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Abstract

Background: The structure of many eukaryotic cell regulatory proteins is highly modular. They
are assembled from globular domains, segments of natively disordered polypeptides and short
linear motifs. The latter are involved in protein interactions and formation of regulatory complexes.
The function of such proteins, which may be difficult to define, is the aggregate of the subfunctions
of the modules. It is therefore desirable to efficiently predict linear motifs with some degree of
accuracy, yet sequence database searches return results that are not significant.

Results: We have developed a method for scoring the conservation of linear motif instances. It
requires only primary sequence-derived information (e.g. multiple alignment and sequence tree)
and takes into account the degenerate nature of linear motif patterns. On our benchmarking, the
method accurately scores 86% of the known positive instances, while distinguishing them from
random matches in 78% of the cases. The conservation score is implemented as a real time
application designed to be integrated into other tools. It is currently accessible via a Web Service
or through a graphical interface.

Conclusion: The conservation score improves the prediction of linear motifs, by discarding those
matches that are unlikely to be functional because they have not been conserved during the
evolution of the protein sequences. It is especially useful for instances in non-structured regions of
the proteins, where a domain masking filtering strategy is not applicable.

Background

Linear motifs (LM) are short (3-10) amino acid
sequences involved in numerous interactions including
the modification-based regulation of protein function [1].
In particular, LM allow the formation of dynamic modu-
lar protein complexes due to the transient and low energy
nature of the interactions they mediate [2]. Furthermore,

LM are involved in targeting proteins to the appropriate
cellular compartment [3]. Therefore, even if LM alone do
not determine the complete molecular function of a pro-
tein, they give valuable information about the protein's
role and/or position in the cellular function networks
[4,5]. The experimental discovery of LM is time consum-
ing and laborious, hence recently considerable research
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interest has focused on

approaches.

computational predictive

LM prediction is focused on the discovery either of new
LM patterns, or the finding of new instances of already
known patterns. ;From the algorithmic point of view
these two approaches represent different challenges. The
identification of significantly over-represented sequence
patterns in the former, and the distinction between true
and false occurrences of a given pattern in the latter. The
length of LM creates difficulties in both cases. The signifi-
cance assessment of new patterns against the background
probability distribution of LM is not straightforward due
to their shortness. For the same reason, prediction of new
LM instances by pattern matching is prone to produce a
high proportion of false positives.

Methods for LM prediction take into account the biologi-
cal context of those short sequences to evaluate the relia-
bility of the newly predicted patterns or instances. Simple
keyword association may sometimes be used to find sig-
nificant connection between motifs and a specific func-
tion. That is the case for the EH1 motif, that occurs mainly
in proteins containing domains with a transcription factor
function [6]. The use of protein interactions has proven to
be a fruitful approach to discover new LM patterns [7-11].
Currently DILIMOT [7], SLiMDisc [8] and more recently
SLiMFinder [9] are the main tools for de novo LM discov-
ery. The first one finds over-represented motifs in sets of
proteins with a common functional attribute. The other
two look for convergently evolved LM using evolutionary
information derived from unrelated proteins that share a
functional characteristic.

Resources for finding new instances of known motifs have
begun to proliferate. Prosite is a large database of protein
functional signatures. It initially included LM represented
as regular expressions [12,13]. Currently, it is mainly
devoted to domain profiles [14]. Scansite is a profile
based search engine that predicts LM instances using the
amino acid frequency information gathered from experi-
mentally determined sites [15]. The ELM resource uses
manually curated information about known eukaryotic
LM to predict new instances, filtering out false positive
matches with information about the structure, cellular
compartment and species of the submitted sequence [16].
A similar approach has been implemented subsequently
in other resources like the Minimotif Miner [17].

The use of evolutionary conservation has proved to be
useful in the field of LM prediction. It improves the iden-
tification of truly functional instances of already known
motifs [17-19] or allows to assess the strength of a new LM
pattern [7,8]. The main assumption of this "phylogenetic
footprinting" is that instances are conserved when they
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have a functional value and therefore conserved instances
are less likely to be false positive occurrences of a motif.

When examining the conservation of LM, several specific
problems arise. In contrast to domains that can be pre-
dicted using hidden Markov models [20], LM cannot be
easily detected from a set of homologous sequences, since
their conservation signal is not significant due to their
length. That is why for motif prediction it is not enough to
find a pattern inside a multiple alignment, but it is crucial
to also consider the evolutionary relationships among the
set of sequences. Moreover, LM tend to localise in struc-
turally disordered segments of the proteins that are diffi-
cult to align [21]. This implies that the accuracy of the
conservation scoring scheme also depends on the quality
of the alignment.

An additional difficulty is the fact that LM have a non-lin-
ear pattern of conservation [22]. They are far more ephem-
eral than globular domains and their signature can appear
or disappear as a result of single mutations. Ancestrality is
not always necessary. This means that LM can appear de
novo during protein sequence evolution, because they do
not have to fulfil structural stability constraints in contrast
to globular domains. LM losses are also possible in closely
related sequences e.g. alternatively spliced forms.

Repetitive LM involved in the interaction with modular
proteins, e.g. the DPW epsin motifs that mediate interac-
tion with the adaptor protein AP-2, tend to be present in
an inconstant number of copies in homologous proteins.

Finally, it is important to keep in mind that not all the
amino acids forming a LM are equally informative. There
are key positions, like the S/T/Y in a phosphorylation
motif, that if changed result in the loss of function. Other
positions accept more than one amino acid of the same
physico-chemical group (e.g. acidic, hydrophobic), while
some positions can be occupied by any amino acid. These
differences have an impact in the definition of LM conser-
vation.

This article presents a new scoring scheme that uses infor-
mation about the degree of conservation to determine the
reliability of a motif match or instance. The method has
been developed inside the context of the ELM resource
[16] in order to improve its predictive power without
excessively degrading real time server performance for
users. It is a three stage algorithm that efficiently manages
to distinguish between true and randomly generated
instances, keeping low both the false negative and false
positive rates. A set of homologous sequences is defined.
This set is used to reconstruct the evolution of the pre-
dicted instance in terms of the conservation of the corre-
sponding regular expression. Subsequently, weights are
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assigned to the observed evolutionary events. The final
conservation score (CS) is computed using all the gath-
ered information.

Results

In his work about scoring residue conservation, Valdar
provides this advice: "Therefore, on the reasonable
assumption that no method is perfect, a good conserva-
tion score should be no more complex than it needs to be
so its deficits can be understood [23]."

The complete work flow of the CS is presented in Figure 1.
It illustrates the Web Service implementation that takes as
input a protein sequence and gives as output the list of all
the predicted instances with their positions and CSs. The
following sections describe in detail the ideas underlying
each of the three main steps of the core algorithm.

Step I: Homologous sequence set definition

The set of homologous sequences is constructed by doing
a BLAST search against the UniRef90 database [24]. The
UniRef90 database is assembled by merging sequences
and sub-sequences that are 90% or more identical, regard-
less of the source organism [25]. This is important to
avoid redundant information inside the homologous
sequence set. In fact, two very similar sequences can have
the same motif at a certain position because they have not
diverged enough in order to mutate those residues. In
addition, a non-redundant database increases the speed of
the BLAST search and improves the detection of distantly
related sequences.

From the BLAST output, sequences that meet all of the fol-
lowing criteria are chosen: they are not annotated as hypo-
thetical or predicted, they have 30% to 90% identity with
the query sequence, and they are only 25% longer or
shorter than the query sequence. This procedure aims to
define a neighbourhood around the query sequence that
is big enough to contain distantly related sequences. At
the same time, it tries to avoid non-informative similar
sequences like fragments or poorly predicted proteins that
abound in the UniRef90 database.

This automatic parsing of the BLAST output gave good
results for 70% of the sequences that contain known pos-
itive instances. The remaining 30% presented sequences
that were very distant from the query sequence. These
sequences affected the magnitudes of sequence weights,
because they appeared as very long branches in the phyl-
ogenetic tree. They produced artificially small weight val-
ues when normalising by the total branch length (see
Conservation score section). Moreover, these "orphan"
sequences can diminish the alignment quality because
they are only partially aligned, as previously demon-
strated in [26].
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For these reasons a second stage of sequence quality check
was introduced. In this refinement step the outlier
sequences that have a "non-common" distance with the
query sequence are discarded. Assuming that the phyloge-
netic distance between each homologous sequence and
the query sequence follows a normal distribution, those
sequences whose distance is in the right tail of such a dis-
tribution are eliminated. More precisely, those sequences
whose distance is more than 2 standard deviations away
from the average distance. An example of the change in
the phylogenetic tree upon refining can be seen in Figure
2. As aresult, the sensitivity of the scoring method, i.e. the
ability to correctly score the known positive instances,
improved by 16%.

Step 2: Instance conservation determination

According to the scoring scheme, the predicted instance in
the query sequence is considered to be conserved in an
homologous sequence if the regular expression of the cor-
responding motif is located in the equivalent position
given by the multiple alignment. Other matches to the
regular expression that appear in the homologous
sequences at different places are not considered evidence
for conservation. This removes instances that could occur
by convergent evolution. However, limitations in the
sequence alignment quality may confound this require-
ment.

Motif sequence conservation

Consider the MOD_SUMO motif with regular expression
[VILMAFP]K.E and the LIG_RGD motif with regular
expression RGD. The former has 7 x 1 x 20 x 1 = 140 pos-
sible sequences that match the pattern, while the latter has
only 1. More than 95% of the ELM motifs have degenerate
regular expressions that represent more than one possible
matching sequence, as in the MOD_SUMO case. This fact
is relevant when quantifying the conservation of a pre-
dicted instance, i.e. the presence of the regular expression
in a given homologous sequence.

One can consider the motif as a functional unit that
requires the presence of all residues in the regular expres-
sion in order to be functional. The assumption underlying
such a DISCONTINUOUS (DISC) model is that a muta-
tion that disrupts the regular expression has the same cost,
regardless of whether it happens in a stringent or a varia-
ble position. This corresponds to a deterministic model
where the motif will be considered as conserved in the
homologous sequence only if the regular expression is
exactly matched. Only in this case will the presence value
be 1. It is an appropriate approach for motifs such as
phosphorylation sites, where the removal of a key residue
will result in a non-functional instance. Despite this, it
may be too rigorous for more "permissive" LM. For exam-
ple, take the MOD_SUMO motif with regular expression
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Work flow of the conservation score implementation. The conservation score is implemented as a Web Service (light
grey) with two embedded Web Services (dark grey). It takes as input a protein sequence and gives as output the list of all the
predicted instances with their positions and conservation scores. The Bergen University Web Service finds all the matches for
ELM regular expressions in the query sequence. The EBl Web Service does the BLAST search, the multiple alignment and the
phylogenetic tree calculation. The three main steps of the core algorithm are highlighted with black boxes.
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Example of the impact of the branch length refinement. After the automatic parsing of the BLAST output, outlier
sequences that have a "non common" distance with the query sequence are discarded. The distribution of the branch lengths
appears more even in the recalculated phylogenetic tree (right). This refinement step improves the alignment quality. It also
prevents artificially small sequence weights being obtained upon normalisation by the total branch length. The trees are calcu-
lated using the neighbor-joining procedure in ClustalW; they are then rooted using the query sequence as outgroup, as

explained in the Sequence weights determination section.

[VILMAFP]K.E. Using the DISC model, both a mutation
in the first position to an amino acid like T or a mutation
in the second position to an amino acid different to K will
give a presence value of 0. Nevertheless, T is physico-
chemically similar to the set [VILMAFP]. Furthermore, the
amino acid variability at the first position might be inter-
preted as a greater tolerance to mutations at that position.
Indeed, a more "permissive" LM could still be functional
even if the regular expression is not completely conserved,
since they could allow for variations that are not consid-
ered by the regular expression. This could easily be the
case, for example, for an instance in a yeast sequence of a
motif that has been assigned from metazoan data.

Alternatively, the instance conservation can be calculated
on a positional basis. This is the motivation for the CON-

TINUOUS (CONT) statistical model. It assumes that the
motif's set of allowed sequences could be bigger depend-
ing on the proportion of variable and stringent positions
in the regular expression. It weights the conservation of an
amino acid at a stringent position higher than the conser-
vation at a variable position. The rationale behind this is
that the stringent positions are more informative. The
information content per position is estimated using the
Shannon entropy [27]. For an alphabet of 20 characters
(i.e. 20 amino acids), the information content I; at a posi-
tion i is:

I; =log,(20) + zfaa,i 1og5(faa,i)

aaci
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wheref,, ;is the frequency of the amino acid aa at position
i and the constant log,(20) is the normalisation value for

an uniform distribution of amino acids in the sequence.
In the particular case of a LM, the frequencies f,, ; can be

defined from the regular expression. They are calculated
assuming an uniform distribution of the amino acids
allowed at each motif position. For the MOD_SUMO

motif with regular expression [V ILMAFPIK. E: : f,, =%,
and faa4'—l

ﬁmazz%f 1
= 1 implies that I; is a bounded value contained in the
interval [0, log,(20)] = [0, 4.322], where higher values

correspond to stringent positions that allow less amino
acid variability and thus contain more information. The
theoretical information content of a motif is defined as

foas = ﬁ The fact that X, f,,;

I, = ZiL:O I;, where L is the motif length. The informa-

tion content of the observed predicted instance I,

depends on the matching between the homologous
aligned subsequence and the regular expression.

L
Lops = Zliai
i=0

where a; = 1 if the observed amino acid aa is contained in
the set of residues accepted for position i; otherwise a; = 0.
The presence value in an homologous sequence P, is the
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Figure 3
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observed information I, normalised by the theoretical
motif information I,,. It varies between 0 and 1, where 1
corresponds to an exact match of the regular expression
and 0 indicates no match. Incomplete matches have pres-
ence values in between, depending on their similarity to
the regular expression, i.e. the degree of motif conserva-
tion.

Motif position conservation

LM behave differently in multiple sequence alignments.
In the best case, they appear as identifiable blocks of con-
served residues. Sometimes, though, multiple sequence
alignment algorithms fail to properly align them [28].
This is mainly due to the intrinsic difficulty of aligning
disordered protein regions. Particular characteristics of
some LM make this situation even worse. This is the case
for repetitive motifs that occur in different numbers of
copies per sequence, and often for those motifs located in
the protein C-terminus (Figure 3).

The motif position conservation can therefore be
approached in different ways. One possibility is to con-
sider only the subsequence aligned onto the predicted
instance. This implies the exact conservation of the
instance position, therefore this model is called the
EXACT (EXC) model. Another option is to search for the
motif regular expression in a limited neighbourhood
around the predicted instance. This MISALIGNMENT
(MIS) model was tried by defining a window of 25 amino
acids around the predicted match. It did not produce any

CATA_HUMAN  YNEEK-PKN
CATA_CAVPO  YNMEK-PKN
CATA_RAT ¥NSQK-PKN
CATA_RANRU
0802D8_MELUD
Q7SY90_XENLA ¥
Q4FZM6_XENLA
CATA_DROME
CATA1 CAEEL
CATA_TOXGO
CATA_PICAN
CATA_DICDI
CATA_BACSU
CATA_DANRE
05XW25_9PERO Y
Q6R2J1_PENVA

EGHHKK
Y .
EGAKKKTMKTYTOHSSYBTSKIp:

HENExCTRKEARPNEQHSSYHTSK
[SSKF|

HNEEGKKN-TJHVYSRGGAS %
EAQKNTT fivysrrGaslil

| SOASSKT--————————————————_

Examples of motif misalignments in multiple sequence alignments calculated with ClustalW. Certain linear

motifs have characteristics that make them prone to be wrongly aligned by multiple sequence alignment algorithms. This is the
case for repetitive motifs that occur in different number of copies per sequence, and often for those motifs located in the pro-
tein C-terminus. On the left, the repetitive instances of the DP[FW] epsin motif responsible for the binding with the AP2 adap-
tor complex. On the right, the C-terminus PTS| motif involved in the targeting of the eukaryotic catalases to the peroxisome.
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significant improvement in the sensitivity of the method
(see Testing section).

A real improvement of the sensitivity was achieved by
using the EXC model and optimising instead the multiple
alignment quality. Three fast multiple alignment algo-
rithms were tested: ClustalW [29], Muscle [30] and Mafft
[31]. The best results were obtained with Mafft, which
improves the sensitivity of the model by 6% and 4% with
respect to ClustalW and Muscle respectively.

More exhaustive multiple sequence alignment algorithms
like ProbCons [32] which can perform even better than
Mafft were not considered [28]. The reason for this is that
the efficiency cost of using Probcons is not compatible
with the real time implementation of the method.

Step 3: Sequence weights determination

Once the instance conservation has been quantified in
each homologous sequence, it is necessary to give a weight
to each one of those presence values. As previously stated
in [33] the quality of a match depends not only on the
strength of the match (i.e. the conservation of the regular
expression in this case), but also on the diversity of the
sequences matched. Given the complexity of LM evolu-
tion, with both non-systematic losses or de novo occur-
rences, it is difficult to define a weighting scheme that is
both specific and accurate. The general idea is that the
conservation of the motif in distantly related sequences is
more relevant than the conservation in closely related
sequences. Conversely, the loss of the motif in distantly
related sequences could be the result of the evolutionary
divergence process (change of function) and is less
informative than the absence of the motif in a close
homologous sequence, especially if this is a recurrent fact.

Sequence weights can be calculated as a function of the
divergence between the query sequence and each homol-
ogous sequence. This weight function is useful when the
relative distance between sequences is approximately con-
stant. When the distances among the homologous
sequences are variable, which is often the case, a weight
function based only on their divergence with the query
sequence is not suitable. It can overweight presences in
groups of sequences that are distant from the query, but
very closely related among themselves. Therefore it
becomes necessary to consider also the relative distances
between all the homologous sequences. This can be done
by taking into account the topology of the phylogenetic
tree when assigning their weights.

Tree-based weights [34] have been used in protein profile
searches to balance the sequence information contained
in a multiple alignment. They are also used in ClustalW
during the progressive alignment of the sequence subsets

http://www.biomedcentral.com/1471-2105/9/229

[29]. The weight assigned to each sequence is propor-
tional to its distance from the root, and takes into account
the number of neighbouring sequences. Given a multiple
alignment of N sequences and the corresponding rooted
phylogenetic tree, letb; i, ..., b; g - by o denote the path
of n branches going from any sequence seq to the root, and
liseq the length of a branch b, The Profileweight

i,seq:
(profw,,,) for seq is defined as:

. li,seq
profw seq ; 0;

where o;is the order of the node i, i.e. the number of leaves
pending from that node. The phylogenetic tree is calcu-
lated using the neighbor-joining procedure in ClustalW
[29]. Weights should be relative to the query sequence,
therefore the tree has to be re-rooted using the query
sequence as the outgroup. The weight for the sequence seq
has to be corrected to consider the length of the final
branch L; that leads to the root. The final weight for a
sequence seq is

Ly

Wy = P10 +——
seq p ﬁ”seq N—-1

where N - 1 is the order of the final node. The resulting
weights are then proportional to the distance between the
homologous and the query sequence and take into con-
sideration the relative relationships among the homolo-
gous sequences. These weights are, of course, relative
values that depend on the set of sequences and thus have
to be standardised as shown in the next section.

Conservation Score

The final score is calculated by adding the presence value
P; of each informative sequence i weighted by the corre-
sponding weight W;

_ 2i Wil
i Wi

where the normalisation constant in the denominator is
the total weight for all the informative sequences in the
multiple alignment. Normalisation is necessary to allow
comparison of conservation scores coming from different
homologous sequence sets. Moreover it produces a
bounded score which varies between 0 and 1. The mini-
mum value 0 means that the predicted instance is present
only in the query sequence and the 1 indicates full conser-
vation of the motif regular expression in all the informa-
tive sequences.

CS

The non-informative sequences discarded from the sum-
mation are: those that diverge from the query sequence by
more than Dj,, and have a presence value smaller than
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Py, those with a gap bigger than 15 residues in the posi-
tions corresponding to the predicted instance. In other
words, those sequences that could have lost the motif
because of sequence divergence, or those sequences that
do not have the motif because they are missing a larger
subsequence e.g. alternatively spliced forms of the query
sequence.

Testing

To assess the accuracy of the models, their sensitivity and
specificity was calculated in terms of the false negative and
false positives rates (FNR and FPR). The known positive
set is composed of 356 instances in the ELM database
which are linked to experimental evidence and are coming
from non-redundant sequences (see Additional file 1).
From the published literature, it is not possible to gather
the information required to define a suitable set of known
negative instances. Therefore, a set of 1020 randomly cho-
sen instances from intracellular protein sequences of the
UniRef90 database was constructed (see Additional file
2). Those instances come from the same regular expres-
sions and have an equal length distribution as the known
positive instances. Moreover, they are located in protein
regions with comparable amino acid distribution and
conservation pattern to the true positive set. The proce-
dure is the following:

1. Randomly choose one sequence S from the sequences
annotated as intracellular or nuclear and longer than 100
residues in the UniRef90 database.

2. Using the IUPred algorithm [35] calculate the disorder
regions Ry, ..., R, in S. Motifs appear more frequently in
unstructured regions of the proteins where the amino acid
distribution and conservation is different from structured
areas (globular domains). Therefore, in order to construct
a set of random instances that is comparable in terms of
background amino acid conservation with the known
positive set, it is necessary to search for them only inside
the R, protein fragments.

3. From the normal length distribution of known posi-
tives, randomly choose a length L. This is to avoid possi-
ble biases in the CS calculation caused by differences in
the length distribution between the known positive and
random instance sets.

4. Randomly choose a regular expression regexp of length
L.

5. Search for a match to regexp in any of the R; subse-
quences longer that 10 residues.

The random instance set constructed is not a real negative
set, but it gives an idea of the background noise that the

http://www.biomedcentral.com/1471-2105/9/229

CS models have to deal with. This set was tested to rule
out the possibility of a bias in the amino acid composition
that could affect the conservation of the random
instances. For this purpose a different score that does not
take into account any evolutionary information was used.
(see Additional file 3, section A).

The results for sensitivity and specificity for a CS threshold
of 0.58 are presented in Table 1. They were obtained
assigning different values to the parameters Dy, and Py,
that determine the number of informative sequences for
each instance. The TPRs and FPRs of the EXC CONT and
EXC DIS models for all the different parameter combina-
tions tried are shown in the Additional file 3, section B.
Both EXC CONT and EXC DISC models achieve better
specificity (1-FPR) and sensitivity (1-FNR) than the MIS
DISC model. The latter seems unsuitable to the given
problem since it scores 39% of the random instances as
conserved and 16% of the experimentally confirmed
instances as not conserved. Considering that sensitivity
and specificity have contrasting tendencies, the best accu-
racy is achieved by the EXC DISC 1 and EXC CONT 1
models which minimise both FPR and FNR.

A comparison of the performance of these three models is
presented in Figure 4. A ROC curve illustrates the model's
performance in term of FPR and true positive rate (TPR =
sensitivity). The further away the curve is from the diago-
nal (random score) and more towards the upper left cor-
ner (maximum sensitivity at no FPR cost), the better the
model is. The ideal threshold corresponds to the point in
the curve just before the start of the plateau where maxi-
mum sensitivity is reached at the lowest FPR. This thresh-
old is 0.58 for all models. Independently from the chosen
threshold, the EXC DISC cannot have a FPR higher than
0.45, but will always lose some of the known positives.
On the other hand, the EXC CONT model can correctly

Table I: Accuracy of the different models using different sets of
parameters

Model FPR FNR Dy Pim
EXC DISC | 022 0.14 0.30 .00
EXC DISC 2 0.12 0.20 0.50 1.00
EXC CONT | 0.19 0.17 0.50 0.80
EXC CONT 2 026 0.10 0.30 0.80
MIS DISC 039 0.16 030 .00

The parameters P;;,, and D, determine the number of informative
sequences considered when calculating the conservation score of
each instance (see Conservation Score section for further
explanation). In all the cases, the false positive and false negative rates
are calculated for the optimal threshold (0.58), which maximises both

the model's sensitivity and specificity. FPR = | - specificity =
FpP - wo —  FN
TP+TN FNR =1 - sensitivity = FN+TP
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ROC curves illustrating the performance of the dif-
ferent models. Points in each ROC curve indicate the pro-
portion of wrongly scored known negatives (false positive
rate, FPR) versus the fraction of correctly scored known
positives (true positive rate, TPR). Each point is calculated
for a certain threshold inside the score range, [0, 1] for the
conservation score. An ideal scoring method would be one
arriving at the upper left corner, i.e. TPR = | and FPR = 0.

score almost all the known positives but will increase con-
siderably the FPR. The MIS DISC model is better than ran-
dom, but shows the worst performance.

When analysing the performance of the models using dif-
ferent sets of parameters, it becomes clear that the CONT
and DISC models have different strengths. The EXC
CONT model is good at scoring the known positive
instances and can achieve the lowest FNR (0.10). This is
because it gives higher scores than the EXC DISC model to
the known positive instances that lack a very strong con-
servation pattern. Therefore it improves the chances of
instances that show a partial conservation of the regular
expression to be classified as conserved. This is illustrated
in Figure 5 where the CSs calculated using both models
are plotted for each known positive instance. Dots in the
upper right square correspond to well conserved
instances, that the two models can properly score. Dots on
the left half and above the diagonal, indicate instances
with lower conservation signal in the sequence alignment
but still with a higher EXC CONT score. This property of
the EXC CONT model is related to its capability of scoring
the instances depending on the information content of
the corresponding regular expression. Actually, the chi-
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Figure 5

Comparison of the EXC DIS and EXC CONT conser-
vation scores for the known positive instances. Each
dot represents a known positive instance and its correspond-
ing EXC DISC and EXC CONT conservation scores. Dots in
the upper right square correspond to well conserved
instances that score highly with both models. Dots on the
left half and above the diagonal, indicate poorly conserved
instances that are scored higher by the EXC CONT model.

square test for dependency between the CS and the aver-
age information content of the regular expression gives a
significant result for the EXC CONT model (P = 0.02) but
not for the EXC DISC (P = 0.13).

On the other hand, the EXC DISC model can reach the
lowest FPR, meaning that it only scores 12% of random
instances as conserved. This model manages to maximise
the signal to noise ratio, that is to say it achieves the best
separation between the score distributions of known pos-
itive and known negative instances. From an user point of
view this means that for maximally stringent predictions
the EXC DISC might be preferable. When the main inter-
est is to identify a larger amount of conserved motifs,
while tolerating some wrong predictions, then the EXC
CONT model might be better.

Implementation

The CS method has been implemented as a SOAP Web
Service that enables both interactive (over the Web) as
well as programmatic and thus systematic access to the
scoring method. The CS Web Service is accessible at [36].
At this location the user can find a detailed description of
the Web Service operations and a client implementation.
The latter provides an example of programmatic access to
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the CS Web Service which would facilitate any remote tool
integration.

The complete analytical workflow is illustrated in Figure
1. It comprises distributed Web Services that have been
developed within and outside the ELM context. The start-
ing point of the workflow is the ELMMatcher Web Service
at the Bergen Center for Computational Science [37]. It
accepts as input a protein sequence and returns a list of
linear motif matches found within it. At the same time,
the query sequence is compared against the UniRef90
sequence database using the WU-Blast Web Service at the
EBI [38,39]. Results from this WU-Blast run are parsed
and analysed as described in the Results section. The set of
homologous sequences obtained is then used to generate
a multiple sequence alignment using the MAFFI' Web
Service at the EBI [38,40]. This alignment is then re-used
by the EBI's ClustalW Web Service to construct a phyloge-
netic tree using the neighbor-joining procedure in Clus-
talW [38,41]. Finally, all this information is used to
calculate the CS and the results are returned to the user.

The CS Web Service should also be accessible via a graph-
ical interface using the Cinema software. Cinema is a tool
for annotated multiple alignment visualisation that is
being developed in the context of the UTOPIA Toolset
[42,43]. Instructions for using UTOPIA-Cinema as a front
end for the CS Web Service are available at [44].

Discussion

The present article presents an heuristic method for quan-
tifying the conservation of a LM instance. The resulting
score indicates the likelihood that the predicted instance
is functional. It favours the conservation especially in
divergent sequences, while tolerating some losses that
might have happened during the protein sequence evolu-
tion. The scoring method can efficiently estimate the con-
servation of predicted instances in any sequence because
it identifies common trends in LM evolution. It is not a
method to predict the particular evolutionary history of
each instance, which is a different and non-trivial task.

Conservation scores have been repeatedly implemented
in order to improve LM prediction. The QuasiMotiFinder
[18] algorithm uses a maximum likelihood-based model
[45] to estimate the conservation of instances that resem-
ble Prosite signatures. While being a very robust statistical
approach, it is very time consuming for a real time appli-
cation. The web-based tool Minimotif Miner calculates an
evolutionary conservation score that requires the ortho-
logues which are available for the completely sequenced
eukaryotic genomes [17]. The significance of this score
has been tested against a database of instances with ran-
domised patterns. This could make it less suitable for dis-
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tinguishing non-functional instances that match the same
regular expression of the functional ones (e.g. specificity).

Recently, a conservation score for ranking predicted motif
instances has been proposed [19]. This method follows a
similar logic to the CS, in particular to the EXC CONT
model. On our benchmark sets, it has similar selectivity
but lower specificity than the CS EXC CONT model. Dif-
ferences in the homologous sequence set definition might
be the cause for the latter (for a detailed comparison
between the two models see Addition file 3, section C).

The limits of the CS presented here can be better under-
stood by having a closer look at the main causes for false
negative (FN) and false positive (FP) predictions. Nearly
half of the FN have a poor signal conservation that is not
even recovered by the CONT model. Those instances are
conserved only in one or two homologous sequences, or
only in the closely related ones. Half of the remaining FN
correspond to apparently de novo motifs that are present
only in the query sequence and are therefore by definition
not conserved.

Most of the observed FP correspond to random matches
of LM regular expressions inside larger blocks of sequence
conservation. Those instances also appear conserved in
distantly related sequences. Therefore, it is likely that the
individual amino acids are functional, either as part of a
larger module or as part of an overlapping set of motifs It
would mean that some of the FP might actually be TP.
Nevertheless, it is difficult to distinguish whether those
matches are true functional motifs or not using only their
conservation information. This fact indicates that, for a
more detailed study of LM evolution, the local distribu-
tion of amino acids around the predicted instance is an
important element to take into account.

For the sake of generality and robustness it is necessary to
check the principal dependencies of the method. As
repeatedly shown in the Results section, the multiple
alignment quality is crucial for the whole procedure. This
implies a dependency on the total amount of information
contained in the multiple sequence alignment. One way
to estimate the total information in a set of homologous
sequences is to calculate its total divergence, which is the
sum of all the branches that separate each sequence from
the root. The total divergence of the homologous sets of
the sequences with known positive instances was calcu-
lated. A very small correlation was found between the
total divergence and the CS. The Pearson correlation coef-
ficient for the EXC CONT model is 0.14 and it is 0.07 for
the EXC DISC model. This means that these models detect
the conservation of the LM almost independently from
the full sequence conservation pattern.
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From the biological point of view, it is perhaps more inter-
esting to investigate the number of different species that
have to keep an instance in order to score it as conserved.
On average, the known positive instances with CS equal to
or higher than 0.58 are maintained in eight different spe-
cies. For 66% of those instances, all species are vertebrates;
for 22%, the different species also include invertebrates or
even plants or fungi.

A more technical detail that still deserves some discussion
concerns the suitability of regular expressions as the pat-
tern matching tool for LM, compared with the profile/hid-
den Markov models used in resources like Scansite [46].
The fact that the CONT model achieves the lowest FNR
would indicate that approaches that take into account the
frequency of amino acids per position would be well
suited to LM discovery. It is possible that the motifs in the
known positive set tend to evolve by gradual sequence
divergence before losing their functionality, instead of
suddenly disappearing by point mutation. Since both
behaviours have been observed in different motifs [22]
and the results here presented are far from being compre-
hensive it is not possible to make a general statement
about the evolutionary dynamics of LM. Nevertheless
considering both FPR and FNR together, CONT and DISC
models have similar accuracy for certain sets of parame-
ters (EXC DISC 1 and EXC CONT 1). This indicates that,
for the required level of resolution, regular expressions are
appropriate for assessing the conservation of LM.

In a first application of the CS method, it has been used in
validating detection of novel KEN box motifs [47]. The CS
was significantly higher for KEN box motifs in cell cycle
proteins, as compared to similar control motifs.

Conclusion

Linear motifs are important modules in defining protein
function. The conservation score method improves linear
motif prediction especially in non-structured regions of
the protein sequences, where the domain masking strat-
egy for discarding non-functional instances is not applica-
ble. The models developed are able to trace the
conservation signal of differentially conserved true
instances (false negative rates between 0.14 and 0.17).
The divergence among sequences in the set is used to
weight the conservation but the whole conservation score
is independent from the total divergence inside the
homologous sequence set. Moreover, the models have a
high signal to noise ratio and therefore the false positive
rates are low (0.19-0.22).

The conservation score is currently available as a Web
Service at [36]. A graphical interface of the Web Service is
provided by the UTOPIA toolset [43]. In the near future
the conservation score will be added to the ELM resource.
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