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A TRANSVERSELY ISOTROPIC THERMOELASTIC THEORY
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ABSTRACT

A continuum theory is presented for representing the thermoelastic behavior of
composites that can be idealized as transversely isotropic. This theory is consistent with
anisotropic viscoplastic theories being developed presently at NASA Lewis Research
Center. A multiaxial statement of the theory is presented, as well as plane stress and plane
strain reductions. Experimental determination of the required material parameters and
their theoretical constraints are discussed, Simple homogeneously stressed elements are
examined to illustrate the effect of fiber orientation on the resulting strain distribution.
Finally, the multiaxial stress — strain relations are expressed in matrix form to simplify
and accelerate implementation of the theory into structural analysis codes.

INTRODUCTION

Historically, the study of the mechanical behavior of fiber reinforced composite

materials has been appruached from two viewpoints, the microscopic and macroscopic.

The microscopic view considers the constituents (fiber/matrix) separately, addressing in

detail the interaction between individual fibers and surrounding matrix and the behavior at

the fiber — matrix interface. Alternatively, the macroscopic approach considers the

composite to be a material in its own right, (continuum), with its own experimentally

measurable properties specified for the composite as a whole. This continuum approach

provides a relatively efficient framework for the prediction of observed macroscopic

deformation behave or. Extensive research into both the micro and macroscopic viewpoints

has been undertaken (e.g.[1,2],).

Here, a continuum theory is presented for representing the thermoelastic behavior of

composites that can be idealized as a homogeneous continua with locally definable

directional characteristics. Although it is presumed here that a single preferential (fiber)

direction is identifiable at each material point, -thus admitting the idealization of local

transverse isotropy, the theory is extendible to account for two (or more) identifiable

nrP.fPrPnfia:l directinns:



As indicated in [3], homogenization of textured materials (e,g composites) and

applicability of continuum mechanics depends relatively upon characteristic structural

dimensions, the severity of gradients (i.e. stress, temperature, etc.), and the relative scale

and periodicity of the internal structure of the material.. Examination of these conditions

reveals that for many anticipated aerospace applications of composites, the formulation of

continuum based theories is justified.

The objective of this study is the development of a transversely--isotropic

thermoelastic theory which is consistent with present, continuum--based, anisotropic

viscoplastic theories. Therefore the present work follows closely the earlier work of Spencer

[2,4] and Robinson [3,5], and relies heavily upon invariant theory and the existence of u

strain and complementary energy potential in the formulation of the constitutive

equations, Major contribute * ,as of this study are 1) the recasting of earlier work in terms of

physically meaningful total s:•ess invariants, 2) discussion of a transversely isotropic

multiaxial thermal strain tensor, 3) identification of a correspondence between plane stress

and plane strain for a transversely isotropic material and 4) specification of an

experimental program for the complete determination of the required elastic constants as

well as a discussion of the theoretical restrictions on these parameters.

This study begins with the multiaxial statement of the theory, followed by the plane

stress and plane strain simplifications. Experimental determination of the required

material parameters and their theoretical constraints are then discussed. Simple

applications are then employed to illustrate the capability of the theory in representing

transversely isotropic thermoelastic behavior.
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MULTIAXIAL STATEMENT OF THE THEORY

Here constitutive equations are given fora linear hyperelastic solid reinforced

single family of fibers, i.e. a locally transversely isotropic material. Given a h;yperela

material the stress and strain components are related through a normality structure

utilizing either a strain energy or complementary energy function [2,6], i.e.

Qij ^W_	(])
ij

and

Eij — 490
	

(2)

Ij

A. 



where

W = W(Eij)	 (3)

and

n	0(oiij)	 (4j

Hoire oij denotes the components of (Cauchy) stress, rij the components of infinitesimal

mechanical strain.

Transversely isotropic material symmetry is included in the potentials of equations x	i

(3) and (4) by introducing a directional tensor didj , for example:

W = W(c..,didj)
I.

and

0 = n(oij) didj)

where now W and 11 de . end not only upon on e. and o,.	res a Aivel ., at a point but also'r	 -p-	- --	Y	P	lj	ij	p	p
upon the local fiber direction. The symmetric tensor didj is formed by a self product of the ; $

unit vector di denoting the local fiber direction, as the sense of d i is immaterial

As W and St each depend on two symmetric second order tensors, form invariance

(objectivity) requires that they depend only on certain invariants and invariant products of

their respective tensorial arguments (i.e., an integrity basis). The integrity basis, for a

function comprised of two symmetric second order tensors, has ten invariants (7]. A subset

consisting of four invariants (T1 ,I2 ,I4 ,I5) of the irreducible set of invariants is used, as d i is
a unit vector and we desire W and fl only to be quadratic functions (so the resulting stress

strain relations are linear). Assuming a polynomial representation, the potential functions

may be expressed as follows:

W(cij ,didj) = A'Pi + B'P I + C'P j + D IP ,I + B I P 1	(5)

and

O(viij,didj)	AP1 +BP2 +CP:3 +DP4 +EP5	(6)
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where

Rpm

PI =12

P2 =12
—I5 + 1/4( 1 2 -- 911 +61,14)

r

P3 =15_ 1	 C7)

= 1 
z

P42

I
P5 1114

and

I1 = 
aii13

T2 = 1/2 dij aji

C^)
14 = didj aji

15 = didjo'jko'ki

An analogous set of invariants to those in equations (7) and (8) is chosen for W, i.e.

P1,P^,... P) and 11,12 II jÎ  by replacing aij by cij in equations (7) and (8).

The subset of total stress invariants employed in (7) are similar to those utilized by

Robinson and Duffy (3) for the corresponding deviatoric invariants. These invariants

correspond physically to ; P I — the square of the mean (hydrostatic) stress state, P 2 the

square of the maximum transverse shear stress , P 3 -- the square of the maximum

longitudinal shear stress , P 4 - the square of the normal stress in the local fiber direction,

and P5 — the product of the mean and normal stress in the local fiber direction. Figure 1

defines the coordinate system and P 2 ,P3 and P4 schematically.

4



b

Substituting equations (6) — ($) into equations (3) and (4) result in the following

linear elastic stress strain relationst.

01/6( (4A P— 9W) Ii + (3B I + 2P)P 6ij
4

+ 1/2f (W + 2V)I 
1 1
1 + [BP+4(V—C))]14 didj

+ B"(, Ij + (C' B') al. (9)

and

`ij	
1/6{ (4A— 9B) I1 + (313 + 2E)14 ) 6ij

+ 1/2f (3B + 2E)I1 + [B + 4(D —C)114 didj

	

+ Baij + (C — B) aij	 (10)

'where

6ij — denotes the Kronecker deltafunction

aij dio'jkdk + dkokid i

aij difzjkdk + dkq-1dj

Clearly equatbris (9) and (10) posses identical form; the coefficients and invariants,

lic
"
wever are distinctly different. The unprimed coefficients A,B,C,D and E and their

prift^ed counterparts may be associated with more physical parameters (e.g. Young's

modulus and Poisson ratio) by conducting various thought experiments. For example

consider the four stress states depicted in figure 2, given a preferred direction d i along the 2

axis, i.e. d=(0,1,0).

'The appendix contains identical expressions to those of (9) and (10), yet written in matrix
notation for easy implementation into structural analysis codes.
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From these states of stress (tests), it is easily shown that

test a)

B - (13 /0'13 
= 1/2GT	(11)

test b)

C C12/0'12 = 1/2GL	(12)
test c)

2/9(A + 9D + 3E) E22/U'22 1 /Et,	 (13)

--1/9(2A + 3E)EL = --6, 1/622 ^ PL	 (14)

and

test d)

2(A/9 + B/4) ° e ll /a,1 = ""T	 (15)

— (4A -- 9 B) .^
-'9B—e22/ell - VT
	 (16)

`-

2(A/9 + E/6)ET = —633/e11 vL	 (17)

Where

GT — Shear modulus (transverse) for the plane of isotropy

GL	
Shear modulus (longitudinal) for a plane normal to the plane of isotropy,

ET — Young's modulus (transverse) in the plane of isotropy,

ELF— Young's modulus (longitudinal) normal to the plane of isotropy,

vT— Poisson's ratio (transverse) that characterizes the transverse strain reduction

in the plane of isotropy due to a tensile stress in the same plane,

vL	Poisson's ratio (longitudiilal) that characterizes the transverse strain

reduction in the plane of isotropy due to -a tensile stress in a direction normal

to it.

Vol

I
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PL- Poisson's ratio that characterizes the strain reduction normal to the plane of

isotropy due to a tensile stress in the plane of isotropy,

Solving equations (13) thru (17) we find

4	Ej-

B = 1 /2GT

C 1/2GL

D = (1+2vL)/2EL + (1y-vT)14E,

E = -3( (1-vT)/2ET + VL/EL }

and

2GT ET/(1+vT)

I = vLET/EL

Note that the five independent constants are chosen. to `be EL,ET,

process can be repeated to obtain the primed coefficients in termi

independent physical parameters, they are:

A ° = 4 [EI-EL/
I
ELO — PT) - 2ETP^^

B'=2GT

V 2GL

I	 2D = E01 't ET(1 _^6vL) /I2(EL( 1"Yr;9 --- 2ETvVJJ

E' = 31ETEL(1-2vL)/IEL(1—vT)-2ETV15/2

f
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Therefore, the stress train relations of (9) and (10) may be expressed either in terms of

the nonphysical coefficients AIB,C,D and E, or alternatively in terms of the five

independent physical parazmters discussed above.

Agreement between the present work and earlier work by Spencer ( 4] is evident,

provided appropriate substitutions are made for .the coefficients in equation (9) prior to

comparison of the strain energy formulations. Additionally, a direct comparison with

Lekhnitskii's [8) work can be made when the physical parameters expressed in (18) are

inserted into equation (10) and the preferred direction is assumed to be d=(01011).

Further, with appropriate substitution of equations (18) and (19) into (9) and (10), and

considering conditions of isotropy, i.e.

E EL = ET v = vL = vT and

did = 
Ii,/3
	

(20)

the classical isotropic linear elastic stress strain relations are obtained.

The transversely isotropic stress—strain relations given .above may be extended to

include the effect of temperature by applying the traditional assumption of the additive

nature of mechanical and thermal strain, i.e.

eiJ 
	

ij + rij
where

ei3 — total strain

iii — mechanical straiir

and the multiaxial thermal strain is assumed to have the following forum

c J = [(aL- aT, )didj + &-aT] AT	 (22;Ij

where	aL- characterizes the thermal expansion normal to the plane of i

aT— characterizes the thermal expansion in the plane of isotropy

AT = T2- T1 ; T1,T2 are two distinct temperatures

(21'
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A sirnilax expreSSiQn tQ that of (22) was derlrau .,y V114UWIIU C AIR; O asv Jul Agualt WC

Helmhotz free energy for a heat conducting elastic transversely isotropic " material, There it

was also shown that such a farm satisfies thermodynamic restrictions,

,Again, imposing the conditions of isotropy (a=aL=aT) it is evident that (22)

reduces to

CI j = hi
j
a AT
	

(23)

the classical Isotropic thermal strain tensor. Equation (23) is reatr eted to an isotropic

continuum, as it implies that a change in temperature causes only a change in volume. This

is not necessarily the case in (22), in that for an off axis fiber orientation a change in shape

(shear) will occur with a change in temperature. An example of this is provided in a later

section,

TWO DIMENSIONAL SIMPLI:EICATION

Here, simplification of the multiaxial' linear thermoelastic stress — strain relations of

(21), in which. equations (10) and (22) are incorporated, is made to that of plane stress and

plane strain, For convenience equations (18), representing the relationship between

physical and nonphysical parameters are substituted into (10). Plane stress, in the plane of

isotropy (see figure 3), requires that

Ti Qijnj - 0

while plane strain requires

t

F

3i = eianj = 0

where Ti and 3i represent the stress and strain traction, respectively. If the local

direction (d) and n  (indicating the directionality of the plane stress or strain a;

•	are defined as,

dl Cos 0	nl = 0

d2 sin 0	n2 0

d3 =0	n3=1

t

LOOM,



the following expressions relating the nonzero stress and strain components are obtained.

f

Plane Stress:

e11 = °11 /ET — PL°22/E;L +

[112GL-1 /ET—v
L/RLj(2o1 1co820 + 2a'12cos06'") +

C1/ET+(1+2vL)/EL_4/GLI(aYlcos2o j.

0'22sin2 0+2 a12co$ &JUP)cos20

+ [ a4,r + ( aL--aT)COOMAT	 (24)'

e22 
^ 0'22/ET -- "L'11 /EL +

[]/2GL-1/ET--vL^/EL)(2a22sin20 + 20'12cososin0) +

[1./ET+(1+2vL)/EL-1/G"L](°r11cos20 +

a22sin2 0 + 2o12coSNinO)sin2O

+ [ aT + (aL-=aT)sin2 j4T	 (25)

e12 = 0'12/ 2GL + [1/2GL-1/ET`vL/ELI(0'11+ 022)co80sin0 +

[1/ET+ (1+2vL)/EL-1 /GLl(o,x1cQS20 +

0'22sin2 6-}-20'12cos06,inO)cos OsinO

+ [(aL--aT)cosNinMAT	 (26)

e33 = vT/ET (Or11+0'22) +

IvTIET -- vL/EL)(O11cos20^-a22sinz 0- 2o12cosOsinO)

+ aTAT	 (27)

10
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Plane Strain:

e11 
= (1-'+0'11/ET — vL(1'+vT)0'22/EL +

[1/20.xL-(I -vi,)/ET-rvL(1+PT)/EL](2o-Ilcos2# + 2012eosOsinP)

+ [(1~VT2)/ET+ [1+2vL(1+PT)--PLvL)]/EL I/GLI(ol COs20

022sin20+2ar12cosQs nO)ros20

+ {(1+VT)gT + [aL-{jj . VT-pL) )co62P}ex	(2e)

e22 = (1-4) 0'22/ET — vL(1+vT)0+11 /EL +
[1/2GL -{1^-v }j F,1, -t^^(1 -w,P)/ELj(2a'22sin2O + 2m12cosOsinO)

+ [( 1—VT2)/BT+[1+2vL(1+vT)-vLvL'J1EV-11Gz,I(a11co820

+ a22sin20+2a12cosOsinO)s'A20

+ {(J+VT)aT + [aL—{j+VVVL)OTI6in2O)AT	(29)

e12 = '12/2GL +

[1/2GL—('—Vi)/ET—VL(1+ VT) /ELI ( °11+ a22)cosNinO +

[(1-vf)/ET+[1+2vL(1+vT) -- vLPL]/EL--1/GLl( a11cGs2O +

0'226in2 0+2a12cosN nO)oosN"1O

+ {[aL—(1+vT--vL)aT]cos0sin0}OT	 (30)

0'33 = vT(0'11+0'22) — [vT _ vLl

(010082 0+ 0'22sin20+20'12cosOsin0)

-. aTETAT	 (31)

Clearly in order to convert an isothermal plane stress problem into an isothermal

plane strain problem, provided nj is in the plane of isotropy (nidi = 0), the following

substitutions should be made:

.zwm

4^
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ET = ET/ 0-4)

EL 
va 

EL/ (l-vL VV	(32)

VL = VL(i+VT)!('-„ LVL)

where as before

vL = 
FEET/EL

Employing the assumptions of isotropy, i.e..E=ET=EL and v=vL=vT , the above reduce to

their isotropic counterparts, as they must. Considering the nonisothermal cases the lack of

a unique correspondence in the transverse coefficient of thermal expansion (mT) is .noted

when comparing the plane stress and plane strain expressions. This lack of correspondence,

arises due to the difference in strain reduction, Le. Poisson ratio, for in plane and out of

plane loadings. Clearly however, under isotropic conditions a functional correspondence for

the thermal expansion coefficient does exist, Le. a = a(l+v):

Alternatively, the assumptions of plane stress or strain may be imposed out of the

plane of isotropy (nidi# 0). Here, in contrast to the previous assumptions taken in the

plane of isotropy, the conversion from a plane stress to a plane strain problem is now a

function of fiber orientation, or angle 0, Consider for example the case when n = (,110)0)

and 0=0 0 (i.e. the 1 axis is normal to the plane of isotropy) the following substitutions are

required,

ET = ET/(1—vLVL)

(33)

VT = ('VT + "LvL) /('—"LPG,)

while if 0=90 0 (i.e. the l axis is in the plane of isotropy) identical substitutions as those in

(32) are determined, as expected. For brevity, the angle dependent plane stress and ,plane

strain expressions are omitted here,

12
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EXPERIMENTAL DETERMINATION OP MATERIAL IARAMETERS

Two types of specimens are presumed to be available.: These consist of thin walled

composite tubes that are longitudinally reinforced (having a single fiber direction oriented

axially) and those that are helically reinforced, with a fiber orientation of 45n (see figure 4),

Each specimen may be loaded either in tension and/or torsion.

The motivation for utilizing thin walled tubular specimens is two fold. The first is

the fact that a thin walled tube is an ideal specimen for the development of constitutive

relationships as it provides a nearly homogeneous region of stress and strain, and is

r



statically determinate. Secondly, identical specimens may be employed, as well, to

characterize inelastic material parameters [3,5] and combined tension/torsion experiments

can be used as verification tests to assess the correctness of the multiaxial theory [10], both

elastically and inelastically,

First consider the longitudinal reinforced specimen, i.e. 0=0 0 , subjected to an axial

tensile load (all ). Clearly, then from equations (24) and (25) we obtain

t

i



 EL = 011/E11 (34)

and

vL = —E22/Ell
	

(35)

where all is the applied axial stress and E11,E22 are the measured axial and circumferential

strains respectively. Also subjecting the longitudinal specimen to a pure torsional load

results in the quantification of the longitudinal shear modulus, as evident from equation

(26)r

GL = a12/'Y12	 (36)

where 7,2 :is the measured engineering shear strain (2e 12) and 012 the applied torsional

stress.

Both the longitudinal and transverse thermal expansion coefficients also may be

obtained by imposing a uniform temperature excursion, from some reference temperature,

on the longitudinally reinforced specimen. Assuming no additional loads are applied to the

specimen, it is easily seen from equations (24) and (25) that

aL = e I/AT

andand

aT E22 /AT

13
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where AT is known and E 11and E22are measured quantities,

Now consider the helically reinforced specimen (Fig, 4), with a f' ;" er orientation of

450, subjected to it state of pure torsion. Equations (24) thru (27) then I^Implify to,

X11
=" 

e22 
^ (1/2EL — 1/2E,1,)a12	 (y )

E12 
= [1/2ET

' (I+2vL)/'EJ 12	 (38)
and

C33 = (vT/ET — vL/EL)al2	 (39)
from which the transverse modulus and poisson ratio of the composite material can be

deduced. For example, from equations (3'I) .and (39) we obtain

ET ^-- EL/[1—(2e11EL/ 0'12)1	 (40)
and

vT " ET(e33/0'12 + 
vL /EL)
	

(41)

while equation (38) allows verification of either ET, vL , or EL, Nate that equation (41)

assumes that the radial (diametral) strain ( c33) is a measurable quantity. This

measurement, however, is at best difficult, Clearly, if this measurement proves to elusive,

an alternative test will need to be conducted to determine either the transverse shear

modulus (GT) or the transverse poisson ratio (vT). As an example, the double shear test

may be employed to obtain a measure of the transverse shear modulus [11].

Although, the author prefers the use of tubular specimens, the high cost of

fabrication and required test equipment may be prohibitive. Thus alternative test

procedures, utilizing plate specimens may also be employed to obtain the required

independent material parameters. The four material parameters EL , ET, vL _and vT' can be

obtained by performing tensile tests on plate specimens with orientations of 0 and 90 0 , see

figure 5. Difficulties arise however, when attempting to find GL , as in---plane shear test

methods must be employed; such as rail shear, symmetric rail shear, ± 45 0 tension coupon,

off axis tensile coupon, ARCAN and IOSIPESCU. The symmetric rail shear and + 450

tension coupon appear to be the preferred methods [12].

Finally, it is important to realize that although the above tests are viewed as

characterization tests for the present theory, they also may be viewed as verification tests

i,"'IV'.
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w	 RESTRICTIONS ON THE MATERIAL PARAMETERS

Theoretical constraints, which insure the admissibility of the elastic constants

incorporated in the above expressions,

may be derived by requiring that the complementary energy (strain energy) potential be

positive definite; thereby guaranteeing convexity and uniqueness of solution, These

inequalities are

EL > 0

GL > 0

OT > 0	 (42)

EL/ET > v

1--vT > 2vfET/EL

Under isotropic conditions (i.e. E=E L=ET) G=Gr`=GT and v=vL =vT) these inequalities	 1

simplify to the well known restrictions imposed on elastic isotropic materials [6].

An additional restriction is imposed on the longitudinal shear modulus which

insures that the global longitudinal (transverse) stiffness modulus be monotonically

decreasing (increasing) for all fiber orientations between zero and ninety degrees. The

necessary inequality is

GL < FL /C2( 1+vL)]	 (43)

and may be deduced from either of the following conditions:

dE11/d4= 4e120'11ft11 < 0	 (44)

or

dE22 /d0 = —4"120'22/"22 > 0	 (45)

where E111E22 are the global longitudinal and transverse stiffness moduli respectively and

E11,E22 and q2 are given by equations (24) thru (26).

Figures 6 and 7 illustrate the resulting variation in stiffness (for sample material 1

and 2, respectively) along the 1 axis with respect to fiber orientation when the inequality

of equation (43) is violated, and satisfied, respectively. Table 1 provides the two complete	 4

sets of example material properties, Clearly, when G L violates (43) a non realistic

variation in stiffness, with respect to fiber orientation, results (see figure 5). The increase	 !?

15
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and subsequent decrease in stiffness is attributod to the change in sign of the shear stra

as illustrated in figure 8, and implied in (44). In figure 8, the corresponding normal an(

shear strain variations verses ;fiber orientation are displayed, utilizing the material

properties of sample one. Alternatively, figure 9 shows the normal and shear strain

variations associated with the material parameters of sample two, Le, figure 7. Also the

importance of the sign, as well as magnitude, of the shear strain, i.e. E 12 , is evident from

the expressions (44) and (45).

The inequalities in equations (42) and, (43) not only constrain the values of the

elastic constants in the mathematical for, Aulation to agree with certain basic physical

principles, but also provide a means to determine whether experimentally obtained data is

physically consistent with the mathematical model. If the measured material properties

satisfy the constraints, one can proceed with confidence. Otherwise one might doubt the

experimental techniques employed; or alternatively, the validity of the assumed

idealization of transversely isotropic behavior for this particular material.

SIMPLE ILLUSTRATIVE STATES OF STRESS

Simple homogeneously stressed elements are employed in this section to illustrate

the effect of fiber orientation on the resulting strain distributions. All results are

associated with the material properties of sample 2 in Table 1. Four mechanical stress

states and one thermal load are addressed. These are a uniaxial state, a pure shear state,

an equal and opposite biaxial state, a two to one biaxial state, and a change in temperature

with no applied stress. The resulting variations in strain with fiber orientation are shown

in figures 9 thru 13, respectively.

Examination of these figures reveals that the strain response , as one might expect,

is highly dependent upon fiber orientation. Further, qualitative agreement with physical

reasoning and experimentally observed response is also noted, thus providing additional

confidence in the correctness of the present thermoelastic stress—strain relations. For

example, consider the uniaxial stress state of figure 9. There the e ll strain component is

seen to be extensional (positive) for all fiber orientations, while C22 is initially contractive

(negative, e.g. at 0=0 0) yet reaches a maximum extensional magnitude at 0=45 0 , This

change in sign for the E22 strain component would be completely unanticipated if one

applied intuition developed from isotropic materials. Additionally no contraction or

extension along the 2 axis would be observed when the fibers are orientated at either 0=

17.050 or 72.95 0 , see figure 9. Such points of interest may be examined experimentally to

verify the theory.

16
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Examining figures 10 and 11 (the pure shear and equal and opposite biaxial stref

state, respectively) one must realize that although the strain responses appear to be

distinct, they are in fact equivalent; as expected since the applied stress states are

equivalent, provided the proper transformation is applied. For example with a rotation

450, the biaxial stress state of figure 11, becomes one of pure shear, thus suggesting that

strain response be equivalent to that of figure 10 at 0=0 0. Indeed, taking into account a

450 transformation, this can be easily shown to be the case.

Consider the two to one biaxial stress state given in -figure 12. This stress state is

similar to that which arises in a thin walled tube with closed ends und;2r internal pressure.

As expected, the hoop strain (6 22) is significantly larger than the axial strain (611) at 0=00

(a longitudinally reinforced tube). Increasing the fiber orientation toward 00 0 (i.e.

circumferentially reinforced) decreases the hoop strain while increasing the axial.

Interestingly, beyond 55 0 (a material dependent angle measurement) the magnitude of the

axial strain surpasses that of the hoop strain, where at 90 0 e11 is approximately twice that

of 622 , even though a22 = 2all. One obvious application of the present theory is the

optimization of fiber orientation, such that specific design criteria are satisfied. Adoption

of known optimization principles to the present theory is straight forward: due to the

inclusion of directional dependence (material symmetry) in the potential function.

The effect of fiber orientation on the variation in thermal strains is illustrated in

figure 13. Unlike the isotropic case, here a change in temperature may produce (for off

axis fiber orientations) significant shear strains in addition to volumetric strains. The

maximum shear strain, under a purely thermal load, will always occur at an angle of 450,

independent of material constants.

17
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SUMMARY

A continuum theory has been presented that represents the linear thermoel

behavior of materials which can be idealized as transversely isotropic. „ Specifically this

theory may be applied to composite materials with a single preferred direction; wherein the

composite is considered a material in its own right, with its own experimentally measurable

properties specified for the composite as a whole.

Some of the main points of the present study are;

1) Tt,e present theory is shown to be in agreement with earlier work done by
Spencer, Lekhnitskii, and Chadwick and Seet. Also, assuming isotropic
conditions, the present theory is shown to simplify to the classical
thermoelastic stress—strain relations.

2) Correspondence between isothermal plane stress and plane strain problems
was established, while for the assumed multiaxial -form of the thermal strain
no correspondence is found for the nonisothermal case.

3) Specification of an experimental procedure for the complete determination of
the required material parameters is presented. Thin walled tubes,
longitudinally and helically reinforced, loaded in tension and torsion are the
primary specimens.

4) Theoretical constraints on the values of the elastic constants, which insure
their admissibility, are discussed.

5	Simple illustrative states of stress indicate that the resulting strain response,
in the presence of material anisotropy, may be highly nonintuitive.
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APPENDIX — MATRIX REPRESENTATION OF MULTIAXIAL FORMULA?

The multiaxial stress—strain relations given in index notation: in equations

(10) are expanded and expressed here in matrix notation. This is done in order to simplify

and accelerate implementation of the present theory into structural analysis codes.

Equations (9) and (10) now become

(a) =101 (El	 (a)

and

[e]	[DJ (o)

respectively. Where the column matrices (a) and (E) contain the si

components of oil and Eli. That is

{o) = Ialt1°'221°'33)a12'°r23'°,31]T

and

(E] = 1E1VE22 ^E33412,E23,E31iT

Note the inclusion of thermal strains,in the above equations, is accor

equation (22), i.e. substituting

Ei j = eil — elj

into equations (a) and (b).

The independent components of the symmetric stiffness matri

expressed in terms of the nonphysical parameters as follows:

20



First Row:

C11 = 2V/9 + B I/2 + [2C'—B'+2E'/3]dl + [H'/2 + 2(DP—C')]df

C12 = 2A '/9 —13'/2 + [B '/2 +E'/3](d j+d j) + [0 1/2 + 2(D'—C ')]d jd j

C13 _ 2A ^/9 — B)/2 + [B`/2 +E'/3](dj+dj) + [81 /2 + 2(D'—C')]dldg

C14 = [C O—B' /2+E'/3]dld2 + [B'/2 + 2(D'—C'))d jd2

C15 = [B' /2+E'/3]d2d3 + [B'/2 + 2 (D '—C7 )]d ju2d3

C16 = [C'—B'/2+E'/3]dld3 + [B'/2 + 2(D'—C')ldfd3

Second Row:

C22 = 2A' /9 + B'/2 + [2C'—B'+2E'/3]dii + [B'/2 + 2(D'-0)]d^

C23 = 2A'/9 —,BI/2 + [B '/2 +E '/3](d j+d j) + [B)/2 + 2(D'—C'),

C24 = [C'—B'/2+E'/3]dld2 + [g '/2 + 2(D'—C')]didl

C25 = [C'—B:/2+E'/3 ]d2d3 + [$ '/2 + 2(D'—C')]+3

C26 [B' /2+E'/3]dld3 + [B '/2 + 2(D'—C') ]djd3d1

Third Row:

C33 = 2A'/9 + B'/2 + [2C'-B'+2E'/3]d j + [B'/2 + 2(D'—C')]dj

C34 = [BI/2+E>/3]dld2 + [B'/2 + 2(D '—C')]djd2d1

C35 = [C'—B'/2+E'/3]d2d, + [B'/2 + 2(D'--C'))d jd2

C36 [B'/2+E'/3]dld3 + [B'/2 + 2(D'--C')]djdl



Fourth Rowe

C44 = B ^ + [C'—B"](aj + a3) + [B I/2 + 2(n'--c')Idjd3

C45 = [0—B '1djd3 + [B '/2 + 2(D'-C')ld1djd3

C46 = (C '^B 'jd2d3 + [B '/2 + 2(D'—C')jdjd2d3

Fifth Row:

C55 B ' + (C '—B%dj + d) + [130/2 + 2(n'—C')]ajaj

C56 
[C ^-B'ld1d2 + (B'/2 + 2(D'—C')ldld2dg

Sixth Row.

C66 By + [C)—B)](dj + d3) + [s^ /2 + 2(D ^--C%djdj

The components of the compliance jnatrix, [D], are identical to those above, provided the

unprimed coefficients A,B,C,D and E are substituted for their primed counterparts. For

convenience the definitions of these nonphysical parameters, in terms of the more physical

parameters, are repeated (c.f. equations (18) and (19)).

The unprimed coefficients are

A = 9/4[(1--vT)/ETI

B = 1/2GT

C = 1/2GL

D = (1+2vL)/2EL + 0

E = -3{ (I-vT)/2ET

2GT ET/(1+vT)

vL = vLET/EL

where

22



and the primed are

A) = 9/4 IETELAELO"Y — 2ET"11 I

B 1 = 2GT

C' = 2GL
	(d)

D' = ELI' + ET(l-2VL)2/[2(EL(l—vT)2ET pt)])/2

E, = —3(BTEL(12vL)/IEL(1—vT)-2pjTvll)/2

in	I

E
L	7

28000	13

50000	13

material

sample 1

sample 2



011	 011

1

(D)	3

FIGURE 2, - FUNDAMENTAL STRESS

STATES, WITH RESPECT TO A GIVEN

FIBER DIRECTION, REQUIRED TO

DETERMINE MATERIAL PARAMETERS,

j . (0,0,1

slnO, 0)

FIGURE 3, - DEFINITION OF COORDINATE SYSTEM AND PLANE OF

ISOTROPY.

FIGURE 1, - DEFINITION( OF COORDINATE SYSTEM AND

PHYSICAL INVARIANTS MITII RESPECT TO TIC PRE-

FERRED FIBER DIRECTION A.

1

(N) 3	

012

(C)

FIGURE 4, - SCHEMATIC OF A THIN WALLED

TUBE LONGITUDINALLY (0 - 00 ) AND HELI

(R.c, 0 n 450) REINFORCED.

24



a

4t ^
3#2 

3

EL 0112.8	,u.+w.,..." . #

EL11

2.4

+YSz

^x

VL " •t22	` 2.0
4

'^ * N81tt

1.6
ET h

0	204060	so	11

D

FIGURE G. 
W VARIATION IN STIFFNESS (E 1,) WITH RESPECT TO

FIRER ORIENTATION 0 ASSUMING CAMP^t' 1 (SEE TAKE 1)

MATERIAL PARAKIERS,



5,0	 L

011 0
'^ Wr

011

3



,0	 Ga R o11

K	 X11
.w

2.0 --



110	 CT «;-..,..--



020NO60801

0

FIGURE 7. W VARIATION IN STIFFNESS (E 1 ) WITH RESPECT TO

FIBER ORIENTATION 0 ASSUMING SAMPLE 2 (SEE TABLE 1)

MATERIAL PARAMETERS,

F	 F

FIGURE 5. - SCWTIC OF PLATE SPECIMENS LONGITUDINALLY

(0 . 00) AND 'TRANSVERSELY (0 A 900) REINFORCED,

,

4

t.



02040b0NO100

0

111^^ zz11Rp}^hIGAtTIION

N VERSU	R ORIE AT. Np SHEAR 	G SAMPLE	 T*

MATERIAL PARAMETERS,

M 
[4.0

3.0

2.0

1,0

0

ell
912

C22

t

2

a
$,o

o,

400	O il̀̀
1

3.0 911

e12

w 2,0
"..^ 42

1.0

-2.00
	20 	 ,W	60	so	10

0

FIGURE J. - Il;0* (ell'9 2) ANO SHEAR (C ) STRAIN VAAI-

ATION VERSUS FIBER IENTATION 0 ASS014 SAMPLE 2

MATERJAL PARAMETERS.

26

$.0

8



4,0	
1	 12

C22
3.0 —	 E33



2.0
^•»

x0

0000
0 z '-------- --	

./ ^,
-1.0

-2.0



0204060SO1

0

FIGURE 10.1- NORMAL (9 .E22.E33) AND SHEAR (t,.) STRAIN

VARIATION VERSUS FI^ ORIENTATION 0 FOR SALE 2

MATERIAL PARAMETERS UNDER PURE SHEAR STRESS STATE.

.-^ OM

fi 1'



Ei1	
'^'. '	-	> 1

612
c42

4
E333

2

Ar

W 
-2	 1000 .000

I	 I	I
.6 0	20	40	60	80	100

0

FIGURE 11, ' NOP.MAL (E11'E22'E33) AND SHEAR (E12 ) STRAIN
VARIATION VERSUS FIBER ORIENTATION 0 FOR SAMPLE 2

MATERIAL PARAMETERS UNDER OPPOSITE BIAXIAL STRESS STATE..



Et1	
I ._.



.......^ E 12	i— .	
9 1



E221
w

933

3 
42

8

6̂̂
1

3
4

T. 2
K
W

^r

y2

_,,	 1	_I	I	I
020406080100

0

FIGURE 12, —NORMAL (E 11 ,E22 ,E33 ) AND SHEAR (E12 ) STRAIN
VARIATION VERSUS FIBER ORIENTATION 0 FOR SAMPLE 2

MATERIAL PARAMETERS UNDER TWO TO ONE BIAXIAL STRESS

STATE,

E111 -- —0 1 

012
.—.w,.	ER22

AT ° 100 OF

of 	3x10'6G
1.8 C33 aT A 15X10

— -------- ------

1.2

N1

x 0.6
x
W

-0.6 0
2040 6080100

0

FIGURE 13. NORMAL (E 11 ,E22 ,E33 ) AND SHEAR (E1 2) STRAIN
VARIATION VERSUS FIBER ORIENTATION 0FOR SAMPLE 2

MATERIAL PARAMETERS FOR A CHANGE IN TEMPERATURE

AT ° 100 °F,

27



*4 Report Documentation Page
=A4n1nW(&0on 

1. Report No. NASA TM-101302
2. Government Accession No, a. Reclplmt's Catalog No.

Corrected Copy

4. Title and Subtitle O. Report Date

A Transversely Isotropic Thermoelastic Theory November 1989

6. Performing Organization Code

7, Author(a) s. Perforiing Organization Report No,

S.M. Arnold E-4288

10, Work Unit No,

535-07-01
9. Performing Organization Name and Address

National Aeronautics and Space Administration
11, Contract or Grant No,

Lewis Research Center

Cleveland, Ohio	44135-3191 1e, Type of Report and Period Covered

Technical Memorandum12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001
14. Sponsoring Agency code

15, Supplementary Notes

16. Abstract

A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized
as transversely isotropic, This theory is consistent with anisotropic viscoplasuc theories being developed presently

at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and

plane strain reductions. Experimental determination of the required material parameters and their theoretical
constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber

orientation on the resulting strain distribution. Finally, the multiaxial stress-strain rel,, Lions are expressed in
mat-rix form to simplify and accelerate implementation of the theory into structural analysis codes,

17. Key Words (Suggested by Author(s)) 18, Distribution Statement

Elasticity Unclassified-Unlimited
Transverse isotropy Subject Category 39

Composite;
Thermal strain

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No of pages 22. Price'

Unclassified Unclassified 28 A02

NASA FORM 1626 OCT

p


	1988018948.pdf
	0071A01.jpg
	0071A02.tif
	0071A03.tif
	0071A04.tif
	0071A05.tif
	0071A06.tif
	0071A07.tif
	0071A08.tif
	0071A09.tif
	0071A10.tif
	0071A11.tif
	0071A12.tif
	0071A13.tif
	0071B01.tif
	0071B02.tif
	0071B03.tif
	0071B04.tif
	0071B05.tif
	0071B06.tif
	0071B07.tif
	0071B08.tif
	0071B09.tif
	0071B10.tif
	0071B11.tif
	0071B12.tif
	0071B13.tif
	0071B14.tif
	0071C01.tif
	0071C02.tif


