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Abstract. This article presents some general remarks on rough sets
and their place in general picture of research on vagueness and uncer-
tainty - concepts of utmost interest, for many years, for philosophers,
mathematicians, logicians and recently also for computer scientists and
engineers particularly those working in such areas as AI, computational
intelligence, intelligent systems, cognitive science, data mining and ma-
chine learning. Thus this article is intended to present some philosophical
observations rather than to consider technical details or applications of
rough set theory. Therefore we also refrain from presentation of many
interesting applications and some generalizations of the theory.
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1 Introduction

In this article we are going to give some general remarks on rough sets and their
place in general picture of research on vagueness and uncertainty - concepts of
utmost interest, for many years, for philosophers, mathematicians, logicians and
recently also for computer scientists and engineers particularly those working in
such areas as AI, computational intelligence, intelligent systems, cognitive sci-
ence, data mining and machine learning. Thus this article is intended to present
some philosophical observations rather than to consider technical details or ap-
plications of rough set theory. Therefore we also refrain from presentation of
many interesting applications and some generalizations of the theory.

We start our consideration in Section 2 with general comments on classical
notion of a set, formulated by Georg Cantor [8] over one hundred years ago.
Next, we discuss briefly in Section 3 a source of basic discomfort of classical set
theory, namely the antinomies, which shocked the foundation of mathematics
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and the ways out of this embarrassment. Further, the notion of vagueness and
its role in mathematics, as formulated by Gottlob Frege [12] are briefly discussed
in Section 4. The basic notions concerning fuzzy sets and rough sets are presented
in Sections 5 and 6, respectively. The contrast between fuzzy membership [51]
and rough membership [31] is briefly considered in Section 7. Than we discuss
the notions of fuzzy set [51] and rough set [28,30] as certain formalizations of
vagueness. A brief comparison of both notions close this section.

We conclude our deliberation in Section 8 with brief discussion of deductive,
inductive and common sense reasoning and the role of rough sets has played in
these kinds of inference.

2 Sets

The notion of a set is the basic one of mathematics. All mathematical structures
refer to it.

The definition of this notion and the creation of set theory are due to German
mathematician Georg Cantor (1845-1918), who laid the foundations of contem-
porary set theory about 100 years ago. The original, intuitive definition of the
Cantor’s notion of the set [8] is given below:

“Unter einer “Manningfaltigkeit” oder “Menge” verstehe ich nämlich allge-
mein jedes Viele, welches sich als Eines denken lässt, d.h. jeden Inbegriff bes-
timmter Elemente, welcher durch ein Gesetz zu einem Ganzen verbunden werden
kann.”

Thus according to Cantor a set is a collection of any objects, which according
to some law can be considered as a whole. As one can see the notion is very
intuitive and simple.

All mathematical objects, e.g., relations, functions, numbers, etc. are some
kind of sets. In fact set theory is needed in mathematics to provide rigor.

The notion of a set is not only fundamental for the whole mathematics but
it also plays an important role in natural language. We often speak about sets
(collections) of various objects of interest such as, collection of books, paintings
and people.

The intuitive meaning of a set according to some dictionaries is the following:

“A number of things of the same kind that belong or are used together.”
Webster’s Dictionary

“Number of things of the same kind, that belong together because they are
similar or complementary to each other.”

The Oxford English Dictionary

Thus a set is a collection of things which are somehow related to each other but
the nature of this relationship is not specified in these definitions.

In fact, these definitions are due to the original definition given by Cantor.
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3 Antinomies

Well! I’have seen often a cat without a grin, thought Alice; but a grin without a cat!
Lewis Carroll (1994). Alice’s Adventures in Wonderland.

Penguin Books, London

In 1903 the renown English philosopher Bertrand Russell (1872-1970) observed
[37] that the intuitive notion of a set given by Cantor leads to logical antinomies
(contradictions), i.e., set theory was contradictory (there also exist other kinds
of antinomies - we refrain from considering them here). A logical antinomy, for
the sake of simplicity called antinomy in the remaining part of this paper, arises
when after carrying on a correct logical reasoning we come to a contradiction,
i.e., to the propositions A and non-A, which is not allowed in logic.

As an example let us discuss briefly the so-called Russell’s antinomy. Consider
the set X containing all the sets Y , which are not the elements of themselves. If
we assume that X is its own element then X , by definition, cannot be its own
element; while if we assume that X is not its own element then, according to the
definition of the set X , it must be its own element. Thus while applying each
assumption we obtain contradiction.

The above antinomy is often illustrated with the example of a barber, who
got the instruction, that he could only shave all the men who did not shave
themselves. Then a question arises if he may shave himself or not. If we assume
that the barber shaves himself then, according to the instruction, he may not
shave himself. But when we assume that he does not shave himself then, ac-
cording to the instruction, he should shave himself. Thus we have run across an
antinomy.

Another well known antinomy, called the power-set antinomy, goes as fol-
lows: consider (infinite) set X of all sets. Thus X is the greatest set. Let Y
denote the set of all subsets of X . Obviously Y is greater then X , because the
cardinality of the family of all subsets of a given set is always greater the car-
dinality of the set of all its elements. For example, if X = {1, 2, 3} then Y =
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, where ∅ denotes the empty set.
Hence, X is not the greatest set as assumed and we have arrived at contradiction.

Antinomies show that a set cannot be a collection of arbitrary elements, as
was stipulated by Cantor.

One could think that antinomies are ingenuous logical play, but it is not so.
They question the essence of logical reasoning. That is why there have been
attempts to “repair” Cantor’s theory for over 100 years or to substitute another
set theory for it but the results have not been good so far. Is then all mathematics
based on doubtful foundations?

As a remedy for this defect several improvements of set theory have been
proposed. For example,

– Axiomatic set theory (Zermello and Fraenkel, 1904);
– Theory of types (Whitehead and Russell, 1910);
– Theory of classes (v. Neumann, 1920).
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All of these improvements consist in restrictions put on objects which can form
a set. Such restrictions are expressed by properly chosen axioms, which say how
a set can be built. They are called, in contrast to Cantors’ intuitive set theory,
axiomatic set theories.

Instead of improvements of Cantors’ set theory by its axiomatization, some
mathematicians proposed escape from classical set theory by creating a com-
pletely new idea of a set, which would free the theory from antinomies. Some of
them are listed below.

– Mereology (Leśniewski, 1915, [19]);
– Alternative set theory (Vopenka, 1970, [49]);
– “Penumbral” set theory (Apostoli and Kanada, 1999, [1]).

No doubt the most interesting proposal was given by Polish logician Stanis�law
Leśniewski, who proposed instead of membership relation between elements and
sets, employed in classical set theory, the relation of “being a part”. In his set
theory, called mereology, this relation is a fundamental one [19].

None of the three mentioned above “new” set theories were accepted by math-
ematicians. However, Leniewski’s mereology attracted some attention of philoso-
phers and recently also researchers in computer science (see, e.g., [9,33,43]).

The problem of finding an alternative to classical set theory has failed to be
solved until now.

Basic concept of mathematics, the set, leads to antinomies, i.e., it is contra-
dictory. How is it is then possible that mathematics is so successful and can be
applied almost everywhere – that bridges are not collapsing, air-planes are not
falling down and man has landed on the moon?

The deficiency of sets, mentioned above, has rather philosophical than prac-
tical meaning, since sets used practically in mathematics are free from the above
discussed faults. Antinomies are associated with very “artificial” sets constructed
in logic but not found in sets used in “everyday” mathematics. That is why we
can use mathematics safely.

4 Vagueness

Besides known and unknown what else is three?
Harold Pinter (1965). The Homecoming.

Methuen, London

Another issue discussed in connection with the notion of a set is vagueness.
Mathematics requires that all mathematical notions (including set) must be
exact, otherwise precise reasoning would be impossible. However, philosophers
[17,18,36,38] and recently computer scientists [21,23,24,41] as well as other re-
searchers have become interested in vague (imprecise) concepts.

In classical set theory a set is uniquely determined by its elements. In other
words, this means that every element must be uniquely classified as belonging to
the set or not. That is to say the notion of a set is a crisp (precise) one. For example,
the set of odd numbers is crisp because every number is either odd or even.
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In contrast to odd numbers, the notion of a beautiful painting is vague,
because we are unable to classify uniquely all paintings into two classes: beautiful
and not beautiful. Some paintings cannot be decided whether they are beautiful
or not and thus they remain in the doubtful area. Thus beauty is not a precise
but a vague concept.

Almost all concepts we are using in natural language are vague. Therefore
common sense reasoning based on natural language must be based on vague con-
cepts and not on classical logic. This is why vagueness is important for philoso-
phers and recently also for computer scientists. Interesting discussion of this
issue can be found in [36].

The idea of vagueness can be traced back to ancient Greek philosophers
Eubulides (ca. 400BC) who first formulated so called sorites (Bald Man or Heap)
paradox. The paradox goes as follows: suppose a man has 100 000 hair on his
head. Removing on hair from his head surely cannot make him bald. Repeating
this step we arrive at the conclusion the a man without any hair is not bald.
Similar reasoning can be applied to a hip stones.

Vagueness is usually associated with the boundary region approach (i.e.,
existence of objects which cannot be uniquely classified relative to a set or its
complement) which was first formulated in 1893 by the father of modern logic,
German logician, Gottlob Frege (1848-1925). He wrote:

“Der Begrieff muss scharf begrenzt sein. Einem unscharf begrenzten Begriff
würde ein Bezirk ensprechen, der nicht überall ein scharfe Grentzlinie hätte,
sondern stellenweise gantz verschwimmend in die Umgebung übergine” [12].

Thus according to Frege:
“The concept must have a sharp boundary. To the concept without a sharp

boundary there would correspond an area that had not a sharp boundary-line
all around.”

It means mathematics must use crisp, not vague concepts, otherwise it would
be impossible to reason precisely. Summing up, vagueness is

– not allowed in mathematics;
– interesting for philosophy;
– necessary for computer science.

5 Fuzzy Sets

There is nothing new under the sun.
Ecclesiates 1:9

At the same time, independently of mathematicians’ and philosophers’ inves-
tigations, engineers became interested in the notion of a set. It turned out that
many practical problems could not be formulated and solved by means of clas-
sical Cantor’s notion of a set.

In 1965 Lotfi Zadeh, Professor of University of Berkely, proposed a different
notion of a set, in which elements can belong to a set to some extent and not
definitively, as it is in case of the classical set theory. This proposal turned out
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applicable in many domains and initiated extensive research in fuzzy set theory,
what became the name of Zadeh’s theory [43].

In his approach an element can belong to a set to a degree k (0 ≤ k ≤ 1),
in contrast to classical set theory, where an element must definitely belong or
not to a set. For example, in classical set theory one can say that someone is
definitely ill or healthy, whereas in the fuzzy set theory language we can say that
someone is ill (or healthy) at the 60 percent level (i.e., in degree 0.6).

Let us observe that the definition of fuzzy set involves more advanced math-
ematical concepts – real numbers and functions – whereas in classical set theory
the notion of a set is used as a fundamental notion of whole mathematics and
is used to derive any other mathematical concepts, e.g., numbers and functions.
Consequently fuzzy set theory cannot replace classical set theory, because, in
fact, the theory is needed to define fuzzy sets.

Fuzzy membership function has the following properties:

a) µU−X(x) = 1 − µX(x) for any x ∈ U ;
b) µX∪Y (x) = max(µX(x), µY (x)) for any x ∈ U ;
c) µX∩Y (x) = min(µX(x), µY (x)) for any x ∈ U .

That means that the membership of an element to the union and intersection
of sets is uniquely determined by its membership to constituent sets. This is a
very nice property and allows very simple operations on fuzzy sets, which is a
very important feature both theoretically and practically.

Several generalizations of this basic approach to concept approximation are
presented in the literature (see, e.g., [14,42,44,45,50]).

Let us stress once more that classical set is a primitive notion and is de-
fined intuitively or axiomatically. Fuzzy sets are defined by employing the fuzzy
membership function, which involves advanced mathematical structures, num-
bers and functions. Thus it cannot play an analogous role in mathematics similar
to that played by the classical concept of a set, which is used to define numbers
and functions.

Fuzzy set theory can be perceived as new model of vagueness. The the-
ory and its applications developed very extensively over the past four decades
and attracted attention of engineers, logicians, mathematicians and philosophers
worldwide.

6 Rough Sets

Data! data! data!
Sir Artur Conan Doyle (1994). The Adventures of Sherlock Holmes.

Penguin Books, London

Rough set theory, proposed by the author in 1982 [28,30], is still another ap-
proach to vagueness.

Rough set theory expresses vagueness not by means of membership, but by
employing a boundary region of a set. If the boundary region of a set is empty
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it means that the set is crisp, otherwise the set is rough (inexact). A nonempty
boundary region of a set means that our knowledge about the set is not sufficient
to define the set precisely.

In a manner similar to fuzzy set theory, rough set theory it is not an alter-
native to classical set theory but it is embedded in it. Rough set theory can be
viewed as a specific implementation of Frege’s idea of vagueness, i.e., imprecision
in this approach is expressed by a boundary region of a set, and not by a partial
membership, as in fuzzy set theory.

The rough set concept can be defined quite generally by means of topological
operations, interior and closure, called approximations. At the onset of an intro-
duction to rough sets, it was observed that the key to the presented approach is
provided by the exact mathematical formulation of the concept of approximative
(rough) equality of sets in a given approximation space [28]. In [30], an approxi-
mation space is represented by the pair (U, R), where U is a universe of objects,
and R ⊆ U × U is an indiscernibility relation defined by an attribute set. The
relation R is an equivalence relation. Let [x]R denote an equivalence class of an el-
ement x ∈ U under the indiscernibility relation R, where [x]R = {y ∈ U | xRy}.

In this context, R-approximations of any set X ⊆ U are based on the exact
(crisp) containment of sets. Then set approximations are defined as follows:

• x ∈ U belongs with certainty to the R-lower approximation of X ⊆ U , if
[x]R ⊆ X .

• x ∈ U belongs with certainty to the complement set of X ⊆ U , if [x]R ⊆
U − X .

• x ∈ U belongs with certainty to the R-boundary region of X ⊆ U , if [x]R ∩
X �= � and [x]R ∩ (U − X) �= �.

Generalized approximation spaces were introduced in [42]. A generalized approx-
imation space is a system GAS = (U, I, ν) where

• U is a non-empty set of objects, and P(U) is the powerset of U ;
• I : U → P(U) is an uncertainty function such that x ∈ I(x) for any x ∈ U ;
• ν : P(U) x P(U) → [0, 1] denotes rough inclusion

The uncertainty function I defines for every object x a set of similarly defined
objects. In effect, I defines a neighborhood of every sample element x belonging
to the universe U (see, e.g., [32]). The rough inclusion function ν computes the
degree of overlap between two subsets of U. Let P(U) denote the powerset of U .
In general, rough inclusion ν : P(U) x P(U) → [0, 1] can be defined in terms of
the relationship between two sets, e.g., by

ν(X, Y ) =

{
|X∩Y |
|Y | , if Y �= ∅
1 , otherwise

for any X , Y ⊆ U .
From practical point of view it is better to define basic concepts of this theory

in terms of data. Therefore we will start our considerations from a data set called
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an information system. An information system is a data table containing rows
labeled by objects of interest, columns labeled by attributes and entries of the
table are attribute values. For example, a data table can describe a set of patients
in a hospital. The patients can be characterized by some attributes, like age, sex,
blood pressure, body temperature, etc. With every attribute a set of its values
is associated, e.g., values of the attribute age can be young, middle, and old.
Attribute values can be also numerical. In data analysis the basic problem we
are interested in is to find patterns in data, i.e., to find relationship between some
set of attributes, e.g., we might be interested whether blood pressure depends on
age and sex.

Let us describe this problem more precisely. Suppose we are given a finite,
non-empty set of objects U called the universe and a set of attributes A, de-
scribing objects of the universe in terms of attribute values. Let X be a subset
of U and B a subset of A. We want to characterize the set X in terms of at-
tributes B. To this end we will need the basic concepts of rough set theory given
below.

– The lower approximation of a set X with respect to B is the set of all objects,
which can be for certain classified as X using B (are certainly X in view of
B).

– The upper approximation of a set X with respect to B is the set of all objects
which can be possibly classified as X using B (are possibly X in view of B).

– The boundary region of a set X with respect to B is the set of all objects,
which can be classified neither as X nor as not-X using B.

Now we are ready to give the definition of rough sets.

– Set X is crisp (exact with respect to B), if the boundary region of X is
empty.

– Set X is rough (inexact with respect to B), if the boundary region of X is
nonempty.

Thus a set is rough (imprecise) if it has nonempty boundary region; otherwise
the set is crisp (precise). This is exactly the idea of vagueness proposed by
Frege.

Let us observe that the definition of rough sets refers to data (knowledge),
and is subjective, in contrast to the definition of classical sets, which is in some
sense an objective one.

The approximations and the boundary region can be defined more precisely.
To this end we need some additional notation.

Every subset of attributes B determines an equivalence relation on U . This
relation will be referred to as an indiscernibility relation. The equivalence class
determined by an element x and the set of attributes B will be denoted B(x).
The indiscernibility relation in a certain sense describes our lack of knowledge
about the universe. Equivalence classes of the indiscernibility relation, called
granules generated by the set of attributes B, represent an elementary portion
of knowledge we are able to perceive in terms of available data. Thus in view of
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the data we are unable, in general, to observe individual objects but we are forced
to reason only about the accessible granules of knowledge (see, e.g., [27,30,35].

Formal definitions of approximations and the boundary region are as follows:

– B-lower approximation of X

B∗(X) =
⋃

x∈U

{B(x) : B(x) ⊆ X};

– B-upper approximation of X

B∗(X) =
⋃

x∈U

{B(x) : B(x) ∩ X �= ∅};

– B-boundary region of X

BNB(X) = B∗(X) − B∗(X).

As we can see from the definition approximations are expressed in terms of
granules of knowledge. The lower approximation of a set is union of all granules
determined by the set of attributes B which are entirely included in the set; the
upper approximation is union of all granules which have non-empty intersection
with the set; the boundary region of set is the difference between the upper and
the lower approximation.

Thus the definition of rough set also requires advanced mathematical con-
cepts (relations) and consequently, similarly as fuzzy set, cannot replace classical
concept of a set.

Several generalizations of the above approach have been proposed in the lit-
erature (see, e.g., [14,27,42,44,45,50]). In particular, in some of these approaches
the set inclusion to a degree is used instead of the exact inclusion. It is worthwhile
to mention that the set inclusion to a degree has been considered by �Lukasiewicz
[20] in studies on assigning fractional truth values to logical formulas.

Different aspects of vagueness in the roughs set framework are discussed, e.g.,
in [21,24,36,41].

Our knowledge about the approximated concepts is often partial and uncer-
tain [15]. For example, the concept approximation should be constructed from
examples and counter examples of objects for the concepts [16]. Hence, the con-
cept approximations constructed from a given sample of objects is extended,
using inductive reasoning, on unseen so far objects. The rough set approach for
dealing with concept approximation under such partial knowledge is presented,
e.g., in [44]. Moreover, the concept approximations should be constructed under
dynamically changing environments [41]. This leads to a more complex situation
when the boundary regions are not crisp sets what is consistent with the postu-
late of the higher order vagueness, considered by philosophers (see, e.g., [17]). It
is worthwhile to mention that is has been also developed a rough set approach to
approximation of compound concepts that we are unable to approximate using
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the traditional methods [7,47]. The approach is based on hierarchical learning
and ontology approximation [27,22,43,5] (see Section 8). Approximation of con-
cepts in distributed environments is discussed in [40]. A survey of algorithmic
methods for concept approximation based on rough sets and boolean reasoning
in presented in [39].

7 Fuzzy Versus Rough

In order to compare both concepts, fuzzy and rough sets we let us observe
that rough sets can be also defined employing, instead of approximation, rough
membership function [31]

µB
X : U →< 0, 1 >,

where

µX(x) =
card(B(x) ∩ X)

card(X)
,

and card(X) denotes the cardinality of X .
The rough membership function expresses a conditional probability that x

belongs to X given B and can be interpreted as a degree that x belongs to X
in view of knowledge about x expressed by B. This means that the definition
reflects a subjective knowledge about elements of the universe, in contrast to
classical definition of a set.

It can be shown that the rough membership function has the following prop-
erties [31]:

1) µB
X(x) = 1 iff x ∈ B∗(X);

2) µB
X(x) = 0 iff x ∈ U − B∗(X);

3) 0 < µB
X(x) < 1 iff x ∈ BNB(X);

4) µB
U−X(x) = 1 − µB

X(x) for any x ∈ U ;
5) µB

X∪Y (x) ≥ max(µB
X(x), µB

Y (x)) for any x ∈ U ;
6) µB

X∩Y (x) ≤ min(µB
X(x), µB

Y (x)) for any x ∈ U .

From the properties it follows that the rough membership differs essentially from
the fuzzy membership, for properties 5) and 6) show that the membership for
union and intersection of sets, in general, cannot be computed – as in the case
of fuzzy sets – from their constituents membership. Thus formally the rough
membership is more general from fuzzy membership. Moreover, the rough mem-
bership function depends on an available knowledge (represented by attributes
from B). Besides, the rough membership function, in contrast to fuzzy member-
ship function, has a probabilistic flavor.

Let us also mention that rough set theory, in contrast to fuzzy set theory,
clearly distinguishes two very important concepts, vagueness and uncertainty,
very often confused in the AI literature. Vagueness is the property of sets and
can be described by approximations, whereas uncertainty is the property of
elements of a set and can be expressed by the rough membership function.
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Both fuzzy and rough set theory represent two different approaches to vague-
ness. Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy
membership – whereas rough set theory addresses granularity of knowledge, ex-
pressed by the indiscernibility relation. A nice illustration of this difference has
been given by Dider Dubois and Henri Prade [11] in the following example. In
image processing fuzzy set theory refers to gradualness of gray level, whereas
rough set theory is about the size of pixels.

Consequently, both theories are not competing but are rather complementary.
In particular, the rough set approach provides tools for approximate construction
of fuzzy membership functions. The rough-fuzzy hybridization approach proved
to be successful in many applications (see, e.g., [25,26]).

Interesting discussion of fuzzy and rough set theory in the approach to vague-
ness can be found in [36].

Finally, let us observe that fuzzy set and rough set theory are not a remedy
for classical set theory difficulties.

8 Logic and Rough Sets

Reality, or the world we all know, is only a description.
Carlos Castaneda (1972). Journey to Ixtlan: The lesson of Don Juan.

Simon & Schuster, New York

The father of contemporary logic is a German mathematician Gottlob Frege
(1848-1925). He thought that mathematics should not be based on the notion of
set but on the notions of logic. He created the first axiomatized logical system
but it was not understood by the logicians of those days.

In the thirties of the previous century a rapid development of logic took place,
to which Polish logicians contributed to a large extent, in particular Alfred Tarski
(1901-1983).

Development of computers and their applications stimulated logical research
and widened their scope.

When we speak about logic we generally mean deductive logic. It gives us
tools designed for deriving true propositions from other true propositions. De-
ductive reasoning always leads to true conclusions. The theory of deduction has
well established generally accepted theoretical foundations. Deductive reason-
ing is the main tool used in mathematical reasoning and found no application
beyond it.

Rough set theory has contributed to some extent to various kind of deductive
reasoning. Particularly, rough set methodology contributed essentially to modal
logics, many valued logic, intuitionistic logic and others (see, e.g., [3]). A sum-
mary of this research can be found in [33] and interested reader is advised to
consult this volume.

In natural sciences (e.g., in physics) inductive reasoning is of primary im-
portance. The characteristic feature of such reasoning is that it does not begin
from axioms (expressing general knowledge about the reality) like in deductive
logic, but some partial knowledge (examples) about the universe of interest are
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the starting point of this type of reasoning, which are generalized next and they
constitute the knowledge about wider reality than the initial one. In contrast
to deductive reasoning, inductive reasoning does not lead to true conclusions
but only to probable (possible) ones. Also in contrast to the logic of deduction,
the logic of induction does not have uniform, generally accepted, theoretical
foundations as yet, although many important and interesting results have been
obtained, e.g., concerning statistical and computational learning and others.

Verification of validity of hypotheses in the logic of induction is based on
experiment rather than the formal reasoning of the logic of deduction. Physics
is the best illustration of this fact.

The research on inductive logic have a few centuries’, long history and out-
standing English philosopher John Stuart Mill (1806-1873) is considered its
father.

The creation of computers and their innovative applications essentially con-
tributed to the rapid growth of interest in inductive reasoning. This domain
develops very dynamically thanks to computer science. Machine learning, knowl-
edge discovery, reasoning from data, expert systems and others are examples of
new directions in inductive reasoning. It seems that rough set theory is very well
suited as a theoretical basis for inductive reasoning. Basic concepts of this theory
fit very well to represent and analyze knowledge acquired from examples, which
can be next used as starting point for generalization. Besides, in fact rough set
theory has been successfully applied in many domains to find patterns in data
(data mining) and acquire knowledge from examples (learning from examples).
Thus, rough set theory seems to be another candidate as a mathematical foun-
dation of inductive reasoning [5,22,44].

The most interesting from computer science point of view is common sense
reasoning. We use this kind of reasoning in our everyday life, and examples
of such kind of reasoning we face in news papers, radio TV etc., in political,
economic etc., debates and discussions.

The starting point to such reasoning is the knowledge possessed by the spe-
cific group of people (common knowledge) concerning some subject and intuitive
methods of deriving conclusions from it. We do not have here possibilities of
resolving the dispute by means of methods given by deductive logic (reason-
ing) or by inductive logic (experiment). So the best known methods of solving
the dilemma is voting, negotiations or even war. See e.g., Gulliver’s Travels
[46], where the hatred between Tramecksan (High-Heels) and Slamecksan (Low-
Heels) or disputes between Big-Endians and Small-Endians could not be resolved
without a war.

These methods do not reveal the truth or falsity of the thesis under consid-
eration at all. Of course, such methods are not acceptable in mathematics or
physics. Nobody is going to solve by voting, negotiations or declare a war – the
truth of Fermat’s theorem or Newton’s laws.

Reasoning of this kind is the least studied from the theoretical point of view
and its structure is not sufficiently understood, in spite of many interesting
theoretical research in this domain [13]. The meaning of common sense reasoning,
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considering its scope and significance for some domains, is fundamental and
rough set theory can also play an important role in it but more fundamental
research must be done to this end [43].

In particular, the rough truth introduced in [29] and studied, e.g., in [2,4]
seems to be important for investigating commonsense reasoning in the rough set
framework.

Let us consider a simple example. In the considered decision table we assume
U = Birds is a set of birds that are described by some condition attributes
from a set A. The decision attribute is a binary attribute Flies with possible
values yes if the given bird flies and no, otherwise. Then, we define the set of
abnormal birds by AbA(Birds) = A∗({x ∈ Birds : Flies(x) = no}). Hence, we
have, AbA(Birds) = Birds − A∗({x ∈ Birds : Flies(x) = yes}) and Birds −
AbA(Birds) = A∗({x ∈ Birds : Flies(x) = yes}). It means that for normal birds
it is consistent, with knowledge represented by A, to assume that they can fly, i.e.,
it is possible that they can fly. One can optimize AbA(Birds) using A to obtain
minimal boundary region in the approximation of {x ∈ Birds : Flies(x) = no}.

It is worthwhile to mention that in [10] has been presented an approach
combining the rough sets with nonmonotonic reasoning. There are distinguished
some basic concepts that can be approximated on the basis of sensor measure-
ments and more complex concepts that are approximated using so called trans-
ducers defined by first order theories constructed overs approximated concepts.
Another approach to commonsense reasoning has been developed in a number
of papers (see, e.g., [35,43,22,27,5]). The approach is based on an ontological
framework for approximation. In this approach approximations are constructed
for concepts and dependencies between the concepts represented in a given on-
tology expressed, e.g., in natural language. Still another approach combining
rough sets with logic programming is discussed in [48].

To recapitulate, the characteristics of the three above mentioned kinds of
reasoning are given below:

1. deductive:
– reasoning method: axioms and rules of inference;
– applications: mathematics;
– theoretical foundations: complete theory;
– conclusions: true conclusions from true premisses;
– hypotheses verification: formal proof.

2. inductive:
– reasoning method: generalization from examples;
– applications: natural sciences (physics);
– theoretical foundation: lack of generally accepted theory;
– conclusions: not true but probable (possible);
– hypotheses verification - experiment.

3. common sense:
– reasoning method based on common sense knowledge with intuitive rules

of inference expressed in natural language;
– applications: every day life, humanities;
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– theoretical foundation: lack of generally accepted theory;
– conclusions obtained by mixture of deductive and inductive reasoning

based on concepts expressed in natural language, e.g., with application
of different inductive strategies for conflict resolution (such as voting,
negotiations, cooperation, war) based on human behavioral patterns;

– hypotheses verification - human behavior.

9 Conclusions

Basic concept of mathematics, the set, leads to antinomies, i.e., it is contradictory.
The deficiency of sets, has philosophical rather than practical meaning, since

sets used in mathematics are free from the above discussed faults. Antinomies
are associated with very “artificial” sets constructed in logic but not found in
sets used in mathematics. That is why we can use mathematics safely.

Fuzzy set and rough set theory are two different approaches to vagueness and
are not remedy for classical set theory difficulties.

Fuzzy set theory addresses gradualness of knowledge, expressed by the fuzzy
membership - whereas rough set theory addresses granularity of knowledge, ex-
pressed by the indiscernibility relation.

From practical point of view both theories are not competing but are rather
complementary.

Summing up:

– The notion of classical set is fundamental for whole mathematics and is
necessary to provide rigor in mathematics.

– Non-classical sets (fuzzy and rough) cannot replace classical sets - for their
definitions need classical set theory (i.e., more advanced mathematical con-
cepts, real numbers, functions and relations).

– The classical sets, lead to antinomies.
– The deficiency of classical sets has rather philosophical than practical mean-

ing, since sets used in everyday mathematics are free from antinomies.
– Non-classical sets (fuzzy and rough) are not remedy for classical set theory

difficulties but are two different approaches to vagueness.

Summary

In this paper a brief discussion on the rough set concept and its place in various
ideas of sets is presented. The article is not intended to serve as an introduction
to rough set theory but is rather meant to give some philosophical background
underlining the theory.
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