

evaluates if migrating the page that caused the interrupt

satisfies a set of resource management constraints. If

the constraints are satisfied the page is migrated to the

more frequently accessing node and the TLB entries

of processors holding mappings of the page are invali-

dated with interprocessor interrupts. After moving the

page, the operating system updates its internal map-

pings of the page. The valid TLB entries are reloaded

upon TLB misses by the processors that reference the

page after the migration.

3.2. Results

Figures 1 and 2 show the execution times of the

OpenMP implementations of the NAS benchmarks on

16 and 32 idle processors of an SGI Origin2000, with

different page placement strategies. The system on

which we experimented has 64 MIPS R10000 proces-

sors with a clock frequency of 250 Mhz, 32 Kbytes

of split L1 cache per processor, 4 Mbytes of unified

L2 cache per processor and 8 Gbytes of uniformly dis-

tributed DRAM memory.

Each bar in the charts is the average of three indepen-

dent experiments. Execution times are in seconds. The

black bars illustrate the execution time with different

page placement schemes, labeled ft-, rr-, rand-

and wc-, for first-touch, round-robin, random, and

worst-case page placement respectively. The gray bars

illustrate the execution time with the same page place-

ment schemes and the IRIX page migration engine en-

abled during the execution of the benchmarks (labeled

ft-IRIXmig, rr-IRIXmig, rand-IRIXmig and

wc-IRIXmig). The straight line in the charts shows

the performance of the native first-touch page place-

ment mechanism of IRIX. The purpose of the experi-

ment is merely to show the impact of data placement on

performance. For the sake of completeness, we men-

tion that the parallel efficiency (speedup divided by the

number of processors) of the OpenMPimplementations

of the NAS benchmarks is equal to or greater than 68%

on 16 and 32 processors, with the exception of MG

which has an efficiency of slightly less than 40%.

D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP 151

Table 2

Minimum, maximum and average slowdown (percentage) of different page place-

ment strategies, compared to first-touch

Strategy 16 procs. 32 procs.

min. max. avg. min. max. avg.

round-robin 7.6 34.6 19.4 −4.8 48.6 25.0

random 2.4 45.4 22.6 −1.3 74.5 28.4

worst-case 23.7 147.5 70.2 62.4 110.9 81.3

round-robin + IRIX mig. 5.0 27.5 17.2 1.6 33.7 23.7

random + IRIX mig. 5.0 27.5 17.2 1.6 33.7 23.6

worst-case + IRIX mig. 17.5 87.2 47.3 38.9 66.6 57.3

The primary observation from the results is that using

a page placement scheme other than first-touch does

have an impact on performance, although the mag-

nitude of this impact is non-uniform across different

benchmarks and page placement schemes. The worst-

case page placement incurs a significant slowdown,

ranging from 50% to 148% on 16 processors and from

62% to 110% on 32 processors. The only exception is

BT on 16 processors, where the slowdown is modest

(24%). The average slowdown of the worst-case page

placement is 70% on 16 processors and 81% on 32 pro-

cessors (see Table 2). On the other hand, round-robin

and random page placement have in most cases only a

modest impact on performance. Round-robin incurs lit-

tle slowdown in SP and CG (8% and 11% respectively)

and modest slowdown in the rest of the benchmarks

(22%–35%) on 16 processors. On 32 processors, CG

enjoys a speedup of 5% with round-robin page place-

ment, while the other benchmarks are slowed down

modestly by 25% on average. Random page place-

ment incurs almost no slowdown in BT and SP (2% and

12% respectively), modest slowdown in CG and MG

(26% and 27%) and significant slowdown only in FT

(45%) on 16 processors. On 32 processors, BT gains

a speedup of 1.3% with random page placement, MG

and SP have little slowdown (7% and 16%), while CG

and FT are slowed down by more than 45%.

In general, balanced page placement schemes such

as round-robin and random placement appear to affect

modestly the performance of the benchmarks. This is

attributed to the low ratio of remote to local memory

access latency of the Origin2000. This important ar-

chitectural property of the Origin2000 shows up in the

experiments. A second reason is that balanced distribu-

tions of pages are highly effective in distributing evenly

the message traffic incurred from remote memory ac-

cesses in the interconnection network. The experiments

indicate that alleviating contention at the network inter-

faces appears to be a performance factor of increasing

importance on modern NUMA architectures.

The use of the IRIX page migration engine has a

negligible impact on performance with first-touch page

placement. Activating dynamic page migration in the

IRIX kernel provides only marginal speedups of 3%

for CG and less than 2% for BT, SP and MG on 16

processors. On 32 processors, CG and FT are slowed
down, while BT, SP and MG increase their execution

speed by 9% to 15%. Page migration is harmful for

FT because it introduces false-sharing at the page level.

With the other three page placement schemes, dynamic

page migration generally improves performance with

a few exceptions (BT with random page placement
and CG with round-robin page placement). In three

cases, BT with round-robin and SP with round-robin

and random placement, the IRIX page migration en-

gine is able to approximate very closely or even exceed

slightly the performance of first-touch. Notice how-

ever that these are the cases in which the non-optimal
static page placement schemes perform competitively

to first-touch. Dynamic page migration from the IRIX

kernel is unable to close the performance gap between

first-touch and the other page placement schemes in

the cases in which the difference is significant (more

than 20%). Round-robin, random and worst-case page
placement still incur a sizeable average slowdown (see

Table 2).

To summarize, the page placement strategy can

be harmful for programs parallelized with OpenMP.

However, any reasonably balanced placement of pages

makes the performance impact of mediocre memory
access locality modest. In our experiments, this is pos-

sible due to the aggressive hardware and software opti-

mizations of the Origin2000, which reduce the remote

to local memory access latency ratio. It is also en-

abled by the reduction of contention achieved by bal-

anced page placement schemes. The trends observed in
the experiments are likely to hold for next-generation

NUMA architectures, which include built-in hardware

mechanisms for reducing both the number and the cost

of remote memory accesses [11,14,26]. The impact of

page placement would be more significant on NUMA

152 D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP

architectures with higher remote memory access laten-

cies. It would be more significant also on truly large-

scale NUMA systems (e.g. with more than 128 proces-

sors), in which some remote memory accesses would

have to cross more than 5 interconnection network hops

to reach the destination node. Unfortunately, access to

a system of that scale was not possible for our experi-

ments.

4. Using dynamic page migration in place of data

distribution

The position of this paper is that dynamic page mi-

gration can transparently alleviate the problems intro-

duced from poor page placement in OpenMP. We in-

vestigate the possibility of using dynamic page migra-

tion as a substitute for data distribution and redistribu-

tion in OpenMP programs. Intuitively, this approach

has the advantages of transparency and seamless inte-

gration with OpenMP, because dynamic page migra-

tion is a runtime technique and the associated mecha-

nisms are hidden in system software. The question that

remains to be answered is how can page migration em-

ulate or approximate the functionality of a manual data

distribution tool and if this is feasible, what is the level

of performance achieved by a runtime data distribution

mechanism based on dynamic page migration.

4.1. User-level dynamic page migration

We have developed a runtime system called UPMlib

(user-level page migration library), which injects a dy-

namic page migration engine into OpenMP programs,

through instrumentation performed by the compiler.

The entire runtime system is implemented at user-level,

using the IRIX memory management control interface

(mmci) [32].

The hardware counters attached to the physical mem-

ory frames of the Origin2000 can be accessed with the

/proc interface. At the same time, MLDs enable the

migration of ranges of the virtual address space be-

tween nodes. These two services enable a straightfor-

ward implementation of a runtime system which acts

in place of the operating system memory manager in

a local scope. The only subtle detail is that the page

migration service offered at user-level is subject to the

resource management constraints of the operating sys-

tem. Simply put, a page migration requested at user-

level may be rejected by the operating system, due to

shortage of free memory in the target node. IRIX uses a

best-effort strategy in this case and forwards the page to

a node as physically close as possible to the target node.

This restriction is necessary to ensure the stability of

the system in the presence of multiple users competing

for memory resources. Implementation details of our

runtime system are given elsewhere [28].

Our earlier work on page migration identified the

limited effectiveness of previously proposed kernel-

level page migration engines, as a problem of poor

timeliness and accuracy [27]. A dynamic page migra-

tion policy should migrate pages early enough to re-

duce the rate of remote memory accesses and at the

same time, amortize effectively the high cost of coher-

ent page movements. Furthermore, the page migration

decisions should be based on accurate page reference

information and not biased by transient effects in the

parallel computation. If page migration is to be used as

a means for data distribution, timeliness and accuracy

are paramount.

We have shown that a technique for accurate and

effective dynamic page migration stems from exploit-

ing the iterative structure of most parallel codes [27].

If the code repeats the same parallel computation for

a number of iterations, the page migration engine can

record the exact reference trace of the program as re-

flected in the hardware counters after the end of the

first iteration and use this trace to make optimal de-

cisions for migrating pages in subsequent iterations.

This strategy works extremely well in codes with fairly

coarse granularity and access pattern. The infrastruc-

ture requires limited support by the compiler, to iden-

tify areas of the virtual address space which are likely

to concentrate remote memory accesses and instrument

the program with invocations of the page migration en-

gine. The compiler identifies as hot memory areas the

shared arrays which are both read and written in dis-

joint sets of OpenMP PARALLEL DO and PARALLEL

SECTIONS constructs.

4.2. Emulating data distribution

In this section we show how recording reference

traces at well-defined execution points can be applied

in a page migration engine to approximate accurately

and timely the functionality of manual data distribution

in iterative parallel codes.

The mechanism for emulating data distribution is

straightforward to implement. Assume any initial

placement of pages. The runtime system records the

memory reference trace of the parallel program after

the execution of the first iteration. This trace indicates

D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP 153

accurately which processor accesses each page more

frequently during the complete parallel computation,

while the structure of the program ensures that the same

reference trace will be repeated throughout the execu-

tion lifetime, unless the operating system intervenes

and preempts or migrates threads.6 The trace of the first

iteration can be used to migrate each page to the node

that minimizes the maximum latency due to remote

memory accesses to the page, by applying a competi-

tive migration criterion after the execution of the first

iteration [27]. Page migration is used in place of static

data distribution with a hysteresis of one iteration. The

page migrations required are performed early and their

cost is amortized well over the entire execution life-

time. The fundamental difference from an explicit data

distribution tool, is that data placement is performed

with implicit information encapsulated in the runtime

system, rather than with explicit information provided

by the programmer.

In the actual implementation, the page migration

mechanism is invoked not only in the first, but also in

subsequent iterations, as soon as the migration crite-

rion detects pages to migrate. The mechanism is self-

deactivated the first time it detects that no further mi-

grations are required. In practice, this happens usually

in the second iteration. However, there are some cases

in which page-level false sharing might incur exces-

sive page migrations. This is circumvented by freezing

the pages that bounce between two or more nodes in

consecutive iterations.

Figure 3 provides an example of using the pre-

viously described mechanism in NAS BT. Calls to

the page migration runtime system are prefixed by

upmlib . The OpenMP compiler identifies three ar-

rays (u,rhs and forcing) as hot memory areas and

activates page reference monitoring for these areas by

invoking the upmlib memrefcnt() function. After

the execution of the first iteration, the program calls

upmlib migrate memory(), which scans the ref-

erence counters of pages that belong to hot memory ar-

eas, applies a competitive page migration criterion for

each page and migrates those pages that concentrate

enough remote accesses to satisfy the criterion. The

variable num migrations stores the number of mi-

grations executed by the mechanism in the last invoca-

tion of upmlib migrate memory() and deactivates

the mechanism when set to 0.

6This case is not considered in this paper. The reader can refer

to [29] for a treatment of the related issues.

...

call upmlib_init()

call upmlib_memrefcnt(u, size)

call upmlib_memrefcnt(rhs,size)

call upmlib_memrefcnt(forcing,size)

...

do step=1,niter

call compute_rhs

call x_solve

call y_solve

call z_solve

call add

if ((step .eq. 1) .or.

(num_migrations .gt. 0)) then

call upmlib_migrate_memory()

endif

enddo

...

call upmlib_end()

Fig. 3. Using page migration for data distribution in NAS BT.

4.3. Emulating data redistribution

Emulating data redistribution with dynamic page mi-

gration is more elaborate. Data redistribution is re-

quired when a phase change in the memory reference

pattern distorts the memory access locality established

by the initial page placement scheme. Data redistribu-

tion needs some additional compiler support to iden-

tify phases. A simple definition of a phase, which also

conforms well to the OpenMP programming paradigm,

is a sequence of code blocks with a uniform interpro-

cessor communication pattern. Not all communication

patterns are recognizable by a compiler. However, sim-

ple cases like one-to-one or nearest neighbor can be

relatively easily identified.

We use a technique called record-replay, in order to

engage our page migration engine as a substitute for

data redistribution. The compiler instruments the pro-

gram to record the page reference counters at points of

execution where phase transitions occur. The recording

is performed during the first iteration of the parallel pro-

gram. After the recording procedure is completed, each

phase is associated with two sets of hardware counters,

one recorded before the beginning of the phase and one

before the transition to the next phase.

For each page in the hot memory areas, the runtime

system obtains the reference trace during the phase in

isolation, by comparing the values of the counters in

the two recorded sets corresponding to the phase. The

runtime system applies the competitive page migration

criterion using the isolated reference trace of the phase

and decides what pages should be moved before the

154 D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP

transition to the phase, in order to improve memory

access locality during the phase. Page migrations iden-

tified with this procedure are replayed in subsequent

iterations. Each migration is replayed before the phase

during which the associated page satisfied the competi-

tive criterion in the first iteration. The recording proce-

dure is not used for the transition from the last phase of

the first iteration to the first phase of the second itera-

tion. In this case, the runtime system simply undoes all

page migrations performed across phases and recovers

the initial page placement.

More formally, assume that a program has n hot

pages, pi, i = 1 . . . n. Assume also that one itera-

tion of the program has k distinct phases. There are

k − 1 phase transition points, j = 1 . . . k − 1. The

runtime system is invoked at every transition point and

records for each page a vector of page reference coun-

ters Vi,j , ∀i, j, i = 1 . . . n, j = 1 . . . k − 1. After the

execution of the first iteration, the runtime system com-

putes the difference Ui,j = Vi,j −Vi,j−1∀i, j, i = 1 . . .

n, j = 2 . . . k − 1. The runtime system applies the

competitive migration criterion using the values of the

counters stored in Ui,j . If the counters in Ui,j satisfy

the criterion, pi is migrated in every subsequent itera-

tion at phase transition point j − 1. For each page p i

that migrates at a phase transition point for the first time

during an iteration, the home node of the page before

the migration is recorded, in order to migrate the page

back to it at the beginning of the next iteration.

The record-replay mechanism is accurate in the sense

that page migration decisions are based on complete in-

formation on the reference trace of the program. How-

ever, the mechanism is sensitive to the overhead of page

migration. In the record-replay mechanism, page mi-

grations must be performed on the critical path. Let

Tnom,j be the execution time of a phase j without

page migration before the transition to the phase and

Tm,j the execution of the same phase with the record-

replay mechanism enabled. Let Om,j be the over-

head of page migrations performed before the transi-

tion to phase j by the record-replay mechanism. It

is expected that Tm,j < Tnom,j due to the reduction

of remote memory accesses with page migration. The

record-replay mechanism should satisfy the condition
∑k

j=1
(Tm,j + Om,j) <

∑k

j=1
Tnom,j . In practice,

this means that each phase should be computationally

coarse enough to balance the cost of migrating pages

with the earnings from reducing memory latency.

To limit the cost of page migrations in the record-

replay mechanism, we use an environment variable

which instructs the mechanism to move only the N most

critical pages in each iteration, where N is a tunable

parameter. The N most critical pages are determined

as follows: the pages are sorted in descending order

according to the ratio raccmax

lacc
, where lacc is the num-

ber of accesses from the node that hosts the page and

raccmax is the maximum number of remote accesses

from any of the other nodes. The pages that satisfy the

inequality raccmax

lacc
> thr, where thr is a predefined

threshold, are considered as eligible for migration. Let

M be the number of these pages. If M > N , the

N pages with the highest ratios raccmax

lacc
are migrated.

Otherwise, the M candidate pages are migrated.

Figure 4 provides an example of using the record-

replay mechanism in conjunction with the mechanism

described in Section 4.2 in NAS BT. BT has a phase

change at z solve, due to the initial alignment of

arrays in memory, which is performed to improve

access locality along the x and y directions. Af-

ter the first iteration, upmlib migrate memory()

is called to approximate the best initial data distribu-

tion scheme. In the second iteration, the program in-

vokes upmlib record() before and after the execu-

tion of z solve. The function upmlib compare

counters() is used to identify the reference trace

of the phase and the pages that should migrate before

the transition to the phase. These migrations are re-

played by calling upmlib replay() in subsequent

iterations. The functionupmlib undo() performs the

replayed page migrations in the opposite direction.

5. Experimental results

We repeated the experiments presented in Section 3,

after instrumenting the NAS benchmarks to use the

page migration mechanisms of our runtime system.

This section analyzes the results.

5.1. Performance of the iterative mechanism

In the first set of experiments presented in this sec-

tion, we evaluate the ability of our page migration en-

gine to relocate pages early in the execution of the pro-

gram, in order to approximate the existentially optimal

initial data distribution scheme. Figures 5 and 6 repeat

the results of Figs 1 and 2 and in addition, illustrate the

performance of the iterative page migration mechanism

of our runtime system with four different page place-

ment schemes (labeledft-upmlib, rr-upmlib,

rand-upmlib and wc-upmlib).

D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP 155

...

call upmlib_init()

call upmlib_memrefcnt(u, size)

call upmlib_memrefcnt(rhs,size)

call upmlib_memrefcnt(forcing,size)

...

do step=1,niter

call compute_rhs

call x_solve

call y_solve

if (step .eq. 2) then

call upmlib_record()

else if (step .gt. 2) then

call upmlib_replay()

endif

call z_solve

if (step .eq. 1) then

call upmlib_migrate_memory()

else if (step .eq. 2) then

call upmlib_record()

call upmlib_compare_counters()

else

call upmlib_undo()

endif

enddo

...

call upmlib_end()

Fig. 4. Using the record-replay mechanism for data redistribution in NAS BT.

A first observation is that when first-touch is used,

in all cases expect CG, user-level page migration pro-

vides sizeable reductions in execution time. The per-

formance improvements range from 4% to 30% and

average 9% on 16 processors and 17% on 32 proces-

sors. For the purposes of this paper, we consider this

result as a second-order effect, attributed to the sub-

optimal placement of several pages by first-touch. We

note however that this is probably the first experiment

on a real system that shows meaningful performance

improvements from the use of dynamic page migration.

The outcome of interest from the results in Figs 5

and 6 is that with non-optimal page placement schemes,

the slowdown compared to first-touch is almost imper-

ceptible. When the page migration engine of our run-

time system is enabled, this slowdown is on average

3.5% for round-robin, 4.5% for random and 12% for

worst-case page placement. Compared to the exper-

iments presented in Section 3, the average slowdown

of non-optimal page placement schemes is reduced by

at least a factor of two and in some cases by as much

as a factor of 8. There are also cases (e.g., SP and

MG on 32 processors) in which the worst-case page

placement combined with our page migration engine

performs considerably better than first-touch.

Table 3 provides some additional statistics collected

by manually inserting event counters in the runtime

system. The second, third and fourth columns of the

table report the slowdown of the benchmarks in the last

75% of the iterations of the main parallel computation

for round-robin, random and worst-case page place-

ment on 16 processors.7 This slowdown was always

measured less than 2.7%, while in most cases it was

less than 1%. The results indicate that the page migra-

tion engine achieves robust memory performance as an

iterative parallel computation evolves in time.

The fifth, sixth and seventh column of Table 3 show

the fraction of page migrations performed by our page

migration engine in the first iteration of the parallel

computation. In three out of five cases (CG, FT and

MG), all page migrations are performed in the first iter-

ation. In the case of BT and SP, some page-level false

sharing forces page migrations in the second and third

iterations. However, at least 78% of the migrations are

performed in the first iteration. This result verifies that

the page migration activity is concentrated at the begin-

7The fraction 75% was somewhat arbitrarily selected, because MG

has only 4 iterations. The number of iterations for BT,CG,FT and SP

are 200,400,6 and 15 respectively.

158 D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP

Table 3

Statistics from the execution of the NAS benchmarks with different page placement schemes and

our page migration engine

Benchmark % slowdown in the last % of migrations in the

75% of the iterations first iteration

round-robin random worst-case round-robin random worst case

BT 0.3 0.2 0.9 87 82 93

CG 1.1 1.0 2.7 100 100 100

FT 0.5 0.4 0.8 100 100 100

MG 0.5 0.6 0.5 100 100 100

SP 0.8 0.9 1.4 78 81 88

ft
-I

R
IX

ft
-I

R
IX

m
ig

ft
-u

p
m

li
b

ft
-r

e
c
re

p

0

20

40

60

80

100

ex
e

c
u

ti
o

n
 t

im
e

NAS BT, Class A, 16 processors

ft
-I

R
IX

ft
-I

R
IX

m
ig

ft
-u

p
m

lib

ft
-r

ec
re

p

0

50

100

ex
ec

u
ti

o
n

 t
im

e

NAS SP, Class A, 16 processors

Fig. 7. Performance of the record-replay mechanism in NAS BT and SP. Execution times are on 16 idle processors of an Origin2000.

ning of execution and the associated cost is amortized

well over the execution lifetime.

The conclusion from the results is that no matter

what the initial placement of data is, our page migra-

tion engine achieves practically the same level of per-

formance, which matches that of the theoretically best

data placement scheme. At least for the class of strictly

iterative parallel computations, our page migration en-

gine makes OpenMP programs immune to the initial

data placement scheme, or equivalently, relieves the

programmer from the task of manual data distribution.

5.2. Performance of the record-replay mechanism

We conducted a third set of experiments in which we

evaluated the record-replay mechanism. In these ex-

periments, we instrumented BT and SP to use record-

replay, in order to deal with the phase change in

z solve as shown in Fig. 4.

Figure 7 illustrates the performance of the record-

replay mechanism with first-touch page placement and
the page migration mechanism for data distribution en-

abled only in the first iteration. This scheme is labeled
ft-recrep. The striped part of the ft-recrep bar

shows the non-overlapped overhead of page migrations
performed by the record-replay mechanism. In these
experiments we set the number of critical pages to 20,

in order to limit the cost of replaying page migrations
at phase transition points. For the sake of comparison,

the figure shows also the execution time of BT and SP
with first-touch and the IRIX page migration engine,

as well as the execution time with our page migration
engine enabled only for data distribution.

The results show that the record-replay mechanism
achieves some speedup in the execution of useful com-
putation, marginal in the case of SP, up to 10% in the

case of BT. Unfortunately, the overhead of page migra-
tions performed by the record-replay mechanism out-

weighs this speedup. When looking at the charts, one

D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP 159
ft

-I
R

IX

ft
-I

R
IX

m
ig

ft
-u

p
m

li
b

ft
-r

e
c

re
p

0

100

200

300

400

ex
e

c
u

ti
o

n
 t

im
e

NAS BT, Class A, 16 processors

Fig. 8. Performance of the record-replay mechanism in the synthetic

experiment with NAS BT. Execution times are on 16 idle processors

of an Origin2000.

should bear in mind that the architectural characteris-

tics of the Origin2000 bias the results. More specifi-

cally, the low remote-to-local memory access latency

ratio and the high overhead of page migration due to

the maintenance of TLB coherence by the operating

system limit the gains from reducing the rate of remote

memory accesses.

In order to overcome the aforementioned implica-

tion, we attempted to synthetically scale BT and in-

crease the amount of computation performed in the

benchmark. The purpose was to enable the record-

replay mechanism to amortize the cost of page migra-

tions over a longer period of time. We did this mod-

ification without changing the memory access pattern

and the locality characteristics of the benchmark as fol-

lows: we enclosed each function that comprises the

main body of the parallel computation in a sequential

loop with 4 iterations. In this way, we were able to

increase the parallel execution time of z solve from

130 ms to approximately 520 ms on 16 processors.

What we expected to see in this experiment was a much

lower relative cost of page migration and some earn-

ings from activating the record-replay mechanism be-

tween phases. The results shown in Fig. 5.2 verify our

intuition. The overhead of page migration accounts

only for a very small fraction of execution time and

the reduction of remote memory accesses shows up. In

this experiment, the record-replay mechanism provides

a measurable improvement of 5% over the version of

the benchmark that uses page migration only for data

distribution.

6. Related work

The idea of dynamic page migration has been de-

veloped since the appearance of the first commercial

NUMA architectures more than a decade ago. Aside

from several theoretical foundations on the algorithmic

side of page migration [5,6], mechanisms for dynamic

page migration in the operating system have been im-

plemented on systems like the BBN Butterfly Plus and

the IBM RP3 [7,15]. These systems had no hardware

support for cache coherence and the cost of shared

memory accesses was determined solely by the location

of pages. Different schemes were investigated, such

as migrating a page on every remote write, migration

based on complete reference information, or migration

based on incomplete reference information collected by

the operating system. Applying fairly aggressive page

migration and replication strategies was a reasonable

choice, because the relative cost of page migrations

was not so high compared to the cost of memory ac-

cesses. The effectiveness of these dynamic page migra-

tion mechanisms varied considerably and was affected

significantly by architectural implications.

With the appearance of cache coherent NUMA mul-

tiprocessors, dynamic page migration became a harder

problem. On the ccNUMA architecture, accesses to

shared data are filtered from the caches and the mem-

ory performance of parallel programs depends heavily

on the cache hit ratio. In the first detailed study of

the related issues, Verghese et al. [34] have shown that

it is necessary to collect accurate page reference in-

formation in order to implement an effective dynamic

page migration scheme. Partial information like TLB

misses is insufficient, because it does not reflect the fre-

quency of accesses to pages. The same work proposed

a complete kernel-level implementation of a dynamic

page migration engine and evaluated it using accurate

machine-level simulation. The results have shown that

dynamic page migration can improve the response time

of programs with irregular memory access patterns, as

well as the throughput of a multiprogrammed ccNUMA

system running sequential jobs. The page migration

engine of the Origin2000 is largely based on this work,

although it has not been able to achieve the same level

of performance improvements [18,27]. It is important

to note that previous work investigated only the poten-

tial of dynamic page migration as a locality optimizer.

160 D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP

The context in which page migration is applied in our

work is entirely different.

This paper is among the first to conduct a compre-

hensive evaluation of static page placement schemes

on an actual ccNUMA multiprocessor. Such schemes

were investigated via simulation in [3,25]. The study of

Marchetti et al. [25] identified first-touch as an effective

solution for simple parallel codes. Bhuyan et al. [3]

have recently explored the impact of several page place-

ment schemes in conjunction with alternative intercon-

nection network switch designs, on the performance of

parallel programs running on ccNUMA multiproces-

sors. Their study is oriented towards identifying how

can better switch designs improve the performance of

suboptimal page placement schemes that incur con-

tention. The study provides also some useful insight

on the relative performance of three of the page place-

ment schemes evaluated in this paper, namely first-

touch, round-robin and buddy allocation. The quanti-

tative results of Bhuyan et al. agree with ours in the

sense that non-optimal page placement schemes per-

form quite close to first-touch, under certain architec-

tural circumstances. Some quantitative assessment of

page placement schemes appeared also in papers that

evaluated the performance of the SPLASH-2 bench-

marks on ccNUMA multiprocessors [16,18]. However,

these studies focused on analyzing the locality and load

balancing characteristics of the specific nodes.

The idea of recording shared-memory accesses and

use the recorded information to implement on-the-

fly optimizations was exploited in the tapes mecha-

nism [20]. This mechanism is designed for software

distributed shared-memory systems, in which all ac-

cesses to shared memory are handled in software. The

tapes mechanism is used as a tool to predict future con-

sistency protocol actions which are likely to require

communication between nodes. The domain in which

the recording mechanism is applied in this case is quite

different. However, both the tapes mechanism and the

record-replay mechanism presented in this paper ex-

ploit the iterative structure of parallel programs.

Data distribution is a widely and thoroughly stud-

ied concept in the context of data-parallel program-

ming languages like HPF. A direct comparison between

HPF and OpenMP is out of the scope of this paper, al-

though some comparative results can be inferred from

the performance of an existing HPF implementation of

the NAS benchmarks on the Origin2000 [12]. HPF is

very expressive with respect to data distribution and

providing a one-to-one correspondence between HPF

functionality and page migration mechanisms would be

rather unrealistic. What this paper emphasizes, is that

some data distribution capabilities which are critical for

sustaining high performance on NUMA multiproces-

sors can be implemented with dynamic page migration

mechanisms.

7. Conclusion

This paper raised a dilemma of whether manual data

distribution should be introduced in OpenMP or not.

The answer given to this dilemma by the experiments

presented in this paper is no. This position is supported

by two arguments. First, the hardware of state-of-the-
art NUMA multiprocessors is aggressively optimized to

reduce the remote-to-local memory access latency ra-

tio to a point where any reasonably balanced automatic

page placement scheme is expected to perform within a

small fraction off the optimum. This trend is expected
to persist in next-generation architectures, since all the

related research efforts attack the problem of reducing

the number of remote memory accesses. Second, in

cases in which the page placement scheme is a criti-

cal performance factor, system software mechanisms
like dynamic page migration can remedy the prob-

lem by relocating accurately and timely poorly placed

data at runtime. The synergy of architectural factors

and advances in system software enables plain shared-

memory programming models like OpenMP to main-
tain a competitive position against message-passing, by

preserving simplicity and portability.

Acknowledgments

This work was supported by the E.C. through

the TMR Contract No. ERBFMGECT-950062, the

Greek Secretariat of Research and Technology (con-
tract No. E.D.-99-566) and the Spanish Ministry of Ed-

ucation through projects No. TIC98-511 and TIC97-

1445CE. The experiments were conducted with re-

sources provided by the European Center for Paral-

lelism of Barcelona (CEPBA).

References

[1] BBN Advanced Computers, Inside the Butterfly Plus, Version

1.0, October 1987.

[2] J. Berthou and E. Fayolle, Defining the Best Parallelization

Strategy for a Diphasic Compressible Fluid Mechanics Code,

in: Proc. of the Second European Workshop on OpenMP

(EWOMP’2000), Edinburgh, Scotland, September 2000.

D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP 161

[3] L. Bhuyan, R. Iyer, H. Wang and A. Kumar, Impact of CC-

NUMA Memory Management Policies on the Application

Performance of Multistage Switching Networks, IEEE Trans-

actions on Parallel and Distributed Systems, 11(3) (March

2000), 230–246.

[4] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris,

C. Nelson and C. Offner, Extending OpenMP for NUMA
Machines. in: Proc. of the IEEE/ACM Supercomputing’2000:

High Performance Networking and Computing Conference

(SC’2000), Dallas, Texas, November 2000.

[5] D. Black, A. Gupta and W. Weber, Competitive Management

of Distributed Shared Memory. in: Proc. of the 34th IEEE

Computer Society International Conference (COMPCON’89) ,

San Francisco, California, February 1989, pp. 184–191.

[6] D. Black and D. Sleator, Competitive Algorithms for Repli-
cation and Migration Problems. Technical Report CMU-CS-

89-201, Department of Computer Science, Carnegie-Mellon

University, November 1989.

[7] W. Bolosky, R. Fitzgerald and M. Scott, Simple but Effective

Techniques for NUMA Memory Management. in: Proc. of

the 12th ACM Symposium on Operating System Principles

(SOSP’89), Litchfield Park, Arizona, December 1989, pp. 19–

31.
[8] R. Chandra, D. Chen, R. Cox, D. Maydan, N. Nedelijkovic and

J. Anderson, Data Distribution Support on Distributed Shared

Memory Multiprocessors. in: Proc. of the 1997 ACM Confer-

ence on Programming Languages Design and Implementation

(PLDI’97), Las Vegas, Nevada, June 1997, pp. 334–345.

[9] R. Chandra, S. Devine, A. Gupta and M. Rosenblum, Schedul-

ing and Page Migration for Multiprocessor Compute Servers.

in: Proc. of the 6th International Conference on Architectural

Support for Programming Languages and Operating Systems

(ASPLOS-VI), San Jose, California, October 1994, pp. 12–24.

[10] D. Culler, J. P. Singh and A. Gupta, Parallel Computer Archi-

tecture: A Hardware/Software Approach, Morgan Kaufman,

1998.

[11] B. Falsafi and D. Wood, Reactive NUMA: A Design for Uni-

fying S-COMA and CC-NUMA. in: Proc. of the 24th In-

ternational Symposium on Computer Architecture (ISCA’97),

Denver, Colorado, June 1997, pp. 229–240.

[12] M. Frumkin, H. Jin and J. Yan, Implementation of NAS Paral-

lel Benchmarks in High Performance FORTRAN, Technical

Report NAS-98-009, NASA Ames Research Center, Septem-

ber 1998.

[13] W. Gropp, A User’s View of OpenMP: The Good, The Bad

and the Ugly, in: Workshop on OpenMP Applications and

Tools (WOMPAT’2000), San Diego, California, July 2000.

[14] E. Hagersten and M. Koster, WildFire: A Scalable Path

for SMPs, in: Proc. of the 5th International Symposium

on High Performance Computer Architecture (HPCA-5), Or-

lando, Florida, January 1999, pp. 171–181.

[15] M. Holliday, Reference History, Page Size, and Migration

Daemons in Local/Remote Architectures, in: Proc. of the 3rd

International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS-III),

Boston, Massachusetts, April 1989, pp. 104–112.

[16] C. Holt, J. P. Singh and J. Hennessy, Application and Archi-

tectural Bottlenecks in Large-Scale Distributed Shared Mem-

ory Machines, in: Proc. of the 23rd International Symposium

on Computer Architecture (ISCA’96), Philadelphia, Pennsyl-

vania, June 1996, pp. 134–145.

[17] Y. Hu, H. Lu, A. Cox and W. Zwaenepoel, OpenMP on Net-
works of SMPs, in: Proc.of the 13th International Parallel

Processing Symposium and Symposium on Parallel and Dis-

tributed Processing (IPPS/SPDP’99), San Juan, Puerto Rico,

April 1999, pp. 302–310.

[18] D. Jiang and J.P. Singh, Scaling Application Performance on

a Cache-Coherent Multiprocessor, in: Proc. of the 26th In-

ternational Symposium on Computer Architecture (ISCA’99),

Atlanta, Georgia, May 1999, pp. 305–316.

[19] H. Jin, M. Frumkin and J. Yan, The OpenMP Implementation
of the NAS Parallel Benchmarks and its Performance, Techni-

cal Report NAS-99-011, NASA Ames Research Center, Oc-

tober 1999.

[20] P. Keleher, Tapeworm: High Level Abstractions of Shared

Accesses, in: Proc. of the 3rd USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI’99), New

Orleans, Louisiana, February 1999, pp. 201–214.

[21] D. Kuck, OpenMP: Past and Futures, in: Proc. of the Work-

shop on OpenMP Applications and Tools (WOMPAT’2000),

San Diego, California, July 2000.

[22] J. Laudon and D. Lenoski, The SGI Origin: A ccNUMA

Highly Scalable Server, in: Proceedings of the 24th Interna-

tional Symposium on Computer Architecture (ISCA’97), Den-

ver, Colorado, June 1997, pp. 241–251.

[23] J. Levesque, The Future of OpenMP on IBM SMP Sys-

tems, in: Proc. of the First European Workshop on OpenMP

(EWOMP’99), Lund, Sweden, October 1999, pp. 5–6.

[24] H. Lu, Y. Hu and W. Zwaenepoel, OpenMP on Networks of

Workstations. in: Proc. of the IEEE/ACM Supercomputing’98:

High Performance Networking and Computing Conference

(SC’98), Orlando, Florida, November 1998.

[25] M. Marchetti, L. Kontothanassis, R. Bianchini and M. Scott,

Using Simple Page Placement Schemes to Reduce the Cost of

Cache Fills in Coherent Shared-Memory Systems, in: Proc.

of the 9th IEEE International Parallel Processing Symposium

(IPPS’95), Santa Barbara, California, April 1995, pp. 380–

385.

[26] A. Moga and M. Dubois, The Effectiveness of SRAM Net-

work Caches in Clustered DSMs, in: Proc. of the 4th Interna-

tional Symposium on High Performance Computer Architec-

ture (HPCA-4), Las Vegas, Nevada, January 1998, pp. 103–
112.

[27] D. Nikolopoulos, T. Papatheodorou, C. Polychronopoulos,

J. Labarta and E. Ayguadé, A Case for User-Level Dynamic

Page Migration, in: Proc. of the 14th ACM International Con-

ference on Supercomputing (ICS’2000), Santa Fe, New Mex-

ico, May 2000, pp. 119–130.

[28] D. Nikolopoulos, T. Papatheodorou, C. Polychronopoulos,

J. Labarta and E. Ayguadé. UPMlib: A Runtime System for
Tuning the Memory Performance of OpenMP Programs on

Scalable Shared-Memory Multiprocessors, in: Proc. of the 5th

ACM Workshop on Languages, Compilers and Runtime Sys-

tems for Scalable Computers (LCR’2000), LNCS Vol. 1915,

Rochester, New York, May 2000, pp. 85–99.

[29] D. Nikolopoulos, T. Papatheodorou, C. Polychronopoulos,

J. Labarta and E. Ayguadé, User-Level Dynamic Page Mi-

gration for Multiprogrammed Shared-Memory Multiproces-
sors, in: Proc. of the 2000 International Conference on Paral-

lel Processing (ICPP’2000), Toronto, Canada, August 2000,

pp. 95–103.

[30] OpenMP Architecture Review Board, OpenMP Fortran Ap-

plication Programming Interface, Version 1.2, http://www.

openmp.org, November 2000.

[31] M. Resch and B. Sander, A Comparison of OpenMP and MPI

for the Parallel CFD Case, in: Proc. of the First European

Workshop on OpenMP, Lund, Sweden, October 1999.

162 D.S. Nikolopoulos et al. / A transparent runtime data distribution engine for OpenMP

[32] Silicon Graphics Inc., IRIX 6.5 Man Pages, http://techpubs.

sgi.com, November 1999.

[33] M. Snir, S. Otto, S. Huss-Lederman, D. Walker and J. Don-

garra, MPI: The Complete Reference, MIT Press, Cambridge,

Massachusetts, 1996.

[34] B. Verghese, S. Devine, A. Gupta and M. Rosenblum, Op-

erating System Support for Improving Data Locality on CC-

NUMA Compute Servers, in: Proc. of the 7th International

Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS-VII), Cambridge,

Massachusetts, October 1996, pp. 279–289.

[35] M. Wolfe, High Performance Compilers for Parallel Comput-

ing, Addison-Wesley, Redwood City, California, 1996.

D
.S

.
N

ik
o

lo
p

o
u

lo
s

et
al.

/
A

tran
sp

aren
t

ru
n

tim
e

d
ata

d
istrib

u
tio

n
en

g
in

e
fo

r
O

p
en

M
P

1
4

9

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

0

5
0

1
0
0

execution time

N
A

S
 B

T
, C

la
s

s
 A

, 1
6

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

0

5
0

1
0
0

1
5
0

execution time

N
A

S
 S

P
, C

la
s

s
 A

, 1
6

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

1 2 3 4 5

execution time

N
A

S
 C

G
, C

la
s

s
 A

, 1
6

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

0 2 4 6 8

1
0

execution time

N
A

S
 F

T
, C

la
s
s
 A

, 1
6
 p

ro
c
e
s
s
o

rs

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

0 5

1
0

1
5

execution time

N
A

S
 M

G
, C

la
s
s
 A

, 1
6
 p

ro
c
e
s
s
o

rs

F
ig

.
1

.
Im

p
act

o
f

p
ag

e
p

lacem
en

t
o

n
th

e
p

erfo
rm

an
ce

o
f

th
e

O
p

en
M

P
im

p
lem

en
tatio

n
s

o
f

th
e

N
A

S
b

en
ch

m
ark

s,
ex

ecu
ted

o
n

1
6

id
le

p
ro

cesso
rs

o
f

an
O

rig
in

2
0

0
0

.

1
5

0
D

.S
.
N

ik
o

lo
p

o
u

lo
s

et
al.

/
A

tran
sp

aren
t

ru
n

tim
e

d
ata

d
istrib

u
tio

n
en

g
in

e
fo

r
O

p
en

M
P

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

0

2
0

4
0

6
0

8
0

execution time

N
A

S
 B

T
, C

la
s
s
 A

, 3
2
 p

ro
c
e
s
s
o

rs

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

0

5
0

1
0

0

execution time

N
A

S
 S

P
, C

la
s

s
 A

, 3
2

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

0 1 2 3

execution time

N
A

S
 C

G
, C

la
s

s
 A

, 3
2

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

0 2 4 6

execution time

N
A

S
 F

T
, C

la
s

s
 A

, 3
2

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

rr-IRIX

rr-IRIXmig

rand-IRIX

rand-IRIXmig

wc-IRIX

wc-IRIXmig

0 2 4 6

execution time

N
A

S
 M

G
, C

la
s

s
 A

, 3
2

 p
ro

c
e

s
s

o
rs

F
ig

.
2

.
Im

p
act

o
f

p
ag

e
p

lacem
en

t
o

n
th

e
p

erfo
rm

an
ce

o
f

th
e

O
p

en
M

P
im

p
lem

en
tatio

n
s

o
f

th
e

N
A

S
b

en
ch

m
ark

s,
ex

ecu
ted

o
n

3
2

id
le

p
ro

cesso
rs

o
f

an
O

rig
in

2
0

0
0

.

1
5

6
D

.S
.
N

ik
o

lo
p

o
u

lo
s

et
al.

/
A

tran
sp

aren
t

ru
n

tim
e

d
ata

d
istrib

u
tio

n
en

g
in

e
fo

r
O

p
en

M
P

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

0

5
0

1
0
0

execution time

N
A

S
 B

T
, C

la
s
s
 A

, 1
6
 p

ro
c
e
s
s
o

rs

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

0

5
0

1
0
0

1
5
0

execution time

N
A

S
 S

P
, C

la
s
s
 A

, 1
6
 p

ro
c
e
s
s
o

rs

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

1 2 3 4 5

execution time

N
A

S
 C

G
, C

la
s

s
 A

, 1
6

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

0 2 4 6 8

1
0

execution time

N
A

S
 F

T
, C

la
s

s
 A

, 1
6

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

0 5

1
0

1
5

execution time

N
A

S
 M

G
, C

la
s

s
 A

, 1
6

 p
ro

c
e

s
s

o
rs

F
ig

.
5

.
P

erfo
rm

an
ce

o
f

o
u

r
p

ag
e

m
ig

ratio
n

ru
n

tim
e

sy
stem

w
ith

d
ifferen

t
p

ag
e

p
lacem

en
t

sch
em

es
in

th
e

N
A

S
b

en
ch

m
ark

s,
ex

ecu
ted

o
n

1
6

id
le

p
ro

cesso
rs

o
f

an
O

rig
in

2
0

0
0

.

D
.S

.
N

ik
o

lo
p

o
u

lo
s

et
al.

/
A

tran
sp

aren
t

ru
n

tim
e

d
ata

d
istrib

u
tio

n
en

g
in

e
fo

r
O

p
en

M
P

1
5

7

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

0

2
0

4
0

6
0

8
0

execution time

N
A

S
 B

T
, C

la
s

s
 A

, 3
2

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

0

5
0

1
0
0

execution time

N
A

S
 S

P
, C

la
s
s
 A

, 3
2
 p

ro
c
e
s
s
o

rs

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

0 1 2 3

execution time

N
A

S
 C

G
, C

la
s

s
 A

, 3
2

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

0 2 4 6

execution time

N
A

S
 F

T
, C

la
s

s
 A

, 3
2

 p
ro

c
e

s
s

o
rs

ft-IRIX

ft-IRIXmig

ft-upmlib

rr-IRIX

rr-IRIXmig

rr-upmlib

rand-IRIX

rand-IRIXmig

rand-upmlib

wc-IRIX

wc-IRIXmig

wc-upmlib

0 2 4 6

execution time

N
A

S
 M

G
, C

la
s

s
 A

, 3
2

 p
ro

c
e

s
s

o
rs

F
ig

.
6

.
P

erfo
rm

an
ce

o
f

o
u

r
p

ag
e

m
ig

ratio
n

ru
n

tim
e

sy
stem

w
ith

d
ifferen

t
p

ag
e

p
lacem

en
t

sch
em

es
in

th
e

N
A

S
b

en
ch

m
ark

s,
ex

ecu
ted

o
n

3
2

id
le

p
ro

cesso
rs

o
f

an
O

rig
in

2
0

0
0

.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

