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A fast method for reconstructing phylogenies from distance data is presented. The 

method is economical in the number of pairwise comparisons needed. It can be 

combined with a new phylogenetic alignment procedure to yield an algorithm that 

gives a complete history of a set of homologous sequences. The method is applicable 

to very large distance matrices. An auxiliary program was developed that simplifies 

large phylogenies without ignoring biologically essential features. A set of 2 13 globins 

from vertebrates, plants, and Vitreoscilla (a prokaryote) were analyzed using this 

method. 

Introduction 

The main aim of the tree construction method described in the present paper is 

to direct the alignment algorithm presented in the accompanying article ( Hein 1989). 

The method is developed to be applied to sequence data, but the method can be 

applied to any objects that have both an evolutionary history that can be described 

by a tree and a measure of dissimilarity. Previous methods for construction of phy- 

logenetic trees from distance data start by calculating the n X (n - 1)/2 entries in the 

distance matrix, where n is the number of sequences. Since each distance is obtained 

by a computationally expensive alignment in the present method, it is desirable to be 

more economical at this step. In the method presented here, as the number of sequences 

grows, only a decreasing fraction of the distance matrix is necessary for the calculation 

of the tree. 

The overall order of the calculations is as follows: 

1. The most informative distances for the tree construction process are calculated. 

2. A distance tree is constructed for the sequences by adding sequences one by 

one to a growing tree. 

3. Rearrangements are performed on the obtained tree to improve the overall 

fit of the tree to the distance data. 

4. The resulting tree is used to guide the tree alignment algorithm such that a 

parsimony tree, a tree with ancestral sequence assigned to internal nodes and substi- 

tutions and insertions-deletions (indels) to the edges, is obtained that has the same 

topology as the distance tree. Thus, a complete history is obtained and the ancestral 

sequences are determined. The new tree might have branch lengths very different from 

those of the previous distance tree. It will also have an arbitrary root. 

5. The criterion for the quality of the history of the sequences is parsimony, i.e., 
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FIG. 1 .-Tree additivity-ultrametricity. a, Six objects connected by a tree. If the metric equals the path 

length connecting two objects, then this will be tree additive. b, Rooted tree with a perfect clock. This will 

lead to an ultrametric. c, Tree leading to a tree-additive metric. This shows that the tree is easily reconstructed 

from the pairwise distances between three objects. 
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FIG. 2.-Metric inequalities. a, Five points in the plane. The edges are the pairwise distances known. 

d( s2,s4) is not known but must be less than the upper bound (panel b) and more than the lower bound 

(panel c). These inequalities can be visualized geometrically. Let the edges be inflexible rods, and let the 

nodes be perfect hinges. To get the best upper inequality between si and sj, take the graph in the nodes si 

and sj and pull them apart; the resulting distance between si and sj will be the upper bound. To find the 

best lower bound, pull si and sj together. 

the fewer events the better. Again, rearrangements are performed on the tree to improve 

it, in an effort to make it more parsimonious. 

Terminology and Background 

The distance between two sequences is traditionally measured by the smallest 

weight of a series of weighted operations leading from the first sequence to the second 

sequence. This distance will almost always be smaller than the weight of the true 
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FIG. 3.-Investigation around the current internal node, A, to discover where the new sequence should 

be positioned. t 1, t2, and t3 are the three subtrees radiating from A. The investigation will determine whether 

the new sequences should be attached to one of the three edges incident to A and, if not, in which direction 

(which subtree) the investigation should continue. 

amount of evolution in the history leading to the present sequences from the most 

recent common ancestor. When the sequences are closely related, the discrepancy is 

probably small. As sequences become more distantly related, the minimal distance 

between them may be seriously underestimated. To compensate for this, a series of 

correction formulas has been developed. The original Jukes and Cantor correction 

( 1969) formula for DNA, along with the analogous PAM (Dayhoff et al. 1972) for 

protein, were used in the present study. Most correction methods underestimate the 

real distance and are associated with a very large uncertainty for remotely related 

sequences. 

A distance function on a set of objects connected by a tree is said to be tree 

additive (Buneman 197 1) if a tree exists with weighted edges (lengths) such that the 

distance between two objects always equals the length of the simple path in the tree 

connecting the objects (fig. la). The genetic distance on homologous sequences cannot 

be expected to be perfectively tree additive, but if the sequences are closely related, 

the distances should be at least approximately tree additive. For sake of illustration, 

assume, until further notice, that the distances are perfectively tree additive. Given 

three sequences Si, Sj, and Sk, the exact dimensions of the tree can be determined in 

terms of the three possible distances between them. Let p be the internal node in the 

tree. The tree has been fully described if the distances to p from all three sequences 

are determined. They are easily found (see fig. lc): 



Phylogeny Reconstruction 673 

Tl T3 

T2 T4 

Tl T2 

T3 T4 

Tl 
T2 

d(T1 ,T2) + d(T3,T4) 

d(T1 ,T3) + d(T2J4) 

d(T1 ,T4) + d(T2,T3) 

T4 T3 

FIG. 4.-Three possible configurations of the four subtrees around an internal edge and the associated 

quantities that measure the “weight” of the configuration. 

These equations can be used to make an algorithm that reconstructs the whole 

tree by successively adding a sequence to a growing tree and each time determining 

its position by suitable comparisons to sequences in the tree and by using equation 

( 1) (Waterman et al. 1977). All trees will be assumed to describe duplications of 

sequences, which implies that internal nodes will have exactly three incident edges. 

To be more specific: Assume that a tree of size k - 1, 7’kel, has been constructed 

and that now sequence Sk is to be added. Pick out two reference sequences, s1 and s2, 
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that are tips in Tk- 1. If the distances to these to Sk are calculated, equation ( 1) can be 

used to determine exactly where on the path between s1 and s2 the branch leading to 

Sk should be attached and also how long it must be. If this point does not coincide 

with the point of attachment of a subtree to the path, then the position of Sk in the 

tree has been determined. If it coincides with a subtree, then Sk must be located in 

that subtree somewhere, and an additional reference sequence s3 is chosen at some 

tip in that subtree. It is the conditions that (a) internal nodes have degree three and 

(b) edge lengths must be strictly positive that prohibits Sk from being positioned at 

the same node as the subtree. One reference point is already known, since the distance 

to the root of the subtree is known. Equation ( 1) is then used to determine where, on 

the path between the root and s3, Sk should be attached. If the point coincides with a 

subtree, the comparisons continue; otherwise Sk has been correctly positioned. 

The above principle can easily be used to make an o [ n log ( n ) ] worst-case algo- 

rithm to reconstruct trees from distance data that are perfectively tree additive (Hein, 

in press). When two reference sequences are chosen, it is possible to determine in 

which, if any, of the subtrees radiating from the path between them the new Sk should 

be positioned. This limits the possible area of attachment considerably. One simple 

rule that would do this is the following: Find the node such that the smallest number 

of tips of the three subtrees radiating from it is as large as possible. The size of the 

largest of the subtrees incident to this point cannot be larger than half the size of the 

total tree. If reference sequences are chosen so that this point is on the path between 

them, the possible area of attachment for Sk would have been at least halved. This 

would be true for each cycle, and the attachment point of Sk would be determined in 

fewer than o [log(k)] steps, leading to an overall performance of o [ n log(n)] . 
If the sequences evolve at perfectly constant rates, the metric obtained from the 

corresponding tree will be an ultrametric (fig. 1 b). The tree relating three sequences 

can then be found by taking the closest pair making them siblings, and the duplication 

that gave rise to them will be half their distance from both of them. Ultrametricity is 

a more restrictive concept than tree additivity. Both unequal rates of evolution and 

convergent /parallel events can make the distance function on sequences nonultra- 

metric. Nonetheless, there are situations where it is more sensible to assume ultra- 

metricity than tree additivity in the algorithm. If the three sequences were from Esch- 

erichia coli, chimpanzee, and man, for example, it should be possible to determine 

the lengths of the branches leading to man and chimpanzee by using E. coli as reference 

sequence. In reality, differences in the distances from E. coli to man and chimpanzee 

will more likely be due to convergence than to differences in evolutionary rates at the 

branches leading to man and chimpanzee. The most sensible thing to do is to assume 

equality of rates and to make the branches leading to man and to chimpanzee equally 

long-half the distance between man and chimpanzee. 

It is also useful to assume approximate ultrametricity when trying to make a 

qualified guess about the location of the most ancestral point (the root) in a tree. 

When the root has been determined, all events will acquire a direction. For instance, 

FIG. 5.-Distance into parsimony. a, Unrooted tree. b, The same tree with an arbitrary root on it. c, 

Tree resulting from using panel b to make a parsimony tree, which changed the length of the branches but 

not the relationship between the sequences. In addition, all internal nodes shown in panel c are associated 

with proposed ancestral sequences. 
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possible to investigate whether certain amino acids are more variable than 

Method 

In this section the details of the tree construction method, except the alignment 

procedure, are presented. 

1. Calculation of Distance Matrix Entries 

The 

space: 

set of sequences, and the distance function ,4, > on S constitutes a metric 

a) d(s, ,s2) = 0 * s1 = s2 ; 

b) 4~2) = 4~2~1) ; 

c) d(s,,s) + 4SJ2) 2 ~(bS2) * 

By using inequality (c) and already known distances, it is possible to get infor- 

mation about a distance without actually calculating it. To envision this, consider 

figure 2. The nodes in the graph are sequences, and the edges represent calculated 

lengths. If two nodes are not connected by an edge, it is because the distance between 

them has not been calculated. 

Then, because of the metric property of the sequences, the distance d( s2 ,s4) is 

bounded above and below by d( s1 ,SJ) - d( s1 ~2) - d( ~3~4) I d( s2&) I d(sl ,ss) 

+ d( s1 ,s2) + d( s3 ,s4), and, because d( s1 92) and d( s3 ,s4) are very small, d( s2 ,s4) is, 

for all practical purposes, known, without having been calculated. 

Generally, in a metric space with n objects and only some distances known, a 

set of similar inequalities can be derived. This can be represented by an undirected 

graph with n nodes. Two nodes are connected if their distances have been calculated. 

The length of the connecting edge is their distance. 

The least upper bound on a distance d( Si,Si) is min{ length of path connecting i 

and j} , where the minimum is taken over all paths connecting i and j. 

The greatest lower bound for d( si,sj) will be max { longest segment on path minus 

length of the rest of the path}, where the maximum again is taken over the paths 

connecting i and j. If d( si,sj) has been calculated, the upper and lower bounds will 

coincide. 

If the difference between the upper and lower bounds is small, d( Si,Sj) will not 

be calculated. Small in this case denotes a user-specified parameter. In the present 

version of the program the lower inequalities are not always the best possible. They 

are calculated using the same path that gave the best upper inequality. This is reasonable 

in most situations, since such paths typically have one very long segment. 

2. Construction of Initial Distance Tree 

The initial tree is constructed by a sequential algorithm that adds sequences, one 

by one, until a distance tree has been constructed for all sequences. Assume that a 

tree with k - 1 tips, Tk-i , has been constructed and that now sequence Sk is to be 

added. Sk is chosen so that d( Sk,Tkpl) is as Small as possible, where d( Sk,Tk-I) is 
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FIG. 6.-a, Root moving. Configuration of four subtrees (Tl, T2, T3, and T4) around the internal 

edge (al and a2) with the arbitrary root on it. The root is moved to the edge (al and Tl ) leading to the 

tree shown in panel b. The old root and al disappear and are substituted by a new root and an ancestor to 

a2 and T2. 

defined as the smallest d( sk,s-) , si is a tip in Tk- I , and d( sk,si) has already been calculated 

(fig. 3). Let s1 be this closest known sequence in Tk-1, and let A be the node of Tk- I 

that is adjacent to sl. Three subtrees (t, , t2, and t3) radiate from A. The following 

quantities are now defined: d( ti,A) is the average of the known distances from the 

tips in ti to A, and d( ti,Sk) is defined as the average distance form Sk to the tips in ti, 

where this distance has already been calculated. The distance between two subtrees, 

d( ti,ti), is defined in an analogous fashion. Since the distance matrix is incomplete, 

it is possible that d( Sk,ti) or d( ti,t’) is undefined; in that case an arbitrary sequence is 

chosen in the subtree and the distance to it is calculated. 

For each of the three possible pairs of (ti, ti), the following is..done: In analogy 

with equation ( 1) the edge from Sk is joined to the path between ti and tj such that the 

distance from ti to the joining point is 
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This defines three vectors from A toward ti to the attachment point (which can be 

negative). From these three vectors, three new vectors-v,, 9, and v3--are calculated. 

For instance, v1 is the average length in the direction of tl of pr2 and p13 from A. The 

longest of these three vectors determines the positioning of sk. Assume v1 is the longest. 

If v1 is longer than the edge leading to the root of tl, then the root of tl is chosen as 

a new A. If A is an internal node, the same procedure is repeated with the constraint 

that A has not previously been examined (this is to prevent an infinite loop). If tl is 

a tip, Sk is positioned. If v1 is shorter than the edge it is pointing out of, then Sk is also 

positioned at the point between p12 and p13. The length of the branch leading to Sk 

will be the average of the branch length according to ( tl ,t2) and ( tl ,t3). 

The method acquires its robustness against non-tree additivity for two reasons. 

First, it uses many sequences as reference points in equation (2). Second, it employs 

three paths going through a node- instead of just one, as in the use of equation ( 1). 

This gives the algorithm alternative opportunities for positioning a new sequence 

correctly. 

The intuitive idea of the algorithm is to let the Sk wander until it finds its correct 

position in the tree. It starts wandering at the sequence it resembles most, thus making 

the used distances as tree additive as possible. When the three paths intersecting a 

node are used, two of these paths will pull Sk in the direction of the correct edge in 

the tree. 

3. Cycles of Nearest-Neighbor Interchanges 

This distance tree obtained is then subjected to cycles of nearest-neighbor inter- 

changes to improve the fit of the phylogeny to the known pairwise distances. Nearest- 

neighbor interchange was first used by Robinson ( 197 1). Four subtrees radiate from 

each internal edge. There are three possible ways to relate these four subtrees. (fig. 4). 

It can be shown that if the data were perfectively tree additive, than two of these 

quantities would be identical and the other quantity would be as small or smaller. 

The configuration associated with the smallest quantity would be the true configuration. 

This method was first used by Fitch ( 198 1). All internal edges are visited a user- 

specified number of times, continuously improving the topology of the tree. 

If one of the four subtrees represents a very distant outgroup, the criterion for 

the best configuration is switched from tree additivity to ultrametricity: the closest 

pair must be sisters. The reason is that a distant outgroup will have a tendency to root 

incorrectly the tree consisting of the other three subtrees; as a result, to determine the 

sister group, it is more reliable to use the assumption of approximate constancy of 

evolutionary rates. 

4. From Distance to Parsimony 

The distance tree so obtained is used to make a parsimony tree, by aligning 

sequence graphs in an order such that the parsimony tree has the same topology as 

the distance tree (fig. 5). First the tree is rooted arbitrarily (fig. 5b). Then, sequences 

are aligned and ancestors are reconstructed in the order prescribed by this rooted 

distance tree. The resulting parsimony tree will have the same branching order as the 

FIG. 7.-a, Locations of the major groups-plants, animals, fungi, bacteria, and chloroplasts-on the 

complete tree. This is called the compressed tree and has five leaves. The node of degree two (flanks two 

edges) corresponds to the most recent common ancestor to the group that has been compressed into one 

tip. b, Subtree involving animals. 
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FIG. 8.-a, Marginal tree corresponding to the leghemoglobins, Vitreoscilla, and an outgroup. Lupin 

is represented by two sequences, and soybean is represented by four. The tree is in accordance with biological 

knowledge of the sequences. b, Location of the subtrees containing leghemoglobins (including Vitreoscilla) 

( 1 1 ), alpha globins (77), beta globins (78 ), myoglobins (45), and lamprey globins (2). The total length of 

this phylogeny is 2,344. The nodes on the middle of the edges are the positions of the root of the subtree. 
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distance tree (fig. 5c), although branch lengths may 

sequences assigned to internal nodes in the tree. 

differ. It will also have ancestral 

5. Nearest-Neighbor Interchange on the Parsimony Tree 

The parsimony tree is subjected to cycles of nearest-neighbor interchanges. Each 

internal edge is visited in a cycle, nearest-neighbor interchanges are performed, and 

the most parsimonious tree is retained. These cycles of nearest-neighbor interchange 

at each internal edge are continued until either no improvement occurs in a complete 

cycle or some user-specified number of cycles has been completed. The method for 

aligning the sequences requires a root. When the three possible configurations of the 

four subtrees around one internal edge are investigated, the root is always on this edge; 

accordingly, when different edges are visited, the root must be moved. Figure 6 illus- 

trates what happens if the root must be moved from its present position to the neigh- 

boring edge leading to T 1. Ancestors in the new tree, not known in the previous tree, 

must be calculated. Here the ancestor of T2 and a2 is unknown-as is the ancestor 

of T 1 and a 1, which will be the new root. Thus it requires two realignments to move 

the root from an edge to a neighboring edge. When all internal edges are to be visited, 

it is often necessary to move the root over areas of the tree that have already been 

investigated, and the total number of realignments necessary to visit all internal edges 

is more than two per internal edge. The exact number depends on the nearest-neighbor 

interchanges performed. In addition, it costs six alignments to evaluate the two alter- 

native configurations at each internal edge. 

The nearest-neighbor interchanges on parsimony trees are computationally more 

expensive than those on distance trees, since alignments are costly. A computational 

speedup could be introduced here in cycle number two by not investigating those 

areas of the tree that have been stable in previous cycles. 

Simplification of Large Phylogenies 

A strength of the method presented here is its ability to analyze very large sets 

of data. Phylogenies of 200-300 sequences, however, are completely incomprehensible 

and will take days to analyze manually. The following describes a method that simplifies 

large phylogenies without losing essential information in the analysis. 

When a large phylogeny is analyzed, there are two classes of important questions: 

first, there are questions involving the branching order within a specified subtree, and, 

second, there are questions about the relationship between specified subtrees. To sim- 

plify a large phylogeny in a relevant way according to the first kind of question is not 

difficult. One needs only to write out the subtree within which the problems are located. 

The length from this middle node to the tip is the average length from a tip in the subtree to the root in the 

subtree that has been compressed to one tip. If the tree is rooted on the branch leading to the leghemoglobins, 

the history of the sequences is as follows: The first duplication created animal globins and the globins, 

including plants and Vitreoscilla, respectively. This corroborates the hypothesis that plants have acquired 

their globin from bacteria. Within the vertebrate globins the first split gave rise to the lamprey globins and 

to the lineage leading to alpha globins, beta globins, and myoglobin. This branching order emerged in several 

comparisons made by the author; it is in contradiction with results published by Goodman et al. ( 1988). 

The next split led to the appearance of myoglobin and to the ancestor to alpha globin and beta globin. The 

lengths of the branches leading to each group are split into two components as follows: ( 1) the length from 

the tip to the internal node above it represents the average length from the latest common ancestor to the 

present representatives, and (2) the length above this node is from the earliest common ancestor to (only) 

this group to the latest common ancestor. 



Table 1 

Genetic Events/Weighting Table and Indels 

A. Replacements/Weights 

cys . . 2 4 4 4 3 4 5 6 5 4 4 6 4 4 4 4 3 
Ser.. . . . 17 1 2 1 1 1 2 3 3 3 3 4 4 4 2 3 3 
Thr . . . . 6 162 2 1 2 2 3 3 4 3 2 3 3 

: 3 3 3 3 4 4 4 

4 2 4 
Pro . . . 1 20 14 1 2 4 3 2 3 
Ala . . . . 24 265 165 95 1 3 2 2 3 4 4 3 3 4 4 1 3 
Gly . . . . 6 126 33 17 236 3 2 2 4 5 3 4 5 4 4 2 4 
Asn . . 6 85 50 6 26 29 1 2 3 2 3 2 5 4 5 4 4 

Asp . . 3 35 11 6 62 40 89 1 2 3 4 3 4 5 5 3 5 
Glu . . . 1 11 13 15 90 26 34 207 2 4 3 2 4 5 5 2 4 

Gln . 1 15 22 11 23 10 10 26 58 2 3 2 4 5 4 4 5 
His . . . . 4 34 10 12 21 10 69 9 10 78 2 3 4 4 3 5 4 
Arg . . . . 3 15 4 2 5 4 5 1 3 5 23 1 4 4 4 4 5 
Lys . . . 3 46 48 6 58 15 47 23 5 1 63 26 99 4 4 4 3 5 
Met . 1 0 6 3 18 2 0 0 4 1 2 2 9 2 1 2 3 
Is0 . . 6 10 23 1 27 4 6 1 1 1 2 1 2 21 1 4 2 

Leu . . . . 3 11 14 7 41 2 2 7 4 15 24 10 21 83 113 4 2 
val . 14 16 51 13 134 19 2 8 20 1 3 2 8 34 173 74 2 
Phe . . . 3 9 4 2 7 1 0 0 3 0 9 0 1 11 23 100 20 

Tyr . . . . 3 1 2 2 5 1 4 1 4 0 20 6 1 3 11 2 62 
Trp . . . . 0 0 0 0 2 1 0 0 3 1 0 0 ; 1 1 7 5 16 

B. Indels 

CYS Ser Thr Pro Ala Gly Asn Asp Glu Gln His Arg Lys Met Is0 Leu Val Phe 

LENGTH 

1 2 3 4 

Nos. . . . . 39 11 4 4 

NOTE-The upper triangle of the matrix shows the weights assigned to different mutations. The lower part of the matrix shows the observed numbers of the possible replacements 

that the numbers and lengths of the observed indels are tabulated. 
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Day ( 1985) has devised a fast algorithm that is relevant for the second type of 

problem. It determines whether a cluster is present on one subtree of a large tree. This 

algorithm was modified, with some cost in speed, to find the smallest number of 

subtrees on which all members of a cluster-and no others-are located. 

As an illustration, consider figure 5 in the accompanying article ( Hein 1989) that 

describes the evolution of 22 5s RNAs. An example of a question of the first kind 

could be, Is the branching order within the animals in accordance with known pa- 

leontological data? This can be answered by investigating the subtree consisting only 

of animals. The result, called a subtree, is shown in figure 7b. An example of a question 

of the second kind could be, Are the groups of animals, plants, fungi, prokaryotes, 

and chloroplasts related as expected, and are the single groups on the large tree? Since 

the phylogeny is small, it is easily seen that these clusters are located as they should 

be on the large tree. What has been done is that predefined nonoverlapping clusters 

are used to define subtrees on the complete phylogeny. The result, called a compressed 

tree, is shown in figure 7c for the tree. A program, condense.c, was written that per- 

formed both types of operations on large phylogenies. 

An Illustration 

A total of 2 13 vertebrate and plant globins were taken from the NBRF data base 

and were analyzed by the method described above. The program took 126 min to run 

on a VAX 1 1 / 730. Results from this analysis are shown in figure 8 and table 1. Of 

the 22,578 entries in the distance matrix, 1,683 were calculated before the tree con- 

struction. In addition, 341 more were needed in the tree construction. This is ~10% 

of all pairwise distances; the fraction decreases as the number of sequences grows. The 

alignment takes an additional 2 12, corresponding to the number of internal nodes. 

The program also includes an option of using a user-defined tree, in cases where this 

should be known; in such a case the program is considerably faster. In the above 

example it would simply have skipped the 2,224 comparisons needed to make the 

tree and would only have performed the 212 alignments to reconstruct the history of 

the sequences. 

The total weight of the resulting history was 10,008. The gap penalty function 

used was gk = 10 + (3Xk), and the metric employed for amino acids is shown in 

table 1. In table 1 are shown the replacements and the indels in the reconstructed 

history of the sequences. The parameter used to determine how much of the initial 

distance matrix should be calculated was 132.4. A strong bias toward conservative 

replacements was observed. 

Summary 

The presented method has several advantages. It is fast and can be applied to 

very large data sets. In contrast to some other phylogeny programs, it is fully automated 

and does not necessitate any human interaction. Since it can be applied to large data 

sets, without loss of clarity, it should enhance efficient use of existing data bases by 

researchers with new sequences. 
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