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1. The theorem. When studying surface effects within the framework of continuum

mechanics one is often confronted with terms of the form

-[
dt /;

f(x,t)da(x), (1)
9>(t)

where S*(t) is a surface which evolves with time t, f(x, t), defined for all x e

and all t, is the density (per unit area) of a superficial quantity such as energy, and

da(x) is the area measure on surfaces in R-\ The evaluation of (1) is nontrivial when

S?{t) evolves within a fixed region QcR3 and dS^{t) C is nonempty, for then a

portion of (1) must balance an outflow of / due to the transport of portions of S^(t)

across <9£2.

We assume that S*(t) is smooth and oriented by n(x, t), a particular choice of

continuous unit-normal field, and we write V(x, t) and k(x, t) for the normal velocity

and total curvature. (Total curvature is twice the normal curvature.) It is the purpose

of this note to prove the transport theorem:1

[ fda= ( (f°-fxV)da - outflow(/, <9^(0),
at J■?'(!) J.7'(l)

outflow (f,d5*{t))=[ fVp{\-p2)-{/2ds,p = nv. (2)
J

Here f° is the normal time derivative of / as defined below, ds is the measure of

length on curves in R3, and v(x) is the outward unit normal on <9Q.

2. Assumptions and preliminary definitions. It is convenient to identify R4 with

R3 x R.

'Received April 24, 1989.

'An argument in support of (2) is contained in the work Moeckel [1], Moeckel assumes that the in-

terface can be identified with a "fictitious" (sic) evolving membrane whose boundary coincides with the

boundary of the interface at each time, and then appeals to a standard transport theorem for membranes.

Unfortunately. Moeckel expresses the outflow in terms of the membrane velocity, which is not intrinsic,

and which obscures the influence of the confining region £2. Moreover, the existence of such an evolving

membrane is not at all obvious, and, in fact, seems to constitute a mathematical problem more difficult

than the original problem of verifying (2). Angenent and Gurtin [2] establish (2) for an evolving curve in

a two-dimensional space, but their proof does not extend.
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We assume that £2 c IR3 is a bounded, open region with smooth boundary dQ,

and write u(x) for the outward unit normal on 9Q. We assume that S^{t) c IR3 is

defined for all t in an open interval T and: (SI) S^(t) is the intersection with Q of

a smooth, nonintersecting, oriented surface, and dS^(t) c <9Q; (S2) n(x,/), the unit

normal to satisfies |n(x, /) • i/(x)| ^ 1 on (S3) the set

yr = {(x,():xey(0, teT}

is a smooth three-dimensional surface in IR4 with normal never parallel to the time

direction.

We assume that f(\,t) is a smooth scalar field on SPT.

We write N(x,/) and U(x), respectively, for n(x,/) and u(x) considered as unit

vectors in IR4, and E for the unit vector in IR4 in the time direction:

N — (n, 0), U = (u, 0), E = (0, 1). (3)

By (S3) there is a scalar field V such that N - FE is normal to 5^r\ the field F

represents the normal velocity of the surface in the direction n. We write M for the

unit vector in the direction of N - FE:

M = q(N - FE), q = (1 + F2)"'/2. (4)

Then M(x, Z)1- is the tangent plane to S*r at (x, t). We write E* for the normalized

projection of E onto M^:

E* = q( FN + E). (5)

Given any field on J/7-, we write VO for the surface gradient2 of O in ,9j:

VO(x, /) is a vector in M(x, t)1- if is scalar-valued; it is a linear transformation

from M(x, t)1- into R4 if <I> is vector-valued. For <]> a scalar field, we define the

normal time derivative <t> through

<p° = VO-(FN + E). (6)

We write div for the surface divergence on <9r\ if O is a vector field on

divO = trace[PVO], where P(x,/) is the projection of R4 onto M(x, Z)-1. It is not

difficult to verify that

k = — div N (7)

is the total curvature of

The identity

div E* = -qKV (8)

is useful. Its verification is not difficult: since Vq = -q3VVV and q - q3V2 — qy,

(5) and (7) yield

divE* = qV divN + q^W ■ N - <?3FVF • E = -qVx + <?3VF • (N - FE)

which implies (8), since N - FE is normal to (cf. (4)).

2Many of the definitions and identities that we use concerning surfaces can be found in [3. 4],
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3. Proof of the transport theorem. Given a time interval R = [/o>?i] c T, the

surface divergence theorem applied to the vector field fE* on

yR = xeJT'(t), teR}

has the form

f fE* -XVdA2= [ div(/E*) dA3. (9)
J a. yR JrrR

Here dAn (n = 1,2,3) is the "area" measure on ^-dimensional surfaces in IR4, while

W is the outward unit normal to dS^R. dS^R is the union of the sets

top(^) = {(x, t{): x G

bot(S^r) = {(x, I0):x6

sid e(JpR) = {(x, ():xe dS^(t), t e T},

whose intersection has zero A\-measure, and, trivially,

E* ■ W = 1 ontop(^), E* • W = — 1 onbot(^). (10)

The computation of E* • W on side(<9"R) is not so simple. Since

p — n • v = N • U, (11)

(4) and (5) yield

U ■ M = qp, U-E* = qpV. (12)

If A = U - (U • M)M, the projection of U onto M-1, then W = A/|A| on side(^).

Thus, using (12),

W = (1 - q2p2)~l/2(U - qpM) on side(S^), (13)

and, since M • E* = 0 and

(1 -q2p2) = (1 -p2+ V2)/(l + V2), (14)

a simple calculation using (12) leads to

E*-XV = Vp(l -p2 + V2)-"2 onside(^). (15)

By (5), (6), and (8), div(/E*) = q{-fVK + /°); thus (9) yields

f fdA2- f fdA2+ [ fVp(\-p2 + V2)-l'2dA2
J top(.5%) J bol(.?'R) J side(.S^) .

r (lf))

= / q{f -fxV),

Further,

f fdA2= ( f da, [ f dA2 — f fda. (17)
Jxop(.y'R) •'■y'(h) Jboi(.?R)

The final step is to rewrite the remaining terms in (16) as iterated integrals. For any

function g on S^r,

f gdA} = /"' ( [ g(E* ■ E)_1 da\ dt= /" ( f
J Sr J tQ -^{t) J J to | J.s

gq 1 da > dt, (18)
nt) I
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where we have used (5). On the other hand,

f gdA2=r\[ g(B ■ E)_l ds\ dt, (19)
Js\de(-?'R) J t0 [J 0.^(1) )

where B(x, /) with B • E > 0 is that unit vector in the tangent plane to side{dS^)

which is normal to dS^{t). In fact, B — C/|C|, where C is the projection of E* onto
Wx:

C = E* - (E* ■ W)W.

By (4)2 and (15),

|C|2 — q~2(\ - p2)/(\ - p2 + V2).

Further, since E* ■ M = U • E = 0, (4), (5), (12), and (13) yield

E*-E = 0, E* • W = qpV{\-q2p2)-x/2, E • W = q2pV( 1 - q2p2)~i/2,

and hence, using (14),

B • E = (1 -p2)l/2( 1 - p2 + V2)-1'2.

Thus (19) yields

[ gdA2= [ \[ g{{\-p2+ V2)/(\-p2)y'2ds\ dt.
J side(.-/i) J t0 \Ji).7'(t)

(20)
'side(.7^) J t0 [J0.7'(t

Finally, in view of (17), (18), and (20), (16) reduces to

[ f da - f fda+[ if f Vp/{1 - p2)1'2 ds\dt
JJ■'/' (/o) J to yJ d./\t) J

= /"(/ (f° - fxV)da \ dt;
Jt0 J

and differentiation with respect to t\ yields (2).

Remark 1. S^(t) is the intersection with Q of an oriented surface (/); let fi{\, t),

a tangent vector to .£(/) at x e ./#(/), denote the outward unit normal to d^(t) as a

curve in .<#(t). The calculation of the outflow term in (2) is essentially the calculation

of the velocity er(x,/) of 3,5^(/) in the direction //(x,/). In fact, if we consider an

arbitrary (smoothly-evolving) patch S^(t) of an evolving surface .•#(?)> then

4- f f da = f (/° - /kV)da + f fads. (21)
at J /-(i) J /'(t) Jo-'/'U)

Remark 2. It is important to identify the term outflow(/,d^(t)) in (2) as a term

representing an outflow of f(\, t) due to the transport of portions of <9*{t) across dQ.

If one writes, for example, balance of energy for a continuous body Q consisting of

two phases separated by an interface S?(t) with interfacial energy /, then a term

of the form outflow(/, <9,^(/)) should appear (cf. Gurtin [4]). Moeckel [1] fails to

include such an outflow in his balance laws. Fernandez-Diaz and Williams [5] point

this out, but unfortunately the outflow term they propose is incorrect, as it does not

include the scale factor (1 - p2)~,/2.
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Remark 3. It is possible to write the transport identity (2) in terms of a nonnormal

velocity. Indeed, for v = Vn + u with u n = 0,

d

%) Jy'u)dt
[ fda= f (/° + /divu) da - outflow^SJ?^/)) (22)
J.rtt) J.ru)

where f° - V/ ■ (v + E) is the derivative following v, div is the surface divergence on

and

outflow(f,dSe'(t))= [ f[Vp(l-p2)~l/2+ui;(\+p2)-l/2]ds, p = ni/. (23)
Jo.T'(t)
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