
A Tree-Based Algorithm for Distributed
Mutual Exclusion

KERRY RAYMOND

University of Queensland

We present an algorithm for distributed mutual exclusion in a computer network of N nodes that

communicate by messages rather than shared memory. The algorithm uses a spanning tree of the

computer network, and the number of messages exchanged per critical section depends on the

topology of this tree. However, typically the number of messages exchanged is O(log N) under light

demand, and reduces to approximately four messages under saturated demand.

Each node holds information only about its immediate neighbors in the spanning tree rather than

information about all nodes, and failed nodes can recover necessary information from their neighbors.

The algorithm does not require sequence numbers as it operates correctly despite message overtaking.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed

Systems; D.4.1 [Operating Systems]: Process Management--mutual exclusion, synchronization

General Terms: Algorithms

Additional Key Words and Phrases: Critical section, decentralized systems

1. INTRODUCTION

We propose a new algorithm for distributed mutual exclusion for a computer
network of N nodes, communicating by messages rather than shared memory. In
keeping with earlier work on this problem, we assume that message delivery is
guaranteed by the communications network, but neither the time nor order of
message arrival can be predicted. Initially we shall assume that nodes are
completely reliable, and node failure will be considered in a later section.

Ricart and Agrawala [3] proposed an algorithm that required 2*(N - 1)
messages exchanged for each critical section entry, while the algorithm of Suzuki
and Kasami [4] requires at most N messages. Maekawa [2] further reduces the
number of messages per critical section entry to O(m). The performance of our
algorithm depends on the precise topology of the network spanning tree used,
but the average number of messages required is O(log N).

For a node to obtain the mutual exclusion, the algorithms of Ricart and
Agrawala and Suzuki and Kasami require a REQUEST message to be sent
to all of the other N - 1 nodes. Consequently each node must hold information

Author’s address: Department of Computer Science, University of Queensland, St. Lucia, Queensland,
4067, Australia.

Permission to copy without fee all or part of this material is granted provided that the copies are not

made or distributed for direct commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by permission of the Association

for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

0 1989 ACM 0734-2071/89/0200-0061 $01.50

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989, Pages 61-77.

62 l Kerry Raymond

relating to all other nodes (REPLY-DEFERRED in [3], RN and LN in [4]). In
Maekawa’s algorithm, a REQUEST is sent to approximately fi nodes, each
of which must maintain some information about that request. In our algorithm,
each node communicates only with neighboring nodes of the spanning tree,
and holds information pertaining only to those neighbors.

In keeping with earlier work, our algorithm is concerned with implementing
mutual exclusion at the node level. If multiple requests for the mutual exclusion
can be generated within a node, then these requests must be serialized [3]. If not
serialized, it would be possible for a node to circulate the mutual exclusion among
its internal components, starving the other nodes.

2. AN INFORMAL DESCRIPTION OF OUR ALGORITHM

In our algorithm, we regard the nodes as being arranged in an unrooted tree
structure, as shown in Figure 1. All messages used in our algorithm are sent along
the (undirected) edges of this tree. The tree may either be a minimal spanning
tree of the actual network topology, or merely a logical structure imposed on the
complete network assumed by [2-41.

There is no need for each node to be aware of the tree as a whole. It is sufficient
that each node knows of the existence of its neighbors in the tree. In Figure 1,
node A knows that it is connected to three distinct neighbor nodes B, C, and D.
A does not need to know the location (or even the existence) of nodes E
and F.

As in the Suzuki and Kasami algorithm, the privilege to enter the critical
section equates to the possession of a token, the PRIVILEGE message. The
privilege is always held by one node (except for the transient state when the
PRIVILEGE message is in transit from one node to another). When no node
wishes to enter the critical section, the last node to use the privilege continues
to hold it. Each node has a variable HOLDER, which indicates the location of
the privilege relative to the node itself. Either a node X holds the privilege itself,
or else it is located in a particular subtree of X. Suppose that the node E of
Figure 1 holds the privilege, then

HOLDER* = D E is within the D-subtree w.r.t. A

HOLDERn = A E is within the A-subtree w.r.t. B

HOLDERc = A

HOLDER,, = E

HOLDERE = self

HOLDERF = D

If we were to represent HOLDERx = Y as a directed edge from X to Y, then the
combined HOLDER information of all nodes represents a single directed path
from each node to the privileged node, as shown in Figure 2.

When a nonprivileged node (e.g., A in Figures 1 and 2) wishes to enter the
critical section, it sends a REQUEST message to HOLDER*, i.e., D. On receiving
the REQUEST message, the nonprivileged node D sends a REQUEST message
to HOLDERn, i.e., E. Thus a series of REQUEST messages travels along the
path between the requesting node A and the privileged node E.

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

A Tree-Based Algorithm for Distributed Mutual Exclusion l 63

Fig. 1. Nodes arranged as a tree.

Fig. 2. Tree with HOLDER-directed edges (E holds the

privilege).

m privilege).

Fig. 3. Tree with HOLDER-directed edges (A holds the

When the privileged node E no longer requires the privilege, it sends the
PRIVILEGE message to one of its neighbors who has requested the privilege
(i.e., E has received a REQUEST from this neighbor). Thus E will send the
PRIVILEGE message to D, and HOLDERE becomes D. Node D did not request
the privilege for itself, but on A’s behalf. So D sends the PRIVILEGE message
to A, setting HOLDERn to A. On receiving the PRIVILEGE message, node A
becomes the privileged node (HOLDERA := self) and A may enter the critical

section.
Note the assignment of HOLDERE and HOLDERn when the PRIVILEGE

message is sent. This ensures that when the PRIVILEGE message is received at
A, the directed path tree of Figure 2 has become the tree shown in Figure 3, i.e.,
the HOLDER variables collectively maintain directed paths from each node to
the privileged node.

It is important to note that this algorithm is not a “fully distributed” algo-
rithm as defined by Ricart and Agrawala. By their definition, all nodes must

directly participate in the decision to grant a mutual exclusion request. Such
algorithms are condemned to be at best O(N). Our algorithm, like Maekawa’s,
uses a “surrogate mechanism” in which a node X requests another node Y to act
on X’s behalf. Therefore node Y may act “collectively,” reducing the number of
messages required to effect mutual exclusion.

3. THE ALGORITHM

To implement the algorithm described in the previous section, each node X must
hold certain information (described in the next section). The algorithm involves
two types of communication, the sending of a REQUEST message and the
sending of a PRIVILEGE message.

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

64 * Kerry Raymond

3.1 Information Held by Each Node

HOLDER
Values: “self” or the name of one of the immediate neighbors. Indicates the relative
position of the privileged node with respect to this node X.

USING
A Boolean value. USING indicates if X is currently executing the critical section.
Naturally, USING + HOLDER = self.

REQUEST-Q
A First-In-First-Out queue. The possible elements of the queue are the names of
immediate neighbors and “self.” REQUEST-Q holds the names of those neighbors
that have sent a REQUEST message to X, but have not yet been sent the privilege
in reply. “self” is placed in the queue when X wishes to obtain the privilege for its
own use. As there is at most one occurrence of each name in a REQUEST-Q, the
maximum size of a REQUEST-Q is number of neighbors + 1 (for self).

ASKED
ASKED, a Boolean, is true when a nonprivileged node X has sent a REQUEST
message to the current HOLDERs; false otherwise. ASKED prevents unnecessary
REQUEST messages from being sent, and also ensures that REQUEST-Qs do not
contain duplicate entries.

3.2 Sending a PRIVILEGE Message

The necessary requirement for sending a PRIVILEGE message is

HOLDER = self A 1 USING A REQUEST-Q # empty A head (REQUEST-Q) #
self

(i.e., the node must hold the privilege but not be using it, and the oldest request

for the privilege has come from another node). Superficially it may seem impos-

sible that the head of REQUEST-Q of the privileged node could be “self.”

However this situation may occur immediately after this node has received the

PRIVILEGE message. In this situation, the node will then begin to use the
privilege (removing “self” from the head of the REQUEST-Q).

Therefore our algorithm uses a routine ASSIGN-PRIVILEGE given below.
The recipient of the privilege (the HOLDER-to-be) is the node at the head
of REQUEST-Q (the oldest request), and this node must be removed from
REQUEST-Q as its request is being honored. Since the current privileged node

will not have sent a REQUEST message to the HOLDER-to-be, ASKED must

be set to false.

ASSIGN-PRIVILEGE:

if HOLDER = self A 1 USING A REQUEST-Q # empty

then

HOLDER := dequeue (REQUEST-Q)

ASKED := false

if HOLDER = self

then

USING := true

(initiate entry into critical section)

else

send PRIVILEGE to HOLDER

ACM ?‘ransactions on Computer Systems, Vol. 7, No. I, February 1989

A Tree-Based Algorithm for Distributed Mutual Exclusion 65

3.3 Sending a REQUEST Message

The necessary requirement for sending a REQUEST message to the holder (w.r.t.
this node) is that this node does not have the privilege but wants it (either for
itself or others). Furthermore a REQUEST message should not be sent if one
has already been sent to the holder. The sending of a REQUEST message has
little impact on the state of a node. It causes no change to HOLDER, REQUEST-
Q, or USING. Only ASKED becomes true. The algorithm for MAKE-REQUEST
is:

MAKE- REQUEST:

if HOLDER # self A REQUEST-Q # empty A 1 ASKED
then

send REQUEST to HOLDER

ASKED := true

The variable ASKED is true when “self” is in the REQUEST-Q of a neighboring
HOLDER (or will be after the arrival of the REQUEST message), and false
otherwise. Thus the ASKED variable ensures that duplicate entries of “self”
cannot occur in a neighbor’s REQUEST-Q. The serialization of any internal
requests (see Section 1, INTRODUCTION) ensures that duplicate entries of
“self” cannot occur in the local REQUEST-Q. Therefore REQUEST-Qs are
indeed bounded, and so there is no potential for “flooding,” even under heavy
load conditions.

3.4 Four Events

There are four events which can alter the assignment of privilege and/or neces-
sitate the sending of a REQUEST message. Consequently our algorithm consists
of four parts corresponding to each of the four events, as shown below.

The node wishes to enter the critical section:

enqueue (REQUEST-Q, self); ASSIGN-PRIVILEGE; MAKE-REQUEST

If this is the privileged node, then ASSIGN-PRIVILEGE will allow this node to
enter the critical section. If this is not the privilege node, MAKE-REQUEST
may send a REQUEST to obtain the privilege.

The node receives a REQUEST message from neighbor X:

enqueue (REQUEST-Q, X); ASSIGN-PRIVILEGE; MAKE-REQUEST

If this node is the holder, ASSIGN-PRIVILEGE may send the privilege to the
requesting node. If this node is not the holder, MAKE-REQUEST may propagate
the REQUEST to obtain the privilege.

The node receives a PRIVILEGE message:

HOLDER := self; ASSIGN-PRIVILEGE; MAKE-REQUEST

ASSIGN-PRIVILEGE may pass the privilege to another node, or initiate
a local entry to the critical section. If the privilege is passed to another node,
MAKE-REQUEST may request that the privilege be returned.

The node exits the critical section:

USING := false; ASSIGN-PRIVILEGE; MAKE-REQUEST

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

66 * Kerry Raymond

Node x Node Y

<
REQUEST

PRlwLEOE
>

Fig. 4. Logical pattern of messages between nodes X and Y. REQUEST
>

On releasing the mutual exclusion, ASSIGN-PRIVILEGE may pass the privilege
to another node, and MAKE-REQUEST may then request the return of the
privilege.

Note that these pieces of code must execute in local mutual exclusion.

3.5 Message Overtaking

Unlike earlier algorithms, the acyclic tree structure employed by our algorithm
restricts the amount of conflicting information resulting from varying message
transmission times and message overtaking to conflicts between pairs of neigh-
boring nodes. Message traffic between a pair of neighboring nodes must conform
to a logical pattern, and hence there is no need for message sequence numbers to
enforce the physical order of arrival.

Consider the sequence of messages between a pair of neighboring nodes X and
Y, shown in Figure 4. Assume that initially node X (or beyond) holds the privilege.

The only message overtaking that may occur is when a PRIVILEGE message
is sent from node X to node Y, say, closely followed by a REQUEST message
from node X to node Y. That is, X is giving the privilege to Y but immediately
(or very soon after) requires the privilege to be returned.

Upon receiving the overtaking REQUEST message, node Y could be pro-
grammed to recognize that overtaking has occurred (since the next logical
message must be a PRIVILEGE message) and defer the processing of the
REQUEST message until after the receipt and processing of the overtaken
PRIVILEGE message. However it is not necessary to do so, as the algorithm (as
presented) is insensitive to such overtaking.

If the REQUEST message arrives at Y before the PRIVILEGE message, then
X’s request will be queued in REQUEST-QU. Since Y is not yet the privileged
node, ASSIGN-PRIVILEGE will not send a message or cause any other state
change. Since X has sent the PRIVILEGE message to Y, it implies that ASKEDY
must be true, and hence MAKE-REQUEST will not send a message or cause
any state change.

When the PRIVILEGE message finally arrives at Y, either Y will enter the
critical section or Y will send the PRIVILEGE message to the neighbor at the
head of REQUEST-QU (which will not be X). The early arrival of the REQUEST
message does not invalidate the operation of the algorithm in any way.

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

A Tree-Based Algorithm for Distributed Mutual Exclusion 67

4. PROOF OUTLINES

4.1 Mutual Exclusion Is Assured

To ensure mutual exclusion, it is necessary that, at most, one node regards itself

as privileged. A node becomes privileged when it receives a PRIVILEGE message.
A privileged node becomes nonprivileged when it sends exactly one PRIVILEGE
message to another (neighboring) node. PRIVILEGE messages cannot be sent
by unprivileged nodes. Provided only one node is privileged initially, there will

continue to be either only one privileged node, or else there is no privileged node
(during the finite time it takes to transmit the PRIVILEGE message).

4.2 Deadlock Is Impossible

If no node is in the critical section and there are one or more nodes wishing to
enter the critical section, yet unable to do so, then the system is deadlocked. This
could occur as a consequence of any of the following:

(a) No node is privileged and hence the privilege cannot be given to other nodes.

(b) The privileged node is not aware that other nodes require the privilege.

(c) The PRIVILEGE message does not eventually reach a node which has
requested it.

From Section 4.1 we know that one node must be privileged (or will shortly
become privileged).

The collective ASKED variables ensure that (after a finite amount of message
transmission time) there is a sequence of REQUEST messages (for which no
PRIVILEGE message has been received in reply) between each node requiring
the privilege and the privileged node, using the collective HOLDER variables to
route these REQUEST messages towards the privileged node.

It is impossible for the PRIVILEGE message to be passed through the tree so
that REQUEST messages never arrive at the currently privileged node. As the
tree structure is acyclic, the PRIVILEGE messages cannot outrun the REQUEST
messages indefinitely. The only possible way for the PRIVILEGE message to
evade the pursuing REQUEST message would involve the PRIVILEGE message
traveling from n0de.A to node B, while the REQUEST message is traveling from
node B to node A. However the logical (and consequent physical) order of
messages on an edge of the tree prevents this (see Section 3.5). The PRIVILEGE
message would not be sent from node A unless node A had received a REQUEST
from node B to which node A had not replied. If node B had sent such a
REQUEST message, then node B would not have sent the current REQUEST
message (due to ASKED,).

Thus the privileged node must eventually become aware that other nodes
require the privilege. Furthermore the chain of successive REQUEST messages
causes the collective REQUEST-Qs to provide a path from the privileged node
to a node that wishes to enter the critical section. Hence the PRIVILEGE
message is forwarded to a node that has requested the privilege.

In summary, our algorithm is deadlock-free, mostly due to the acyclic nature
of a tree eliminating the potential for any “circular wait” situations.

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

68 l Kerry Raymond

4.3 Starvation Is Impossible

Suppose node Y holds the privilege (or will do so after the transmission of the
PRIVILEGE message is complete). When a node X requires the privilege, the
collective ASKED variables ensure that (after a finite amount of message
transmission) there is a chain of requests between the requesting node X and the
privileged node Y. Some of the REQUEST messages may be a direct consequence
of X’s requirement, while others may have been sent in response to the require-
ments of other nodes; such REQUEST messages now represent X’s requirements
as well.

More rigorously, let P,, P2, . . . , Pk be the sequence of nodes along the path
from X(P,) to Y(Pk). The tree structure ensures that such a path is unique, and
that k d N. Then it follows that

P, E REQUEST-Q,,,

and Pi-1 E REQUEST-Qil, for 2sisk

Consider the vector [M,, M?, . . . Mk] where

M, is the position of P, in REQUEST-Q,,,
and Mi is the position of Pi-1 in REQUEST-&r> for 2sisk

The element at the head of the queue is numbered as position 1, the next element
as position 2, etc. As the queues are held in FIFO order, the position of a
particular element cannot increase.

Since the longest possible path in a tree is of length at most N, and the size of
a REQUEST-&s is at most N (self plus all other N - 1 nodes as neighbors), the
vector can have only a finite number of possible values. Furthermore, vectors
can be ranked in a strong total order by the lexicographic “4’ operator.

Each of the possible actions of the privileged node Y (described below) reduces
the value of the vector, and therefore successive operations of the successive
privileged nodes must reduce the vector to El] (i.e., X is the privileged node, and
“self” is at the head of X’s REQUEST-Q), which allows X to enter the critical
section.

Consider the possible values of Mk.
If k > 1 and M, = 1, then P,-, is at the end of REQUEST-Qi,,, and hence the

PRIVILEGE will be sent to P,-, (i.e., towards X). If k = 1 and M, = 1, then X
holds the privilege and X is at the head of X’s REQUEST-Q; hence X will enter
the critical section. In both cases, the effect on the vector will be:

[MI, ML’, . . ., M-1, 111 - UM,, Mz, . . . , M-III

If k > 1 and M1, > 1, then P,-, is not the element at the head of REQUEST-
Qrr. If P, is at the head of its own REQUEST-Q, then P, will enter the critical
section. The effect on the vector will be:

M, Mz, . . . , M-1, ML] - UM,, Ms, . . . , Mk-1, Mk - 11

(Note that if k = 1 and MI, > 1, then X cannot be at the head of its own
REQUEST-Q, so this situation does not occur.)

If k > 1 and Mk > 1 and Z (a neighbor of Pk) is at the head of Pk’s REQUEST-
&, then the PRIVILEGE will next be sent to Z (i.e., away from X). Since Pk’s

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989

A Tree-Based Algorithm for Distributed Mutual Exclusion l 69

REQUEST-Q will still be nonempty, a REQUEST message will also be sent to
Z to ensure that the privilege is returned. If k = 1 and MI > 1, then node X holds
the privilege but must pass the privilege to satisfy an earlier request from Z, one
of X’s neighbors. So X will send the PRIVILEGE followed by a REQUEST for
the return of the privilege to Z. In either case, the effect on the vector is:

[M,, Mg, . . . , Mix] -+ [M,, Mz, . . . , I% - 1, M,c+,Il

The claim that this operation reduces the value of the vector depends on the
finite upper bounds of k and Mi. It is impossible for the vector to grow infinitely
long, or for positions in a REQUEST-Q to become infinitely large.

Hence even the most remote node X cannot be overlooked. Once X’s
REQUEST message has propagated to either the privileged node or another re-
questing node, X is guaranteed to enter the critical section eventually.

5. COST OF THE ALGORITHM

Like [n-4], we will consider the number of messages required to effect an entry
to a critical section. For our algorithm, the upper bound for the number of
messages per critical section is

BD-where D is the diameter (longest path length) of the tree

This worst case occurs when the privilege is passed from node A to node B, where
nodes A and B have the greatest possible distance between them. It takes D
REQUEST messages originating at A, and D PRIVILEGE messages originating
from B, to pass the mutual exclusion from B to A.

The worst possible topology for this algorithm is a straight line arrangement
as shown in Figure 5.

The diameter, D, of such a topology is N - 1, and thus the number of messages
sent (i.e., 2*(N - 1)) is comparable with Ricart and Agrawala’s algorithm and
worse than the algorithm of Suzuki and Kasami. However this worst-case
behavior occurs only in the pathological situation when the privilege is shuttled
between the nodes at either end of the line. If all nodes are equally likely to
require the privilege, then the average distance between the requesting node and
the privileged node is (N + 1)/3, and thus the number of messages sent is

2N
LZ-

3 ’

an improvement over the N messages required by Suzuki and Kasami’s algorithm..
The best topology for our algorithm is a radiating star formation, as illustrated

in Figure 6.
If the valency of each nonleaf node of the star is K, then the diameter of the

tree is

W - 1)W - 2) +
K

1

Thus the worst case for this topology is O(loglC-, N), which is better than
Maekawa’s O(JN) algorithm. It should be noted that the diameter of the tree
decreases as the valency increases. Thus trees with a high fanout are preferable.

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

70 * Kerry Raymond

Fig. 5. Straight line topology.

Fig. 6. Radiating star topology.

For the radiating star topology, we cannot find any simple formula for the
average distance between nodes. The majority of the nodes exist on the outer
rim of the tree, and for many pairs of these nodes the distance between them will
be the diameter of the tree. Thus as N increases, the average distance between a
pair of nodes approaches (but does not reach) the diameter of the tree. So 2*D
messages represents an unreachable upper bound for this topology.

The diameter of a given arbitrary tree can always be calculated, and extensive
empirical measurements on randomly constructed trees show that the diameter
of such trees is typically O(log N). In any case, if the tree structure is logically
imposed upon the underlying network, then pathological cases (e.g., the straight
line) where the diameter is not O(log N) can be avoided in favor of trees which
approximate a radiating star formation.

Thus we make the claim that the number of messages exchanged by our
algorithm is typically O(log N), which is supported by the results of extensive
simulations. Therefore we believe that, in most situations, our algorithm sends
fewer messages than other reported algorithms [2-41.

5.1 Performance Under Heavy Demand

The preceding complexity analysis was based upon a chain of REQUEST mes-
sages and a subsequent chain of PRIVILEGE messages traveling between the
requesting and the privileged nodes. This assumes that there are no other nodes
requesting the privilege, that is, there is little demand for the privilege. When
many nodes wish to obtain the privilege, REQUEST messages sent by a request-
ing node are not usually forwarded all the way to the privileged node. Instead
the REQUEST message will arrive at a node X where ASKEDx is true. Thus
the REQUEST message sent earlier from X to HOLDERx represents the inter-
ests of all requesting nodes reachable from the privileged node via X.

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

A Tree-Based Algorithm for Distributed Mutual Exclusion . 71

Fig. 7. Example topology.

When node X receives the privilege from its neighbor Y, all of X’s other
neighbors and X itself will use the privilege (if requested prior to Y’s request)
before it is returned to Y. The PRIVILEGE message visits a number of nodes
within a subtree, and so the average distance that the PRIVILEGE message
travels between nodes desirous of entering the critical section is much less than
the diameter of the tree.

Thus our algorithm has the curious (but delightful) property of improved
performance under heavy demand. As the number of nodes wishing to enter the
critical section increases, the number of messages sent per entry to the critical
section decreases. When the system is saturated (all nodes but the privileged
node are waiting to enter the critical section), approximately four messages are
sent per critical section entry. This constant behavior was first observed during
simulations, and its explanation eluded us for some time.

To appreciate why only four messages are sent per critical section entry when
the system is saturated, we must consider the path of the successive PRIVILEGE
messages through the tree. (Note that only one PRIVILEGE message exists at
any time.) The path of the PRIVILEGE messages in a saturated system is
essentially a tree traversal, albeit a somewhat unordered one. For example,
consider the topology shown in Figure 7. A possible path for the PRIVILEGE
messages through this tree would be:

where the underlined node numbers indicate that the node entered the critical
section at that time. Despite the haphazard order in which nodes enter the critical
section (determined by their position in REQUEST-Qs), the path of the
PRIVILEGE messages travels along each of the N - 1 edges exactly twice in
order to bring the privilege to all N nodes. This behavior is a consequence of the
tree structure, and will occur irrespective of the actual topology.

A PRIVILEGE message travels along an edge from node A to node B in reply
to a REQUEST message, which traveled along the edge from node B to node A.
Hence a total of 4*(N - 1) messages are sent among the N nodes when the
system is saturated, and so the number of messages per critical section entry is:

4(N - 1)
N =:4.

6. TWO VARIATIONS ON THE ALGORITHM

We present two variations to our algorithm, which can be applied either sepa-
rately or together to improve its efficiency.

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

72 - Kerry Raymond

6.1 The Piggyback Strategy

On exiting a critical section, the privileged node may send both a PRIVILEGE
message (in ASSIGN-PRIVILEGE) and a REQUEST message (in MAKE-
REQUEST) to a neighbor. If the actual transmission of the PRIVILEGE message
is deferred until the need for sending the REQUEST message has been deter-
mined, then the REQUEST message can be “piggybacked” onto the PRIVILEGE
message, eliminating one message. When received, a “piggybacked” message is
processed as if the two separate messages had arrived. Only nonleaf nodes can
send a piggyback REQUEST as leaf nodes will not require the return of the
privilege at the time it is given away.

Piggybacking is most effective when there is considerable demand for the
mutual exclusion. The number of REQUEST messages eliminated by piggyback-
ing is almost zero in a low demand system (since it is extremely unlikely that a
node will require that the privilege be returned to it), but rises to

C valency of nonleaf nodes

C valency of all nodes

when the system is saturated. Thus for the tree shown in Figure 7, approximately
i of the REQUEST messages could be piggybacked when the system is saturated.
For large complete trees of valency K, piggybacking eliminates approximately
K/2(K - 1) of the REQUEST messages when the system is saturated. For a
straight line topology (a complete tree of valency 2), almost all REQUEST
messages will be piggybacked in a saturated system.

Apart from reducing the number of messages required, piggybacking has no
other impact on the algorithm or its performance. We know of no disadvantage
to its use, other than its ineffectiveness in systems with light demand.

6.2 The Greedy Strategy

Our second variation, the Greedy Strategy, weakens the requirement that
REQUEST-Qs are held as a FIFO list. When a node X wishes to enter the
critical section, it places itself at the head of REQUEST-&x rather than at the
tail. When X receives the PRIVILEGE message, X is able to enter its critical
section straightaway, rather than wait until the earlier requesting neighbors have
had their turn.

Like the Piggyback Strategy, the Greedy Strategy has little effect in a system
with light demand for the privilege, as a requesting node would probably be the
only node in its REQUEST-Q anyway.

Under heavier demand for the privilege, the Greedy Strategy reduces the
average delay between a node requiring the privilege and receiving it. This, in
turn, increases the number of entries to the critical section that can be achieved
in a given time. However these improvements are at the expense of the leaf
nodes.

In the standard algorithm, the delay times for all nodes, leaf or nonleaf, are
almost equal, and the number of critical section entries achieved by each node
are almost equal. Using the Greedy Strategy, leaf nodes may wait many times
longer than the nonleaf nodes to receive the privilege, and consequently obtain
it on fewer occasions than nonleaf nodes. For example, when the system shown

ACM ‘I’ransactions on Computer Systems, Vol. 7, No. 1, February 1989

A Tree-Based Algorithm for Distributed Mutual Exclusion * 73

in Figure 7 is saturated, each nonleaf will obtain the privilege three times more
often than a leaf node; and, correspondingly, the delay time for a leaf node will
be three times longer than for a nonleaf node.

The Greedy Strategy preserves the starvation-free nature of the algorithm (no
node is overlooked indefinitely) but is not as fair as the standard algorithm. In
fact, it directly trades fairness for efficiency.

That the Greedy Strategy is starvation-free is not immediately obvious. How-

ever all local requests to enter the critical section are serialized, and hence
whenever a node releases the mutual exclusion, it will pass the privilege to the
node X at the head of its REQUEST-Q (if any). This node X cannot be “self”
but must be a neighboring node. A neighboring node at the head of REQUEST-
& can be overtaken by “self” at most once. Therefore each node in the
REQUEST-Q must eventually reach the head of the REQUEST-Q, and
ultimately receive the privilege.

7. INITIALIZATION

To initialize the algorithm, one node is chosen as the initial privileged node.
This node sends an INITIALIZE message to each of its neighbors. When
node A receives an INITIALIZE message from a neighboring node B, A assigns
HOLDER* to B, and then sends an INITIALIZE message to all of its neighbors
(other than B). Once a node has received the INITIALIZE message, it may
request the privilege (even though other parts of the tree may not yet be
initialized).

The initialization of the other variables is the same for all nodes, and is shown
below:

REQUEST-Q

USING

ASKED

:= empty

:= false

:= false

8. NODE FAILURE

In the event of a node failing and losing the information required for this
algorithm, it is possible to reconstruct that information from the node’s neighbors
when the node restarts.

When a node X restarts, it commences a recovery phase. The first action of
the recovery phase is to delay for a period sufficiently long to ensure that all
messages sent by node X before it failed have been received. Node X then sends
RESTART messages to each of its neighbors, and awaits the ADVISE messages
that each neighbor will send in reply.

During the recovery phase, node X may receive REQUEST and PRIVILEGE
messages from neighboring nodes. If X receives a REQUEST message from node
Y, then Y is placed in REQUEST-Qx. If X receives a PRIVILEGE message,
then HOLDERX becomes “self.” If node X wishes to enter the critical section
during the recovery phase, then “self” is placed in REQUEST-Qx. All of these
actions are the normal responses to these events.

However the procedures ASSIGN-PRIVILEGE and MAKE-REQUEST are
not called during the recovery phase. The recovery phase involves information

ACM Transactions on Computer Systems, Vol. 7, No. I, February 1989.

74 l Kerry Raymond

gathering and reconstruction of local data. Until that task is complete, node X

must not attempt to make decisions based on incomplete information. After the
recovery phase is completed, ASSIGN-PRIVILEGE and MAKE-REQUEST
are then called to allow node X to recommence its participation in the algorithm.

8.1 The ADVISE Message

When a neighboring node Y receives X’s RESTART message, Y must reply send
an ADVISE message informing X of the state of the X - Y relationship as Y
sees it. Below are the four possible states (corresponding to each of the four
messages in the logical pattern of X - Y communication), together with the

information that X can deduce from this relationship.

(1) HOLDERv = X and ASKEDv = false
Hence X may be the privileged node, and Y is not an element of REQUEST-Q,.

(2) HOLDER, = X and ASKEDv = true
Again X may be the privileged node, and Y is an element of REQUEST-Qx.

(3) HOLDERv # X and not X E REQUEST-Qy
Hence X is not the privileged node (it is node Y or beyond), and ASKEDx must
be false.

(4) HOLDER, # X and X E REQUEST-QV
Again X is not the privileged node, and it has requested the privilege so ASKEDx
must be true.

8.2 Determining HOLDER,

If HOLDERv = X for all of X’s neighbors Y, then X is the privileged node,
and HOLDERx = self. If X is not the privileged node, then HOL:DERU = X
for all but one of X’s neighbors Y. The dissenting neighbor Z is therefore closer
to the privileged node than X, and so HOLDERx = Z. It is impossible for
HOLDERy # X for more than one neighbor (see Section 4.1).

8.3 Determining ASKEDx

If X is the privileged node, then ASKEDx is false. If X is not the privileged node
and HOLDERx is Z, say, then ASKEDx is true if X E REQUEST-&x.

8.4 Reconstructing REQUEST-C&

The entries in X’s REQUEST-Q can be determined from the ADVISE messages.
If HOLDERv = X and ASKEDv = true, then Y should be an entry in REQUEST-
&x. The order of the elements of REQUEST-Qx will be lost, but this is not
essential for the continued operation of the algorithm.

If desired, each node could remember when it made its last REQUEST, and
convey this information in the ADVISE message. Using these time-stamps, the
order of X’s reconstructed REQUEST-Q would more closely resemble the
original, subject to the extent to which such time-stamps can be compared [l].

In theory, it is possible that a neighboring node Y could be starved by the loss
of order in REQUEST-Qx. If the reconstruction of REQUEST-Qx causes Y’s
request to be overtaken by another request, then (in the terminology of Section
4.3) the effect of the recovery is to increase the value of the vector. Consequently
if each failure of X happens before Y receives the privilege, and the subsequent
reconstruction of REQUEST-Q, allows Y’s REQUEST to be overtaken, then

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

A Tree-Based Algorithm for Distributed Mutual Exclusion l 75

node Y will be starved. However, such a situation is extremely improbable in real
life.

Alternatively, the ADVISE message could contain the number of times that
the neighbor Y had received the PRIVILEGE message from X. The reconstruc-
tion of REQUEST-&x would be ordered by ascending number of PRIVILEGE
messages previously received. Although this ordering does not attempt to recon-
struct the original order of REQUEST-&x, it will prevent starvation, in the
improbable scenario previously described.

8.5 Reassigning USlNGx

USINGs can be set to false.

8.6 Assistance from Neighboring Nodes

Apart from replying to the RESTART message with an ADVISE message,
neighboring nodes do not further involve themselves in node X’s failure and
subsequent recovery. They are not required to cease message transmission to X,
or delay their actions in any way. While this eliminates the need for complex
resynchronization among X and its neighbors, it allows REQUEST and PRIVI-
LEGE messages to overtake ADVISE messages.

If node X receives a PRIVILEGE message from neighboring node Y during
recovery (whether sent before or after Y’s ADVISE message), then X is the
privileged node. If the PRIVILEGE message was sent before the ADVISE
message, then the ADVISE message will correctly state that HOLDERv = X. If
the PRIVILEGE message was sent after the ADVISE message, then the ADVISE
message will contain the outdated information that HOLDERv # X. However
the possession of the token is sufficient proof that X holds the privilege.
Contradictory ADVISE messages must be outdated, and can be ignored.

If node X receives a REQUEST message from Y during recovery (whether sent
before or after Y’s ADVISE message), then Y wants the privilege from X.
Therefore there is the possibility that Y will be placed in X’s REQUEST-Q
twice, once in response to the ADVISE message and once in response to the
REQUEST message. To avoid this, one could check for such duplication during
the recovery phase (or at the end of the recovery phase).

However, the presence of such duplicates does not endanger the correctness of
the algorithm, provided that the REQUEST-Q is physically large enough (or
extensible) to accommodate duplicates (at most two occurrences of each neighbor
or self). If REQUEST-Q, contains two entries for node Y, then at some future
time Y will receive the privilege when it is not expecting it. (This will not occur
the next time Y receives the privilege, but on some later occasion.) Although this
does not conform to the logical pattern of message traffic between X and Y, the
algorithm is nonetheless insensitive to it.

Upon receiving the unexpected PRIVILEGE message, node Y will behave as
if it had requested the privilege and then immediately finished using it. Since Y
was not expecting the PRIVILEGE, REQUEST-QU must be empty. Node Y will
then simply hold the privilege without using it. However, the collective HOLDER
variables will be “pointing” towards node Y, and any REQUESTS for the privilege
will propagate to node Y, which will respond by sending the PRIVILEGE. Despite

ACM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

76 * Kerry Raymond

a few unnecessary message transmissions, the algorithm automatically corrects
itself after the delivery of the PRIVILEGE to a disinterested node.

8.7 Failure During Recovery

It is possible for the node X to fail during the recovery phase of an earlier failure.
If this occurs, then the second recovery phase may receive ASSIST messages
related to the first recovery phase. Such messages may contain outdated infor-
mation and should be ignored. There are a number of ways of identifying such
messages.

If the time of the delay at the start of the recovery phase is carefully chosen,

it should be possible to ensure that all outdated ASSIST messages will have
arrived before the second set of RESTART messages is sent. Thus, only relevant
ASSIST messages will be received during the second recovery phase.

A second method is to have some unique identifier on each RESTART message,

which must be quoted in the replying ASSIST message. ASSIST messages with
an incorrect identifier can be discarded. Possible sources for these unique iden-
tifiers are the real-time clock, nonvolatile storage, or an external agent (e.g., a

server or a user).

8.8 Extent of Survivable Failures

In the preceding description of failure recovery, it is assumed that other nodes
are operating normally, that is, are neither failed nor recovering. Provided that
failure occurs infrequently, this is a reasonable and realistic assumption.

The recovery mechanism will work even in the event of concurrent node

failures, provided that the failures do not occur in adjacent nodes.
When two or more adjacent nodes fail, it may be possible to determine the

collective status of these nodes from the ASSIST messages received from their
surviving neighbors. Once this macroscopic status has been established, the
recovering nodes can negotiate their individual (or microscopic) status accord-
ingly. However, further research is needed to determine the ability of this group
recovery mechanism to survive the subsequent failure of either recovering or
neighboring nodes.

9. CONCLUSIONS

We have presented a deadlock- and starvation-free algorithm for distributed
mutual exclusion in which the average number of messages required per critical
section is O(log N), reducing to a constant of four messages as the demand for
the mutual exclusion increases.

Each node need know only of its neighbors in the tree, thus restricting the
amount of data needed to be held by each node.

Message overtaking does not present a problem, and so sequence numbers are
not required. During normal operation (i.e., not failure recovery), each message
requires only sufficient bits to indicate

-the type of the message (e.g., REQUEST, PRIVILEGE, INITIALIZE)

-the identity of the neighbor that sent the message (if this information is not
supplied by the underlying message-passing system).

4CM Transactions on Computer Systems, Vol. 7, No. 1, February 1989.

A Tree-Based Algorithm for Distributed Mutual Exclusion . 77

In many systems, it will be possible to multiplex this small number of bits onto
other outgoing messages to further reduce the bandwidth required.

Our algorithm is also resilient to a variety of unexpected events, and can
recover from localized failures.

ACKNOWLEDGMENTS

Particular thanks are due to David Horton for his assistance in the analysis of
simulation results, and in the preparation of this manuscript. We also wish to
thank Professor Andrew Lister, from the University of Queensland, and the
anonymous referees for their careful reading and helpful comments.

REFERENCES

1. LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM

21, 7 (July 1978), 558-565.

2. MAEKAWA, M. A fl algorithm for mutual exclusion in decentralized systems. ACM Trans.

Comput. Syst. 3, 2 (May 1985), 145-159.

3. RICART, G., AND AGRAWALA, A. K. An optimal algorithm for mutual exclusion in computer

networks. Commun. ACM 24, 1 (Jan. 1981), 9-17.

4. SUZUKI, I., AND KASAMI, T. A distributed mutual exclusion algorithm. ACM Trans. Comput.

Syst. 3,4 (Nov. 1985), 344-49.

Received October 1987; revised August 1988; accepted September 1988

ACM Transactions on Computer Systems, Vol. 7, No. 1, Februnry 1989.

