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Let f(0) be integrable on (0, 7) and define

T a+(1/2) B+(1/2)
%8 = b S J(0)PxB(cos §) <sin ﬁ-—) (cos i) dé
0

2 2

where P.*P)(z) is the Jacobi polynomial of degree 7, order (e, B)

and

Cnt+a+B+DIn+Mn+a+pB+1)
I'm+eae+DI'n+p+1)

Then if «, 3,7,0 = —1/2 we have

[t =

S 1agd o + 19 < A S [afe® [2(n + 1)
n=0 n=0

for 1 < p < o0, —1< o< p~—1 whenever the right hand side
is finite.

From this result any norm inequality for Fourier coefficients
can be transplanted to give a corresponding norm inequality
for Fourier-Jacobi coeflicients.

Let P/*B(x) be defined by (—1)"2"n!(1 — 2)*(1 + x)?P*F(x) =
(@/da){1 — x)"+*1 + «)***}, a,B8 > —1. The functions Pi*P(cosd)
are orthogonal on (0, ) with respect to the measure

2a-+1 28+1
<sin i) ¥ (cos -ﬁ—> ’ ag
2 2

Sn [Pi=P(cos 6)] (sin —g->2a+1 (cos %)wldﬂ

_ I'm+a+DI'n+B+1) = [t=F]
@n+a+B+1)n+a+B+DIn+1) BT

and

(1)

Observe that &P = An'* + O(n~"*) where A is a constant whose
numerical value is of no interest to us. For simplicity we set B2#(0) =
t2B PP (cos O)[sin (0/2)]*+®]cos (/2)]#**®, The functions {RIf(0)}r,
form a complete orthonormal sequence of functions on (0,7). Also
R;y%1%9) = Acosnf and RY>V*#) = Asin(n + 1)0.

If £(6)e LX0, =) we define its Fourier-Jacobi coefficients by

(2) as? = S”fw)R:’ﬁ(e)de :

We define 1?° to be the space of sequences {a,} such that ||a,ll,., =

393
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> Rk . . -
[Z la, |P(n + 1)"] is finite. Our main theorem follows.
n=0

THEOREM 1. Let a,8,7v,0 = —1/2 and f(8)e L0, 7). Let a%?
and al® be defined by (2). Then if 1 < p < oo, -1 <o <p—1and
if either ||a%f]l,,, or || al?ll,.. 1s finite so is the other and

(3) A = P/l ai . = A

where A 1s independent of f and thus of a®? and al®.

For ¢ = B, v = 0 this theorem was proved in [1]. The last sec-
tion of [1] gives two applications of this theorem. They can be carried
over word for word to Jacobi coefficients. If all of the formulas for
ultraspherical polynomials that were used in [1] were known for Jacobi
polynomials, the proof of Theorem 1 could be exactly the same as the
proof of the special case of it in [1]. While it is undoubtedly true
that the relevant facts stated in [1] do generalize they are at present
unknown., An example of such a fact is the following. Consider
Plod(x)Pie#(x). This is a polynomial of degree # -+ m and so

3

Pyt (@)Pii(n) = > a Pid(x) .

&
=3

If @ = B the conjecture is that a, = 0. This is true for @« = 8 and
was used in [1]. The limiting result a-—co is also true and is stated
in [4] as a result for Laguerre polynomials. For a = £ + 1 it was
proven in [6].

2. In this section we give various results that we need to prove
Theorem 1.
For 0 < 6 < m/2, « = —1/2, we have the following two inequalities

(4) | Pivé(cos 0) | = O(n"),

(5) [B¥(0)| =

a+(1/2) B+(1/2)
tef <sin -Z-) <cos %> P*f (cog )| < A.

See [7, (7.82.6)]. In (5) the power of cos#/2 can be changed at will
since cos #/2 is bounded away from zero for 0 < 6 < /2.

a

(6) dx

Poi(z) = %(n b+ B+ LPE(g)
See [7, (4.21.7)].
The asymptotic formula we need is an easy consequence of two

known results which we now state.
Ifa>—-1,Brealand 0 < <7 —¢, ¢>0, then
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<sin %)a (cos -Z—)ﬁ PP (cos 0)
(7)

— ~ar(n+a+1) 3 1/2
=N ——————————-——F(n Y (0/sin 6)2J (NO) + R, (9)

where N=un + (e + 8 + 1)/2 and

GPO(n%) nlt<gs T —¢

R,(6) =
®) {0““0(%“) 0<0<mnt,

J.(x) is the Bessel function of the first kind of order a. See [7, (8.
21.17)]. We also need a known asymptotic formula for J,(z).

e (x) = Acos (v — ar/2 — w/4)[L + O]

(8) + Asin (x — an/2 — zh[Az" + O@@?)], - oo .

See [7, (1.71.8)]. Combining (7), (8) and the asymptotic formula for
t%? we get

RE#(6) = A cos (N — ar/2 — w/4) + Asin (N — ax/2 — n/4)/(NG)

(9) 1O + O(N=6-%), 0<cin<ds 2.

PFinally we need a simple estimate for an integral.

(10) g” °°; Ydy = ON-), N co.

N

This follows on integrating by parts.

3. We assume that f(6) is smooth enough, say C* and vanishing
near 0 and =, so that the series 3, a,R>#(6) converges uniformly on
[0, 7]. These conditions are sufficient for a, = O(n~?), integrate by
parts twice, and |R»#(8)| £ A. We remove this condition after the

following argument.
aps =~§”f<6>R;»5<0>d0 =3 az’ﬂg”R:’ﬂ(mRz'ﬁ(mde = S apfR(k, 1) .
0 k=0 0 k=0

Since Pl»®(—x) = (—1)"P*(x), [7, (4. 1. 8)] it is sufficient to estimate
zf2

Sk, n) = S REAGORIA(0)dA. Also because we have made no assump-
]

tions about the relationships among «, 8, v, 8 it is sufficient to consider

the case k¥ = n. We do this in two stages, n <k < 2n and &k = 2n.

For n < k < 2n the method is the same as in [1]. We repeat it here

for convenience and because the other estimate is handled by a refine-

ment of this argument.
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s = ("= [

1/k

The first integral is O(k~') since R#(6) = O(1), see (5). In the second
integral we use (9),

R2P(0) = A cos <Nt9 ——%73 — iﬂ) 4 Asin(Nﬁ __a2_7r . %—)/Nﬁ

+ O(N ) + O(N-6)

to get
Sk, n) = A g://: cos <K0 - % — %) cos <N0 -~ _7_2?_ _ L) do
+ 2" sin (Ko ~ &% — Z)eos (o~ E - Z) D
" % ) o8 (0 &~ Z)sin(No - 22~ %9%0 + O(KY).

The first integral is A/(K — N) + O(K™), the second is

iq—log K
K K- N

+ O(K™),

the third is (A/N)log N/(K — N) + O(K") by a simple computation.
The details are in [1]. The one time this argument breaks down is
when K = N. In this case S(k, n) = OQ1) by (5).

Now we consider the case & > 2n. This time we need not be so
careful, i.e., all our estimates may be O estimates, but the details turn
out to be harder than in the above case. This probably isn’t neces-
sary but we have not found a simple proof of the following estimates.
There is one case, v = a + 2, 8 = §, in which it is possible to give
easy estimates as we will show later. But this is a very singular
case.

As before S(k,n) = Sllk + Sz: The first integral is O(K—) by (5).
4] 1

Next we show that in the second integral we may replace Rz(6) by
cos {Kb — (an/2) — (x/4)}. Using (9) we see it is sufficient to show that

12 (z/2 5+
7;{ S sin <K0 _anr _ E) P&(cos «9)(sin %)HUIZ)(cos %) " o-1g0

1/k 2 4
= O0(K™).

Integrating by parts and estimating we have
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nl? Sz/z ) R ANaAE g \5+a or T
——\ P{¥(cosd (sm —> (cos —-—-> 6~'d cos (Kﬁ - —>
K2 e ( ) 2 2 2 4

1/2 ]2 3/2 (=mf2
= 0(..73'__ P 0 0r—(1/2>>| [ " S ( _an )
K (COS ) " + O % cos | K6 —2 —4

(3/2 54-(3/2)
. Pt (eog 0)(sin —g—>7+ )(cos —g-> e 0—1dl9]
1/2 (/2 . @GN\
O<—n—-g cos <K0 _en f-)P,‘J’“ cos 0 (s —>
+ K? i © 2 4 ( ){sin 2

0 8+(3/2)
. (cos »2~> 0—1d0>

+ similar terms.

B

The integrated term is O(K~*) by (56). The second integral is
0<K~2S”’2 0~2d9) — O(K-Y).
1k

1jn

/2 1n
by (5). The first integral we write as S +S . Using (4) in S
1k in ik

1jn zi3

we have the bound (n¥*/K?®) S/ PN GH = O(KY. In S I we use
1/k 1/n

(9) to get

An_g““ coS (Kﬂ —ar %){cos <N0 — —721 — %)

K? Jin 2
+ Asn <N _ lzx— _ %> + O(N-Y) + O(N“Zﬂ“z)} 6-'do
Nbo
_ Ao: S”’z cos (K — N)§ 40 + O(K-Y)
K i/n 7

+ terms similar to the first.

(=[2)(k—n)

Changing variables we get S / (cos y/y)dy. Since k > 2n we have

—n

(k — n)/n = 1. Using (10) we get an estimate for the first term of the
form (An/K*{n/(K — n)} = O(K~). Thus it is sufficient to consider

ri2 {172} 8+4(172)
t;’sg cos (Kﬁ _an £)P}J*a’(cos (9)<sin i>r+ <cos —‘?—> e
1/k 2 4 2 2

1in z/2
As above we break this integral into two parts S + S . We treat

1/k i/n
the first of these first. Integrating by parts and estimating we have
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1n 18 (ln @ 7\ d
= (K™ LS < _____>__[ (7,8)
g”k () + B2 sin (K0 — L~ Z) L[ Proeos o)

! s
) (Sin i>r+<1 2><cos i) +<1/2)]d0
2 2

Using (6) and (4) we see that this integral is O(K ).

In our one remaining integral we may use (9). However to get
an estimate of the form O(K-') we must first integrate by parts.
Then we get

L (v 5 )|, sin (K0 — 22— Z)pys
n 1 Ko — %F _ T\ pusicos 0
ek ' T ) 2 1 (cos 9)

r—(1/2) 8+(3/2)
. <sin ﬁ>7 (cos i) ™ a6
2. 2

a/

7,8 2
b sin <K<9 _ar —7?—) Plribi+(eog )
ifn 2 4

-<sin %)me(cos %)5+(3/2)d0 + O(K-Y) (by (5)).

+ [%+7+5+1]S

For the first integral we have the estimate

o om0 =G = Pleos (0 - 5= )
0

+ A(NOY sin (N - %) + O(N-) + O(H—ZN—2)]<sin —2—>—ldﬁ]
- O[%S:ZSiLKﬂ‘_N_)‘Zdﬁ] + O(K)

by (9) and the fact that (1/sin §) — (1/8) is bounded. As above this
leads to the estimate O(n/K* + O(K ) = O(K™).

A simple computation shows that ¢I°* = A¢,7*[1 + O(n*)] so the
second integral may also be estimated by using (9). The estimate is

O(%Sﬁlz sin <Kl9 _JT %)[cos <N - ar _7£_>

i 2 2 1
_ar T

+ s <N — 2 4> +ON-Y + O(N—zﬁ—z)]cw)

oy ) o [ 0

+ similar terms + O(K-Y)

- o(ﬁ) + 0K = O(K-Y)



A TRANSPLANTATION THEOREM FOR JACOBI COEFFICIENTS 399

by the same type of arguments that have been used often above.
Combining all of the above estimates we see that

a,p
7,8 ay B8 A \ %

A 2n 2n
b el S el
1) * nk%zna’ gl w4 k%‘m K BlE-N

[ 5.

As in [1] all of the terms on the right are bounded operators in 177,
l1<p<e, —1<0o<p—1. Thus|ai?|,., < Al a%?|l,, which is (3).

Let ¢(6)eC* and vanish near 0 and 7 and let f(8)e LY0, 7).
Define their Fourier-Jacobi coefficients, b%* and a2? respectively, by
(2). Then

S b tard = S F(O)g(6)do = z pessgas
7n=0 0

=0

and thus {with (1/p) + (1/g) = 1}

10 o = [ £ 108 P + 1] = sup 5 0b* = sup 3% apibg
S sup || anf llow 1027 lggorn = Al aif |],.0
by (3). Here the sup is taken over the sequences b)® with
S b e+ 1) <1,

This completes the proof of Theorem 1.
There is a simple substitute in ' which follows easily from
(11).

THEOREM 2. Let «,B,7,0 be as in Theorem 1 and assume
St laxf [ log(n + 2) < . Then 3.|al?®| < oo where

ol = g”f(mRma) do
ol F(0) = S, azPREH(0).

The inequalities that are needed to prove Theorem 2 from (11)

are in [3], where this result was proven fora = 8 = —~1/2,v = 4§ = 1/2.
To be pedantic here we must be careful for unless a = —1/2, R{*#(0) = 0
and so f(6) = ¥, a»’R>f(0) must vanish at § = 0. Thus if « = —~1/2
we must assume f(0) = 0 and similarly for 6 = —1/2, § = 7, Theorem

2 is the one place where the above proof is an improvement over the
proof in [1] (even in the case « = 8, ¥ = 0) for using the proof in [1] we
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must add higher powers to the logarithm if « and v are far apart. Even
this can be done away with if we use Theorem 4 which follows in the
next section. However this problem would again arise if one tried to
prove Theorem 2 for Jacobi (not ultraspherical) coefficients by the
method in [1] by say holding £ fixed first and then varying it with
fixed a.

4. We conclude this paper with two simple theorems that hold
in I'. Since the details are easier we first give a theorem for Laguerre
coefficients and then finally we give the corresponding theorem for
Jacobi coefficients.

The Laguerre polynomial L2(x) is defined by

These functions satisfy

= L, R I'in+a+1)
& de = 2 T > ' /5 —
(12) SO L(x)Lo(x)x e~ *dax T+ D) wam s a> —1

Let f(x)e LY0, «) and define its Fourier-Laguerre coefficient by
(13) ag = t S‘” F@)Le(@)a e dz .

where

"= [r(g(:z Z Jlr) 1) ]w '

We need one more fact about these functions.

(14) Lev(o) = 3 La()
7=0
From this we see that
(15) Ly(x) = Lt (») — Liti(z) .

THEOREM 3. Let f(x)e LY0, ) and define af, az*? by (13). Then
if a >0,

(16) A [XarPT7[Xas PP = A
for 1< p< oo, If =1 <a<0 then (16) holds for 2/2 + a) < p <

—2/a.
Using (12) and (13) we see that
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aztt = txt? r S@)Let ()P o2 dy
0
= {5 é thas Sj @)Ly t(@)x e dw
= b2 :z:; teas S: Li(x) Lt (o) e—<da .
Then using (14) and (15) we have
ast? = 5 tsas Sj Li(x) JZ:) Lt (x)x* e dx
+ 5 5 tgag | [Le7e) - L@ £ Lse) [oereda

e, | — L)L @ da
0

= RG] + 657 ) el — (D]
— et P ann .
Thus
gt | S Al ag | a4 A S Okl af | + A gy |
< Alag| + A3 ag| (k) n + Alag,|.
Similarly one can show that
lai| < Alagtt + A 3 [z (kjn)n
Theorem 3 then follows from problem 346 in [5]. Actually there is
one application of Theorem 3 and surprisingly it is for « negative.

In a paper which will appear, Wainger and I prove the following
theorem.

THEOREM A. Let a =0, fe LX0, ) and define
: = | r@tLi@areids

Let t(x) be a bounded function which s of bounded wvariation on
(0, =), with S”|dt(x)a < C. Define

Taz = r t(x) fle)teLi(x)x e dzx .
0

Then this operator is bounded in [P, 4/3 < p < 4, 1.e.
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[S2] Taz P> < AC[S, | a 2]
where A is independent of f(x) and of &(x).

We used asymptotic estimates of Erdélyi which have only been
proven for @ = 0., See [2] where the dual result is proven. We can
now extend this result to o« = —1/2 by using Theorem 3. Similar
applications are given in [1] and we will not repeat the details here.

It would be interesting to extend Theorem 8 to get a theorem
which corresponds to Theorem 1. The estimates of Erdélyi are pro-
bably not sufficient to allow one to prove this but they can probably
be extended to give two terms plus an error and this might suffice.

The proof of the following theorem for Jacobi coefficients is ex-
actly the same as the proof of Theorem 3 but the coefficients are not
as simple so it looks more complicated.

THEOREM 4. Let f(6) € L' 0, ) and define a%?, a2*>f by (2). Then
if > —1/2, 8> —1, and iof either >, |ay?| or 3\ |as™f| converges
so does the other and

0< AT e S lar™? S A< e
with A independent of f.

a;t = Slf (O)R40) dO = 3, a S”Ri“’ﬁ(ﬁ)R;é”ﬁ(ﬁ)dﬁ
0 k=0 0
= et S apitps YP;““'ﬂ)(cos 0) P(cos 0)
k=0 0
2043 2841
-<sin —0-> " <cos i) ' do
2 2
= 2—a—ﬁ—2tz+z,ﬁ i aﬁ,"ﬁt’,}ﬁ Sl P,,(La+2,ﬁ)(m)P(a,ﬁ)(x)(1 _ x)a-i—l(l + x)ﬁdx
k=0 -1
n+1
= Qra=fiatni N qb Pt bRk, m) .
k=0

To estimate R(k, n) we use the following.

Pletibg) = I'(n + B8 +1)
" I'n +a+ 8 +2)

17 . .
a7 L @i+ a4+ B+ +a+8+1) pug
.Z - Pj (%),
j=0 r'g+g+1
Pleh(z) = n+a+B+1 Pl (z)
as) i 2n+a+pB+1 "

nt B Pltidy) .
2n+a+RB+1 "
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(18) follows from (17) and (17) is (4.5.3) in [7]. Using (17) and (18)
we see that

RUomy= 5 L+ B8+1D@+a+B+2AMG +a+f+2)
’ P+ a+B+3G+B+1)Ck+a+B+1)

.Kfﬁwmmk+a+B+DHWﬁm
— (k + APEFO@NL — )L + w)ida.

For 1 <k <n we have

Rk, n) =

I'n + 8+ 1) P%+a+6+%ﬂk+a+6+m

I'n+a+B+3)L I'k+ 8+ )2k +a+B+1)

jk+a+6+1)_@k+a+BW®+a+B+D%+Bq

[eg o Ik + B2k + a + B + L)tef P

_ I'n+B8+1)
I'n+a+ 8 +3)2 +a+F+1)
{Nk+a+mw+a+8+h__Nk+a+h®+8q

I'(k + 1) (k)

_ I'(m + B8+ DIk + a4+ 1)
I'm+a+B+38)2 +a+ B+ DIk + 1)
e+ a+ Dk 4+« + B8+ 1) — k(k + B)]

= O(n—""%") .

For k = 0, R(k, n) = O(n—"?%) follows easily from (17), (18) and (1).
For k =n + 1, R(k,n) = O(n™) also follows easily from these same
formulas. Thus we have

n+
la™f | = An~ 3 [ap | (kfn)<+
k=0

and

Slagti| < AS |ag?|
0 n=0

follows easily by interchanging the order of summation. The other
inequality follows by the same argument.
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