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A TRANSPLANTATION THEOREM FOR THE HANKEL
TRANSFORM ON THE HARDY SPACE
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Abstract. The transplantation operators for the Hankel transform are considered and
their boundedness on the real Hardy space is established. As its application, we obtain the
Hörmander-Mihlin type multiplier theorem for the Hankel transform on the real Hardy space.

1. Introduction. The Hankel transformHµf of orderµ of a functionf on the open
half line (0,∞) is defined by

Hµf (y) =
∫ ∞

0
f (t)

√
ytJµ(yt)dt , y > 0 ,

whereJµ is the Bessel function of the first kind of orderµ. The Bessel functions withµ =
−1/2 andµ = 1/2 are

J−1/2(z) =
√

2

πz
cosz , J1/2(z) =

√
2

πz
sinz

and the Hankel transformsH−1/2f andH1/2f are the cosine and sine transforms:

H−1/2f (y) =
√

2

π

∫ ∞

0
f (t) cosytdt , H1/2f (y) =

√
2

π

∫ ∞

0
f (t) sinytdt .

It is known that forµ ≥ −1/2, Hµ is an isometry onL2(0,∞) (Parseval’s theorem for the
Hankel transform) andHµHµ = I (The inversion formula for the Hankel transform), and

∫ ∞

0
f (x)g(x)dx =

∫ ∞

0
Hµf (x)Hµg(x)dx

for f, g ∈ L2(0,∞) (Plancherel’s theorem for the Hankel transform), whereI is the iden-
tity operator andL2(0,∞) is the Lebesgue space of functions on(0,∞) such that‖f ‖2 =
(
∫ ∞

0 |f (x)|2 dx)1/2 < ∞.
We shall consider the composite

T ν
µ = HµHν ,
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232 Y. KANJIN

which is an isometry onL2(0,∞) for µ, ν ≥ −1/2. For f ∈ L1(0,∞) with Hνf ∈
L1(0,∞), T ν

µ f has the integral representation

T ν
µ f (x) =

∫ ∞

0

∫ ∞

0
f (t)

√
ytJν(yt)dt

√
xyJµ(xy)dy , x > 0 .

We callT ν
µ the transplantation operator fromν to µ. The aim of this paper is to prove that

the transplantation operatorsT ν
µ are bounded on the real Hardy space. As an application, we

shall obtain the Hörmander-Mihlin type multiplier theorem for the Hankel transform on the
real Hardy space.

The main tools of our proofs are the atomic decomposition and the molecular character-
ization of the real Hardy space, and Schindler’s integral representation [13] ofT ν

µ . We recall
the representation here. LetTµ,ν be an operator defined by

Tµ,νf (x) = lim
δ→+0

∫
|x−y|>δ

f (y)Ĩµ,ν(x, y)dy + k(µ, ν)f (x) ,

k(µ, ν) = cos((µ− ν)π/2) ,
(1)

where

Ĩµ,ν (x, y)

= Kµ,ν
√
xy

(
y

x

)ν 1

x2 − y2
F

(
ν − µ

2
,
µ+ ν

2
; ν + 1; y

2

x2

)

= 2−1Kµ,ν

(
y

x

)ν+1/2( 1

x − y
+ 1

x + y

)
F

(
ν − µ

2
,
µ+ ν

2
; ν + 1; y

2

x2

)
,

Kµ,ν = 2Γ ((µ+ ν + 2)/2)

Γ (ν + 1)Γ ((µ− ν)/2)

(2)

for 0< y < x, and

Ĩµ,ν(x, y) = Ĩν,µ(y, x)

for y > x > 0. Here,F(α, β; γ ; z) is the hypergeometric function, that is,

F(α, β; γ ; z) =
∞∑
k=0

(α)k(β)k

(γ )kk! z
k , |z| < 1 ,

where(λ)0 = 1, (λ)k = λ(λ+1) · · · (λ+k−1), k ≥ 1. If µ = ν+2k andk = 0,1,2, . . . , then
Ĩµ,ν(x, y) = 0 for y > x > 0. If k = 0,−1,−2, . . . , thenĨµ,ν(x, y) = 0 for x > y > 0.
In these cases,̃Iµ,ν(x, y) have more elementary forms (see [13]). Schindler proved that if
µ, ν ≥ −1/2, then the following (A) and (B) hold:

(A) For f ∈ C∞
c (0,∞), T ν

µ f (x) = Tµ,νf (x) a.e. x > 0, whereC∞
c (0,∞) is the

space of infinitely differentiable functions of compact support in(0,∞);
(B) Let 1< p < ∞ and−1/p < α < 1 − 1/p. If

∫ ∞
0 |f (x)|pxαpdx < ∞, then the

valueTµ,νf (x) exists for a.e.x > 0, and∫ ∞

0
|Tµ,νf (x)|pxαpdx ≤ C

∫ ∞

0
|f (x)|pxαpdx ,
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with a constantC independent off .
Guy [6] proved that the operatorsT ν

µ , initially defined onL2(0,∞), are extendable to
bounded operators on theLp-spaces, 1< p < ∞, and this is the first of the transplantation
theorem for classical expansions. Schindler [13] showed a refined version of Guy’s result by
getting the explicit formula ofT ν

µ as we recalled above.
To consider the transplantation operatorsT ν

µ for the casep = 1 is our problem, and the
main result of this paper is that the operatorsT ν

µ are bounded on the real Hardy space, which
gives us the Hörmander-Mihlin type multiplier theorem for the Hankel transform on the real
Hardy space.

There are transplantation theorems for other orthogonal expansions. Askey and Wainger
[2] gave a transplantation theorem for the ultraspherical series, and Askey [1] generalized
their theorem to the Jacobi series. Some transplantation theorems are in Gilbert [5] and in
Muckenhoupt [12]. The Laguerre series case is in Kanjin [7]. Miyachi [10] and [11] quite
recently obtained a transplantation theorem for the Jacobi series in weighted Hardy spaces.

The author would like to thank the referee for careful reading of the paper and comments.

2. Results. Let H 1(R) be the real Hardy space, that is, the space of the boundary
functionsf (x) = 	F(x) of the real parts	F(z) of functionsF(z) in the Hardy space
H 1(R2+) = {F(z); analytic inR2+ and‖F‖H1(R2+) = supt>0

∫ ∞
−∞ |F(x + it)|dx < ∞} on

the upper half planeR2+ = {z = x + it ; t > 0}, with the norm‖f ‖H1(R) = ‖F‖H1(R2+).

We shall work on the spaceH 1(0,∞) defined by

H 1(0,∞) = {h|(0,∞) ; h ∈ H 1(R), supph ⊂ [0,∞)} ,
where[0,∞) is the closed half line, and we endow the space with the norm‖f ‖H1(0,∞) =
‖h‖H1(R), whereh ∈ H 1(R), supph ⊂ [0,∞) andf = h|(0,∞). We remark that

H 1(0,∞) = {h|(0,∞) ; h ∈ H 1(R), even}
andc1‖h‖H1(R) ≤ ‖f ‖H1(0,∞) ≤ c2‖h‖H1(R) with positive constantsc1 andc2, wheref =
h|(0,∞) andh ∈ H 1(R) is even. This fact is in [4, Chapter III, Lemma 7.40].

Our theorem is as follows:

THEOREM. (i) Let µ ≥ −1/2 and ν > −1/2. Then T ν
µ , initially defined on

H 1(0,∞) ∩ L2(0,∞), is uniquely extended to a bounded operator on H 1(0,∞), and if
we still denote it by T ν

µ , then

‖T ν
µ f ‖H1(0,∞) ≤ C‖f ‖H1(0,∞)

for f ∈ H 1(0,∞) with a constant C depending only on µ and ν.
(ii) Ifµ≥−1/2, then T −1/2

µ is uniquely extended to a bounded operator fromH 1(0,∞)

to L1(0,∞), that is,

‖T −1/2
µ f ‖L1(0,∞) ≤ C‖f ‖H1(0,∞)

for f ∈ H 1(0,∞) with a constant C depending only on µ and ν.
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234 Y. KANJIN

As an application of our theorem we deal with the Hörmander-Mihlin type multiplier
theorem for the Hankel transform. Letµ ≥ −1/2 andφ ∈ L∞(0,∞). We define a Hankel
multiplier operatorMµ

φ with multiplier φ by

Mµ
φf = Hµ(φHµ(f ))

for f ∈ L2(0,∞). SinceHµ is an isometry onL2(0,∞), the multiplier operatorMµ
φ is

a bounded operator onL2(0,∞) with the operator norm‖φ‖∞. We also define a Fourier
multiplier operatorMm with multiplierm ∈ L∞(R) by

Mmh = F−1(mF(h))

for h ∈ L2(R), whereF andF−1 are the Fourier transform and the inverse Fourier transform,
respectively:

F(h)(ξ) = 1√
2π

∫
R
h(x)e−ixξdx , F−1(g)(x) = 1√

2π

∫
R

g(ξ)eixξ dξ .

The Hörmander-Mihlin multiplier theorem forH 1(R) says that, ifm with ‖m‖L∞(R) ≤ A

satisfies the condition (
1

R

∫
R<|ξ |≤2R

∣∣∣∣dm(ξ)dξ

∣∣∣∣
2

dξ

)1/2

≤ AR−1(3)

for R > 0, whereA is independent ofR, then the Fourier multiplier operatorMm, initially
defined onH 1(R) ∩ L2(R), is uniquely extended to a bounded operator onH 1(R). If we still
denote it byMm, then‖Mmh‖H1(R) ≤ CA‖h‖H1(R) for h ∈ H 1(R) with C independent of
h andm (cf. [4, Chapter III, Theorem 7.30]). We may refer to [14, Chapter IV, §3, §6] and
[4, Chapter II, Theorem 6.3] for theLp-space case.

COROLLARY. Let µ ≥ −1/2. Suppose that φ with ‖φ‖L∞(0,∞) ≤ A satisfies the
condition (

1

R

∫
R<y≤2R

∣∣∣∣dφ(y)dy

∣∣∣∣
2

dy

)1/2

≤ AR−1(4)

for R > 0, where A is independent of R. Then the Hankel multiplier operator Mµ
φ , initially

defined onH 1(0,∞)∩L2(0,∞), is uniquely extended to a bounded operator fromH 1(0,∞)

to L1(0,∞). If we also denote it by Mµ
φ , then

‖Mµ
φf ‖L1(0,∞) ≤ CA‖f ‖H1(0,∞)

for f ∈ H 1(0,∞)with C independent of f and φ.

The corollary is deduced from the theorem as follows. Letφ ∈ L∞(0,∞) satisfy the
condition (4), and letf ∈ H 1(0,∞) ∩ C∞

c (0,∞). We extendφ andf to the functions on
R as even functions, and we denote them byφe andfe. Since the functionφe satisfies the
condition (3), the Fourier multiplier operatorMφe is a bounded operator onH 1(R). Since

H−1/2f (y) = Ffe(y), y > 0, we see thatMφefe(x) = M−1/2
φ f (x), x > 0. Further,
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Mφefe is an even function. Thus,M−1/2
φ has a unique bounded extension onH 1(0,∞). The

inequality‖g‖L1(0,∞) ≤ ‖g‖H1(0,∞) holds, and soM−1/2
φ is uniquely extended to a bounded

operator fromH 1(0,∞) to L1(0,∞). Let µ > −1/2. It follows from the theorem that
T µ

−1/2 is a bounded operator onH 1(0,∞) andT −1/2
µ is a bounded operator fromH 1(0,∞)

to L1(0,∞). Therefore, the identityMµ
φ = T −1/2

µ M−1/2
φ T µ

−1/2 on L2(0,∞) implies the
corollary.

REMARK. Let µ > −1/2. Assume thatMµ
φ is a bounded operator onH 1(0,∞).

Then,φ = 0 if we assume additionally thatφ satisfiesφ = H−1/2Φ for someΦ ∈ L1(0,∞).

For, we first note thatM1/2
φ is a bounded operator onH 1(0,∞) by the identityM1/2

φ =
T µ

1/2M
µ
φT

1/2
µ and the theorem. Letf ∈ H 1(0,∞)∩C∞

c (0,∞). SinceM1/2
φ f ∈ H 1(0,∞),

M1/2
φ f has the vanishing mean property:

∫ ∞

0
M1/2

φ f (x)dx = 0 .

We extendφ andΦ to the even functions onR, and denote them byφe andΦe. We note that
φe = FΦe. Further, we extendf to the odd function onR, which is denoted byfo. Since
−iH1/2f (y) = Ffo(y), y > 0, we see thatM1/2

φ f (x) = Mφefo(x), x > 0. The identity
Mφefo = Φe ∗ fo holds. Therefore, we have

0 =
∫ ∞

0

∫ ∞

−∞
Φe(y)fo(x − y)dydx

=
∫ ∞

−∞
Φe(y)

∫ ∞

0
fo(x − y)dxdy

=
∫ ∞

0
Φe(y)

∫ ∞

−y
fo(u)dudy +

∫ 0

−∞
Φe(y)

∫ ∞

−y
fo(u)dudy

= −2
∫ ∞

0
Φ(y)

∫ y

0
f (u)dudy = −2

∫ ∞

0
f (u)

∫ ∞

u

Φ(y)dydu ,

that is,
∫ ∞

0 f (u)
∫ ∞
u
Φ(y)dydu = 0 for all f ∈ H 1(0,∞) ∩ C∞

c (0,∞), which implies that∫ ∞
u
Φ(y)dy is a constant function inu, and soΦ(y) = 0 for a.e.y > 0. We concludeφ = 0.
We conjecture that without the additional condition the above statement holds, that is,

if Mµ
φ with φ ∈ L∞(0,∞) is a bounded operator onH 1(0,∞), thenφ is constant, where

µ > −1/2.

The theorem will be proved in the next section. The atomic decomposition and the
molecular characterization of the real Hardy space will play important roles in our proof.
A real-valued functiona is called an atom centered atc if (i) a(x) is supported in an interval
[c − h/2, c + h/2], (ii) ‖a‖2 ≤ h−1/2, and (iii)

∫
R a(x)dx = 0. The spaceH 1(R) is charac-

terized in terms of atoms:f ∈ H 1(R) if and only if f = ∑∞
j=0 λj aj , where eachaj is an

atom and
∑∞
j=0 |λj | < ∞. Further, theH 1-norm ‖f ‖H1(R) is equivalent to inf

∑∞
j=0 |λj |,

� �



236 Y. KANJIN

the infimum being taken over all decompositions, and the series
∑∞
j=0 λj aj converges in

H 1-norm.
We deal with the functionsf ∈ H 1(0,∞). These functions are also characterized as

follows (see [4, Chapter III, Lemma 7.40]):f ∈ H 1(0,∞) if and only if f = ∑∞
j=0 λj aj ,

where eachaj is an atom with suppaj ⊂ [0,∞) and
∑∞
j=0 |λj | < ∞. Moreover, the norm

‖f ‖H1[0,∞) is equivalent to inf
∑∞
j=0 |λj |, the infimum being taken over all such decomposi-

tions. By this decomposition, we see thatH 1(0,∞) ∩ L2(0,∞) is dense inH 1(0,∞).
We call a real-valued functionM a molecule centered atc if M satisfies the following

conditions: (i)

N(M) = ‖M‖1/2
L2(R)

‖ | · − c | M‖1/2
L2(R)

< ∞ ;
(ii)

∫
RM(x)dx = 0. We callN(M) the molecular norm ofM(x). The molecular characteri-

zation asserts that iff = ∑
j Mj with moleculesMj and

∑
j N(Mj ) < ∞, thenf ∈ H 1(R)

and‖f ‖H1(R) ≤ C
∑
j N(Mj ) with an absolute constantC. For the atomic decomposition

and the molecular characterization, we may refer to [4, III].

3. Proofs. The theorem will be proved by the following two lemmas.

LEMMA 1. If ν > −1/2, then T ν+2
ν and T ν

ν+2 are uniquely extended to bounded oper-
ators on H 1(0,∞), that is,

‖T ν+2
ν f ‖H1(0,∞) ≤ C‖f ‖H1(0,∞) ,

‖T ν
ν+2f ‖H1(0,∞) ≤ C‖f ‖H1(0,∞)

for f ∈ H 1(0,∞) with a constant C depending only on ν.

LEMMA 2. (i) If µ ≥ −1/2 and ν ≥ 1/2, then T ν
µ is uniquely extended to a bounded

operator on H 1(0,∞), that is,

‖T ν
µ f ‖H1(0,∞) ≤ C‖f ‖H1(0,∞)

for f ∈ H 1(0,∞) with a constant C depending only on µ and ν.
(ii) If µ ≥ −1/2, then T −1/2

µ is uniquely extended to a bounded operator from
H 1(0,∞) to L1(0,∞), that is,

‖T −1/2
µ f ‖L1(0,∞) ≤ C‖f ‖H1(0,∞)

for f ∈ H 1(0,∞) with a constant C depending only on µ.

We see here that the theorem is deduced from these lemmas. We first note that the identity
T τ
µ T ν

τ = T ν
µ onL2(0,∞) holds since

T τ
µ T ν

τ = HµHτHτHν = HµHν = T ν
µ .

Let us prove the part (i) of the theorem. Letµ ≥ −1/2 andν > −1/2. It follows from
Lemma 1 thatT ν

ν+2, initially defined onH 1(0,∞) ∩ L2(0,∞), is uniquely extended to a
bounded operator onH 1(0,∞). Sinceν + 2 ≥ 1/2, it follows from the part (i) of Lemma
2 that the operatorT ν+2

µ is uniquely extended to a bounded operator onH 1(0,∞). Because

� �



TRANSPLANTATION THEOREM FOR HANKEL TRANSFORM 237

of the factT ν
µ = T ν+2

µ T ν
ν+2 onH 1(0,∞) ∩ L2(0,∞), we see thatT ν

µ has a unique bounded

extension onH 1(0,∞). The part (ii) of the theorem is the part (ii) of Lemma 2 itself.
We turn to the proof of Lemma 1. Letν > −1/2, and put

U(ν)f (x) =
∫ ∞

x

(
x

t

)ν+1/2

f (t)
dt

t
, S(ν)f (x) = 1

x

∫ x

0

(
t

x

)ν+1/2

f (t)dt

for x > 0. Then, we see that

T ν+2
ν f = 2(ν + 1)U(ν)f − f , T ν

ν+2f = 2(ν + 1)S(ν)f − f

for f ∈ L2(0,∞) by [13, p. 383, line 5 from below and p. 381, line 8 from below]. In [8,
Proposition], we proved thatU(ν) andS(ν) are extended to bounded operators onH 1(0,∞)

for ν > −1/2, and thus,T ν+2
ν andT ν

ν+2 have the same boundedness, which is Lemma 1.
Lemma 2 will be reduced to the following Lemma 3 and Lemma 4.

LEMMA 3. Assume that (µ, ν) satisfies µ ≥ −1/2, ν ≥ 1/2 or µ ≥ −1/2, ν = −1/2.
Let a be an atom centered at c with suppa ⊂ [0,∞), and we regard T ν

µ a as T ν
µ a(x) = 0 for

x ≤ 0. Then, there exists a constant C depending only on µ and ν such that

N(T ν
µ a) = ‖T ν

µ a‖1/2
2 ‖ | · −c| T ν

µ a ‖1/2
2 ≤ C.(5)

LEMMA 4. Let µ ≥ −1/2 and ν ≥ 1/2. Then,
∫ ∞

0 T ν
µ a(x)dx = 0 for every atom a

with suppa ⊂ [0,∞).

We show first that Lemma 2 is obtained by Lemma 3 and Lemma 4. Letf ∈ H 1(0,∞)∩
L2(0,∞). Let f = ∑∞

j=0 λj aj be an atomic decomposition off such that
∑∞
j=0 |λj | ≤

C‖f ‖H1(0,∞), whereC is independent off . To prove Lemma 2, we shall first show that

T ν
µ f (x) =

∞∑
j=0

λjT ν
µ aj (x) a.e. x > 0(6)

for µ ≥ −1/2, ν ≥ 1/2 orµ ≥ −1/2, ν = −1/2. Letg ∈ C∞
c (0,∞). Then we have∫ ∞

0
T ν
µ f (x)g(x)dx =

∫ ∞

0
HµHνf (x)g(x)dx =

∫ ∞

0
f (x)HνHµg(x)dx

by Plancherel’s theorem and the inversion formula. The inequality|HνHµg(x)| ≤
C‖Hµg‖L1(0,∞) holds, and‖Hµg‖L1(0,∞) < ∞ sinceg ∈ C∞

c (0,∞). For every atomaj ,
we have‖aj‖L1(0,∞) ≤ 1. Thus we have

∫ ∞

0
f (x)HνHµg(x)dx =

∫ ∞

0

∞∑
j=0

λjaj (x)HνHµg(x)dx

=
∞∑
j=0

λj

∫ ∞

0
aj (x)HνHµg(x)dx

=
∞∑
j=0

λj

∫ ∞

0
HµHνaj (x)g(x)dx .

� �
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We remark that the inequality‖ψ‖L1(0,∞) ≤ 23/2N(ψ) holds (cf. [4, Chapter III, Lemma
7.11]). It follows from Lemma 3 that

‖HµHνaj‖L1(0,∞) = ‖T ν
µ aj‖L1(0,∞) ≤ CN(T ν

µ aj ) ≤ C .

Here and below,C denotes a positive constant which may differ at each different occurrence.
Thus, the last sum is equal to∫ ∞

0

∞∑
j=0

λjHµHνaj (x)g(x)dx ,

which leads to ∫ ∞

0
T ν
µ f (x)g(x)dx =

∫ ∞

0

∞∑
j=0

λjT ν
µ aj (x)g(x)dx

for all g ∈ C∞
c (0,∞), and we get (6).

Because of (6), we have

‖T ν
µ f ‖H1(0,∞) ≤ C

∞∑
j=0

N(λjT ν
µ aj ) ≤ C

∞∑
j=0

|λj |N(T ν
µ aj )

≤ C

∞∑
j=0

|λj | ≤ C‖f ‖H1(0,∞)

for µ ≥ −1/2, ν ≥ 1/2 by Lemma 3, Lemma 4 and the molecular characterization. If
µ ≥ −1/2, ν = −1/2, then

‖T ν
µ f ‖L1(0,∞) ≤

∞∑
j=0

|λj | ‖T ν
µ aj‖L1(0,∞) ≤ C

∞∑
j=0

|λj |N(T ν
µ aj )

≤ C

∞∑
j=0

|λj | ≤ C‖f ‖H1(0,∞) .

These inequalities allow us to use the standard density argument, and we obtain Lemma 2.
We now come to the proofs of Lemma 3 and Lemma 4.

PROOF OF LEMMA 3. Let a be an atom centered atc with suppa ⊂ [0,∞). Let
Q = [c − h/2, c + h/2] ⊂ [0,∞) be the smallest interval containing suppa. SinceT ν

µ is an
isometry onL2(0,∞), it follows that

‖T ν
µ a‖2 = ‖a‖2 ≤ h−1/2 .(7)

To prove (5), it is enough to show that‖ | · −c| T ν
µ a ‖2 ≤ Ch1/2. We putQ̃ = [c− h, c+ h].

We write

‖ | · −c| T ν
µ a ‖2

2 =
{∫

(0,∞)∩Q̃
+

∫
(0,∞)\Q̃

}
|x − c|2|T ν

µ a(x)|2dx
= V1 + V2 , say.

� �
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ForV1, we have by (7),

V1 ≤ h2‖T ν
µ a‖2

2 ≤ h .

An essential part of the proof is to showV2 ≤ Ch. By Schindler’s results (A) and (B),
we see thatT ν

µ = Tµ,ν onL2(0,∞). Thus, Schindler’s integral representation (1) leads us to

T ν
µ a(x) = lim

δ→+0

∫
|x−y|>δ

a(y)Ĩ (x, y)dy + k(µ, ν)a(x) a.e. x > 0 ,

where we put̃I(x, y) = Ĩµ,ν(x, y) for simplicity. Forx ∈ (0,∞) \ Q̃, we have

T ν
µ a(x) =

∫
Q

a(y)Ĩ(x, y)dy ,

and thus,

V2 =
∫
(0,∞)\Q̃

|x − c|2
∣∣∣∣
∫
Q

a(y)Ĩ(x, y)dy

∣∣∣∣
2

dx .

The Taylor expansion of̃I (x, y) in y at c and the cancellation property of atoms imply

∫
Q

a(y)Ĩ(x, y)dy =
∫
Q

a(y)
∂Ĩ

∂y
(x, c + θ(y − c))(y − c)dy, 0< θ < 1 .

If we show∣∣∣∣∂Ĩ∂y (x, ξ)
∣∣∣∣ ≤ C

|x − c|2 , ξ = c + θ(y − c), 0< θ < 1, y ∈ Q, x ∈ (0,∞) \ Q̃(8)

with C depending only onµ andν, then
∣∣∣∣
∫
Q

a(y)Ĩ(x, y)dy

∣∣∣∣ ≤ C

|x − c|2
∫
Q

|a(y)| |y − c|dy

≤ C

|x − c|2‖a‖2h
3/2 ≤ C

|x − c|2h ,

which leads to the desired inequality

V2 ≤ Ch2
∫
(0,∞)\Q̃

dx

|x − c|2 ≤ Ch .

The rest of the proof is devoted to proving (8). We divide the matter into two cases; Case
I: c + h < x andy ∈ Q; Case II: 0< x < c − h andy ∈ Q.

We begin with Case I. Since 0< y < x, it follows from (2) that

∂Ĩ

∂y
(x, y) = 2−1Kµ,ν{W+

1 (x, y)+W+
2 (x, y)+W+

3 (x, y)} ,
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where

W+
1 (x, y) =

(
ν + 1

2

)(
y

x

)ν−1/2 1

x

(
1

x − y
+ 1

x + y

)
F

(
ν − µ

2
,
ν + µ

2
; ν + 1; y

2

x2

)
,

W+
2 (x, y) =

(
y

x

)ν+1/2( 1

(x − y)2
+ −1

(x + y)2

)
F

(
ν − µ

2
,
ν + µ

2
; ν + 1; y

2

x2

)
,

and

W+
3 (x, y) =

(
y

x

)ν+1/2( 1

x − y
+ 1

x + y

)
∂

∂y

{
F

(
ν − µ

2
,
ν + µ

2
; ν + 1; y

2

x2

)}

= ν2 − µ2

2(ν + 1)

(
y

x

)ν+3/2 1

x

(
1

x − y
+ 1

x + y

)
F

(
ν − µ+ 2

2
,
ν + µ+ 2

2
; ν + 2; y

2

x2

)

from the formula(d/dz)F (α, β; γ ; z) = (αβ/γ )F (α + 1, β + 1; γ + 1; z). We shall show

|W+
j (x, ξ)| ≤ C

|x − c|2 , j = 1,2,3(9)

with C depending only onµ andν.
Since

lim
z→1−F(α, β; γ ; z) = Γ (γ )Γ (γ − α − β)

Γ (γ − α)Γ (γ − β)

for 	(γ − α − β) > 0 (cf. [9, (9.3.4)]), it follows fromν + 1 − (ν − µ)/2 − (ν + µ)/2 = 1
andξ < x that ∣∣∣∣F

(
ν − µ

2
,
ν + µ

2
; ν + 1; ξ

2

x2

)∣∣∣∣ ≤ C

for 0 < y < x with a constantC depending only onµ, ν. We see that(ξ/x)ν−1/2 ≤ 1 for
0< y < x whenν − 1/2 ≥ 0, and that

|W+
1 (x, ξ)| ≤ C

1

x

(
1

|x − ξ | + 1

x + ξ

)
.

Sinceξ ∈ Q andc + h < x, it follows that|x − ξ | ≥ |x − c|/2. Also,x + ξ > x > |x − c|.
These imply the inequality (9) withj = 1. We note that the termW+

1 does not appear in
∂Ĩ/∂y whenν = −1/2.

ForW+
2 (x, ξ), in a similar way, we have

|W+
2 (x, ξ)| ≤ C

(
1

|x − ξ |2 + 1

(x + ξ)2

)
≤ C

|x − c|2
for ν ≥ −1/2, which is the inequality(9) withj = 2.

To estimateW+
3 (x, ξ), we use the formula (cf. [9, (9.2.6)]):

γ (1 − z)F (α, β; γ ; z)− γF(α − 1, β; γ ; z)+ (γ − β)zF (α, β; γ + 1; z) = 0 .
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The substitutionα = (ν − µ+ 2)/2, β = (ν + µ+ 2)/2, γ = ν + 2, z = y2/x2 gives

F

(
ν − µ+ 2

2
,
ν + µ+ 2

2
; ν + 2; y

2

x2

)
= x2

x2 − y2
F1 − ν − µ+ 2

2(ν + 2)

y2

x2 − y2
F2 ,

where

F1 = F

(
ν − µ

2
,
ν + µ+ 2

2
; ν + 2; y

2

x2

)
,

F2 = F

(
ν − µ+ 2

2
,
ν + µ+ 2

2
; ν + 3; y

2

x2

)
.

This implies

W+
3 (x, ξ) = cµ,ν

(
ξ

x

)ν+3/2( 1

x − ξ
+ 1

x + ξ

)2

F1|y=ξ

+ c′µ,ν
(
ξ

x

)ν+5/2( 1

(x − ξ)2
− 1

(x + ξ)2

)
F2|y=ξ ,

wherecµ,ν andc′µ,ν are some constants depending only onµ andν. We note that|F1|, |F2| ≤
C for 0< y < x sinceν + 2− (ν −µ)/2− (ν +µ+ 2)/2 = 1 andν + 3− (ν −µ+ 2)/2−
(ν + µ + 2)/2 = 1. Thus, in the same way as in the above cases, we have the inequality (9)
with j = 3, which completes Case I.

We turn to Case II. It follows from 0< x < y that

∂Ĩ

∂y
(x, y) = 2−1Kν,µ{W−

1 (x, y)+W−
2 (x, y)+W−

3 (x, y)} ,

W−
1 (x, y) = −

(
µ+ 1

2

)(
x

y

)µ+1/2 1

y

(
1

y − x
+ 1

y + x

)
F

(
µ− ν

2
,
ν + µ

2
;µ+ 1; x

2

y2

)
,

W−
2 (x, y) =

(
x

y

)µ+1/2( −1

(y − x)2
+ −1

(y + x)2

)
F

(
µ− ν

2
,
ν + µ

2
;µ+ 1; x

2

y2

)

and

W−
3 (x, y) =

(
x

y

)µ+1/2( 1

y − x
+ 1

y + x

)
∂

∂y

{
F

(
µ− ν

2
,
ν + µ

2
;µ+ 1; x

2

y2

)}

= − µ2 − ν2

2(µ+ 1)

(
x

y

)µ+5/2 1

y

(
1

y − x
+ 1

y + x

)

× F

(
µ− ν + 2

2
,
ν + µ+ 2

2
;µ+ 2; x

2

y2

)

= −cν,µ
(
x

y

)µ+5/2( 1

y − x
+ 1

y + x

)2

F3

− c′ν,µ
(
x

y

)µ+7/2( 1

(y − x)2
− 1

(y + x)2

)
F4 ,

� �



242 Y. KANJIN

where

F3 = F

(
µ− ν

2
,
ν + µ+ 2

2
;µ+ 2; x

2

y2

)
,

F4 = F

(
µ− ν + 2

2
,
ν + µ+ 2

2
;µ+ 3; x

2

y2

)
.

Since 0< h < c, it follows thatξ ≥ c− h/2 ≥ c/2 ≥ |x − c|/2, which implies 1/(x + ξ) ≤
1/ξ ≤ 2/|x− c|. This inequality and 1/|x− ξ | ≤ 2/|x− c| allow us to follow the lines of the
proof of Case I ifµ ≥ −1/2, and get the inequality (8) in Case II. We complete the proof of
Lemma 3.

PROOF OFLEMMA 4. Leta be an atom with suppa ⊂ [0,∞). It follows from Lemma
3 and the inequality‖T ν

µ a‖L1(0,∞) ≤ 23/2N(T ν
µ a) thatT ν

µ a is integrable forµ ≥ −1/2, ν ≥
1/2 orµ ≥ −1/2, ν = −1/2. Thus, for theseµ, ν, we have∫ ∞

0
T ν
µ a(x)dx = lim

ε→+0

∫ ∞

0
e−εx2T ν

µ a(x)dx .

By the fact

T ν
µ a(x) = lim

M→∞

∫ M

0
Hνa(y)

√
xyJµ(xy)dy

in L2(0,∞), we have∫ ∞

0
T ν
µ a(x)dx = lim

ε→+0
lim
M→∞

∫ ∞

0
e−εx2

∫ M

0
Hνa(y)

√
xyJµ(xy)dydx

= lim
ε→+0

lim
M→∞

∫ ∞

0
e−εx2

∫ M

0

∫ ∞

0
a(t)

√
ytJν(yt)dt

√
xyJµ(xy)dydx .

Since|√zJα(z)| ≤ C, z > 0 forα ≥ −1/2 ande−εx2
a(t) is integrable in(x, y, t) on(0,∞)×

(0,M)× (0,∞), it follows that∫ ∞

0
T ν
µ a(x)dx = lim

ε→+0
lim
M→∞

∫ ∞

0
a(t)B

(ε)
M (t)dt

for µ, ν ≥ −1/2, where

B
(ε)
M (t) =

∫ M

0
D
(ε)
t (y)dy ,

D
(ε)
t (y) =

∫ ∞

0
e−εx2√

xyJµ(xy)dx
√
tyJν(ty) .

To prove
∫ ∞

0 T ν
µ a(x)dx = 0, we shall show the following:

(I) Let t > 0,0 < ε < 1 and 1< M. If µ > −3/2, = −1 andν > −1/2, then
|B(ε)M (t)| ≤ C, whereC depends only onµ andν.

(II) For everyt > 0, limε→+0 limM→∞ B
(ε)
M (t) = Cµ,ν , where

Cµ,ν = Γ (µ/2 + 4/3)Γ (ν/2 + 1/4)

Γ (µ/2 + 1/4)Γ (ν/2 + 3/4)
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whenµ > −3/2, = −1 andν > −1/2.
If we show (I) and (II), then by the Lebesgue dominated convergence theorem we shall

get ∫ ∞

0
T ν
µ a(x)dx =

∫ ∞

0
a(t) lim

ε→+0
lim
M→∞B

(ε)
M (t)dt = Cµ,ν

∫ ∞

0
a(t)dt = 0

for µ ≥ −1/2 andν ≥ 1/2, and the proof of Lemma 4 will be completed.
Let us prove (I) and (II). We shall use the formula (cf. [15, 13.3(3), p. 394])∫ ∞

0
e−εx2√

xyJµ(xy)dx

= yµ+1/2Γ ((µ+ 3/2)/2)

2µ+1ε(µ+3/2)/2Γ (µ+ 1)
e−y2/(4ε)Φ((µ+ 1/2)/2;µ+ 1; y2/(4ε)) ,

whereµ > −3/2 andΦ(α; γ ; z) is Kummer’s confluent hypergeometric series defined
by Φ(α; γ ; z) = ∑∞

k=0[(α)k/(γ )k][zk/k!] for z, α, γ ∈ C, γ = 0,−1,−2, . . . . Since
Φ(α; γ ; z) is an entire function ofz, it follows that for 0< y ≤ 2

√
ε,∣∣∣∣

∫ ∞

0
e−εx2√

xyJµ(xy)dx

∣∣∣∣ ≤ Cε−µ/2−3/4yµ+1/2 ,(10)

whenµ > −3/2. The asymptotic formula (cf. [3, 6.13.1(3), Vol. 1, p. 278])

Φ(α; γ ; z) = Γ (γ )

Γ (α)
ezzα−γ [1 +O(|z|−1)] , 	z → ∞ , γ = 0,−1,−2, . . .

gives, for 2
√
ε ≤ y,∫ ∞

0
e−εx2√

xyJµ(xy)dx = Cµy
−1 + Rε(y) , |Rε(y)| ≤ Cεy−3 ,(11)

if µ > −3/2, = −1, whereC depends only onµ andCµ = 21/2Γ ((µ + 3/2)/2)/Γ ((µ +
1/2)/2).

Let t > 0,0 < ε < 1 and 1< M. We divide the integralB(ε)M (t) = ∫M
0 D

(ε)
t (y)dy into

two parts:

B
(ε)
M (t) =

{∫ 2
√
ε

0
+

∫ M

2
√
ε

}
D
(ε)
t (y)dy .

We begin with estimating the integral
∫ 2

√
ε

0 D
(ε)
t (y)dy. By (10) and|√zJν(z)| ≤ C, z > 0

for ν ≥ −1/2, we have
∣∣∣∣
∫ 2

√
ε

0
D
(ε)
t (y)dy

∣∣∣∣ ≤
∫ 2

√
ε

0
|D(ε)t (y)|dy ≤ Cε−µ/2−3/4

∫ 2
√
ε

0
yµ+1/2dy = C(12)

for µ > −3/2 andν ≥ −1/2, whereC depends only onµ andν. Let t > 0 be fixed and let
ε > 0 be sufficiently small so that 2

√
ε < 1/t. By (10) and the factJν(z) = O(zν) (z → 0)
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for ν = −1,−2, . . . , we have∣∣∣∣
∫ 2

√
ε

0
D
(ε)
t (y)dy

∣∣∣∣ ≤ Cε−µ/2−3/4
∫ 2

√
ε

0
yµ+1/2(ty)ν+1/2dy = Ctν+1/2εν/2+1/4 .

Thus, for everyt > 0, we have

lim
ε→0

∫ 2
√
ε

0
D
(ε)
t (y)dy = 0(13)

whenµ > −3/2 andν > −1/2.
We next estimate the integral

∫M
2
√
ε D

(ε)
t (y)dy. By (11), we have

∫ M

2
√
ε

D
(ε)
t (y)dy = CµU1 + U2 ,

where

U1 =
∫ M

2
√
ε

√
tyJν(ty)y

−1dy , U2 =
∫ M

2
√
ε

√
tyJν(ty)Rε(y)dy

for µ > −3/2, = −1.
The integralU2 is estimated by (11) and|√zJν(z)| ≤ C, z > 0 for ν ≥ −1/2. We have

|U2| ≤ Cε

∫ ∞

2
√
ε

y−3dy ≤ C(14)

for µ > −3/2, = −1 andν ≥ −1/2. Let t > 0 be fixed, and letε > 0 be sufficiently small
andM be sufficiently large so that 2

√
ε < 1/t < M. We divide the integral as follows:

U2 =
{ ∫ 1/t

2
√
ε

+
∫ M

1/t

}√
tyJν(ty)Rε(y)dy = U1

2 + U2
2 , say.

By the factJν(z) = O(zν) (z → 0) for ν = −1,−2, . . . , we have

|U1
2 | ≤ C

∫ 1/t

2
√
ε

(ty)ν+1/2εy−3dy

≤




C

∫ 1/t

0
(ty)ν+1/2εy−3dy ≤ Ct2ε (ν > 3/2) ,

C

∫ 1/t

2
√
ε

t2εy−1dy ≤ Ct2ε(| log t| + log(1/ε)) (ν = 3/2) ,

C

∫ ∞

2
√
ε

(ty)ν+1/2εy−3dy ≤ Ctν+1/2ε(ν+1/2)/2 (ν < 3/2)

for µ > −3/2, = −1 andν = −1,−2, . . . . It follows from the fact
√
zJα(z) = O(1)(z →

∞) that

|U2
2 | ≤ C

∫ ∞

1/t
εy−3dy ≤ Ct2ε .
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Therefore, we have

lim
ε→0

lim
M→∞U2 = 0(15)

for µ > −3/2, = −1 andν > −1/2.
We turn to estimatingU1. We first deal with the case 2

√
ε ≤ 1/t ≤ M and divide the

integral:

U1 =
{∫ 1/t

2
√
ε

+
∫ M

1/t

}√
tyJν(ty)y

−1dy = U1
1 + U2

1 , say.

By the fact Jν(z) = O(zν) (z → 0) for ν = −1,−2, . . . , we have |U1
1 | ≤

C
∫ 1/t

0 (ty)ν+1/2y−1dy. Thus, ifν > −1/2, then|U1
1 | ≤ C. Let us evaluateU2

1 . The Bessel
function satisfies(d/dz)z−αJα(z) = −z−αJα+1(z). This and integration by parts lead to

U2
1 = (−tν−3/2)

∫ M

1/t
yν−3/2 d

dy

(
(ty)−ν+1Jν−1(ty)

)
dy

= (−tν−3/2)[yν−3/2(ty)−ν+1Jν−1(ty)]M1/t
− (−tν−3/2)

∫ M

1/t
(ty)−ν+1Jν−1(ty)

d

dy
(yν−3/2)dy = U

2,1
1 + U

2,2
1 , say.

The first termU2,1
1 = −(tM)−1/2Jν−1(tM)+ Jν−1(1) satisfies|U2,1

1 | ≤ C since
√
zJα(z) =

O(1)(z → ∞) and 1≤ tM. The second term

U
2,2
1 =

(
ν − 3

2

)
1

t

∫ M

1/t
y−2√tyJν−1(ty)dy

is evaluated as follows:|U2,2
1 | ≤ Ct−1

∫ ∞
1/t y

−2dy ≤ C. Thus, we have|U2
1 | ≤ C and then

|U1| ≤ C in the case 2
√
ε ≤ 1/t ≤ M. In the case 1/t < 2

√
ε, we have|U1| ≤ C in the

same way as in the estimation ofU2
1 , and in the caseM < 1/t, we also have|U1| ≤ C in the

same way as in the estimation ofU1
1 . Therefore, these and (14) imply∣∣∣∣
∫ M

2
√
ε

D
(ε)
t (y)dy

∣∣∣∣ ≤ C(16)

for µ > −3/2, = −1 andν > −1/2.
Combining (12) and (16), we have (I). The statement (II) is proved as follows: By (13)

and (15), we have

lim
ε→+0

lim
M→∞B

(ε)
M (t) = Cµ lim

ε→+0
lim
M→∞U1 = Cµ

∫ ∞

0

√
tyJν(ty)y

−1dy

= Cµ

∫ ∞

0
Jν(u)u

−1/2du = Cµ,ν

for everyt > 0 whenµ > −3/2, = −1 andν > −1/2. We here used
∫ ∞

0 Jν(u)u
−1/2du =

Γ (ν/2 + 1/4)/(Γ (ν/2 + 3/4)
√

2) for ν > −1/2.
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