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A Transverse Spectrum Deconvolution Technique
for MIMO Short-Range Fourier Imaging

Thomas Fromenteze , Okan Yurduseven , Senior Member, IEEE, Fabien Berland, Cyril Decroze,
David R. Smith, Member, IEEE, and Alexander G. Yarovoy, Fellow, IEEE

Abstract— The growing need for high-performance imaging
tools for terrorist threat detection and medical diagnosis has led
to the development of new active architectures in the microwave
and millimeter range. Notably, multiple-input multiple-output
systems can meet the resolution constraints imposed by these
applications by creating large, synthetic radiating apertures with
a limited number of antennas used independently in transmitting
and receiving signals. However, the implementation of such
systems is coupled with strong constraints in the software layer,
requiring the development of reconstruction techniques capable
of interrogating the observed scene by optimizing both the
resolution of images reconstructed in two or three dimensions
and the associated computation times. In this paper, we first
review the formalisms and constraints associated with each
application by taking stock of efficient processing techniques
based on spectral decompositions, and then, we present a new
technique called the transverse spectrum deconvolution range
migration algorithm allowing us to carry out reconstructions that
are both faster and more accurate than with conventional Fourier
domain processing techniques. This paper is particularly relevant
to the development of new computational imaging tools that
require, even more pronouncedly than in the case of conventional
architectures, fast image computing techniques despite a very
large number of radiating elements interrogating the scene to be
imaged.

Index Terms— MIMO radar, microwave imaging, millimeter
wave radar, multistatic radar.

I. INTRODUCTION

IN MANY civilian and military applications, regions of
interest need to be surveyed to gather useful information

that is invisible to optical imaging systems. The use of
electromagnetic radiation is often justified in these practical
scenarios where nondestructive detection is required, mea-
suring the interaction of the waves with the medium under
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test. In particular, the microwave range is of interest for
imaging and has many advantages over other frequency bands,
benefiting from the advanced maturity of the active devices
required for the generation and measurement of waves and the
high transmittance coefficient of common materials compared
to that of the optical domain. The resolution of imaging
systems is related to the diversity of information measured
in time and space. Ideally, broadband and densely sampled
antenna arrays emitting high-frequency and ultrawideband
signals should, therefore, be used to minimize the size of
point spread functions in range and cross-range [1]. However,
the hardware complexity inherent in signal generation and
measurement is dissuasive in many applications. This prob-
lem is exacerbated by multiple-input multiple-output (MIMO)
systems, where independent transmitters and receivers are
needed to improve the resolution of radar images compared
with single-input multiple-outputs (SIMO) and multiple-input
single-output (MISO) systems of the same number of radi-
ating elements [2]. In this paper, innovative techniques have
been proposed in recent years to take advantage of these
constraints and increase the efficiency of imaging systems.
A first category of solutions is based on the recent introduction
of compressive sensing allowing for the efficient implemen-
tation of sparse arrays [3]–[5]. This approach exploits the
inherent spatial structure of the imaged objects and scenes
to reduce the number of signal samples measured over time,
frequency, and space. A second category is based on the use of
frequency-diverse radiating structures capable of encoding and
multiplexing transmitted and/or received signals into a reduced
number of compressed waveforms [6]–[10]. Simplifying the
hardware associated with imaging systems, MIMO architec-
tures can be more realistically applied to many applications
requiring a large number of radiating elements interacting with
each other, providing both fast measurements and access to
high-resolution images.

Recent advances in MIMO imaging by the scientific
community—particularly in the constrained framework of
short-range applications—have made it possible to signifi-
cantly improve the speed of associated imaging algorithms.
These techniques, initially applied to SAR, SIMO, and
MISO systems, are notably based on the spectral decom-
position of measured radiation, taking advantage of the use
of fast Fourier transforms implemented in this paper. Given
the dispersion relation of plane waves deduced from the
wave equation, rapid backpropagation can therefore be cal-
culated in k-space by a technique called the range migration
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Fig. 1. Illustration of a computational imaging system operating in the
microwave range [16]–[18]. An advanced characterization of the near field
radiated by this metasurface opens access to the interaction with a set of
secondary sources placed in the scanned aperture. This decomposition allows
the implementation of rapid reconstruction techniques initially developed for
conventional MIMO architectures.

algorithm (RMA) [11], [12]. This approach is particularly
effective when combined with Stolt interpolations to rapidly
transform the frequency dimension of the measured signals
into range information, however introducing sometimes dis-
tortions in the computed images. In [13], this principle is
extended to short-range MIMO systems, deriving an appropri-
ate dispersion relation from a stationary phase approximation
of the measured signal expression. This analysis will serve as a
central pillar for the method proposed in this paper, showing
that a physical interpretation of the interaction between the
plane waves emitted and received by the MIMO array with
the Fourier domain reflectivity function of the imaged scene
can allow faster reconstructions, less memory-intensive, and of
comparable quality. It is also interesting to be able to propose
more intuitive tools in order to facilitate the comprehension—
and possibly the teaching—of the complex processing tech-
niques applied in this paper. An illustration based on the use of
Moiré patterns is thus proposed in this framework to represent
the asymptotic developments of complex integrals on which
this technique is based.

The motivations for this paper are also based on the
emerging field of computational imaging, where problems
similar to those encountered in the case of conventional
MIMO architectures are studied. Frequency-diverse radiating
metasurfaces are engineered in this paper to achieve the coding
and multiplexing of the transmit and receive waves into a
limited number of frequency-dependent signals (Fig. 1). It has
been shown in [14] and [15] that it is possible to factorize
the sensing matrix encountered in computational imaging
applications to separate the reconstruction stage of compressed
signals from the backpropagation stage. This trick allows the
implementation of conventional techniques whose formidable
efficiency is based on the implementation of fast Fourier
transforms. Although the full development of mathematical
derivations associated with these computational techniques
is outside the scope of this paper, it seemed important to
justify the importance of developing new advanced processing
techniques.

Fig. 2. Illustration of an MIMO array imaging setup. The interactions
between the transmitting and receiving elements are measured to retrieve the
target reflectivity function σ(r). The propagation between the two locations
ri and r j is modeled using free-space 3-D Green’s functions g(ri , r j , f ).

The rest of this paper is organized as follows. Section II is an
introduction to the general formalism associated with MIMO
imaging systems. Here, we confine ourselves to short-range
applications, recalling in particular the principle and limita-
tions of the RMA as described in [13]. A new technique is
introduced in Section II. Its main objective is to overcome
the limitations associated with the interpolation step necessary
for the proper functioning of the RMA in its current form,
proposing a new approach essentially based on a physical
analysis of the way in which an MIMO system interrogates
the spectrum of the object to be imaged in the region of
interest. This technique is finally applied to various numerical
simulations in order to highlight the contributions allowed by
them and its possible limitations. Finally, Section IV will then
provide an overview of all the elements introduced in this
paper and identify elements that could lead to future studies
to further improve MIMO imaging techniques.

II. MIMO NEAR-FIELD IMAGING PROBLEM

A generic MIMO setup is presented in this section for the
introduction of the proposed image reconstruction method.
Since most applications require a compatibility with ultrawide-
band signals to optimize the range resolution, this constraint
will be considered for the validation of this algorithm. A cou-
ple of 2-D arrays are considered for this study (Fig. 2). The
transmit array is made of nxt ×nzt isotropic radiating elements
uniformly spaced in the plane y = 0 at locations defined by
the vectors xt , zt . Reciprocally, the receive array is made of
nxr × nzr uniformly spaced in the plane y = 0 at locations
defined by xr , zr . These antennas are interacting with a target
centered at the location (xc, yc, zc).

The target reflectivity function σ(r) can be estimated from
the measured signals s(xt , zt , xr , zr , f ), accounting for the
interaction between all possible pairs of transmitting and
receiving elements at each frequency. Using the first-order
Born approximation and a scalar approximation of Maxwell’s
equations, the expression of the measured signals can be
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expressed as

s(xt , zt , xr , zr , f )=
∫

r

1

16π2

e− j k Rt

Rt
σ(r)

e− j k Rr

Rr
d3r (1)

where r is the vectorized target space defined by the triplet
of coordinate (x , y, z). Rt and Rr are the Euclidean distances
between the antennas and the target space, given by

Rt =
√

(xt − x)2 + y2 + (zt − z)2 (2)

Rr =
√

(xr − x)2 + y2 + (zr − z)2. (3)

A first estimation of the reflectivity function can intuitively
be obtained by implementing a Kirchoff migration. A double
summation is computed over the radiating aperture spaces rt =
(xt , zt ) and rr = (xr , zr ) for each voxel r of the scene for
compensating the phase induced by the propagation

σ̂ (r)=
∫∫∫

s(xt , zt , xr , zr , f ) e j 2π f
c (Rt+Rr ) drt drr d f. (4)

Despite the apparent simplicity of implementing this method,
the computational time required to obtain a 3-D image using
large antenna arrays is prohibitive in many applications. It is
particularly interesting in this paper to move toward the use of
backpropagation techniques in the Fourier domain. It is then
possible to formalize the interaction of the reflectivity function
of the scene with the emitted and received plane waves. It is
necessary to start by expressing the signals received in the
plane wave domain by means of Fourier transforms

S(kxt , kzt , kxr , kzr , k) = F4D(s(xt , zt , xr , zr , f )) (5)

where F is the Fourier transform operator. The frequency
dimension is expressed as a function of the wavenumber k =
(2π f /c). The stationary phase method used in [13], partially
adapted from [12], leads to a simplified representation of the
measured signal S, approximated in the k-space domain as

S = −π

kyt kyr

∫
r
σ(x, y, z)e− j (kxt +kxr )x

e− j (kzt +kzr )z e− j ky y d3r (6)

with

kyt =
√

k2 − k2
xt

− k2
zt

(7)

kyr =
√

k2 − k2
xr

− k2
zr

(8)

kx = kxt + kxr (9)

ky = kyt + kyr (10)

kz = kzt + kzr . (11)

The reflectivity function σ̂conv(x, y, z) can thus be estimated in
this paper by computing the following 3-D Fourier transform:
σ̂conv(x, y, z) ∝ kyt kyr

∫
kx

∫
ky

∫
kz

S(kxt , kzt , kxr , kzr , k)

e jky y e jkx x e jkzz dkx dky dkz .(12)

A 3-D representation of the target space can be obtained in
the k-space by interpolating the 5-D matrix computed with a
4-D Fourier transform applied to the measured signals. This
step allows for a merging of the transmitted and received plane

Fig. 3. Isotropic antenna is placed at two locations r1 = (0, y0, 0) and
r2 = (x2, y0, z2), and signals s(x, z)ri are measured at the frequency f0 by
the radiating aperture for each position of the transmitter.

waves, considering the dispersion relation deduced from the
stationary phase approximation developed in [13]. However,
this last step is crucial and represents the most time-consuming
process in this algorithm, especially for large arrays of unequal
sizes where prior zero padding and spatial interpolation are
required to work with suitable plane wave grids. Sparse arrays
have been implemented in the MIMO systems to mitigate
this computational limitation, exploiting the complementary
spatial diversities of the transmit and receive arrays to ensure
a full k-space coverage [19], [20] enabling the development
of appropriate rapid processing techniques in this paper [21].
Furthermore, the recent development of compressive systems
allowing for the multiplexing of a very large number of trans-
mitted and received waveforms [14], [22] helped overcoming
the hardware limitations inherent to high-resolution systems,
leading to a growing need of efficient MIMO algorithms
compatible with large and densely populated antenna arrays.

Before presenting a new technique to optimize the perfor-
mance of the conventional MIMO RMA algorithm, it would
seem useful to illustrate the origin of the efficiency of this
technique, whose mathematical complexity tends to distract
from an intuitive understanding. In this paper, a simple illus-
trative experiment is presented; a transmit antenna is placed
facing a receive aperture (Fig. 3).

The measured signals are represented in the plane wave
space to represent the impact of a source translation in a
plane parallel to the aperture. In order to illustrate simply how
the RMA works, this simplistic case, with no real practical
value, is studied by calculating the spectrum of plane waves
S(kx , kz)ri = F2−D(s(x, z)ri ) of the signals received by the
radiating aperture, for two locations r1 = (0, y0, 0) and
r2 = (x2, y0, z2) of the isotropic source, for a given frequency
f0 corresponding to a wavenumber k0 = 2π f0/c (Fig. 4).
The phase distribution computed for the two locations of
the transmitter can be compared to that of range matching
term exp(− jky y0), where ky = (k2

0 − k2
x − k2

z )
(1/2) is the

dispersion relation corresponding to this simple setup.
In this scenario, an RMA image reconstruction is performed

by calculating the correlation between the resulting plane wave
spectrum and a reference signal exp(− jky y0) based on the
dispersion relation, recalling the principle of holography [23].
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Fig. 4. Plane wave spectrum of the field measured by the radiating aperture
for two positions r1 and r2 of transmitting antenna at a given frequency f0.
The RMA consists in calculating the correlation of this distribution with the
reference exp(− jky y0) based on the prior knowledge of a dispersion relation.

Fig. 5. Plane wave spectra are multiplied by the conjugate of the reference
signal exp(− jky y0). Note that the phase is almost constant when the antenna
is located on the stationary phase point and that when the radiating element
undergoes a translation in the y = y0 plane, the calculation makes it possible
to obtain a plane wave whose frequency and direction are directly related to
the realized displacement.

The location of the radiating source can finally be computing
with a 2-D inverse Fourier transform

σ̂ (x, z)ri = F−1
2D

(∫
S(kx , kz)ri exp( jky y0)d f

)
. (13)

With this pointlike radiating element, the correlation between
the plane wave spectrum of the measured signal and the
reference signal having given rise to a phase distribution
similar to a plane wave, and the final Fourier transform then
converts this frequency information into the spatial position
of the transmitting antenna (Fig. 5). As all these illustrations
have been presented as part of a single-frequency measure-
ment, it is only possible to resolve this element according
to the transverse dimensions, parallel to the radiating aper-
ture. The transmit antenna range can then be determined by
performing a broadband measurement, summing the different
frequency reconstructions in each plane in a coherent manner.

Fig. 6. Illustration of RMA properties using a Moiré pattern. This figure is
obtained by superimposing two identical figures (a), one of which has
undergone translation, forming a plane wave whose orientation and frequency
are defined by this same translation (b). It is possible to print such shapes on
both a white sheet and a transparent sheet in order to manipulate with more
ease the two figures for the study of the formed plane wave.

For illustrative and pedagogical purposes, it is finally possible
to reproduce the behavior of the complex correlation of
S(kx , kz) and exp(− jky y0) by means of a simple pattern
printed on both a white and a transparent sheet (Fig. 6). The
superposition of these two drawings represented in the Fourier
domain allows to create a plane wave by forming a Moiré
pattern [24], [25].

To conclude this section, the RMA is a mathematical tool
that is relatively simple to implement and very effective
when combined with fast Fourier transforms. However, its
mathematical foundations are complex and can largely ben-
efit from more pragmatic analytical tools that allow us to
understand the essence of the effectiveness of this technique,
as well as its limitations. Although this principle is illustrated
in the simplistic case of an array used in reception and
associated with a source point in transmission, this principle
can be directly transposed to more complex problems by
adapting the dispersion relation. In the case of more complex
targets, the superposition principle applied with the first-order
Born approximation guarantees the correct functioning of this
technique.

In light of the elements presented in this section, it is
now possible to propose a technique for improving the
implementation of RMA to MIMO systems. A matrix method
is thus presented in Section III for replacing the delicate
interpolation of the transverse projections of the k-vectors used
in the conventional implementation of the MIMO RMA.

III. TRANSVERSE SPECTRUM DECONVOLUTION

RANGE MIGRATION ALGORITHM

It is of interest in the first place to study the stationary
phase method with particular attention, as this development
is the keystone for treating the imaging problem in the plane
wave domain. The complete mathematical development makes
it possible to obtain the following expression, linking the
measured signal, converted in the plane wave domain, to the
reflectivity function of the target:

S = 1

4kyt kyr

∫
r
σ(r) e− j ky y e− j kx x e− j kz z d3r (14)

where the parameters kyt , kyr , kx , ky , and kz are the same
as defined in (7)–(11). The complete calculation, which is
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Fig. 7. Impact of spatial sampling of an MIMO imaging system on frequency
components measured in the equivalent plane wave domain, represented at a
single frequency f0. The plane wave samples with a nonzero imaginary part
are represented in a different color, and their magnitude tends to decrease
rapidly with propagation, especially for components whose transverse projec-
tion is close to 2 k0.

relatively long and tedious, is presented in the Appendix in
order to lighten this section. The resulting form is, up to a
scalar constant, similar to the result given in (6) and [13].
This development highlights an important fact. It is necessary
to preserve the 1/R amplitude function to obtain a compact
form as presented in (14).

A. Principle of the RMA TSD

Section II provided a visual interpretation of how RMA
works, confirming the importance of having a reference func-
tion adapted to each antenna array architecture. The key ele-
ment of this technique is the dispersion relation, the expression
of which is obtained in the case of an MIMO architecture
by asymptotic development of the integral expression of
measured signals ( [13] and Appendix). This calculation also
highlights the interaction between the transmitted and received
plane waves, forming composite wave vectors described by
(7)–(11). The most crucial part of the technique proposed
in [13] corresponds to the interpolation step allowing the
MIMO matrix S(kxt , kzt , kxr , kzr , f ) to be transformed into
a 3-D matrix S(kx , kz, f ) expressed as a function of the new
composite wave vectors. This transformation can be carried out
using various interpolation techniques, which are particularly
time-consuming and memory-intensive when applied to large
MIMO systems. The sampling of the plane wave domain
depends directly on that of the arrays used in transmission
and reception. This principle is illustrated with an example
in Fig. 7.

The transmit array is made of nxt × nzt = 6 × 6 elements,
with a spacing of dxt = dzt = 0.5λ0, and the receive array is
made of nxr × nzr = 8 × 8 elements, with a spacing of dxr =
dzr = λ0. This spatial sampling directly defines the number

Fig. 8. Representation of the interaction between transverse components of
transmitted and received plane wave spectra. The signals measured by the
antennas and then converted in the k-space correspond to the signature of the
scene to be imaged, interrogated by the interaction of transmit and receive
spectra.

of transverse modes excited by each array, the combination
of which may possibly be nonuniform, imposing additional
interpolation steps slowing down the computation of images.
It is proposed to simplify this step by developing a matrix
technique to interrogate the transverse components of the
spectrum of the scene to be imaged. This technique is first
explained by means of an illustration (Fig. 8).

This technique is based on interrogating the reflection
function of the target represented in the plane wave domain.
Each element of the matrix S(kxt , kzt , kxr , kzr , k) physically
corresponds to the interaction between the radiation patterns
generated in the desired independent directions (represented
here by the transverse components of the wave vectors). The
spatial limitations and sampling of the antenna arrays used
for transmitting and receiving do not allow the interrogation
of infinitely fine spectral lines. This approach then makes it
possible to take into account, and even to exploit, the diversity
of the radiated plane waves interacting with the unknown
response of the target to be imaged. Considering radiation
patterns Pt (kx , kz) and Pr (kx , kz) obtained by computing
Fourier transforms of the array sampling functions and the
analysis presented in Fig. 8, the expression of signals in the
k-space is then written as the following convolution products:

S =
∫

kx

∫
kz

Pt (kx − kxt , kz − kzt ) Sc(kx , kz, k)

Pr (kx − kxr , kz − kzr ) dkx dkz (15)

where Sc(kx , kz, k) is the remapped signal expression
expressed in the k-space. If the samplings of the transmit and
receive antenna arrays are separable functions, one can express
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the radiation patterns as

Pt (kx , kz) = Pt,x(kx).Pt,z(kz) (16)

Pr (kx , kz) = Pr,x (kx).Pr,z(kz). (17)

The different functions are then factorized so as to group
together the same variables

Px (kx , kxt , kxr ) = Pt,x(kx − kxt ).Pr,x (kx − kxr ) (18)

Pz(kz, kzt , kzr ) = Pt,z(kz − kzt ).Pr,z(kz − kzr ) (19)

leading to the simplified expression of S

S =
∫

kx

∫
kz

Px (kx , kxt , kxr )Pz(kz, kzt , kzr )

Sc(kx , kz, k) dkx dkz .(20)

It is then possible to write a matrix formalism to express
the link of Sc and S for each wavenumber k, with
the help of the following matrices S̄c(k) ∈ C

nkx ×nkz ,
P̄x ∈ C

nkx ×nkxt .nkxr ,P̄z ∈ C
nkz ×nkzt .nkzr , and S̄(k) ∈

C
nkxt .nkxr ×nkzt .nkzr . The dimensions kx and kz are thus dis-

cretized in uniformly sampled vector, defining the maximum
extension of the imaging domain. Equation (20) is then
expressed as

S̄(k) = P̄x S̄c(k) P̄z . (21)

The expression of ˆ̄Sc(k) for each value of k thus takes the
following form:

ˆ̄Sc(k) = P̄+
x S̄(k) P̄+

z (22)

where the symbol + stands for the pseudoinverse operator.
This approach, referred as transervse spectrum deconvolu-
tion (TSD), has multiple advantages compared with conven-
tional techniques based on the interpolation of transverse wave
vectors.

1) This transformation does not depend on the sampling of
transverse wave vectors and therefore does not require
signal preconditioning.

2) The transfer matrices P̄x and P̄z do not depend on
frequency or wavenumber. This greatly reduces the
memory and time consumption of the algorithm, which
requires only a single calculation of the pseudoinverse of
small matrices with respect to those of the S signal. This
approach makes computing highly parallelizable and
particularly suitable for array programming languages.

3) This formalism remains fully compatible with the use
of nonuniform antenna arrays that remains separable
functions. A precalculation of the P̄+

x and P̄+
z matrices

or the use of nonuniform fast Fourier transform nuFFT)
can speed up digital processing, without requiring the
use of interpolation of the associated signals.

4) This approach makes it possible to consider the interac-
tion of the scene with all the transmit and receive plane
waves emitted for each beam formation, exploiting all
the secondary lobes which usually represent elements
that are detrimental to image quality.

5) The dimensions of the scene to be imaged are directly
defined by sampling the vectors kx and kz on which the
radiation patterns are calculated, avoiding the use of zero

padding on 5-D matrices that already represent a certain
constraint on memory consumption.

This last step of the calculation finally made it pos-
sible to move from a 5-D signal S(kxt , kzt , kxr , kzr , k)
to a remapped signal with only three uniformly sampled
dimensions Sc(kx , kz, k). In accordance with conventional
approaches, it is then possible to use the dispersion relation
determined using the asymptotic calculations presented in the
Appendix to express the third dimension of Sc as a function of
the longitudinal projection of the wave vector ky instead of the
wavenumber k. The expression ky is given in the following:

ky =
√

k2 − k2
xt

− k2
zt

+
√

k2 − k2
xr

− k2
zr

. (23)

The plane wave components having been expressed according
to the same vectors kx and kz , it is then possible to obtain a
simplified expression of ky

ky = 2
√

k2 − k2
x − k2

z . (24)

The reflectivity function of the target can finally be estimated

σ̂tsd(x, y, z) =
∫

kx

∫
kz

∫
k

4k2
y Sc(kx , kz, k)

e j (kx x+kz z+ky y) dk dkx dkz .(25)

The numerical computation of this expression can still be
quite slow when working with large antenna arrays due to
the nonuniform sampling of the matrix ky preventing from
implementing fast Fourier transforms. This problem can be
alleviated by using the Solt interpolation, consisting in resam-
pling the matrix Sc(kx , kz, k) over uniform grids fitting a
uniformly sampled vector ky , leading to Sci (kx , kz, ky). The
association of the proposed technique with the Stolt interpola-
tion is referred to as TSDi in this paper. Finally, the reflectivity
function can be estimated using a 3-D inverse fast Fourier
transform

σ̂tsdi(x, y, z) = F−1
3D (Sci (kx , kz, ky)). (26)

The different algorithms studied in this paper are summarized
in the form of a diagram presented in Fig. 9.

A new implementation of RMA adapted to MIMO systems
has been proposed. The numerical and experimental valida-
tions of this technique are presented in Section III-B in order
to highlight the advantages and disadvantages of this approach
compared with the existing techniques.

B. Numerical Validation

A first validation is carried out using a numerical simula-
tion to measure the interaction of antenna arrays with target
points. Such an approach will make it possible to highlight
the computing times, memory consumption, and spatial res-
olutions obtained in the case of the application of RMA
as defined in [13] and using the approach proposed in this
paper. The system proposed for the study of these algorithms
consists of two monostatic arrays (identical and sharing the
same coordinates) used in transmission and reception. The
simulation is carried out in the K-band (18–26 GHz) using
an antenna spacing of 0.8c/ fmax = 9.2 mm in the transverse
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Fig. 9. Comparison of the conventional MIMO RMA algorithm with the
proposed TSD method. It is possible to implement this approach with a DFT
or to speed up its execution with Stolt trilinear interpolation.

Fig. 10. Illustration of the proposed MIMO imaging simulation for the
validation of this new imaging technique. An array of 40×40 antennas used
in both transmission and reception is used to reconstruct the image of these
nine source points.

directions x and z. The arrays are placed in the plane y = 0,
while nine target points are arranged around a distance of
y = 0.5 m (Fig. 10). Target spacing is chosen so as to draw
a square of 3 × 3 elements separated by 5 cm in transverse
dimensions. The four targets located on the corners of the
square are placed at y = 0.045 m, the central element at y =
0.5 m, and the four elements remaining at y = 0.55 m. For
this first simulation, antenna arrays are made up of nba = 40
antennas per side, corresponding to the interaction between
n4

ba = 2.56 million elements measured by this MIMO system.
Interaction is measured between transmitters and receivers

for each of the 20 frequency points uniformly sampling the
18–26-GHz operating bandwidth. This matrix is then used to
calculate an image using the conventional implementation of
the RMA MIMO algorithm proposed in [13]. The result of the
implementation of this first approach is shown in Fig. 11.

It can be seen that the reconstructed image has an uneven
amplitude distribution with an energy concentration on the

Fig. 11. Implementation of the conventional MIMO RMA algorithm.
Isosurfaces of the normalized image are represented for values of −3, −10,
and −15 dB.

Fig. 12. Implementation of the proposed method. (a) σ̂tsd—full computation
of the Fourier transform using the dispersion relation. (b) σ̂tsdi—accelerated
method based on a Stolt trilinear interpolation. Isosurfaces of the normalized
image are represented for the values of −3, −10, and −15 dB.

central target (used as a stationary phase point) and on the
four points furthest away from the array. It is necessary to
specify at this stage that the raw matrix is used and zero
padding has not been implemented. For comparison purposes,
the same matrix is again used for the implementation of the
proposed method. For this first example, the pseudoinverses
of the radiation matrices P̄x and P̄z are simply calculated by
using matched filtering, such as P̄+

x = P̄ H
x and P̄+

z = P̄ H
z ,

where .H is the conjugate-transpose operator. The results are
presented in Fig. 12.

In this configuration and despite the absence of zero
padding, the amplitude distribution appears more uniform
across the space. This difference is directly related to the
use of interpolation techniques in the conventional approach,
allowing to merge the different transverse wave vectors, which
can introduce distortions in the reconstructed images. In order
to highlight these differences, two transverse views of the
reconstructed images σ̂conv and σ̂tsd are presented in Fig. 13.

It can be observed that the position of the targets on the
corners undergoes a small translation from their real locations
in the case of the conventional approach, where the proposed
technique allows a correct estimation of the positions of the
targets, forming a square of 3 × 3 elements separated by 5 cm
along x and z. The proposed approach thus offers a better
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Fig. 13. Transverse views of reconstructed images in the case of (a) classical
RMA MIMO implementation and (b) proposed technique.

Fig. 14. Comparison of (a) cross-sectional and (b) longitudinal resolutions
obtained in the imaging of a source point placed in (x , y, z) = (0, 0.05, 0).
The curves along the x- and z-axis are similar because of the antenna array
symmetry.

estimation of the transverse spectrum of the scene to be imaged
by using a deconvolution-based technique exploiting the entire
spectrum of transmission and reception spectra. The transverse
and longitudinal resolutions are then compared using the same
system in the framework of the reconstruction of a simple
source point placed at (x, y, z) = (0, 0.0.5, 0) m. The results
obtained are presented in Fig. 14.

The midheight transverse resolution measured for the pro-
posed technique is 7.6 mm, compared to 12.1 mm for the
conventional MIMO RMA. The theoretical transverse reso-
lution can be approximated as δx,z ≈ λmin R/(2 Lx,z) =
7.6 mm [13], where Lx,z are the aperture dimensions along
the x and z directions, and is in good agreement with
the results obtained with the proposed method. In the case
of depth resolution, 12.8 mm is obtained for the proposed
approach implemented with a direct Fourier transform (DFT),
17.8 mm for the TSD associated with an interpolation step
and a fast Fourier transform, and 19 mm in the case of
conventional technique. A model based on the bandwidth
B is usually considered for estimating the range resolution,
as δy ≈ c/2B =18.7 mm. This result is in good agreement
with the resolution obtained with the conventional method.
Considering the shells formed in the k-space represented
in Fig. 7, the upper bound of the range resolution can be
defined as δy = 2π/(2 kmax) = c/ fmax = 11.5 mm. The
resolution obtained by applying the proposed technique is thus
closer to this theoretical limit by an improved exploitation of
the frequency components of the measured signals.

Fig. 15. (a) Comparison and (b) ratio of the computation times of the
conventional RMA MIMO algorithm and the proposed method according to
the number of equivalent radiating elements.

The performance of these three algorithms is now compared.
The matrix technique proposed in this paper has the advantage
of reducing the memory required for the proper functioning
of the program, as well as the associated computational times,
especially when the number of radiating elements of the
considered arrays is important. A comparison of the image
computing time is thus proposed, varying the number of
antennas used in transmission and reception arrays. To limit
the number of variables in this study, we are still using a
monostatic system, made up of a square array used for both
transmission and reception, with the number of antennas per
side denoted nba . This study is carried out for nba ranging from
10 to 40 antennas per side of the arrays, leading to matrices
of n4

ba elements for each of the 20 frequency points of the
operating K-band. The calculation times are thus compared
for the processing of 10 000–2.56 million equivalent radiating
elements, obtained by combining all pairs of transceivers. The
calculations are carried out with MATLAB, using a computer
equipped with 16 GB of RAM and a six-core 3.5-GHz CPU.
The results of this study are presented in Fig. 15.

The substitution of the interpolation of transverse spectral
components by fusion achieved with a matrix technique not
only optimizes the accuracy and resolution of reconstructed
images but also allows for faster image computation up to a
ratio of 75 for the largest case computed with 404 equivalent
radiating elements.

To conclude this study, a more realistic scenario is inves-
tigated, simulating the interaction with a mannequin carrying
a firearm at the belt level, imported from an STL file. The
simulation is carried out according to the numerical models
described in [26] and [27] by computing the electric fields
radiated by a set of magnetic dipoles in the target space. This
choice is justified in metasurface-based computational imag-
ing applications to convert measured or analytically derived
tangential electric fields into secondary sources injected in
the numerical solver. The target under consideration consists
of 67 455 facets chosen small enough with respect to the
dimensions of the radiating aperture to be able to apply a
physical optics approximation [28].

The contribution of each facet is thus calculated according
to its orientation and dimension following a square cosine
model. The qualitative validation of such an approach with
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Fig. 16. Simulation of a faceted 3-D object. (a) Imported human body
carrying a firearm. (b) Interaction between each antenna of the 71 × 71 MIMO
array represented in red and the facets of the target is calculated.

experimental results can be found in [26] and [27]. A simu-
lation is carried out considering a 2-D MIMO antenna array
formed by 71 × 71 elements, in which each antenna element
operates in the monostatic mode, with a spatial sampling
of 0.7λmin = 6.92 mm and placed at 1 m from the target
(Fig. 16). These simulations are carried out in the frequency
domain over 18–26-GHz frequency uniformly sampled by
48 points (Fig. 17).

Before analyzing the simulation results, it is important to
identify the approximations that were considered for their
computation. These simulations are based on the first Born
approximation and do not take into account multipath phe-
nomena. In an experimental application and under unfavorable
body postures, it may be possible to observe artifacts caused
by these multiple bounces, particularly between the legs and
under the arms of the mannequin. However, the use of polari-
metric information in such a context [17] could help to identify
and filter these detrimental effects [29].

The simulated mannequin is made of metal facets with a
reflection coefficient of 0.8 to match the average reflectivity of
a human body [27]. Any depolarization or delay phenomenon
related to the dielectric nature of a real human body is
therefore not taken into account in this simulation [30]. As the
impact of additive noise is rarely negligible for this type
of application, it is also proposed to illustrate the impact
of this effect on reconstruction under relatively unfavorable
conditions. A signal-to-noise ratio (SNR) of 3 dB is thus
considered for this study. This SNR is calculated from the
energy of the strongest signal, determining the variance of the
zero mean Gaussian noises added to all the measurements.

The volumetric reconstructions presented correspond to
isosurfaces extracted at −6 dB from each image, previously
normalized in amplitude. The color code corresponds to the
depth of the reconstructed surfaces, allowing the presence of
the firearm to be identified, as well as the position in space of
the limbs of the target. These visualizations are simplified by
representing only a 2-D view of the reconstructed information,
keeping only the elements with the strongest linear magnitude
as a function of depth, corresponding to the right-hand images
of Fig. 17. One might notice that the trilinear interpolation

Fig. 17. (a) Images obtained from the TSD method from a 71×71 MIMO
antenna array. (b) Images reconstructed with the TSDi approach based on
Stolt interpolation under the same conditions. (c) Reconstructions by TSDi
using the same simulated signals, this time with an SNR of 3 dB to illustrate
the impact of additive noise.

step used for the TSDi technique adds distortions compared
with the results obtained by simple TSD. It would be possible
to limit the occurrence of such distortions by using more
advanced interpolation techniques, but their interest would
quickly be questionable if the associated calculation times are
examined. The addition of Gaussian noise to the signals has
a clearly visible impact on the volumetric reconstruction of
the image by TSDi compared with the results obtained for an
infinite SNR. The extraction of the isosurface is affected by
the presence of a speckle making it a little more difficult to
identify the object carried by the target. The depth information
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TABLE I

COMPUTATION TIMES OF THE IMAGES PRESENTED IN FIG. 17

extraction method chosen for the 2-D display, however, makes
it possible to obtain a visualization of the target much less
impacted by the noise added to the measurements. Despite
the particularly unfavorable conditions simulated here with an
SNR of 3 dB, the reconstruction algorithm is relatively robust
to noise by exploiting the spatial averaging of the very large
number of signals coherently summed in the target space (see
[19, Sec. 4.6]).

All these images were calculated on the same computing
server with a double CPU with 10 cores running at 2.4 GHz
and equipped with 128 GB of RAM, allowing the processing
of all data with the same machine and a comparison of
computing times gathered in Table I, including, for each
execution, the computation times only devoted to fast Fourier
transforms.

It should be noted that the difference in computation times
between TSD RMA and TSDi RMA eventually diminishes
with the significant increase in the size of the matrices to be
processed due to a faster growth in the complexity of trilinear
interpolation computation compared with the initial approach
based on the matrix computation of the Fourier transform. It is
also important to note that the computation time devoted solely
to fast Fourier transforms represents a growing fraction of the
total computation time of this approach, exceeding 50% for
the array of 71 × 71 elements.

These different reconstructions allow us to conclude that
it is possible to adapt the antenna array architecture and the
computing method according to the needs of each application
in order to optimize the resolution and computing time of
reconstructed images.

IV. CONCLUSION

An imaging technique applied to MIMO imaging sys-
tems was presented in this paper. This new breakthrough
is intended to overcome memory and computational time
limitations imposed by conventional imaging techniques while
not sacrificing the accuracy and resolution of estimations.
A review of all the elements necessary to understand MIMO
Fourier processing techniques was proposed, identifying the
crucial points necessary for an intuitive presentation of this
complex technique based on asymptotic developments of com-
plex integrals. It was then possible at this stage to propose a
new reconstruction method in the field of plane waves based
on a physical interpretation of the interaction between the
radiation of the imaging system and different targets. A numer-
ical study revealed significant time savings in computation
between the proposed method and the conventional approach
proposed [13], particularly when imaging systems include a
large number of antennas and large volumes to be imaged.
Although these antenna array architectures are not commonly

used for the usual MIMO imager implementations as they
would be very expensive and would present a significant
redundancy of measured information, new implementations
based on the use of various frequency-diverse antennas directly
face these challenges. Further studies will be carried out in the
future to identify possible new optimizations of this technique.
Fast Fourier transforms now represent the largest fraction of
the computational time of this approach, so it will be possible
to accelerate these processes by adapting these computations
on field-programmable gate array (FPGA) or GPU instead of
the simple multicore CPU used for this proof of principle [31].
It will also be possible to parallelize the reconstruction of
radar images by separating them into a set of subdomains
centered around different stationary phase points following
the technique presented in [32], allowing at the same time
to reduce the distortions applied to the elements reconstructed
far from the stationary phase point.

APPENDIX

In this section, it is proposed to study, in a comprehensive
manner, the asymptotic development of the integral equation of
the signals received by an MIMO array using the stationary
phase method. In addition to the pedagogical value of this
development when combined with the intuitive illustrations
given in Figs. 4–6, it makes it possible to highlight a certain
number of calculation steps that are eluded in [13] for com-
pactness concerns. A fraction of these developments can be
found in [12] and [33], although initially applied to a synthetic
aperture radar.

To the best of our knowledge, all asymptotic developments
proposed in this field are based on a simplified derivation of
the measured signals, considering that amplitude terms have a
negligible usefulness in comparison with phase terms and can
thus be removed. It is shown in this section that it is necessary
to keep the decay term 1/R, evaluated at the stationary phase
point so that the final expression converges toward a form very
close to that given in the references mentioned earlier. From
a physical point of view, the conservation of the amplitude
term also seems justified insofar as this information remains
of particular interest in the context of imaging applications in
the Fresnel zone.

We start the calculations from the initial formalism of the
MIMO signal simplified according to a scalar field approxi-
mation and to the first-order Born approximation

s(xt , zt , xr , zr , k) =
∫

r

σ(r)

16π2

e− j k Rt

Rt

e− j k Rr

Rr
d3r (27)

with

Rt =
√

(x − xt )2 + y2 + (z − zt )2 (28)

Rr =
√

(x − xr )2 + y2 + (z − zr )2 (29)

R =
√

x2 + y2 + z2 (30)

dV = ∂x ∂y ∂z. (31)

The spatial dimensions are expressed in the Fourier domain
in order to consider the interaction between the emitted and
received plane waves and the target to be imaged

S(kxt , kzt , kxr , kzr , k) = F4D
(
s(xt , zt , xr , zr , k)

)
. (32)
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The development of the expression of this signal makes it
possible to factorize the transmission and reception terms

S =
∫

r

∫
At

∫
Ar

σ(r)

16π2

e− j k Rt

Rt

e− j k Rr

Rr

e− jkxt xt e
− jkzt zt e

− jkxr xr e− jkzr zr d Ar d At d3r

=
∫

r

σ(r)

16π2

⎡
⎢⎢⎢⎣
∫

At

e− j k Rt

Rt
e− j kxt xt e− j kzt zt d At︸ ︷︷ ︸

Et

⎤
⎥⎥⎥⎦ (33)

⎡
⎢⎢⎢⎣
∫

Ar

e− j k Rr

Rr
e− j kxr xr e− j kzr zr d Ar︸ ︷︷ ︸

Er

⎤
⎥⎥⎥⎦ d3r (34)

where the surface elements of the transmit and receive aper-
tures are d At = ∂xt ∂zt and d Ar = ∂xr ∂zr , respectively. The
integrals Et and Er share the same mathematical form that
can be simplified using the method of stationary phase. These
expressions are developed here with a generic index i standing
for t or r

Ei (kxi , kzi , k) =
∫

xi

∫
zi

e− j k Ri

Ri
e− j kxi xi e− j kzi zi ∂xi ∂zi . (35)

The evaluation of this integral is carried out using asymptotic
development. It is therefore necessary to express this expres-
sion in a particular oscillatory integral form

Ei (kxi , kzi , k) = ∫
xi

∫
zi

e− jk
√

(xi −x)2+y2+(zi −z)2√
(xi−x)2+y2+(zi−z)2

e− j kxi xi e− j kzi zi ∂xi ∂zi (36)

= ∫xi

∫
zi

1
R e jk� ∂xi ∂zi (37)

with

� = −
√

(xi − x)2+y2+(zi − z)2− kxi

k
xi − kzi

k
zi (38)

R =
√

(xi − x)2 + y2 + (zi − z)2. (39)

The factorization of the wavenumber k makes it possible to
introduce a phase term � that varies slowly with respect to
the frequency. This development makes it possible to realize
an asymptotic expansion of the integral, considering that the
most significant contributions arises a saddle point called the
stationary phase point (xs, zs), and defined as

∂�

∂xi

∣∣∣∣
xs ,zs

= 0 (40)

∂�

∂zi

∣∣∣∣
xs ,zs

= 0. (41)

A second-order 2-D Taylor expansion of � is calculated at the
stationary phase point (xi = xs, zi = zs)

� ≈ �(xs, zs)+

=0︷ ︸︸ ︷
∂�

∂xi

∣∣∣∣
xs ,zs

(xi − xs) +

=0︷ ︸︸ ︷
∂�

∂zi

∣∣∣∣
xs ,zs

(zi − zs)

+ ∂2�

∂x2
i

∣∣∣∣
xs ,zs

(xi − xs)
2

2! + ∂2�

∂z2
i

∣∣
xs ,zs

(zi − zs)
2

2!

+ 1

2!
∂2�

∂xi∂zi

∣∣∣∣
xs ,zs

(xi − xs)(zi − zs)

+ 1

2!
∂2�

∂zi∂xi

∣∣∣∣
xs ,zs

(xi − xs)(zi − zs) (42)

� ≈ �(xs, zs) + ∂2�

∂x2
i

∣∣∣∣
xs ,zs

(xi − xs)
2

2!

+ ∂2�

∂z2
i

∣∣∣∣
xs ,zs

(zi − zs)
2

2!

+ ∂2�

∂xi∂zi

∣∣∣∣
xs ,zs

(xi − xs)(zi − zs). (43)

The expression of xs and zs can first be obtained from the first
derivatives vanishing at the stationary phase point

∂�

∂xi

∣∣∣∣
xs ,zs

=− xs −x√
(xs − x)2 + y2 + (zs − z)2

− kxi

k
=0 (44)

∂�

∂zi

∣∣∣∣
xs ,zs

=− zs −z√
(xs − x)2 + y2 + (zs − z)2

− kzi

k
=0. (45)

Equations (44) and (45) then lead to the following coupled
equations:

(xs − x)2 = k2
xi

k2 − k2
xi

(y2 + (zs − z)2) (46)

(zs − z)2 = k2
zi

k2 − k2
zi

(y2 + (xs − x)2). (47)

The resolution of this last equation system makes it possible to
determine the expression of the coordinates of the stationary
phase point, extracting the positive roots for each case

xs = x + y
kxi√

k2 − k2
xi

− k2
zi

(48)

zs = z + y
kzi√

k2 − k2
xi

− k2
zi

. (49)

The second derivatives ∂2�/∂x2
i , ∂2�/∂z2

i , and
∂2�/∂xi∂zi can now be evaluated, reminding that � =
−((xi − x)2 + y2 + (zi − z)2)(1/2) − (kxi /k)xi − (kzi /k)zi

∂2�

∂x2
i

= ∂

∂xi

(
− xi − x√

(xi − x)2 + y2 + (zi − z)2
− kxi

k

)
(50)

= y2 + (zi − z)2

((xi − x)2 + y2 + (zi − z)2)
3
2

. (51)
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Similarly, we evaluate the second derivative of the phase term
according to zi

∂2�

∂z2
i

= − y2 + (xi − x)2

((xi − x)2 + y2 + (zi − z)2)
3
2

. (52)

The last second derivative ∂2�/∂xi∂zi is finally evaluated

∂2�

∂xi∂zi
= ∂

∂xi

∂�

∂zi
= ∂

∂xi

(
− zi − z√

x2 + y2 + z2
− kzi

k

)
(53)

∂2�

∂xi∂zi
= − (x − xi)(zi − z)

((xi − x)2 + y2 + (zi − z)2)
3
2

. (54)

These three derivatives are finally evaluated at the stationary
phase point

∂2�

∂x2
i

∣∣∣∣
xs ,zs

= k2 − k2
xi

y

√
k2 − k2

xi
− k2

zi

k3 (55)

∂2�

∂z2
i

∣∣∣∣
xs ,zs

= k2 − k2
zi

y

√
k2 − k2

xi
− k2

zi

k3 . (56)

Finally

∂2�

∂xi∂zi

∣∣∣∣
xs ,zs

= − (x − xs)(zs − z)

((xs − x)2 + y2 + (zs − z)2)
3
2

(57)

= y−1k−3kxi kzi (k2 − k2
xi

− k2
zi
)

1
2 . (58)

It is then required to evaluate ((∂2�/∂xi∂zi )|xs ,zs )
2

(
∂2�

∂xi∂zi

∣∣∣∣
xs ,zs

)2

= y−2k−6 k2
xi

k2
zi

(k2 − k2
xi

− k2
zi
). (59)

Finally, it is necessary to evaluate the expression of the
amplitude term R(xs, zs), as well as the expression of the
phase term at the stationary point �(xs, zs)

R(xs, zs) =
√

(xs − x)2 + y2 + (zs − z)2 (60)

= ky√
k2 − k2

xi
− k2

zi

(61)

�(xs, zs) =−
√

(xs −x)2+y2+(zs −z)2− kxi

k
xs − kzi

k
zs (62)

= −k − (k2
xi

/k) − (k2
zi
/k)√

k2−k2
xi

− k2
zi

y− kxi

k
x − kzi

k
z. (63)

The magnitude and phase term evaluated at the stationary point
can then be extracted from the integral

Ei = e jk�(xs,zs )

R(xs, zs)
Ig (64)

where Ig is a Gaussian integral evaluated around the stationary
phase point [34], [35]

Ig =
∫

xi

∫
zi

exp

(
jk

1

2
[α(xi − xs)

2 + β(zi − zs)
2

+2γ (xi − xs)(zi − zs)]
)

∂xi ∂zi (65)

with α = − ∂2�
∂x2

i

∣∣
xs ,zs

, β = − ∂2�
∂z2

i

∣∣
xs ,zs

and γ = − ∂2�
∂xi∂zi

∣∣
xs ,zs

.

Having αβ > γ 2 and α < 0, (64) then takes the following
form [35]:

Ei = − j2π

k
R(xs, zs)

−1e jk�(xs,ys)

⎛
⎝
∣∣∣∣∣∣
∂2�

∂x2
i

∣∣∣∣
xs ,zs

∂2�

∂z2
i

∣∣∣∣
xs ,zs

−
(

∂2�

∂xi∂zi

∣∣∣∣
xs ,zs

)2
∣∣∣∣∣∣
⎞
⎠− 1

2

(66)

= − j2π

k

√
k2 − k2

xi
− k2

zi

ky

k2 y

k2 − k2
xi

− k2
zi

exp

⎛
⎝− j

⎛
⎝ k2 − k2

xi
− k2

zi√
k2 − k2

xi
− k2

zi

y + kxi x + kzi z

⎞
⎠
⎞
⎠ (67)

= − j2π√
k2 − k2

xi
− k2

zi

exp(− j
√

k2 − k2
xi

− k2
zi

y)

exp(− jkxi x) exp(− jkzi z). (68)

Finally, we recall the initial expression of the MIMO signal
S(kxt , kzt , kxr , kzr , k) expressed in the k-space, as well as
its equivalent expression obtained by applying the stationary
phase method

S =
∫

r

σ(r)

16π2

(∫
At

e− j k Rt

Rt
e jkxt xt e jkzt zt d At

)
(∫

Ar

e− j k Rr

Rr
e jkxr xr e jkzr zr d Ar

)
d3r (69)

= 4π2

16π2kyt kyr

∫
r
σ(r) e− j kyt y e− j kxt x e− j kzt z

e− j kyr y e− j kxr x e− j kzr z d3r (70)

= 1

4kyt kyr

∫
r
σ(r) e− j ky y e− j kx x e− j kz z d3r (71)

where the association of transverse components corresponding
to the plane waves emitted and received gives rise to new
projections of composite wave vectors interrogating the target
space, matching the expressions given in [13]

kyt =
√

k2 − k2
xt

− k2
zt

(72)

kyr =
√

k2 − k2
xr

− k2
zr

(73)

kx = kxt + kxr (74)

ky = kyt + kyr (75)

kz = kzt + kzr . (76)
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