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We present an algorithm for distributed mutual exclusion in a computer network of N nodes that 

communicate by messages rather than shared memory. The algorithm uses a spanning tree of the 

computer network, and the number of messages exchanged per critical section depends on the 

topology of this tree. However, typically the number of messages exchanged is O(log N) under light 

demand, and reduces to approximately four messages under saturated demand. 

Each node holds information only about its immediate neighbors in the spanning tree rather than 

information about all nodes, and failed nodes can recover necessary information from their neighbors. 

The algorithm does not require sequence numbers as it operates correctly despite message overtaking. 

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed 

Systems; D.4.1 [Operating Systems]: Process Management--mutual exclusion, synchronization 

General Terms: Algorithms 

Additional Key Words and Phrases: Critical section, decentralized systems 

1. INTRODUCTION 

We propose a new algorithm for distributed mutual exclusion for a computer 
network of N nodes, communicating by messages rather than shared memory. In 
keeping with earlier work on this problem, we assume that message delivery is 
guaranteed by the communications network, but neither the time nor order of 
message arrival can be predicted. Initially we shall assume that nodes are 
completely reliable, and node failure will be considered in a later section. 

Ricart and Agrawala [3] proposed an algorithm that required 2*(N - 1) 
messages exchanged for each critical section entry, while the algorithm of Suzuki 
and Kasami [4] requires at most N messages. Maekawa [2] further reduces the 
number of messages per critical section entry to O(m). The performance of our 
algorithm depends on the precise topology of the network spanning tree used, 
but the average number of messages required is O(log N). 

For a node to obtain the mutual exclusion, the algorithms of Ricart and 
Agrawala and Suzuki and Kasami require a REQUEST message to be sent 
to all of the other N - 1 nodes. Consequently each node must hold information 
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relating to all other nodes (REPLY-DEFERRED in [3], RN and LN in [4]). In 
Maekawa’s algorithm, a REQUEST is sent to approximately fi nodes, each 
of which must maintain some information about that request. In our algorithm, 
each node communicates only with neighboring nodes of the spanning tree, 
and holds information pertaining only to those neighbors. 

In keeping with earlier work, our algorithm is concerned with implementing 
mutual exclusion at the node level. If multiple requests for the mutual exclusion 
can be generated within a node, then these requests must be serialized [3]. If not 
serialized, it would be possible for a node to circulate the mutual exclusion among 
its internal components, starving the other nodes. 

2. AN INFORMAL DESCRIPTION OF OUR ALGORITHM 

In our algorithm, we regard the nodes as being arranged in an unrooted tree 
structure, as shown in Figure 1. All messages used in our algorithm are sent along 
the (undirected) edges of this tree. The tree may either be a minimal spanning 
tree of the actual network topology, or merely a logical structure imposed on the 
complete network assumed by [ 2-41. 

There is no need for each node to be aware of the tree as a whole. It is sufficient 
that each node knows of the existence of its neighbors in the tree. In Figure 1, 
node A knows that it is connected to three distinct neighbor nodes B, C, and D. 
A does not need to know the location (or even the existence) of nodes E 
and F. 

As in the Suzuki and Kasami algorithm, the privilege to enter the critical 
section equates to the possession of a token, the PRIVILEGE message. The 
privilege is always held by one node (except for the transient state when the 
PRIVILEGE message is in transit from one node to another). When no node 
wishes to enter the critical section, the last node to use the privilege continues 
to hold it. Each node has a variable HOLDER, which indicates the location of 
the privilege relative to the node itself. Either a node X holds the privilege itself, 
or else it is located in a particular subtree of X. Suppose that the node E of 
Figure 1 holds the privilege, then 

HOLDER* = D E is within the D-subtree w.r.t. A 

HOLDERn = A E is within the A-subtree w.r.t. B 

HOLDERc = A 

HOLDER,, = E 

HOLDERE = self 

HOLDERF = D 

If we were to represent HOLDERx = Y as a directed edge from X to Y, then the 
combined HOLDER information of all nodes represents a single directed path 
from each node to the privileged node, as shown in Figure 2. 

When a nonprivileged node (e.g., A in Figures 1 and 2) wishes to enter the 
critical section, it sends a REQUEST message to HOLDER*, i.e., D. On receiving 
the REQUEST message, the nonprivileged node D sends a REQUEST message 
to HOLDERn, i.e., E. Thus a series of REQUEST messages travels along the 
path between the requesting node A and the privileged node E. 
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Fig. 1. Nodes arranged as a tree. 

Fig. 2. Tree with HOLDER-directed edges (E holds the 

privilege). 

m privilege). 

Fig. 3. Tree with HOLDER-directed edges (A holds the 

When the privileged node E no longer requires the privilege, it sends the 
PRIVILEGE message to one of its neighbors who has requested the privilege 
(i.e., E has received a REQUEST from this neighbor). Thus E will send the 
PRIVILEGE message to D, and HOLDERE becomes D. Node D did not request 
the privilege for itself, but on A’s behalf. So D sends the PRIVILEGE message 
to A, setting HOLDERn to A. On receiving the PRIVILEGE message, node A 
becomes the privileged node (HOLDERA := self) and A may enter the critical 

section. 
Note the assignment of HOLDERE and HOLDERn when the PRIVILEGE 

message is sent. This ensures that when the PRIVILEGE message is received at 
A, the directed path tree of Figure 2 has become the tree shown in Figure 3, i.e., 
the HOLDER variables collectively maintain directed paths from each node to 
the privileged node. 

It is important to note that this algorithm is not a “fully distributed” algo- 
rithm as defined by Ricart and Agrawala. By their definition, all nodes must 

directly participate in the decision to grant a mutual exclusion request. Such 
algorithms are condemned to be at best O(N). Our algorithm, like Maekawa’s, 
uses a “surrogate mechanism” in which a node X requests another node Y to act 
on X’s behalf. Therefore node Y may act “collectively,” reducing the number of 
messages required to effect mutual exclusion. 

3. THE ALGORITHM 

To implement the algorithm described in the previous section, each node X must 
hold certain information (described in the next section). The algorithm involves 
two types of communication, the sending of a REQUEST message and the 
sending of a PRIVILEGE message. 
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3.1 Information Held by Each Node 

HOLDER 
Values: “self” or the name of one of the immediate neighbors. Indicates the relative 
position of the privileged node with respect to this node X. 

USING 
A Boolean value. USING indicates if X is currently executing the critical section. 
Naturally, USING + HOLDER = self. 

REQUEST-Q 
A First-In-First-Out queue. The possible elements of the queue are the names of 
immediate neighbors and “self.” REQUEST-Q holds the names of those neighbors 
that have sent a REQUEST message to X, but have not yet been sent the privilege 
in reply. “self” is placed in the queue when X wishes to obtain the privilege for its 
own use. As there is at most one occurrence of each name in a REQUEST-Q, the 
maximum size of a REQUEST-Q is number of neighbors + 1 (for self). 

ASKED 
ASKED, a Boolean, is true when a nonprivileged node X has sent a REQUEST 
message to the current HOLDERs; false otherwise. ASKED prevents unnecessary 
REQUEST messages from being sent, and also ensures that REQUEST-Qs do not 
contain duplicate entries. 

3.2 Sending a PRIVILEGE Message 

The necessary requirement for sending a PRIVILEGE message is 

HOLDER = self A 1 USING A REQUEST-Q # empty A head (REQUEST-Q) # 
self 

(i.e., the node must hold the privilege but not be using it, and the oldest request 

for the privilege has come from another node). Superficially it may seem impos- 

sible that the head of REQUEST-Q of the privileged node could be “self.” 

However this situation may occur immediately after this node has received the 

PRIVILEGE message. In this situation, the node will then begin to use the 
privilege (removing “self” from the head of the REQUEST-Q). 

Therefore our algorithm uses a routine ASSIGN-PRIVILEGE given below. 
The recipient of the privilege (the HOLDER-to-be) is the node at the head 
of REQUEST-Q (the oldest request), and this node must be removed from 
REQUEST-Q as its request is being honored. Since the current privileged node 

will not have sent a REQUEST message to the HOLDER-to-be, ASKED must 

be set to false. 

ASSIGN-PRIVILEGE: 

if HOLDER = self A 1 USING A REQUEST-Q # empty 

then 

HOLDER := dequeue (REQUEST-Q) 

ASKED := false 

if HOLDER = self 

then 

USING := true 

(initiate entry into critical section) 

else 

send PRIVILEGE to HOLDER 
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3.3 Sending a REQUEST Message 

The necessary requirement for sending a REQUEST message to the holder (w.r.t. 
this node) is that this node does not have the privilege but wants it (either for 
itself or others). Furthermore a REQUEST message should not be sent if one 
has already been sent to the holder. The sending of a REQUEST message has 
little impact on the state of a node. It causes no change to HOLDER, REQUEST- 
Q, or USING. Only ASKED becomes true. The algorithm for MAKE-REQUEST 
is: 

MAKE- REQUEST: 

if HOLDER # self A REQUEST-Q # empty A 1 ASKED 
then 

send REQUEST to HOLDER 

ASKED := true 

The variable ASKED is true when “self” is in the REQUEST-Q of a neighboring 
HOLDER (or will be after the arrival of the REQUEST message), and false 
otherwise. Thus the ASKED variable ensures that duplicate entries of “self” 
cannot occur in a neighbor’s REQUEST-Q. The serialization of any internal 
requests (see Section 1, INTRODUCTION) ensures that duplicate entries of 
“self” cannot occur in the local REQUEST-Q. Therefore REQUEST-Qs are 
indeed bounded, and so there is no potential for “flooding,” even under heavy 
load conditions. 

3.4 Four Events 

There are four events which can alter the assignment of privilege and/or neces- 
sitate the sending of a REQUEST message. Consequently our algorithm consists 
of four parts corresponding to each of the four events, as shown below. 

The node wishes to enter the critical section: 

enqueue (REQUEST-Q, self); ASSIGN-PRIVILEGE; MAKE-REQUEST 

If this is the privileged node, then ASSIGN-PRIVILEGE will allow this node to 
enter the critical section. If this is not the privilege node, MAKE-REQUEST 
may send a REQUEST to obtain the privilege. 

The node receives a REQUEST message from neighbor X: 

enqueue (REQUEST-Q, X); ASSIGN-PRIVILEGE; MAKE-REQUEST 

If this node is the holder, ASSIGN-PRIVILEGE may send the privilege to the 
requesting node. If this node is not the holder, MAKE-REQUEST may propagate 
the REQUEST to obtain the privilege. 

The node receives a PRIVILEGE message: 

HOLDER := self; ASSIGN-PRIVILEGE; MAKE-REQUEST 

ASSIGN-PRIVILEGE may pass the privilege to another node, or initiate 
a local entry to the critical section. If the privilege is passed to another node, 
MAKE-REQUEST may request that the privilege be returned. 

The node exits the critical section: 

USING := false; ASSIGN-PRIVILEGE; MAKE-REQUEST 
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Node x Node Y 

< 
REQUEST 

PRlwLEOE 
> 

Fig. 4. Logical pattern of messages between nodes X and Y. REQUEST 
> 

On releasing the mutual exclusion, ASSIGN-PRIVILEGE may pass the privilege 
to another node, and MAKE-REQUEST may then request the return of the 
privilege. 

Note that these pieces of code must execute in local mutual exclusion. 

3.5 Message Overtaking 

Unlike earlier algorithms, the acyclic tree structure employed by our algorithm 
restricts the amount of conflicting information resulting from varying message 
transmission times and message overtaking to conflicts between pairs of neigh- 
boring nodes. Message traffic between a pair of neighboring nodes must conform 
to a logical pattern, and hence there is no need for message sequence numbers to 
enforce the physical order of arrival. 

Consider the sequence of messages between a pair of neighboring nodes X and 
Y, shown in Figure 4. Assume that initially node X (or beyond) holds the privilege. 

The only message overtaking that may occur is when a PRIVILEGE message 
is sent from node X to node Y, say, closely followed by a REQUEST message 
from node X to node Y. That is, X is giving the privilege to Y but immediately 
(or very soon after) requires the privilege to be returned. 

Upon receiving the overtaking REQUEST message, node Y could be pro- 
grammed to recognize that overtaking has occurred (since the next logical 
message must be a PRIVILEGE message) and defer the processing of the 
REQUEST message until after the receipt and processing of the overtaken 
PRIVILEGE message. However it is not necessary to do so, as the algorithm (as 
presented) is insensitive to such overtaking. 

If the REQUEST message arrives at Y before the PRIVILEGE message, then 
X’s request will be queued in REQUEST-QU. Since Y is not yet the privileged 
node, ASSIGN-PRIVILEGE will not send a message or cause any other state 
change. Since X has sent the PRIVILEGE message to Y, it implies that ASKEDY 
must be true, and hence MAKE-REQUEST will not send a message or cause 
any state change. 

When the PRIVILEGE message finally arrives at Y, either Y will enter the 
critical section or Y will send the PRIVILEGE message to the neighbor at the 
head of REQUEST-QU (which will not be X). The early arrival of the REQUEST 
message does not invalidate the operation of the algorithm in any way. 
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4. PROOF OUTLINES 

4.1 Mutual Exclusion Is Assured 

To ensure mutual exclusion, it is necessary that, at most, one node regards itself 

as privileged. A node becomes privileged when it receives a PRIVILEGE message. 
A privileged node becomes nonprivileged when it sends exactly one PRIVILEGE 
message to another (neighboring) node. PRIVILEGE messages cannot be sent 
by unprivileged nodes. Provided only one node is privileged initially, there will 

continue to be either only one privileged node, or else there is no privileged node 
(during the finite time it takes to transmit the PRIVILEGE message). 

4.2 Deadlock Is Impossible 

If no node is in the critical section and there are one or more nodes wishing to 
enter the critical section, yet unable to do so, then the system is deadlocked. This 
could occur as a consequence of any of the following: 

(a) No node is privileged and hence the privilege cannot be given to other nodes. 

(b) The privileged node is not aware that other nodes require the privilege. 

(c) The PRIVILEGE message does not eventually reach a node which has 
requested it. 

From Section 4.1 we know that one node must be privileged (or will shortly 
become privileged). 

The collective ASKED variables ensure that (after a finite amount of message 
transmission time) there is a sequence of REQUEST messages (for which no 
PRIVILEGE message has been received in reply) between each node requiring 
the privilege and the privileged node, using the collective HOLDER variables to 
route these REQUEST messages towards the privileged node. 

It is impossible for the PRIVILEGE message to be passed through the tree so 
that REQUEST messages never arrive at the currently privileged node. As the 
tree structure is acyclic, the PRIVILEGE messages cannot outrun the REQUEST 
messages indefinitely. The only possible way for the PRIVILEGE message to 
evade the pursuing REQUEST message would involve the PRIVILEGE message 
traveling from n0de.A to node B, while the REQUEST message is traveling from 
node B to node A. However the logical (and consequent physical) order of 
messages on an edge of the tree prevents this (see Section 3.5). The PRIVILEGE 
message would not be sent from node A unless node A had received a REQUEST 
from node B to which node A had not replied. If node B had sent such a 
REQUEST message, then node B would not have sent the current REQUEST 
message (due to ASKED,). 

Thus the privileged node must eventually become aware that other nodes 
require the privilege. Furthermore the chain of successive REQUEST messages 
causes the collective REQUEST-Qs to provide a path from the privileged node 
to a node that wishes to enter the critical section. Hence the PRIVILEGE 
message is forwarded to a node that has requested the privilege. 

In summary, our algorithm is deadlock-free, mostly due to the acyclic nature 
of a tree eliminating the potential for any “circular wait” situations. 
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4.3 Starvation Is Impossible 

Suppose node Y holds the privilege (or will do so after the transmission of the 
PRIVILEGE message is complete). When a node X requires the privilege, the 
collective ASKED variables ensure that (after a finite amount of message 
transmission) there is a chain of requests between the requesting node X and the 
privileged node Y. Some of the REQUEST messages may be a direct consequence 
of X’s requirement, while others may have been sent in response to the require- 
ments of other nodes; such REQUEST messages now represent X’s requirements 
as well. 

More rigorously, let P,, P2, . . . , Pk be the sequence of nodes along the path 
from X(P,) to Y(Pk). The tree structure ensures that such a path is unique, and 
that k d N. Then it follows that 

P, E REQUEST-Q,,, 

and Pi-1 E REQUEST-Qil, for 2sisk 

Consider the vector [M,, M?, . . . Mk] where 

M, is the position of P, in REQUEST-Q,,, 
and Mi is the position of Pi-1 in REQUEST-&r> for 2sisk 

The element at the head of the queue is numbered as position 1, the next element 
as position 2, etc. As the queues are held in FIFO order, the position of a 
particular element cannot increase. 

Since the longest possible path in a tree is of length at most N, and the size of 
a REQUEST-&s is at most N (self plus all other N - 1 nodes as neighbors), the 
vector can have only a finite number of possible values. Furthermore, vectors 
can be ranked in a strong total order by the lexicographic “4’ operator. 

Each of the possible actions of the privileged node Y (described below) reduces 
the value of the vector, and therefore successive operations of the successive 
privileged nodes must reduce the vector to El] (i.e., X is the privileged node, and 
“self” is at the head of X’s REQUEST-Q), which allows X to enter the critical 
section. 

Consider the possible values of Mk. 
If k > 1 and M, = 1, then P,-, is at the end of REQUEST-Qi,,, and hence the 

PRIVILEGE will be sent to P,-, (i.e., towards X). If k = 1 and M, = 1, then X 
holds the privilege and X is at the head of X’s REQUEST-Q; hence X will enter 
the critical section. In both cases, the effect on the vector will be: 

[MI, ML’, . . ., M-1, 111 - UM,, Mz, . . . , M-III 

If k > 1 and M1, > 1, then P,-, is not the element at the head of REQUEST- 
Qrr. If P, is at the head of its own REQUEST-Q, then P, will enter the critical 
section. The effect on the vector will be: 

M, Mz, . . . , M-1, ML] - UM,, Ms, . . . , Mk-1, Mk - 11 

(Note that if k = 1 and MI, > 1, then X cannot be at the head of its own 
REQUEST-Q, so this situation does not occur.) 

If k > 1 and Mk > 1 and Z (a neighbor of Pk) is at the head of Pk’s REQUEST- 
&, then the PRIVILEGE will next be sent to Z (i.e., away from X). Since Pk’s 
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REQUEST-Q will still be nonempty, a REQUEST message will also be sent to 
Z to ensure that the privilege is returned. If k = 1 and MI > 1, then node X holds 
the privilege but must pass the privilege to satisfy an earlier request from Z, one 
of X’s neighbors. So X will send the PRIVILEGE followed by a REQUEST for 
the return of the privilege to Z. In either case, the effect on the vector is: 

[M,, Mg, . . . , Mix] -+ [M,, Mz, . . . , I% - 1, M,c+,Il 

The claim that this operation reduces the value of the vector depends on the 
finite upper bounds of k and Mi. It is impossible for the vector to grow infinitely 
long, or for positions in a REQUEST-Q to become infinitely large. 

Hence even the most remote node X cannot be overlooked. Once X’s 
REQUEST message has propagated to either the privileged node or another re- 
questing node, X is guaranteed to enter the critical section eventually. 

5. COST OF THE ALGORITHM 

Like [n-4], we will consider the number of messages required to effect an entry 
to a critical section. For our algorithm, the upper bound for the number of 
messages per critical section is 

BD-where D is the diameter (longest path length) of the tree 

This worst case occurs when the privilege is passed from node A to node B, where 
nodes A and B have the greatest possible distance between them. It takes D 
REQUEST messages originating at A, and D PRIVILEGE messages originating 
from B, to pass the mutual exclusion from B to A. 

The worst possible topology for this algorithm is a straight line arrangement 
as shown in Figure 5. 

The diameter, D, of such a topology is N - 1, and thus the number of messages 
sent (i.e., 2*(N - 1)) is comparable with Ricart and Agrawala’s algorithm and 
worse than the algorithm of Suzuki and Kasami. However this worst-case 
behavior occurs only in the pathological situation when the privilege is shuttled 
between the nodes at either end of the line. If all nodes are equally likely to 
require the privilege, then the average distance between the requesting node and 
the privileged node is (N + 1)/3, and thus the number of messages sent is 

2N 
LZ- 

3 ’ 

an improvement over the N messages required by Suzuki and Kasami’s algorithm.. 
The best topology for our algorithm is a radiating star formation, as illustrated 

in Figure 6. 
If the valency of each nonleaf node of the star is K, then the diameter of the 

tree is 

W - 1)W - 2) + 
K 

1 

Thus the worst case for this topology is O(loglC-, N), which is better than 
Maekawa’s O(JN) algorithm. It should be noted that the diameter of the tree 
decreases as the valency increases. Thus trees with a high fanout are preferable. 
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Fig. 5. Straight line topology. 

Fig. 6. Radiating star topology. 

For the radiating star topology, we cannot find any simple formula for the 
average distance between nodes. The majority of the nodes exist on the outer 
rim of the tree, and for many pairs of these nodes the distance between them will 
be the diameter of the tree. Thus as N increases, the average distance between a 
pair of nodes approaches (but does not reach) the diameter of the tree. So 2*D 
messages represents an unreachable upper bound for this topology. 

The diameter of a given arbitrary tree can always be calculated, and extensive 
empirical measurements on randomly constructed trees show that the diameter 
of such trees is typically O(log N). In any case, if the tree structure is logically 
imposed upon the underlying network, then pathological cases (e.g., the straight 
line) where the diameter is not O(log N) can be avoided in favor of trees which 
approximate a radiating star formation. 

Thus we make the claim that the number of messages exchanged by our 
algorithm is typically O(log N), which is supported by the results of extensive 
simulations. Therefore we believe that, in most situations, our algorithm sends 
fewer messages than other reported algorithms [2-41. 

5.1 Performance Under Heavy Demand 

The preceding complexity analysis was based upon a chain of REQUEST mes- 
sages and a subsequent chain of PRIVILEGE messages traveling between the 
requesting and the privileged nodes. This assumes that there are no other nodes 
requesting the privilege, that is, there is little demand for the privilege. When 
many nodes wish to obtain the privilege, REQUEST messages sent by a request- 
ing node are not usually forwarded all the way to the privileged node. Instead 
the REQUEST message will arrive at a node X where ASKEDx is true. Thus 
the REQUEST message sent earlier from X to HOLDERx represents the inter- 
ests of all requesting nodes reachable from the privileged node via X. 
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Fig. 7. Example topology. 

When node X receives the privilege from its neighbor Y, all of X’s other 
neighbors and X itself will use the privilege (if requested prior to Y’s request) 
before it is returned to Y. The PRIVILEGE message visits a number of nodes 
within a subtree, and so the average distance that the PRIVILEGE message 
travels between nodes desirous of entering the critical section is much less than 
the diameter of the tree. 

Thus our algorithm has the curious (but delightful) property of improved 
performance under heavy demand. As the number of nodes wishing to enter the 
critical section increases, the number of messages sent per entry to the critical 
section decreases. When the system is saturated (all nodes but the privileged 
node are waiting to enter the critical section), approximately four messages are 
sent per critical section entry. This constant behavior was first observed during 
simulations, and its explanation eluded us for some time. 

To appreciate why only four messages are sent per critical section entry when 
the system is saturated, we must consider the path of the successive PRIVILEGE 
messages through the tree. (Note that only one PRIVILEGE message exists at 
any time.) The path of the PRIVILEGE messages in a saturated system is 
essentially a tree traversal, albeit a somewhat unordered one. For example, 
consider the topology shown in Figure 7. A possible path for the PRIVILEGE 
messages through this tree would be: 

where the underlined node numbers indicate that the node entered the critical 
section at that time. Despite the haphazard order in which nodes enter the critical 
section (determined by their position in REQUEST-Qs), the path of the 
PRIVILEGE messages travels along each of the N - 1 edges exactly twice in 
order to bring the privilege to all N nodes. This behavior is a consequence of the 
tree structure, and will occur irrespective of the actual topology. 

A PRIVILEGE message travels along an edge from node A to node B in reply 
to a REQUEST message, which traveled along the edge from node B to node A. 
Hence a total of 4*(N - 1) messages are sent among the N nodes when the 
system is saturated, and so the number of messages per critical section entry is: 

4(N - 1) 
N =:4. 

6. TWO VARIATIONS ON THE ALGORITHM 

We present two variations to our algorithm, which can be applied either sepa- 
rately or together to improve its efficiency. 
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6.1 The Piggyback Strategy 

On exiting a critical section, the privileged node may send both a PRIVILEGE 
message (in ASSIGN-PRIVILEGE) and a REQUEST message (in MAKE- 
REQUEST) to a neighbor. If the actual transmission of the PRIVILEGE message 
is deferred until the need for sending the REQUEST message has been deter- 
mined, then the REQUEST message can be “piggybacked” onto the PRIVILEGE 
message, eliminating one message. When received, a “piggybacked” message is 
processed as if the two separate messages had arrived. Only nonleaf nodes can 
send a piggyback REQUEST as leaf nodes will not require the return of the 
privilege at the time it is given away. 

Piggybacking is most effective when there is considerable demand for the 
mutual exclusion. The number of REQUEST messages eliminated by piggyback- 
ing is almost zero in a low demand system (since it is extremely unlikely that a 
node will require that the privilege be returned to it), but rises to 

C valency of nonleaf nodes 

C valency of all nodes 

when the system is saturated. Thus for the tree shown in Figure 7, approximately 
i of the REQUEST messages could be piggybacked when the system is saturated. 
For large complete trees of valency K, piggybacking eliminates approximately 
K/2(K - 1) of the REQUEST messages when the system is saturated. For a 
straight line topology (a complete tree of valency 2), almost all REQUEST 
messages will be piggybacked in a saturated system. 

Apart from reducing the number of messages required, piggybacking has no 
other impact on the algorithm or its performance. We know of no disadvantage 
to its use, other than its ineffectiveness in systems with light demand. 

6.2 The Greedy Strategy 

Our second variation, the Greedy Strategy, weakens the requirement that 
REQUEST-Qs are held as a FIFO list. When a node X wishes to enter the 
critical section, it places itself at the head of REQUEST-&x rather than at the 
tail. When X receives the PRIVILEGE message, X is able to enter its critical 
section straightaway, rather than wait until the earlier requesting neighbors have 
had their turn. 

Like the Piggyback Strategy, the Greedy Strategy has little effect in a system 
with light demand for the privilege, as a requesting node would probably be the 
only node in its REQUEST-Q anyway. 

Under heavier demand for the privilege, the Greedy Strategy reduces the 
average delay between a node requiring the privilege and receiving it. This, in 
turn, increases the number of entries to the critical section that can be achieved 
in a given time. However these improvements are at the expense of the leaf 
nodes. 

In the standard algorithm, the delay times for all nodes, leaf or nonleaf, are 
almost equal, and the number of critical section entries achieved by each node 
are almost equal. Using the Greedy Strategy, leaf nodes may wait many times 
longer than the nonleaf nodes to receive the privilege, and consequently obtain 
it on fewer occasions than nonleaf nodes. For example, when the system shown 
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in Figure 7 is saturated, each nonleaf will obtain the privilege three times more 
often than a leaf node; and, correspondingly, the delay time for a leaf node will 
be three times longer than for a nonleaf node. 

The Greedy Strategy preserves the starvation-free nature of the algorithm (no 
node is overlooked indefinitely) but is not as fair as the standard algorithm. In 
fact, it directly trades fairness for efficiency. 

That the Greedy Strategy is starvation-free is not immediately obvious. How- 

ever all local requests to enter the critical section are serialized, and hence 
whenever a node releases the mutual exclusion, it will pass the privilege to the 
node X at the head of its REQUEST-Q (if any). This node X cannot be “self” 
but must be a neighboring node. A neighboring node at the head of REQUEST- 
& can be overtaken by “self” at most once. Therefore each node in the 
REQUEST-Q must eventually reach the head of the REQUEST-Q, and 
ultimately receive the privilege. 

7. INITIALIZATION 

To initialize the algorithm, one node is chosen as the initial privileged node. 
This node sends an INITIALIZE message to each of its neighbors. When 
node A receives an INITIALIZE message from a neighboring node B, A assigns 
HOLDER* to B, and then sends an INITIALIZE message to all of its neighbors 
(other than B). Once a node has received the INITIALIZE message, it may 
request the privilege (even though other parts of the tree may not yet be 
initialized). 

The initialization of the other variables is the same for all nodes, and is shown 
below: 

REQUEST-Q 

USING 

ASKED 

:= empty 

:= false 

:= false 

8. NODE FAILURE 

In the event of a node failing and losing the information required for this 
algorithm, it is possible to reconstruct that information from the node’s neighbors 
when the node restarts. 

When a node X restarts, it commences a recovery phase. The first action of 
the recovery phase is to delay for a period sufficiently long to ensure that all 
messages sent by node X before it failed have been received. Node X then sends 
RESTART messages to each of its neighbors, and awaits the ADVISE messages 
that each neighbor will send in reply. 

During the recovery phase, node X may receive REQUEST and PRIVILEGE 
messages from neighboring nodes. If X receives a REQUEST message from node 
Y, then Y is placed in REQUEST-Qx. If X receives a PRIVILEGE message, 
then HOLDERX becomes “self.” If node X wishes to enter the critical section 
during the recovery phase, then “self” is placed in REQUEST-Qx. All of these 
actions are the normal responses to these events. 

However the procedures ASSIGN-PRIVILEGE and MAKE-REQUEST are 
not called during the recovery phase. The recovery phase involves information 

ACM Transactions on Computer Systems, Vol. 7, No. I, February 1989. 



74 l Kerry Raymond 

gathering and reconstruction of local data. Until that task is complete, node X 

must not attempt to make decisions based on incomplete information. After the 
recovery phase is completed, ASSIGN-PRIVILEGE and MAKE-REQUEST 
are then called to allow node X to recommence its participation in the algorithm. 

8.1 The ADVISE Message 

When a neighboring node Y receives X’s RESTART message, Y must reply send 
an ADVISE message informing X of the state of the X - Y relationship as Y 
sees it. Below are the four possible states (corresponding to each of the four 
messages in the logical pattern of X - Y communication), together with the 

information that X can deduce from this relationship. 

(1) HOLDERv = X and ASKEDv = false 
Hence X may be the privileged node, and Y is not an element of REQUEST-Q,. 

(2) HOLDER, = X and ASKEDv = true 
Again X may be the privileged node, and Y is an element of REQUEST-Qx. 

(3) HOLDERv # X and not X E REQUEST-Qy 
Hence X is not the privileged node (it is node Y or beyond), and ASKEDx must 
be false. 

(4) HOLDER, # X and X E REQUEST-QV 
Again X is not the privileged node, and it has requested the privilege so ASKEDx 
must be true. 

8.2 Determining HOLDER, 

If HOLDERv = X for all of X’s neighbors Y, then X is the privileged node, 
and HOLDERx = self. If X is not the privileged node, then HOL:DERU = X 
for all but one of X’s neighbors Y. The dissenting neighbor Z is therefore closer 
to the privileged node than X, and so HOLDERx = Z. It is impossible for 
HOLDERy # X for more than one neighbor (see Section 4.1). 

8.3 Determining ASKEDx 

If X is the privileged node, then ASKEDx is false. If X is not the privileged node 
and HOLDERx is Z, say, then ASKEDx is true if X E REQUEST-&x. 

8.4 Reconstructing REQUEST-C& 

The entries in X’s REQUEST-Q can be determined from the ADVISE messages. 
If HOLDERv = X and ASKEDv = true, then Y should be an entry in REQUEST- 
&x. The order of the elements of REQUEST-Qx will be lost, but this is not 
essential for the continued operation of the algorithm. 

If desired, each node could remember when it made its last REQUEST, and 
convey this information in the ADVISE message. Using these time-stamps, the 
order of X’s reconstructed REQUEST-Q would more closely resemble the 
original, subject to the extent to which such time-stamps can be compared [l]. 

In theory, it is possible that a neighboring node Y could be starved by the loss 
of order in REQUEST-Qx. If the reconstruction of REQUEST-Qx causes Y’s 
request to be overtaken by another request, then (in the terminology of Section 
4.3) the effect of the recovery is to increase the value of the vector. Consequently 
if each failure of X happens before Y receives the privilege, and the subsequent 
reconstruction of REQUEST-Q, allows Y’s REQUEST to be overtaken, then 
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node Y will be starved. However, such a situation is extremely improbable in real 
life. 

Alternatively, the ADVISE message could contain the number of times that 
the neighbor Y had received the PRIVILEGE message from X. The reconstruc- 
tion of REQUEST-&x would be ordered by ascending number of PRIVILEGE 
messages previously received. Although this ordering does not attempt to recon- 
struct the original order of REQUEST-&x, it will prevent starvation, in the 
improbable scenario previously described. 

8.5 Reassigning USlNGx 

USINGs can be set to false. 

8.6 Assistance from Neighboring Nodes 

Apart from replying to the RESTART message with an ADVISE message, 
neighboring nodes do not further involve themselves in node X’s failure and 
subsequent recovery. They are not required to cease message transmission to X, 
or delay their actions in any way. While this eliminates the need for complex 
resynchronization among X and its neighbors, it allows REQUEST and PRIVI- 
LEGE messages to overtake ADVISE messages. 

If node X receives a PRIVILEGE message from neighboring node Y during 
recovery (whether sent before or after Y’s ADVISE message), then X is the 
privileged node. If the PRIVILEGE message was sent before the ADVISE 
message, then the ADVISE message will correctly state that HOLDERv = X. If 
the PRIVILEGE message was sent after the ADVISE message, then the ADVISE 
message will contain the outdated information that HOLDERv # X. However 
the possession of the token is sufficient proof that X holds the privilege. 
Contradictory ADVISE messages must be outdated, and can be ignored. 

If node X receives a REQUEST message from Y during recovery (whether sent 
before or after Y’s ADVISE message), then Y wants the privilege from X. 
Therefore there is the possibility that Y will be placed in X’s REQUEST-Q 
twice, once in response to the ADVISE message and once in response to the 
REQUEST message. To avoid this, one could check for such duplication during 
the recovery phase (or at the end of the recovery phase). 

However, the presence of such duplicates does not endanger the correctness of 
the algorithm, provided that the REQUEST-Q is physically large enough (or 
extensible) to accommodate duplicates (at most two occurrences of each neighbor 
or self). If REQUEST-Q, contains two entries for node Y, then at some future 
time Y will receive the privilege when it is not expecting it. (This will not occur 
the next time Y receives the privilege, but on some later occasion.) Although this 
does not conform to the logical pattern of message traffic between X and Y, the 
algorithm is nonetheless insensitive to it. 

Upon receiving the unexpected PRIVILEGE message, node Y will behave as 
if it had requested the privilege and then immediately finished using it. Since Y 
was not expecting the PRIVILEGE, REQUEST-QU must be empty. Node Y will 
then simply hold the privilege without using it. However, the collective HOLDER 
variables will be “pointing” towards node Y, and any REQUESTS for the privilege 
will propagate to node Y, which will respond by sending the PRIVILEGE. Despite 
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a few unnecessary message transmissions, the algorithm automatically corrects 
itself after the delivery of the PRIVILEGE to a disinterested node. 

8.7 Failure During Recovery 

It is possible for the node X to fail during the recovery phase of an earlier failure. 
If this occurs, then the second recovery phase may receive ASSIST messages 
related to the first recovery phase. Such messages may contain outdated infor- 
mation and should be ignored. There are a number of ways of identifying such 
messages. 

If the time of the delay at the start of the recovery phase is carefully chosen, 

it should be possible to ensure that all outdated ASSIST messages will have 
arrived before the second set of RESTART messages is sent. Thus, only relevant 
ASSIST messages will be received during the second recovery phase. 

A second method is to have some unique identifier on each RESTART message, 

which must be quoted in the replying ASSIST message. ASSIST messages with 
an incorrect identifier can be discarded. Possible sources for these unique iden- 
tifiers are the real-time clock, nonvolatile storage, or an external agent (e.g., a 

server or a user). 

8.8 Extent of Survivable Failures 

In the preceding description of failure recovery, it is assumed that other nodes 
are operating normally, that is, are neither failed nor recovering. Provided that 
failure occurs infrequently, this is a reasonable and realistic assumption. 

The recovery mechanism will work even in the event of concurrent node 

failures, provided that the failures do not occur in adjacent nodes. 
When two or more adjacent nodes fail, it may be possible to determine the 

collective status of these nodes from the ASSIST messages received from their 
surviving neighbors. Once this macroscopic status has been established, the 
recovering nodes can negotiate their individual (or microscopic) status accord- 
ingly. However, further research is needed to determine the ability of this group 
recovery mechanism to survive the subsequent failure of either recovering or 
neighboring nodes. 

9. CONCLUSIONS 

We have presented a deadlock- and starvation-free algorithm for distributed 
mutual exclusion in which the average number of messages required per critical 
section is O(log N), reducing to a constant of four messages as the demand for 
the mutual exclusion increases. 

Each node need know only of its neighbors in the tree, thus restricting the 
amount of data needed to be held by each node. 

Message overtaking does not present a problem, and so sequence numbers are 
not required. During normal operation (i.e., not failure recovery), each message 
requires only sufficient bits to indicate 

-the type of the message (e.g., REQUEST, PRIVILEGE, INITIALIZE) 

-the identity of the neighbor that sent the message (if this information is not 
supplied by the underlying message-passing system). 
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In many systems, it will be possible to multiplex this small number of bits onto 
other outgoing messages to further reduce the bandwidth required. 

Our algorithm is also resilient to a variety of unexpected events, and can 
recover from localized failures. 
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