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Abstract

In this thesis, we take a statistical tree-to-tree approach to solving the problem of machine
translation (MT). In a statistical tree-to-tree approach, first the source-language input is
parsed into a syntactic tree structure; then the source-language tree is mapped to a target-
language tree. This kind of approach has several advantages. For one, parsing the input
generates valuable information about its meaning. In addition, the mapping from a source-
language tree to a target-language tree offers a mechanism for preserving the meaning of
the input. Finally, producing a target-language tree helps to ensure the grammaticality of
the output.

A main focus of this thesis is to develop a statistical tree-to-tree mapping algorithm. Our
solution involves a novel representation called an aligned extended projection, or AEP. The
AEP, inspired by ideas in linguistic theory related to tree-adjoining grammars, is a parse-
tree like structure that models clause-level phenomena such as verbal argument structure
and lexical word-order. The AEP also contains alignment information that links the source-
language input to the target-language output. Instead of learning a mapping from a source-
language tree to a target-language tree, the AEP-based approach learns a mapping from a
source-language tree to a target-language AEP.

The AEP is a complex structure, and learning a mapping from parse trees to AEPs
presents a challenging machine learning problem. In this thesis, we use a linear structured
prediction model to solve this learning problem. A human evaluation of the AEP-based
translation approach in a German-to-English task shows significant improvements in the
grammaticality of translations. This thesis also presents a statistical parser for Spanish
that could be used as part of a Spanish/English translation system.

Thesis Supervisor: Michael J. Collins
Title: Associate Professor
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Chapter 1

Introduction

The goal of automatic translation (also called machine translation, or MT) is to translate

text from one human language into another using computers. There are many ways to

achieve this goal. This thesis develops a method that integrates syntactic information into

a machine learning framework.

We follow other recent work in statistical MT by taking a supervised learning approach

to the problem. We assume access to a corpus of translation examples: a bilingual parallel

corpus. The parallel corpus contains pairs of sentences — one sentence in the source language

and the other (its translation) in the target language. These examples serve as the training

data for our translation model. The goal of MT in the machine learning context is to learn

a model that can predict a translation in the target language given some novel text in the

source language.

This thesis incorporates syntactic information into a machine learning framework using a

statistical tree-to-tree approach. The tree-to-tree approach is one of a larger class of syntax-

based approaches to translation. Syntax-based approaches may in general be considered

disjoint from the class of phrase-based approaches, another very popular class of statistical

approaches that solves the machine translation problem by making use of a probabilistic

phrase-pair dictionary, often without direct access to syntactic information.

A statistical tree-to-tree approach can be described in two steps, also summarized in

Figure 1-1:

1. The Parsing Step: The source-language text is parsed to generate a syntactic parse

tree. The parse tree contains grammatical information about the input sentence.
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Figure 1-1: In a tree-to-tree statistical model, the source-language input (in this case Ger-
man) is first parsed (1). Then, a target-language parse tree (in this case English) is pre-
dicted, and the leaves of the tree are read off the parse tree to produce a translation (2).

2. The Tree-to-Tree Mapping Step: The source-language parse tree is used to predict a

target-language parse tree that explains the structure of the target-language transla-

tion. The translation is generated by reading off the leaves of the tree.

Each of these steps represents a significant challenge. The first, the parsing problem, is

a classic natural language processing (NLP) problem that has traditionally garnered a lot

of attention. In the past couple of decades, significant progress has been made in automatic

parsing using statistical methods. Statistical parsers for a variety of different languages,

with performance ranging from adequate to excellent, are now freely available. One part of

this thesis is to develop a statistical parser for Spanish that could be used in a tree-to-tree

translation framework.

The second step, the tree-to-tree mapping problem, is also a significant challenge. Ide-

ally, the structural information should do two things: one, it should constrain the output in

terms of the target-language syntax; and two, it should preserve any dependencies exhib-

ited in the source-language counterpart. These requirements are what make the mapping

step challenging, but while they do underscore the complexity of the tree-to-tree approach,

they also illustrate its appeal. The use of syntactic parsing on the source-language side

can give us valuable information about the meaning of the input. The use of syntax on

the target-language side can help us to generate grammatically-correct output. A mapping

between the two trees gives the model a mechanism for ensuring that the meaning of the
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input is projected across into the output. The tree-to-tree mapping problem has not yet

received as much attention as the parsing problem. A significant contribution of this thesis

is to develop a solution to this problem.

1.1 A Solution to the Tree-to-Tree Mapping Problem

To solve the tree-to-tree mapping problem, we introduce a representation called an aligned

extended projection, or AEP. Instead of directly predicting a target-language parse tree,

our model learns to predict a target-language AEP from a source-language parse tree. The

AEP is a parse-tree like structure with many properties useful for solving MT. First, it

models clause-level syntactic phenomena — such as verbal argument structure and lexical

word order — crucial for generating grammatical output. Second, it models alignment

information between the source-language input and the target-language output, providing

a mechanism for preserving the meaning of the input. The AEP prediction step is a major

contribution of this thesis.

An AEP is like a parse tree in that it specifies the syntactic structure of the target-

language translation. However, it has three key differences:

1. an AEP is always associated with a clause (where a clause has a single main verb, for

instance an independent clause, a subordinate or relative clause, etc.);

2. an AEP may have “holes” — non-terminals that do not terminate in leaves;

3. an AEP is annotated with alignment information that relates the aforementioned holes

to subtrees in a source-language parse tree.

Figure 1-2 shows an example AEP. In this case, the clause that the AEP is associated

with is the German wir können slowenien begrüßen with gloss we can slovenia welcome.

An appropriate English translation would be we can welcome slovenia. The English AEP,

however, does not generate a complete translation. Instead, it produces something like 1

can welcome 2 , where the noun phrases (NPs) labelled 1 and 2 represent holes in the

translation. In this case, the two holes represent the subject and object arguments of

the English clause’s main verb welcome. That is, the AEP relays information about the

argument structure of the English translation’s main verb, and it places the verb and its

arguments in a satisfying syntactic order. These properties help to ensure that the output
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will be grammatical. The AEP also contains alignment information that couples the source-

language input and the target-language output. In the example, 1 in the English AEP is

connected to 1 in the German tree (wir), and 2 in the English AEP is connected to 2 in

the German tree (slowenien). These links help to establish a mechanism for enforcing the

preservation of meaning from the input sentence to the output translation.

The AEP is inspired in part by work in tree-adjoining grammars (TAG) on extended

projections (Frank, 2002; Grimshaw, 1991). Extended projections are lexicalized TAG el-

ementary trees, each of which is anchored by a single content word (that word is welcome

in the AEP in Figure 1-2). Extended projections may also contain any function words

associated with the content word, where function words may be auxiliary verbs, comple-

mentizers, prepositions, etc. In our example AEP, the word can is a function word that

is incorporated into the AEP associated with welcome. In general, extended projections

can be associated with any content word (e.g., nouns, adjectives, adverbs). However, in

our AEP-based translation model, we focus on extended projections of verbs, which natu-

rally correspond to clauses. Chapter 2 describes extended projections in more detail, and

Chapter 5 explains how AEPs are constructed using verbal extended projections.

The decision to focus on the clause as the unit of translation is substantiated in part by

ideas linguistic theory which emphasize the importance of verbs and clauses (e.g., (Haege-

man & Guéron, 1999; Joshi, 1985)): verbs subcategorize for certain types and numbers of

arguments; these arguments tend to be placed close to (i.e., within the same clause as) the

verb. The verbal AEPs that form the basis of our approach model precisely this kind of

information in target language clauses. In fact, incorporating verbal subcategorization in-

formation has been shown to contribute substantially to improved performance of lexicalized

automatic parsing models of English (e.g., (Collins, 1999)).

AEPs are complex structures with many advantages for MT, but learning to map to

them from parse trees is far from trivial. In this thesis, we use a discriminative linear

structured prediction model (e.g., (Collins, 2002)) to solve this learning problem. Linear

structured prediction models have many advantages: to name a few, they are simple to

implement, well-grounded theoretically, and quite effective in practice. This type of model

affords us a highly-flexible framework in which to define features that allow the model

to make predictions involving syntactic correspondences between the source and target

languages. The features of our model are crucial to its success: they enable it to capture
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Figure 1-2: An aligned extended projection, or AEP, associated with the German wir können
slowenien begrüßen (gloss: we can slovenia welcome.) The AEP aligns the English subject
NP to the German wir/we and the object NP to slowenien/slovenia.

dependencies between the AEP and the parse tree, and within the AEP itself. We include

a detailed description of a set of features for German-English translation in Appendix E.

Chapter 2 presents background on discriminative linear structured prediction models as

well as the perceptron algorithm (Rosenblatt, 1958; Freund & Schapire, 1998), which we

use for training, and incremental beam search (Collins & Roark, 2004), which we use for

decoding. To train the model, we need source-language parse trees and target-language

AEP examples. To generate the training data, we take a parallel corpus of sentences and

parse both the source and target-language examples. We then extract AEPs from the

target-language parses using an algorithm described in Chapter 5.

As we have seen, an AEP may contain holes; it is not necessarily a complete parse

tree and may not generate a full target-language translation. Furthermore, each AEP is

associated with only a clause of the original source-language input, and not necessarily the

whole sentence. Thus, in order to use AEPs to generate full translations, we add an auxiliary

step to the tree-to-tree approach as previously defined. This third step — the generation

step — translates any verbal arguments or modifiers of each English clause’s main verb and

combines clauses into whole sentences. Thus, translation using AEPs involves three steps:

1. The Parsing Step: The source-language text is parsed to generate a syntactic parse

tree. The parse tree contains grammatical information about the input sentence.

2. The AEP Prediction Step: The source-language parse tree is used to predict one

target-language AEP per clause.

3. The Generation Step: A translation is generated by translating arguments and mod-

ifiers, and combining the target-language clauses.
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Figure 1-3: In tree-to-tree translation using AEPs, the tree-to-tree mapping problem is
broken into three steps: in the first step, a target-language AEP is predicted from the
source-language parse tree; in the second step, an AEP is predicted for each clause; in the
third step, a translation is generated from the AEP.

Figure 1-3 presents an overview of the AEP-based translation process.

The remainder of this chapter is structured as follows: Section 1.2 provides contextual

information for better understanding the statistical tree-to-tree problem we are addressing

in this thesis as well as our method for solving it; Section 1.3 presents an end-to-end overview

of AEP-based translation; Section 1.4 states the contributions of this thesis, and Section 1.5

contains a summary of each chapter.

1.2 Background

The AEP-based translation approach presented in this thesis is a solution to the more

general statistical tree-to-tree problem, which in turn constitutes a syntax-based approach

to MT. In this section, we first place statistical tree-to-tree approaches in particular, and

syntax-based approaches in general, in some historical context. We then introduce a class

of statistical approaches called phrase-based models. Phrase-based models are widely used

today in the translation community; we also use them in this thesis to help generate trans-

lations from AEPs and as a baseline when we evaluate the performance of our system. In

the last part of this background section, we discuss a crucial problem in MT known as

reordering and explain how it is manifested in German and English, the language pair we

choose to evaluate our model. German-English is a particularly befitting pair to test the

AEP-based translation because of the interesting syntactic divergences between the two

languages.
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1.2.1 Some Historical Context

The use of computers to translate documents is a challenge that has intrigued people for at

least half a century. However, statistical tree-to-tree approaches, and statistical approaches

in general, have emerged only in the past couple of decades. The time line in Figure 1-4

summarizes the history of MT, including the emergence of statistical approaches.

Prior to statistical approaches, most MT systems were rule-based, meaning that their

development consisted at least in part of the hand-crafting of rules to carry out translation.

The number and character of these rules vary considerably from one rule-based system

to another. For instance, one system might consist of rules based on a specific syntactic

formalism, while another might not be based on any syntactic formalism at all.

One of the earliest MT projects, a collaboration between Georgetown University and

IBM (the “Georgetown-IBM Experiment” in Figure 1-4), was an example of a very small

rule-based system. The system, which specialized in the domain of organic chemistry,

had a vocabulary of 250 word pairs and used six hand-coded rules to produce translations.

However, in spite of its attenuated size, it generated a tremendous amount of enthusiasm for

the nascent field of MT. A 1954 public demonstration of the Georgetown-IBM translation

system, along with a claim that MT would be solved in three to five years, stimulated

government funding for the subsequent decade.

The development of rule-based systems with large sets of hand-crafted, inter-dependent

rules dominated the field through at least the mid-nineties. Rule-based models continue to

play an important role in the field to this day. For instance, Systran, a leading commercial

vendor of translation tools, uses rule-based methods.

Machine learning-based methods for MT emerged in the early 90s with the IBM models

(Brown et al., 1990; Brown et al., 1993). A major appeal of machine learning approaches

is their ability to automatically extract information and generalize from data. Rather than

having to hand-code large sets of rules, people hoped that these new models would be

able to learn from example translations by using statistics. The availability of large sets of

example translations such as the Canadian Hansards corpus and the European Parliament

corpus (Koehn, 2005a) has made supervised machine learning approaches to MT — such

as the IBM approach — a real possibility.

A limitation of the IBM models was that they essentially performed translation in a
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Figure 1-4: A brief history of machine translation. The emergence of machine learning
approaches wasn’t until the early 1990s with the IBM models. Contemporary statistical
approaches include phrase-based and syntax-based systems.

word-for-word manner. Around the late 90s, a new class of statistical models emerged:

phrase-based models (e.g., (Koehn, 2004; Koehn et al., 2003; Och & Ney, 2002; Och &

Ney, 2000)). Phrase-based models directly addressed the limitations of the IBM models

by constructing translations using mappings between source-language phrases and target-

language phrases. These models have advanced the field of MT considerably in the past

decade and are widely used today. For instance, the search engine Google uses phrase-based

models in its translation tools.

Syntax-based models are an alternative statistical approach that emerged more or less

contemporaneously with phrase-based models. In contrast to phrase-based models, which

in general do not have a mechanism for directly incorporating the syntax of the source

and target languages, syntax-based models do. Tree-to-tree approaches represent one kind

of syntax-based model that learns a mapping from source-language parse trees to target-

language parse trees. Other approaches are tree-to-string, which build mappings directly

from target-language parse trees to source-language strings (e.g., (Menezes & Quirk, 2007;

Collins et al., 2005; Xia & McCord, 2004)), and string-to-tree, which map from source-
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language strings to target-language trees (e.g., (Marcu et al., 2006; Galley et al., 2006;

Yamada & Knight, 2001)). A fourth class of approaches involves synchronous grammar for-

malisms, which learn a grammar that can simultaneously generate two trees (e.g., (Chiang,

2005; Wu, 1997)).

There are really only a handful of researchers who have done work in tree-to-tree ap-

proaches (e.g., (Nesson et al., 2006; Riezler & Maxwell, 2006; Ding & Palmer, 2005; Gildea,

2003)). Other tree-to-tree methods, and syntax-based models in general, are covered in

more detail in Chapter 3.

1.2.2 An Introduction to Phrase-Based Models

Among contemporary machine learning approaches to MT, phrase-based systems (e.g.,

(Koehn, 2004; Koehn et al., 2003; Och & Ney, 2002; Och & Ney, 2000)) play an important

role. They are widely used, highly competitive, and considered to be among the state-of-

the-art in statistical approaches today. In this thesis, we use a phrase-based model both

as a baseline against which to compare our AEP-based system, and as a sub-component of

AEP-based translation (in the generation step). Because the phrase-based model plays a

leading role in our work, we include a short discussion of it here. More on how phrase-based

systems work can be found in Chapter 3.

Phrase-based models make use of bilingual phrase-pair dictionaries similar to the one

in Figure 1-5. (In a real phrase-pair dictionary, there would be a distribution over possible

English translations for each German entry.) A phrase pair is a bilingual pairing between

two corresponding phrases — one in the source language and the other (its translation) in

the target language. A phrase in this context is any substring of words in a sentence. There

are usually no restrictions on phrases other than the number of words they are allowed to

contain, a practical constraint imposed for the sake of efficiency. In particular, phrases are

not necessarily constrained to adhere to syntactic boundaries. For example, for German and

English, phrase-based alignments may include such pairings as familienlebens with family

life, auch ein with a, and konkretes problem with specific problem.

One advantage of considering phrase pairs is that they can capture translations that are

not word-for-word, or one-to-one. A good example is the German-English pairing familien-

lebens (one word) and family life (two words). A second advantage of phrase pairs is that

they often encode context which can help with word-sense disambiguation. The context
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gestatten allow
gestatten sie mir please allow me

sie you
mir me

mir auch me
auch also

auch ein a
ein konkretes a specific

konkretes problem specific problem
problem problem

aus from
aus dem from the

aus dem bereich in the area
des familienlebens of family life

familienlebens family life
zu erwähnen to mention

. .

gestatten sie mir auch ein
konkretes problem aus dem
bereich des familienlebens
zu erwähnen .

=⇒
please allow me a specific
problem in the area of fam-
ily life to mention .

Figure 1-5: Phrase-based translation systems rely on a bilingual phrase-pair dictionary
similar to the one at the top of the figure. In reality, the dictionary would have a distribution
over possible English translations of each German phrase entry, whereas for simplicity we
have only shown one possible English translation. The phrase-based translator has three
major decisions to make when producing a translation: 1. how to segment the input into
phrases; 2. which translation to select for each phrase; and 3. how to order the phrases. In
the example, the system has chosen the following segmentation: [gestatten sie mir] [auch
ein] [konkretes problem] [aus dem bereich] [des familienlebens] [zu erwähnen] [.]. It has
chosen to place the translations of each one of these phrases in an order that is monotonic
with respect to the original German ordering.
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Figure 1-6: The reordering problem in machine translation refers to the phenomenon when
the ordering of words in the target-language translation does not match that of the words
in the source-language input. In this example, the phrase zu erwähnen/to mention appears
at the end of the German clause but at the beginning of the English clause.

in which a word appears can contain important clues to its meaning. For instance, in the

phrase-pair dictionary in Figure 1-5, the word aus, commonly translated as from, is better

translated as in when seen in the context aus dem bereich (in the area).

In the example in the figure, the phrase-based system translates the sentence gestat-

ten sie mir auch ein konkretes problem aus dem bereich des familienlebens zu erwähnen

by segmenting the input into phrases, translating the phrases, and choosing an order for

the translated phrases. In this particular case, the system has chosen to place the En-

glish phrases in an order that is monotonic with respect to the original German ordering,

generating please allow me a specific problem in the area of family life to mention.

A correct translation of the German sentence in Figure 1-5 would be please allow me to

mention a specific problem in the area of family life. In order to produce this output, the

phrase-based system would have to translate the German phrases in the following order:

[gestatten sie mir] [zu erwähnen] [auch ein] [konkretes problem] [aus dem bereich] [des fam-

ilienlebens] [.] Figure 1-6 demonstrates that the phrase-based system would have to move

the phrase zu erwähnen/to mention across four intervening phrases in the second clause

of the sentence. Since phrase-based systems may either penalize translations that move

phrases around too much or explicitly limit the absolute distance that phrases can move

(compromising the exactness of search for efficiency), the output can tend to mimic the

word ordering of the input.

Based on our observation of phrase-based output, this kind of long-distance reordering

is something that phrase-based systems tend to get wrong. Chapter 3 provides a more

in-depth analysis of some other types of syntactic errors we have frequently observed in the

output of phrase-based systems.
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1.2.3 The Reordering Problem for German-English and Other Language

Pairs

Reordering of the type seen in Figure 1-6 is very frequent in German-to-English translation

(which is the particular translation task we tackle in Chapters 5 and 6). One reason for this

is that German and English can have very divergent ways of structuring clauses. First of

all, German handles verb phrases much differently than English. In German independent

clauses, the finite verb in a verb phrase is often placed in the second position of the clause,

and the remaining verbs, if they exist, are placed at the end of the clause. In certain cases,

such as when an independent clause is preceded by a subordinate clause, or in interrogatives,

a verb must be placed in the first position of the sentence. This means that in independent

clauses, there can be an arbitrary number of modifiers separating the finite verb in the first

or second position of the clause and the remaining verbs at the end. In subordinate and

relative clauses (such as the second clause in Figure 1-6), all verbs come last.

Consider, for example, the following German independent clause (here, “German” is

the source-language sentence; “gloss” is a word-for-word translation; and “reference” is a

human-generated, gold-standard translation):

GERMAN: sie selber haben die mutige entscheidung getroffen .

GLOSS: they alone have the courageous decision made .

REFERENCE: they alone have made the courageous decision .

In the German, the finite auxiliary verb haben is separated from the main verb getroffen

by the object die mutige entscheidung to satisfy German’s syntactic requirements for the

placement of verbs.

In contrast, English has a different set of syntactic requirements: English syntax usually

demands that the verb phrase be placed after the subject and before the object of the clause.

This suggests that when translating from German to English, some verbs may have to be

moved across an arbitrary number of intervening arguments and modifiers for a satisfactory

translation.

As a matter of fact, the reordering problem gets even worse for the German-English

pair. This is due to the flexibility that German exhibits in placing arguments like subject

and object. Consider, for instance, the following example:
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[für seinen bericht] [möchte] [ich] [dem berichterstatter] [danken]

[i] [would like] [to thank] [the rapporteur] [for his report]

Figure 1-7: The relative positioning of the verbal modifiers and arguments changes consid-
erably in translation from German to English.

[für seinen bericht] möchte [ich] [dem berichterstatter] danken

[ich] möchte [dem berichterstatter] [für seinen bericht] danken

[dem berichterstatter] möchte [ich] [für seinen bericht] danken

Figure 1-8: In German, arguments and modifiers can move around positionally in the
sentence without significantly altering its meaning. In the example, the subject (ich), object
(dem berichterstatter), and a prepositional-phrase modifier (für seinen bericht) illustrate
such behavior.

GERMAN: für seinen bericht möchte ich dem berichterstatter danken .

GLOSS: for his report would like I the rapporteur to thank .

REFERENCE: i would like to thank the rapporteur for his report .

The English translation of this sentence involves a considerable amount of reordering of

the top-level arguments and modifiers in the sentence (see Figure 1-7): the subject ich

moves from after the German modal verb möchte to the front of the English translation;

the prepositional-phrase modifier für seinen bericht moves from the front of the sentence

to after the object in the English. Figure 1-8 shows three variations of the German sen-

tence introduced above with roughly the same meaning, illustrating how the arguments and

modifiers are relatively free to move around. In contrast, as we have seen, the placement of

phrases in English is generally more constrained, the subject of an English sentence almost

always coming before the verb, the object almost always after.

German and English certainly do not constitute the sole language pair with structural

divergences that lead to significant reordering challenges. In fact, it is probably fair to say

that every language pair will involve some reordering, and many pairs will involve major

long-distance reordering of the kind exhibited by German and English. That is to say, long-

distance reordering is a problem that any successful MT system will have to solve. The

tree-to-tree AEP system described by this thesis directly addresses reordering phenomena by

explicitly modeling the placement of sentential elements such as verbs and their arguments

and modifiers in the target-language output. The fact that German and English exhibit
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these kinds of structural divergences makes this pair particularly appropriate and interesting

to use as a testbed for our approach.

1.3 AEP-Based Translation

In this section, we present an overview of AEP-based translation. We begin with an example

that demonstrates how AEPs directly address the reordering problem. We then describe

the work involved in implementing an AEP-based system for a new language pair. Finally,

we preview the results described in Chapter 6 on German-to-English translation. Based on

these results, we conclude that AEP-based translation produces more grammatical output

than a phrase-based system with almost no syntactic information. We feel these results are

very encouraging for future work in AEP-based translation.

1.3.1 An Example

Earlier in this chapter, we said that the AEP-based solution to the tree-to-tree translation

problem involves three steps: parsing, AEP prediction, and generation. In this section, we

delve a little more closely into each of these steps to see how the approach handles reordering

phenomena when decoding a novel sentence. Throughout this section, we will work with

the following example:

GERMAN: ich hoffe , dass wir slowenien in der ersten gruppe de neuen
mitglieder begrüßen können .

GLOSS: i hope , that we slovenia in the first group of new members
welcome can .

REFERENCE: i hope that we can welcome slovenia in the first group of new
member states .

AEP-BASED: i hope we can welcome slovenia in the first group of new
members states .

This example has two clauses. The first, ich hoffe, involves no reordering relative to

English; the second, dass wir slowenien..., does. The auxiliary verb können/can and the

main verb begrüßen/welcome need to be reordered with respect to one another, and the verb

phrase needs to be moved up in the sentence so that it falls between the subject wir/we

and the object slowenien/slovenia. We now show how AEP-based translation handles this

32



Clause 1:
Clause 2:

Figure 1-9: When decoding a sentence using AEP-based translation, the first step is to parse
the input and break it into a sequence of clauses. In this example, the German sentence is
split into two clauses. The numbered boxes represent the arguments and modifiers in each
clause. In the first clause, the subject ich is the only argument. In the second clause, there
are two arguments wir and slowenien, and one prepositional phrase modifier, in der ersten
gruppe der neuen mitglieder.

Clause 1: English AEP:

Figure 1-10: This AEP for the first clause has a subject argument for the main verb hope.
The subject argument is aligned to the word ich in the German tree.

input in tree steps.

The Parsing Step The first step in decoding the German sentence is to parse it. In this

thesis, we use a state-of-the-art statistical German parser (Dubey, 2005) to do this. After

the sentence is parsed, it is broken into a series of clauses, and each of the arguments and

modifiers is identified. Figure 1-9 shows the two clausal parse trees for our example; the

first clause has one argument (labeled 1 ), and the second clause has two arguments ( 1 and

2 ) and a modifier ( 3 ).

The AEP Prediction Step In the second step, the AEP model predicts at least one

AEP for each clausal parse tree. Figures 1-10 and 1-11 each show a potential AEP for the

two parse trees in our example. The AEP in Figure 1-11 is particularly interesting in that

it has correctly reordered the clausal elements that needed reordering.

The Generation Step Following AEP prediction, we can think of the state of the trans-

lation as being a mix of target-language and source-language words whose ordering should
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Clause 2: English AEP:

Figure 1-11: This AEP for the second clause has a subject argument ( 1 ), an object argument
( 2 ), and a modifier ( 3 ). The subject is aligned to wir, the object to slowenien, and the
modifier to in der ersten gruppe der neuen mitglieder.

more closely resemble English syntax. In our example, the first AEP represents the string

ich hoffe, and the second AEP represents the string that wir can welcome slowenien in der

ersten gruppe der neuen mitglieder. The final step in AEP-based translation is to translate

the arguments and modifiers and combine the clauses to form a sentence. In this thesis, we

use a phrase-based system (that of (Koehn et al., 2003)) to generate lists of candidate trans-

lations for each argument and modifier. In Chapter 5, we develop a reranking-based method

for selecting a translation from each list, and in Chapter 6 we develop a more sophisticated

method involving finite-state machines. Figure 1-12 gives an overview of the finite-state

method. In this approach, candidate argument and modifier translations are represented

as lattices. These lattices are then used as building blocks to construct AEP lattices. Since

the AEP-prediction model can output n-best lists of AEPs, we use n-best AEP lattices

to construct a sentence-level finite-state machine. The sentence lattice — which includes

scores on the edges that are not shown in the figure — can be searched using well-known

dynamic programming methods such as the Viterbi algorithm.

1.3.2 Implementing an AEP-Based Translation System

We now present an overview of AEP-based translation from the point of view of the training

and testing phases and the requirements of each. This should give the reader a sense of the

work involved for implementing the approach for a new language pair. Figure 1-13 shows

the major steps involved in training (left) and testing (right).

In the training phrase, a bilingual parallel corpus of sentences is first parsed. In order

to carry out this step, a parser for each of the source language and target language is

needed. Next, the parse trees are split into clauses. On the target-language side, this step
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Figure 1-12: A sentence-level finite state machine, or lattice (top) is constructed from n-
best AEP lattices (n = 3 in the figure). Each AEP lattice (middle) consists of the different
pieces of the AEP, concatenated together. Arguments and modifier translation candidates
are themselves represented by lattices (bottom). In reality, the lattices also contain scores
on the edges that are not shown in the figure.
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also involves the extraction of AEPs from the parsed clauses. It is likely in this step that

the annotation schemes of the parse trees will be different (depending on the annotation

schemes of the language-dependent parsers). This implies that the code used to split the

source-language trees could be different from the code used to split the target-language

trees. It also implies that for any new languages, new code will have to be developed. Once

we have parsed source-language clauses and corresponding target-language AEPs, we can

train the perceptron-based AEP prediction model. The perceptron-based training requires

a set of language-pair-dependent features.

During testing, we begin with source-language sentences and then parse them. The

parse trees are then split into clauses. For each clause, one or more AEPs are predicted.

Finally, we generate target-language sentences from the AEPs.

1.3.3 Results

We evaluate the output of our system using both automatic evaluation and human judg-

ments. Each of these methods has its advantages and disadvantages. Automatic metrics

provide a quick and easy way of evaluating the performance of an MT system; however,

they cannot be sensitive to everything we might like. This comes as no surprise: developing

automatic metrics for the evaluation of machine translation output is an extremely chal-

lenging endeavor. If, for any translation, we could reliably and automatically determine its

quality, we would be a lot closer to solving the machine translation problem.

In this thesis, we use the automatic metric BLEU (Papineni et al., 2001) to compare our

system’s output with that of a phrase-based system (Koehn et al., 2003). Figure 1-14 shows

the BLEU scores (Papineni et al., 2001) computed over the output of the phrase-based

system and the AEP-based system in a German-to-English translation task. According

to BLEU, the AEP-based system is about 1.2 points behind the phrase-based system (a

higher BLEU score is better). Roughly speaking, one BLEU point represents a minor but

appreciable difference in the recovery of n-grams.1 The scores in the figure have been

computed on the test set described in Chapter 6.

The BLEU score has been shown to correlate well with human judgments of translation

quality (Papineni et al., 2001). However, as a metric it is not necessarily sensitive to the

1BLEU is computed by taking the geometric mean of n-gram precisions and weighting it with a brevity
penalty that is sensitive to the length of the translation.
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Figure 1-13: The training and testing phases of AEP-based translation.
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BLEU

PB 22.66

AEP 21.42

Figure 1-14: Phrase-based system (PB) and AEP-based system (AEP) BLEU scores com-
puted on the test set of Chapter 6.

FLUENCY ADEQUACY
better worse better worse

AEP .45 .29 .36 .33

Figure 1-15: A summary of the results of a human evaluation comparing the output of a
phrase-based system to the AEP-based system. The scores are averages over six judges
and 1200 translation pairs (randomly selected from test set output with sentences between
10 and 20 words in length). Fluency reflects grammaticality and adequacy reflects overall
quality, including the preservation of meaning. The numbers indicate that on average,
in 45% of cases the judges thought the AEP-based system’s output was more fluent that
a phrase-based system’s. When judging adequacy, on average the annotators found the
AEP-based system’s output of higher quality in 36% of cases.

kinds of syntactic improvements we are trying to introduce with the AEP-based method (see,

for example, (Callison-Burch et al., 2006)). In Chapter 6 we describe a human evaluation

that we conducted to compare the fluency (grammaticality) and adequacy (overall quality,

including preservation of meaning) of our system’s output and a phrase-based system’s

output in a German-to-English translation task. The advantage of using a human evaluation

to measure performance is that humans are usually quite good at discriminating between

syntactic differences. However, like automatic metrics, human evaluations are not perfect:

it is difficult to get humans to agree on what a good translation is, and human evaluations

are difficult and time-consuming to conduct. That said, human evaluations may be the best

way we have at this point to assess the performance of our syntax-based AEP system.

Results of the human evaluation we conducted are summarized in Figure 1-15. The

scores indicate that the judges found AEP-based translation to be more fluent than phrase-

based translation. In terms of adequacy, the judges found very little difference between the

two systems. In Chapter 6, we analyze these results more closely.

1.4 Contributions of this Thesis

This thesis offers the following contributions:

• An approach to machine translation that integrates source and target syntactic infor-
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mation in a machine learning framework, thereby solving the statistical tree-to-tree

translation problem.

– An object for the representation of syntactic correspondences between the source-

language input and the target-language translation called an aligned extended

projection or AEP.

– A language-dependent feature set for AEP-based German-to-English translation.

– An algorithm for extracting AEPs from a bilingual parallel corpus (used to train

the AEP prediction model).

– Two methods for generating full translations from AEPs.

• A statistical parser for Spanish that could be used in an AEP-based translation system.

1.5 Summary of Each Chapter

Chapter 2 gives a detailed discussion of the background material referred to throughout

this thesis. The first section of the chapter covers relevant topics in machine learning

— in particular, what linear structured prediction models are, how to train them using

the perceptron and exponentiated gradient algorithms, and how to use one to search for

a solution after the training regimen is complete. Both the Spanish parser described in

Chapter 4 as well as the AEP model in Chapters 5 and 6 are built using a linear structured

prediction model. The second section of Chapter 2 focuses on topics from linguistics — in

particular context-free grammar (CFG) and tree-adjoining grammar (TAG) and its variants.

Chapter 3 discusses previous work in MT. The chapter begins with an overview of the

field. It then moves into a discussion of how phrase-based models work. Finally, it presents

a literature review of some representative papers on syntax-based statistical MT models.

Chapter 4 presents a parser for Spanish. The model leverages both the morphological

information of the Spanish language and the ability of a linear structured prediction model

to define global features of parse trees to improve parsing performance.

Chapter 5 is the first of two chapters describing the AEP-based approach to statistical

MT. This chapter gives a detailed description of the AEP model, including technical details

related to the AEP object and the discriminative AEP prediction model. The chapter
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presents results based on a reranking method for selecting a final translation from the

predicted AEPs.

Chapter 6 presents a way of generating translations from AEPs using lattices. Results

in this chapter are evaluated using the BLEU metric as well as an extensive human evalu-

ation. An error analysis of the AEP-based system’s output, with reference to the results of

the human evaluation, is given.

Chapter 7 offers some suggestions for future work and then concludes the thesis.
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Chapter 2

What You Need to Know

The background material required to understand the work in this thesis is fairly simple.

There’s a little bit of machine learning and a little bit of linguistics. This chapter covers

what you need to know, including supervised learning, linear structured prediction models,

and training and decoding using the perceptron and exponentiated gradient algorithms,

context-free grammars and tree-adjoining grammars.

2.1 Machine Learning

Much of machine learning theory is about finding some way of making predictions about

inputs. We want to devise a mathematical rule that will enable us to make such predictions.

What we hope is that the prediction will be accurate.

In natural language processing (NLP), we often make predictions about objects involving

words. For instance, in part-of-speech tagging, we have as input a string of words (a

sentence) in a given language, and we want to develop a rule that will tell us the best part-

of-speech tag for each word. For a simple input, say the sentence the protesters amassed

outside the governor’s office, the rule would be good, in a predictive sense, if it told us that

the is a determiner, protesters is a noun, amassed is a verb, outside is an preposition, and

so on.

Learning theory encompasses the kinds of rules we can use to make predictions like these,

how we can learn these rules, and what guarantees, advantages, and disadvantages there

are when we choose a particular type of rule or a particular method for learning it.

Whenever we set out to learn a predictive rule for a given task, we rely on training

41



data to help us do that. One way to classify learning methods is according to the type of

training data we have. Supervised methods assume that our data set includes examples with

both sample inputs (e.g., sentences) and corresponding sample outputs (e.g., sequences of

part-of-speech tags). Unsupervised methods assume our data set consists of inputs without

any corresponding outputs. In semisupervised methods, the data may be mixed, with some

of the sample inputs labeled with corresponding outputs, and others unlabeled.

For the most part, the work in this thesis uses supervised learning methods and therefore

requires corpora with example inputs and outputs. Chapter 4 uses a treebank of Spanish

sentences and their corresponding syntactic trees (Torruella, 2004) to build a parser for

Spanish. The supervised task in this context is to learn a function that will predict the best

parse tree for an arbitrary Spanish sentence. The treebank is used as evidence in learning

the function. Chapters 5 and 6 use a bilingual parallel corpus of German-English translation

pairs (Koehn, 2005b). The supervised task in this context is to learn a function that will

predict the best English translation of an arbitrary German sentence.

2.2 Linear Structured Prediction Models

In learning theory we often talk about models: building models, learning models, selecting

models, etc. A model can be thought of as a representation of the space of inputs. For

instance, the model in Figure 2-1 is a line that divides circles from squares, where the circles

and squares represent our input space. Once we have this line, or model, we can devise a

prediction rule that says For any new input, if it falls below the line, it is a square; if it falls

above the line, it is a circle.1 Because this model represents the input space with a line, it

is an example of a linear model.

A linear model is one of the simplest models we can use. In a space with just two

dimensions (think of a Cartesian grid where each dimension represents a different feature

of the inputs, as in Figure 2-1), a linear model is just a line. In general, in a space with

an arbitrary number of dimensions, it is a hyperplane. The work in this thesis uses linear

models almost exclusively.2

1If it falls on the line, we can devise some method for deciding whether it should be a circle or a square.
For instance, we can decide that by convention it should be a circle, or we can flip a coin and decide circle
for heads.

2That is, all the important models underlying the novel work in this thesis are linear. We do of course
make heavy use of parsers and other tools which are based on models that are not necessarily linear.
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Figure 2-1: Example of a linear model where each point represents a document written in
either French or Spanish. The line divides the input space into those inputs (documents)
that fall below the line and are classified as Spanish, and those inputs that fall above the
line and are classified as French.

It is perhaps simplest to introduce linear models in the context of classification. In the

simplest case, we can imagine a classification problem in which there are just two classes,

and we want to be able to classify any arbitrary input as a member of either class 1 or

class 2. Say the inputs are documents written in one of two natural languages, Spanish and

French, and we would like to be able to say whether any arbitrary document is written in

Spanish or French. Furthermore, say we represent the inputs with two features, perhaps

one feature that tracks the number of accented characters in the document, and another

feature that tracks the average length of the words in each document (maybe we have some

reason to believe that the words of one language are generally longer than the words of the

other language). If we have a bunch of sample documents and we know whether each one

is French or Spanish, then we can use these as training data to come up with a line such as

the one in Figure 2-1. How we come up with that line is a separate problem called training

the model; in this thesis we use two methods to train our linear models (see Section 2.3).

While linear models lend themselves easily to classification problems, for the purposes

of this thesis, it’s important to consider them in terms of a different kind of problem: the

structured prediction problem. By this we mean that instead of trying to predict a class for

our input, we predict a structure, like a parse tree or a translation, or a part-of-speech tag
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sequence. The Spanish parsing work described in Chapter 4 trains a linear model to predict

the best parse from a set of candidates generated by a probabilistic context-free grammar

(PCFG); the aligned extended projection (AEP) prediction model used in Chapters 5 and 6

is underlyingly linear as well. It predicts the best target-language AEP given a source-

language parse tree.

Figure 2-2 presents a geometric interpretation of the kind of linear structured prediction

model that is used in this thesis. Imagine we’re trying to generate translations, say English

translations of Spanish sentences, and that we have at our disposal some function that will

generate a set of candidate English translations given any Spanish sentence. In the figure,

each of these candidate translations (actually, input-candidate pairs) is represented by a

shape; the correct candidate is shown as a square, and the remaining candidates as circles.3

As in the classification scenario, we represent the candidates with features. Each dimen-

sion represents a different feature of the input-candidate pairs. For instance, imagine we had

a Spanish-English dictionary to look up all pairs of words in a given input-candidate pair.

We could then let the number of pairs that appear in the dictionary be the first feature we

track. For the second feature, we could use the difference in the length between the input

(Spanish sentence) and the candidate (English sentence). Each candidate is represented by

a pair of values, and these pairs are plotted on the graph in the figure.

In the context of the structured prediction problem, a linear model defines a vector onto

which we can project the candidates to get a ranking. In the figure, the vector labeled

w is this vector, and the lines extending from each candidate to the vector illustrates the

projection.4 This projection defines a ranking among the candidates such that a superior

candidate is farther away from the origin along the vector, while an inferior one is closer. In

the figure, the upper graph shows one possible ranking, and the lower graph shows another

possible ranking, each one induced by projecting the points onto the vector w (a different

w for each graph). In the upper graph, the ranking is “correct” insofar as the correct

candidate is also #1 in the ranking. In the lower graph, the ranking is incorrect.

Note that in general, we want to find a parameter vector w that is globally optimal over

all training examples. Figure 2-3 illustrates a parameter vector that induces rankings over

three different inputs. This parameter vector manages to predict the correct candidates

3Note that the set of points in the figure represents candidate translations for a single input. This is very
different from the picture in Figure 2-1 in which each point represents a different input and its class.

4We assume without loss of generality that the vector is a unit vector.
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Figure 2-2: Linear models in the context of a structured prediction problem. Each point
represents a different candidate output for the same input X. The square point represents
the correct candidate. The candidates are represented by two features (labeled on the axes).
A ranking over candidates is induced via their projection of the candidates onto the unit
parameter vector w. The best candidate is labeled “#1” and the worst “#11.” The upper
figure illustrates a parameter vector that correctly ranks the best candidate #1; the lower
figure illustrates a parameter vector that does not correctly rank the best candidate.
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Figure 2-3: Choosing an optimal weight vector. During training, we try to find the pa-
rameter vector that optimally ranks each set of candidates for each example input xi. The
candidates labeled “#1” are the best candidates for each input. This particular parameter
vector manages to predict the correct output for all three example inputs.

for all three. However, it is not always possible to find a globally-optimal vector that will

correctly predict the best candidate on all examples.

2.2.1 Linear Structured Prediction Models: Formal Definition

In this section, we follow the framework for linear structured prediction models described

in (Collins, 2002). Formally, the task is to learn a function F : X → Y , where X is a set of

possible inputs, and Y is a set of possible outputs. For example, in the case of parsing, the

set X would be the set of all possible strings in a particular natural language, and Y would

be a set of parse trees. In the machine translation task, X would be the set of all strings

in one language, and Y would be the set of all strings in a second language. Our function

tells us what the best output is for any given input — for instance, the best parse tree for

some sentence in French, or the best Spanish translation for an English sentence.

In the linear structured prediction framework, we assume we have the following compo-

nents:

• a set of m training examples (xi, yi) for i = 1, . . . ,m, where xi ∈ X and yi ∈ Y ,

• a function GEN that generates a set of candidates GEN(x) for each input x,
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• a function f that maps a pair (x, y) ∈ (X,Y ) to a feature vector f(x , y) ∈ R
d,

• a parameter vector w ∈ R
d.

The first item in this list, a set of training examples, implies a supervised learning framework.

The second item in this list — the set of candidates GEN(x) — corresponds to the set of

points in our example in Figure 2-2. The feature vector f(x, y) corresponds to the two

features (number of word pairs in dictionary and difference in length between input and

output), and the parameter vector w corresponds to the vector w.5 We assume that there

is some fixed ordering on the components of the d-dimensional feature vector f(x, y), such

that its components and those of the parameter vector w are aligned. That is, for each

feature fj(x, y), there is a corresponding parameter wj .

We now define the form of the linear model to be

F (x) = argmax
y∈GEN(x)

f(x , y) · w (2.1)

f(x, y) · w represents the inner product of the feature vector and the parameter vector:
∑n

j=1 fj(x, y)wj . In our example in Figure 2-2, this inner product corresponds to the

projection of each candidate onto the parameter vector w and can be thought of as a score

for each input-candidate pair. The argmax operation selects the candidate with the highest

score.

We discuss two methods for learning a parameter vector in Section 2.3. The decoding or

search problem is to find the value of the function F (x) that maximizes the score f(x, y) ·w
over a set of candidates GEN(x). We discuss a method for carrying out this search in

Section 2.4.

2.2.2 Advantages to Linear Structured Prediction Models

Linear structured prediction models have many desirable characteristics. Foremost among

these is formal simplicity. Equation 2.1 basically says Find the candidate with the highest

score, where all we need to score each candidate is a feature function, a parameter vector,

and a method for computing a dot product.

5We have assumed a unit vector in Figure 2-2 so that we can interpret the projection as a simple ranking.
In general we can always convert any vector w to a unit vector by dividing by the norm (Euclidean length)
of w : w/‖w‖.
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In spite of being formally quite simple, linear structured prediction models are repre-

sentationally rich: we can incorporate arbitrary features into these models, and we can use

them for a lot of different natural language tasks.6 We can often obtain superior perfor-

mance by using features that are sensitive to the linguistic information inherent in the data.

The work in this thesis leverages the versatility of the linear structured prediction model by

developing an extensive set of features for parse reranking in Chapter 4, and for tree-to-tree

translation in Chapters 5 and 6. Because they are able to incorporate arbitrary features,

linear structured prediction models are sometimes called feature-based models.

2.3 Training Algorithms

Given some example input-output pairs and a model, we need a way to use the examples to

train our model. In the case of linear models, this means that we need to find values for the

components of the parameter vector w. In the context of classification, this is equivalent to

choosing a hyperplane that will separate two classes of objects.7 In the context of structured

prediction, this means selecting the vector on which to project candidates in GEN(x).

2.3.1 The Perceptron Training Algorithm

The perceptron is a simple yet effective training algorithm. The basic idea is to look at

each sample input from the training examples and make a prediction y′ according to the

current parameters w. Then we compare y′ to the true output yi. If it’s correct, we do

nothing, but if it’s incorrect, we make a change to the parameters. We keep doing this —

looping over the training set example by example — until we (hopefully) find a parameter

vector that doesn’t make any mistakes.

The original perceptron algorithm was described by (Rosenblatt, 1958). The algorithm

was intended as a training method for classification problems such as those described in

Section 2.2. The perceptron algorithm in Figure 2-4 is a variant that was developed for use

in structured prediction problems (Collins, 2002) and is the version we use in this thesis.

The first line of the algorithm says that we’re going to repeat the whole thing T times.8

6A very large number of features will complicate the search process. We address different search techniques
in Section 2.4.

7The hyperplane can be defined in terms of the parameter vector, which is perpendicular to the hyper-
plane.

8We have a few choices as to how we pick the value of T . If we want, we can just pick an arbitrary value
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Inputs: training examples (xi, yi)
Initialization: set w = 0
Algorithm:

1 for t = 1 . . . T :
2 for i = 1 . . . N :
3 • y′ = argmax

y∈GEN(xi)
f(xi, y) ·w

4 • if y′ 6= yi

5 – set w = w + f(xi, yi) − f(xi, y
′)

Output: parameter vector w

Figure 2-4: The perceptron training algorithm for linear structured prediction problems. T
is the number of iterations; N is the number of training examples in the training set, where
each training example consists of a pair (xi, yi) ∈ X × Y . f is a feature function that maps
input-output pairs to a feature vector f(x,y) ∈ R

d. w ∈ R
d is the parameter vector whose

components are set by the algorithm.

The second line says we’re going to loop over the entire training set example by example.

Lines 3, 4, and 5 form the heart of the algorithm. Basically they say Find the candidate

with the highest score according to the current settings of the parameters (line 3). If it’s not

the same as the output we know to be the best (i.e., yi) (line 4), then make a change to the

parameter vector (line 5). The update in line 5 is additive and simple to implement.

Once the algorithm has completed, the final parameter vector w is used to evaluate, for

any x ∈ X, the candidate in GEN(x) with the best score.

Two Variants: The Voted Perceptron and the Averaged Perceptron

For a long time, the perceptron algorithm was not taken seriously as a viable training

method. Even though it seemed really promising initially, it was shown by Minsky and Pa-

pert that in reality, it couldn’t even learn a simple XOR function (Minsky & Papert, 1969).

In the early 90s, Freund and Schapire wrote a paper on a new variant of the perceptron

called the voted perceptron (Freund & Schapire, 1998), and that caused a resurgence of its

use in the field of NLP. In this thesis, we use something called the averaged perceptron, a

variant whose efficacy has been demonstrated previously (Freund & Schapire, 1998) and

(Collins, 2002). The averaged perceptron turns out to be an approximation to Freund and

Schapire’s voted perceptron.

(maybe each iteration takes a really long time, and we have only a limited amount of time to train, so we
pick something small). Another approach is to see how well the algorithm does for different values of T by
testing on a validation set.
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Inputs: training examples (xi, yi)
Initialization: set w0 = 0, c0 = 0, j = 0
Algorithm:
for t = 1 . . . T :

for i = 1 . . . N :

• y′ = argmax
y∈GEN(xi)

f(xi, y) · w
• if y′ = yi

– set cj = cj + 1

• else

– set wj+1 = wj + f(xi, yi) − f(xi, y
′)

– set cj+1 = 1

– set j = j + 1

Output: list of weighted parameter vectors 〈(w0, c0) . . . (wn, cn)〉

Figure 2-5: The voted perceptron training algorithm. This version of the algorithm is
exactly the same as the one in Figure 2-4 except we keep track of the state of the parameter
vector over the course of the algorithm. For each version of the parameter vector wj,
j = 0 . . . k, we count the number of examples that are correctly predicted before a mistake
is made.

The voted perceptron for structured prediction is given in Figure 2-5 (Collins, 2002).9

It’s exactly the same as the regular perceptron (Figure 2-4), with some added bookkeeping

concerning the parameter vector w. Think of w over the course of the training algorithm:

each time an incorrect prediction is made under w, it’s considered a mistake and we update

the parameters to make a correction. The voted perceptron just keeps track of each version

of the parameter vector wj, j = 0 . . . k. Each time there’s a new version (i.e., a mistake is

made), the algorithm counts how many examples the current version wj was able to predict

correctly before updating to a new version wj+1.

To make a prediction for a novel input x ∈ X using the output of the voted perceptron,

we use the parameter vectors wj, j = 0 . . . k to see which candidate they vote for, and

produce as output the candidate with the highest vote:

Fj(x) = argmax
y∈GEN(x)

wj · f(x, y) (2.2)

V ote(y) =
∑

j:Fj(x)=y

cj (2.3)

Final(x) = argmax
y∈GEN(x)

V ote(y) (2.4)

9This follows the form of the voted perceptron for classification given in (Freund & Schapire, 1998). Note
that in this formulation, c0 ≥ 0. In contrast, for every other example (xi, yi), i 6= 0, ci ≥ 1.
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where cj is the count associated with each parameter vector wj. Equation 2.2 predicts the

best candidate under each parameter vector wj for a given input x ∈ X. Equation 2.3

tallies the vote for each candidate, and Equation 2.4 selects the candidate with the largest

number of votes.

(Freund & Schapire, 1998) showed that the voted perceptron for classification performs

a lot better than the original perceptron. There is, however, an obvious disadvantage to

the voted perceptron: k, the number of different parameter vectors we have after training,

might be really big, and we have to do k decodings for each input x.

What we do instead in this thesis, to avoid this potentially large number of decodings

during prediction, is to approximate the voted perceptron with the averaged perceptron.

The averaged perceptron has also been shown to perform a lot better than the original

perceptron (Collins, 2002). In the averaged perceptron, we take the weighted parameter

vectors from the output of the voted perceptron and we combine them using averaging to

derive a new parameter vector w′, where

w′ =

k∑

j=0

cjwj/NT,

N is the size of the training set, and T is the number of iterations performed during training.

We use the averaged parameter vector w′ to predict the best output for x:

F (x) = argmax
y∈GEN(x)

f(x, y) ·w′

This approach results in only a single decoding per input.

Properties of the Perceptron Algorithm

There are three important theorems related to properties of the perceptron algorithm for

structured prediction tasks like those we address in this thesis (Collins, 2002). The first

two are statements about how long it takes for the perceptron to find a good rule. A “good

rule” in this case means one that is able to make correct predictions about the training

data.

The first theorem says that the perceptron algorithm will find a good rule when trained

on data that are linearly separable. Data are linearly separable when there exists some
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Figure 2-6: Training data that are not linearly separable.

parameter vector w that will produce the correct output yi for each input xi. An easy way

to conceptualize linear separability is in the case of classification; for example, the data in

Figure 2-1 is linearly separable because there exists a line that will perfectly classify all

of the examples. In contrast, the data in Figure 2-6 is not linearly separable: there is no

line that can separate the examples in the two classes. In the case of structured prediction,

linear separability means that there exists a parameter vector w that will rank yi ∈ GEN(xi)

higher than any other candidate y ∈ GEN(xi), y 6= yi, for all i.

In addition to making guarantees in the case of linear separability, the first theorem

also says how long it may take to find a good rule. The length of time is measured in

terms of the number of mistakes the algorithm makes. A mistake in this context refers to

a discrepancy between the predicted output and the actual output (y′ and yi, respectively,

using the notation from Figure 2-4). The bound on the number of mistakes in the linearly

separable case is given in terms of two quantities represented by R and δ:

number of mistakes ≤ R2

δ2
(2.5)

R is just a constant such that ∀i,∀z ∈ GEN(xi), ‖f(xi, yi) − f(xi, z)‖ ≤ R.10 R is an upper

bound on the difference between the length of the feature vector belonging to the correct

10‖f | denotes the Euclidean length of f : ‖f‖ =
p

P

i
f2

i .
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Figure 2-7: Training data containing a single example, where the margin δ is small.

candidate and the length of the feature vectors belonging to all other candidates. δ is a

constant known as the margin of the data. The margin is a lower bound on the distance

between the correct candidate yi ∈ GEN(xi) and all the other candidates in GEN(xi).

Formally, training data are linearly separable with margin δ if there exists a parameter

vector U, ‖U‖ = 1, such that ∀i,∀z ∈ GEN(xi), z 6= yi,U · f(xi,yi) − U · f(xi, z) ≥ δ.

Figures 2-7 and 2-8 give a sense of what’s going on geometrically by depicting the margin

in the case where there is only one example in the training set. The datum in Figure 2-

7 has a small margin relative to the datum in Figure 2-8. If there were more than one

example in the training set, then the margin would be the minimum distance, over all the

examples, between the correct output and the next-best output. Intuitively, it should be

more difficult to find a parameter vector that will correctly rank candidates in data sets

with smaller margins. The bound supports this intuition.

The second theorem is similar to the first, except that it deals with data that are not

linearly separable. See (Collins, 2002) for details.

The third theorem states how well the prediction rule that is generated by the perceptron

training algorithm generalizes to novel inputs. If the algorithm makes only a small number

of mistakes during training, then the resulting parameter vector is likely to generalize well

to new inputs. The theorem and proof are given in (Collins, 2002).
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Figure 2-8: Training data containing a single example, where the margin δ is larger.

2.3.2 Exponentiated Gradient

The exponentiated gradient (EG) algorithm (Bartlett et al., 2004) is an alternative method

for training a linear structured prediction model. It is this training method that we choose

in Chapter 4 to train our Spanish parsing model to select the best parse from a list of

candidates.

EG is a technique for solving an optimization problem with a specific objective criterion

L(w) related to the large-margin training criterion of support vector machines (Cortes &

Vapnik, 1995):

L(w) =
c

2
‖w‖2 +

∑

i

max
y∈GEN(xi)

[ℓi(y) − (w · f(xi,yi) − w · f(xi,y))]

Here, xi is an input, yi is the best output in a set of candidates GEN(xi). w is the parameter

vector. The objective function has two terms. The first part, c
2‖w‖2, is a regularization

term that ensures that the size of the weight vector w doesn’t grow too large. In this term,

c is a constant that is learned on a validation set. The second term makes use of a loss

function ℓi(y) where y is an output. The only constraints on this loss function are that

ℓi(yi) = 0 and ℓi(y) ≥ 0. The loss function we employ in our parsing work in Chapter 4 is
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the same one described in (Collins & Koo, 2005):

ℓ(y) = Score(yi) − Score(y)

Score(y) =
F − measure(y)

100
× Size(y)

Size(y) = number of constituents in y

The critical observation to make regarding the second term of the objective function is that

if

w · f(xi,yi) − w · f(xi,y) < ℓi(y)

then the objective incurs a penalty.

The solution to the objective function generates the optimal weight vector w∗:

w∗ = minwL(w)

2.4 Decoding

Training is the process by which we set the components of the parameter vector in our

linear structured prediction model; decoding is the process we use to generate an output

once we have a parameter vector11. For our purposes, decoding is the process by which we

solve the argmax problem:

F (x) = argmax
y∈GEN(x)

f(x, y) · w

The difficulty posed by the argmax problem depends in part on the size of GEN(x). By

definition, the argmax means that we have to find the candidate with the best score in all

of GEN(x). If this set of candidates is small, then maybe the problem can be solved by

exhaustive enumeration of the candidates: we score and then rank each one. This would

be the brute force approach.

If, on the other hand, the set of candidates is very big (as with the NLP tasks we tackle

in this thesis), it may not be possible to use brute force. Both parsing and translation are

11Note that even during training, we may need to perform decoding, so a hard distinction between training
and decoding can be a little artificial. For example, the perceptron algorithm in Figure 2-4 requires a decoding
of each example to compute the best candidate y′ under the current parameters.
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examples of natural language tasks where the size of GEN(x) may be exponential in the

length of the input sentence x.

In the following sections, we introduce three decoding approaches that avoid brute force

search. The first uses dynamic programming and is useful in circumstances where the

form of the features is naturally constrained. However, since in our work we use arbitrary,

unconstrained features, we discuss two alternatives to dynamic programming — reranking

and beam search — that avoid the intractability of brute search. These are the two decoding

methods that we use in our parsing and translation work.

2.4.1 Dynamic Programming

There are algorithms that circumvent the problem of search spaces that are too big to be

explored by brute force. Among these is a technique called dynamic programming, which

can be used in finding optimal solutions to problems that can be broken down into smaller

subproblems with repeating substructure. While the work we present in this thesis does

not emphasize dynamic programming approaches to decoding, we include a brief discussion

here since the approach is used heavily in NLP.

When a dynamic programming approach can be applied to a problem, it may be possible

to search the space of candidate outputs and find an optimal solution in significantly less

time than searching by brute force. For example, the CKY algorithm (see, for example,

(Manning & Schütze, 1999)) is a dynamic programming algorithm that can find the best

parse for a sentence in O(n3) time, that is, time polynomial in the length n of the sentence

(rather than exponential in the length of the sentence, as in the brute force approach).

Dynamic programming, when it can be used, is a great technique. However, efficient

decoding with a dynamic programming algorithm like CKY cannot be done for arbitrary

feature representations. Since the work in this thesis relies on the power of an arbitrary

feature representation, we consider alternative methods.

2.4.2 Reranking

One alternative to dynamic programming is a reranking approach. It’s fairly straightfor-

ward. The idea is that we complete the decoding task — say parsing (though it could be

anything) — in two passes. In the first pass, we use a parser that is pretty good but not

necessarily as powerful as one that would allow use of an arbitrary feature representation.
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So, for instance, we could use a parser with a restricted set of features, facilitating efficient

decoding using CKY. Instead of looking for the single best parse, however, we extract a set

of top candidate parses — often called an n-best list.

In the second pass, we parse again, only this time, we use the n-best list as our search

space. If its size is not too big, we can search the space using brute force with any parser

we want. The approach is called “reranking” because the first-pass parser’s ranking on the

set of candidates might differ from second-pass parser’s ranking. The second-pass parser is

presumably a more powerful model that can select the correct candidate from the list.

Reranking is the decoding approach we use in Chapter 4 in our work on Spanish parsing.

In that chapter, we use a weaker (i.e., one with fewer features) generative model based on a

PCFG (see Section 2.5.1) as the first-pass parser, and a more powerful linear feature-based

model as the second-pass parser.

2.4.3 Beam Search

A problem with reranking is that the first-pass model may not find the best solution in the

n-best list it generates. If the best solution is nowhere on this list, then there is no way for

the second-pass model to find it.

An alternative approach, called beam search, allows us to search the space of inputs in a

single pass. Like reranking, it places no constraints on the features of the model. Also like

reranking, it does not necessarily guarantee the discovery of an optimal solution. It can,

however, speed up the search process considerably compared to brute search. Beam search

is the technique we use in our translation work in Chapter 5.

The mechanics of beam search may vary in different contexts (see, for example, (Russell

& Norvig, 2002) for an introduction to basic beam search). The definition of beam search

that we use in this thesis is derived from work done on incremental parsing in (Collins

& Roark, 2004). The basic idea is to decode a candidate structure, like a parse tree or

a translation, in incremental steps, or as a sequence of N decisions 〈d1, d2, . . . , dN 〉. Each

decision di is a member of a set Di representing all possible values of the ith decision. At each

stage i, there is a list of incomplete candidates 〈d1, . . . , di〉 that need to be expanded. The

expansion in this context means that from a candidate 〈d1, . . . , di〉 a new set of candidates

each of the form 〈d1, . . . , di+1〉 will be derived. A beam of size m is applied to the list of

candidates at each stage, such that the size of the list is never greater than m.
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Collins and Roark assume two functions to carry out the incremental beam search:

• ADVANCE(x, 〈d1, d2, . . . , di−1, di〉)

• FILTER({〈d1, . . . , di〉}

The ADVANCE function maps an input x and an incomplete candidate d1, . . . , di to a set

of candidates that incorporate decision i + 1. Specifically, ADVANCE is used to enumerate

the possible candidates for decision i+1. The function FILTER filters the set of candidates

generated by ADVANCE such that the size of the new set is at most m. Thus, it maps

a set of candidates Ci+1 = {〈d1, . . . , di+1〉} at stage i to a subset of Ci+1 that is of an

appropriate size. FILTER does its work by scoring each of the candidates and keeping only

the top-ranking ones.

In the work in Chapters 5 and 6, the set of candidates we are generating during decoding

consists of English AEPs from which translations can be derived. The candidates are broken

down into a sequence of decisions, or parts, and at each step in the beam search, a single

part is predicted. As the beam search unravels, only the top m partial candidates are

retained at each step.

2.5 Linguistic Theory

This thesis borrows heavily from ideas in linguistic theory, particularly context-free gram-

mars (CFG) and tree-adjoining grammars (TAG). CFG is the formalism underlying our

first-pass parser in the reranking work in Chapter 4; TAG is the formalism underlying the

tree-to-tree translation work in Chapters 5 and 6.

2.5.1 Context-Free Grammar

A grammar in the field of linguistics is a system that has atomic elements or objects as well

as rules describing how to combine those elements. Combining the atomic elements in the

grammar produces derived structures or objects of some sort that may or may not look like

the original atomic elements.

Context-free grammar (CFG) and its statistical variant probabilistic context-free gram-

mar (PCFG) are very simple formalisms that have been used liberally and with much success

in parsing. For a very good formal introduction to CFGs, see (Sipser, 1997).
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1. S → NP VP 6. D → the
2. NP → D N 7. N → cat
3. VP → VP PP 8. N → dog
4. VP → V 9. V → leapt
5. PP → P NP 10. P → over

Figure 2-9: A context-free grammar.

The atomic elements of a CFG are context-free rules of the form X → ξ, where X

represents a nonterminal symbol, and ξ represents a string of terminal and/or nonterminal

symbols, or the empty string ǫ. In NLP, the nonterminal symbols are often phrasal cate-

gories such as noun phrase (NP) or adverbial phrase (ADVP), or part-of-speech tags such as

determiner (D) or verb (V); the terminal symbols are words in the language, such as water.

The rule for combining the atomic elements of a CFG is a simple substitution rule.

Specifically, we can replace a non-terminal γ appearing on the right-hand side of rule ρ1

with the entire right-hand side of rule ρ2 iff γ appears on the right-hand side of ρ2. More

concretely, say the rules in our grammar are those in Figure 2-9. Then we can substitute the

right-hand side of rule 2 for the NP in rule 1, resulting in a new right-hand side: S → D N VP.

We can continue substituting in this way until the right-hand side consists of only terminal

symbols (words).

In a CFG, we can visualize the process of rule-substitution with a tree structure like

the one in Figure 2-10. This tree is called a CFG derivation tree because we can use it to

explain how the grammar generated the string the cat leapt over the dog. Specifically, we

can see that the grammar used rule 1 once, rule 2 twice, rule 3 once, etc.; in addition we

can see which substitutions were carried out (rule 2 substituted into rule 1, rule 3 into rule

1, etc.)

To form a PCFG from a CFG, we simply assign a probability to each one of the rules

in the grammar. For instance, the PCFG in Figure 2-11 is a valid PCFG, where each rule

can be seen as a conditional probability. For instance, rule 1 says P (NP VP|S) = 1.0, and

rule 2 says P (D N|NP) = 0.7. The probabilities on the rules are subject to the following

constraint: ∀X,
∑

ξ P (ξ|X) = 1.0.

Given probabilities on each one of the rules, we can associate derivations such as the

one in Figure 2-10 with probabilities: P (tree) =
∏

ρ∈{rules in tree} P (ρ), or equivalently

log P (tree) =
∑

ρ∈{rules in tree} log P (ρ). Probabilities on trees give us a quantitative
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S

✟✟✟✟

❍❍❍❍

NP
✟✟ ❍❍

D

the

N

cat

VP

✟✟✟
❍❍❍

VP

V

leapt

PP

✟✟✟ ❍❍❍

P

over

NP
✟✟ ❍❍

D

the

N

dog

Figure 2-10: A context-free grammar derivation tree.

1. S → NP VP 1.0 8. D → the 0.5
2. NP → D N 0.7 9. D → a 0.5
3. NP → N 0.3 10. N → cat 0.7
4. VP → VP PP 0.6 11. N → dog 0.15
5. VP → V NP 0.3 12. N → raccoon 0.15
6. VP → V 0.1 13. V → leapt 1.0
7. PP → P NP 1.0 14. P → over 1.0

Figure 2-11: A probabilistic context-free grammar.

mechanism for comparing alternative parses for a given sentence. For a more complete

discussion of PCFGs (how to learn the probabilities, etc.), see any good introductory text

on NLP, such as (Manning & Schütze, 1999).

2.5.2 Tree-Adjoining Grammar

Tree adjoining grammar (TAG) (e.g., (Joshi & Schabes, 1996)) is a grammar formalism

that has heavily influenced the work on tree translation we present in Chapters 5 and 6. In

this section, we give an overview of the formalism and some of its variants.

One intuitive way to see the atomic elements of a TAG is as a splicing of CFG derivation

trees. For instance, we can take the tree in Figure 2-10 and chop it up into pieces to form

the elementary trees (i.e., the atomic units) of a TAG. The resulting set of elementary trees

is depicted in Figure 2-12.

TAG elementary trees are classified as two basic types: initial trees and auxiliary trees.

All phrasal-category nodes (e.g., NP, ADJP, etc) that appear on the frontier of an initial tree

are labeled with a downarrow (↓), indicating that a substitution can take place there. This

is also true of auxiliary trees, with the exception of a distinguished phrasal-type frontier
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Initial Trees Auxiliary Trees

S
✟✟ ❍❍

NP↓ VP

V

leapt

NP
✟✟ ❍❍

D↓ N

cat

VP

✟✟✟ ❍❍❍

VP* PP
✟✟ ❍❍

P

over

NP↓

NP
✟✟ ❍❍

D↓ N

dog

D

the

Figure 2-12: Some tree-adjoining grammar elementary trees.

S
✟✟ ❍❍

NP↓ VP

V

leapt

+
NP

✟✟ ❍❍
D↓ N

cat

=

S

✟✟✟ ❍❍❍

NP
✟✟ ❍❍

D↓ N

cat

VP

V

leapt

Figure 2-13: TAG substitution: the tree headed by NP is substituted into the tree headed
by S at the NP↓ node.

node marked with an asterisk (*). This special node is called a foot node. Its label always

matches that of the root node of the auxiliary tree to which it belongs.

There are two operations for combining TAG elementary trees: substitution and adjunc-

tion. Whenever a node is marked with a downarrow for substitution, it can be replaced by

another tree that is headed by a root node with the same label, so long as that tree is either

an initial tree or derived from an initial tree. An example of substitution in action is shown

in Figure 2-13.

TAG adjunction allows the splicing of an auxiliary tree into any other type of tree (initial,

auxiliary, or derived, where a derived tree is any tree resulting from the combination of two

trees). For instance, we can adjoin the auxiliary tree in Figure 2-12 into the derived tree in

Figure 2-13, as is depicted in Figure 2-14.

Lexicalized Tree-Adjoining Grammar (LTAG)

There are a lot of interesting properties of tree-adjoining grammars. For one thing, they can

easily be lexicalized. A lexicalized grammar is one where each atomic structure is associated
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S

✟✟✟ ❍❍❍

NP
✟✟ ❍❍

D↓ N

cat

VP

V

leapt

+

VP

✟✟✟ ❍❍❍

VP* PP
✟✟ ❍❍
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over

NP↓
=

S

✟✟✟✟
❍❍❍❍

NP
✟✟ ❍❍

D↓ N

cat

VP

✟✟✟ ❍❍❍

VP

V

leapt

PP
✟✟ ❍❍

P

over

NP↓

Figure 2-14: TAG adjunction: the auxiliary tree headed by VP is adjoined into the derived
tree headed by S.

with at least one lexical item. For instance, each of the TAG elementary trees in Figure 2-12

has a frontier node labeled with a lexical item (leapt, dog, etc.). In contrast, only half of

the PCFG rules in Figure 2-11 (those in the right-hand column) are lexicalized, and so the

grammar as a whole is not lexicalized. In general, CFGs do not lend themselves naturally to

lexicalization, while TAGs do (Joshi & Schabes, 1996). A TAG that is lexicalized is called

a lexicalized tree-adjoining grammar, or LTAG.

One of the most important things about lexicalization is that it lets us express syntactic

properties of lexical items. For instance, if we look at the initial tree anchored by the word

leapt in Figure 2-12, it tells us that leapt requires a subject and doesn’t take an object. In

other words, we know something about the argument structure of this verb. Another way of

saying this is that TAG elementary trees have an extended domain of locality, meaning that

it is possible to express the long-distance syntactic dependencies of lexical items in atomic

structures.12 This means that in a sentence like The cat who killed the bird who swallowed

the mouse who nibbled the cheese leapt, where an arbitrary number of relative clauses of the

form who V the N might be inserted between the verb leapt and its subject the cat, TAG is

still able to express the dependency between verb and subject.

The AEPs that we develop in Chapter 5 are like lexicalized TAG elementary trees in

the sense that each of the elementary trees contains at least one lexical item (the main verb

of the clause).

12Of course, it’s not only lexicalization that gives us extended domain of locality; it’s also the fact that
TAG’s atomic structures are trees of unrestricted depth.
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Extended Projections

Extended projections (EPs) play a crucial role in the lexicalized tree-adjoining grammar

(LTAG) (Joshi, 1985) approach to syntax described by Frank (Frank, 2002), and Frank’s

work plays a crucial role in the translation framework established in Chapter 5. EPs can

be thought of as one way to define the elementary trees of an LTAG.

An EP is associated with exactly one content word (noun, adjective, etc.). As an

example, a parse tree for the sentence the cat who killed the bird leapt over the dog would

make use of EPs for the words cat, killed, bird, leapt, and dog. Function words (in this

sentence the, who, and over) do not have EPs; instead, each function word is incorporated

in the EP of some content word.

Figures 2-15 and 2-16 have examples of EPs. Each EP is an LTAG elementary tree

which contains a single content word as one of its leaves. Substitution nodes (such as NP or

SBAR) in the elementary trees specify the positions of arguments of the content words. Each

EP may contain one or more function words that are associated with the content word. For

verbs, these function words include items such as modal verbs and auxiliaries (e.g., should

and has); complementizers (e.g., that); and wh-words (e.g., which). For nouns, function

words include determiners and prepositions.

The AEPs in our translation work are extended projections of verbs. Each AEP contains

at least one verb, slots for subject and object if they exist, and any function words associated

with the verb. These verbal extended projections are used to model the argument structure

of the verb.

Synchronous Tree-Adjoining Grammar (STAG)

Synchronous tree-adjoining grammar (STAG) is another interesting variant of TAG, with

applications in machine translation and semantic parsing (Shieber & Schabes, 1990). The

main idea in a STAG is to build elementary structures in the grammar that consist of aligned

pairs of elementary trees. Some STAG elementary tree pairs are shown in Figure 2-17. The

alignment between the trees is represented with numbered boxes. For instance, the first row

of the table contains a pair of trees whose root nodes are aligned (S 1 ) and whose subjects

are aligned (NP 2 ). This pair of trees represents a correspondence between the English verb

leapt and its Spanish translation brincó, as well as the argument structures of the two verbs.
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Initial Trees Auxiliary Trees

S
✟✟ ❍❍

NP↓ VP

V

leapt

NP
✟✟ ❍❍

D

the

N

cat

VP

✟✟✟
❍❍❍

VP* PP

✟✟✟ ❍❍❍

P

over

NP
✟✟ ❍❍

D

the

N

dog
NP

✟✟ ❍❍
D

the

N

bird

NP

✟✟✟✟
❍❍❍❍

NP* SBAR

✟✟✟
❍❍❍

WHNP

whoi

S

✟✟✟ ❍❍❍

NP

ǫi

VP
✟✟ ❍❍

V

killed

NP↓

Figure 2-15: Extended projections for the verbs leapt and killed, and for the nouns cat, dog,
and bird. These extended projections could be used to form the sentence The cat who killed
the bird leapt over the dog, among others.

The operations in a STAG are the same as in a regular TAG (i.e., substitution and

adjunction) except that they are synchronized with respect to the alignment specified in

the elementary structures. That is, the aligned tree nodes must be substituted or adjoined

simultaneously into corresponding tree structures, such that when completed, the derivation

process will result in two aligned trees.

From STAG we borrow the notion of alignment between trees that are translations

of one another. However, our translation work does not simultaneously generate two tree

structures as in a STAG. Rather, we begin with a parse in the source language and generate

a parse in the target language. However, our translation process does include a step where

it is necessary to predict an alignment between two parsed structures.
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Initial Trees

S

✟✟✟✟
❍❍❍❍

NP↓ VP

✟✟✟✟
❍❍❍❍

MD

has

VP

✟✟✟
❍❍❍

V

announced

SBAR↓

SBAR

✟✟✟
❍❍❍

CP

that

S

✟✟✟ ❍❍❍

NP↓ VP
✟✟ ❍❍

MD

will

V

resign

NP

✟✟ ❍❍
D

the

N

bastard

NP
✟✟ ❍❍

D

a

N

friend

Auxiliary Trees

NP

✟✟✟ ❍❍❍

NP* PP

✟✟✟ ❍❍❍

P

of

NP

✟✟ ❍❍
D

the

N

senator

Figure 2-16: Extended projections for the verbs announced and resign, and for the nouns
bastard, friend, and senator. These extended projections could be used to form the sentence
A friend of the senator has announced that the bastard will resign, among others. This
example was adapted from (Frank, 2002)
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Initial Trees

S 1

✟✟ ❍❍
NP↓ 2 VP

V

leapt

S 1

✟✟ ❍❍

NP↓ 2 VP

V

brincó

NP 1

✟✟ ❍❍
D↓ 2 N

cat

NP 1

✟✟ ❍❍
D↓ 2 N

gato

NP 1

✟✟ ❍❍
D↓ 2 N

dog

NP 1

✟✟ ❍❍
D↓ 2 N

perro

D 1

the

D 1

el

Auxiliary Trees

VP 1

✟✟✟ ❍❍❍

VP* PP

✟✟ ❍❍
P

over

NP↓ 2

VP 1

✟✟✟
❍❍❍

VP* PP

✟✟ ❍❍
P

sobre

NP↓ 2

Figure 2-17: Some STAG elementary trees. Each row of the table represents a single atomic
structure consisting of an aligned pair of English and Spanish elementary TAG trees. The
alignment of each pair is given by the numbered boxes.

66



Chapter 3

Previous Work

Machine translation is a problem that has intrigued researchers for many years. The his-

tory of MT begins more or less in the 1950s, contemporaneously with the assembly of the

first computers. We begin this chapter with a brief overview of that history. We devote

the remainder of the chapter to a detailed discussion of two contemporary approaches to

statistical MT: phrase-based systems and syntax-based systems.

3.1 A Brief History of Machine Translation

Ever since the era of the first digital computers, the notion of using them to perform

translation has intrigued researchers. The earliest approaches to MT, in the 1950s, used

dictionaries to look up words and hand-coded rules to place them in an order appropriate to

the target language. This approach, when demonstrated on a limited-vocabulary, 250-word

translation task with only six rules (known as the Georgetown-IBM experiment of 1954)

was impressive enough at the time to initiate US government investment in the nascent field

of computational linguistics.

Among the early MT pioneers was Yehoshua Bar-Hillel, a mathematician, linguist, and

philosopher. In his article The Present State of Research on Mechanical Translation (Bar-

Hillel, 1951), he proposed that MT systems ought to include steps involving automatic

stemming and morphological analysis of the source-language words, automatic chunking of

the source text into syntactic units or phrases, followed by rearrangement of the source-

sentence chunks into a logically-equivalent target-language sentence.

By the 1980s and 1990s, many researchers were in fact working on large-scale systems
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that performed such steps as Bar-Hillel suggested several decades earlier. The systems

of that era consisted of large sets of hand-coded, inter-dependent rules; hence the name

rule-based. Many of today’s most successful commercial systems are rule-based.

In general, rule-based systems take either a transfer or interlingua approach to MT. The

transfer approach performs automatic syntactic analysis of the input and transforms the

source-language parse into a target-language parse via hand-coded transfer rules. Verbmobil

is a well-known MT system that has its roots in transfer (Wahlster, 1993). The competing

theoretical framework is the interlingual approach: the meaning of the source-language input

is analyzed with respect to a language-independent interlingua, and the target language

output is generated directly from the interlingual representation. The interlingua expresses

syntactic, semantic, and pragmatic language universals. Dorr (Dorr, 1993) describes an

interlingual approach.

The transfer approach has often been criticized for being overly labor-intensive: trans-

fer rules have to be written for each language pair, in each direction (i.e., for German

and English, one rule set for German-to-English translation and one for English-to-German

translation). For translation involving n languages, the number of rule sets is n(n − 1).

Using an interlingua reduces rule-set complexity to O(n), where n is the number of target

languages. This is because all source languages are mapped to a language-independent rep-

resentation during analysis. However, the interlingua approach has often received criticism

for being too abstract: actually defining a language-independent representation has proven

to be a very difficult task.

In the mid-1990s, researchers at IBM proposed an alternative to rule-based systems

with five statistical MT models of increasing representational power (Brown et al., 1990;

Brown et al., 1993). The power of these statistical models was their ability to generalize

from large amounts of data and to take into account many varied sources of information

within a probabilistic framework. The gleaning of information from text itself turned out to

be a viable alternative to writing complex sets of hand-crafted rules, particularly with the

advent of phrase-based models in the early 2000s (e.g., (Koehn, 2004; Koehn et al., 2003;

Och & Ney, 2002; Och & Ney, 2000)). The success of these systems has had a tremendous

impact on the field of statistical MT.

Recently, and in large part as a reaction to some of the limitations of phrase-based

systems (see Chapter 1), there has been increasing interest among researchers in directly
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interlingua

transfer

direct translation
source text target text

Figure 3-1: The MT pyramid.

modelling syntactic constraints within a statistical framework. Our discriminative, tree-to-

tree model explicitly uses the syntactic information of both the source and target languages.

Other approaches have proposed making use of syntax in the source or target languages

alone.

Approaches to MT have traditionally been summarized by a pyramid such as the one

in Figure 3-1 (from (Hutchins & Somers, 1992)). At the bottom of the pyramid is direct

translation. Direct translation involves little to no intermediate analysis (e.g., syntactic or

semantic). For example, a direct approach would be to translate the words in the source

text using a bilingual dictionary and then reorder them according to lexicalized rules.

The transfer and interlingua approaches depend on an increasing amount of analysis

of the source text and are shown higher up on the pyramid. Transfer involves a language-

dependent analysis of the source at the syntactic and/or semantic level. The resulting struc-

ture is then rearranged to represent a structure conforming to the constraints of the target

language. An interlingual representation, in contrast, should be language-independent and

represent syntactic and semantic universals. Interlingual analyses of the source and target

are supposed to result in the same representation, based on these universals. Translation

therefore occurs immediately following the interlingual analysis.

The IBM models (Brown et al., 1990; Brown et al., 1993) are often described as direct

translation models, and phrase-based methods are in large part direct models as well. Many

of the statistical syntax-based models can be described as transfer approaches, particularly

those that make use of syntactic analyses of both the source and target languages, such as

our tree-to-tree method.
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Figure 3-2: A sample IBM Model alignment.

3.2 Statistical MT: From Word-Based to Phrase-Based Mod-

els

The five statistical models proposed by researchers at IBM (Brown et al., 1990; Brown et al.,

1993) in the early part of the decade had a strong influence on the direction of the field of

MT. The IBM models induce alignments between the words in the source-language input

and those in the target-language translation. These hidden-variable alignments are induced

using a form of the expectation-maximization (EM) algorithm (Dempster et al., 1977) and

help to explain the derivation of the translation. An example IBM model alignment is shown

in Figure 3-2. Note that in this example, the German compound noun markwirtschaften

would ideally be aligned with both market and economies. However, the IBM models

constrain alignments to be many-to-one from from source words to target words, and so the

model has chosen to align markwirtschaften to market. Another property of the IBM models

is the inclusion of a special word, the null word, on the target-language side. The null word

is used to account for words in the source language without any natural target-language

correspondence.

The IBM models are commonly thought of as word-based, or word-for-word, in the sense

that the translational unit is the word. That is, the translation process involves words in

the source language being probabilistically transformed into words in the target language

according to P (f |e), the probability of a source-language word given the target-language

word to which it is aligned.

Phrase-based systems (e.g., (Koehn, 2004; Koehn et al., 2003; Och & Ney, 2002; Och &

Ney, 2000)) advanced the state of the art in statistical MT in around the late nineties. They

surpassed the performance of the word-based IBM models in part by extending the notion

of an alignment to allow phrasal translations. Phrase-based models start with alignments

induced by the IBM Models and augment them to allow alignments between substrings of

the source and target texts (see, for instance, (Koehn et al., 2003)). These aligned substrings

are used in a bilingual phrase-pair dictionary during phrase-based search. The phrase pairs
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do not have to be phrases in any linguistic sense.

Phrase-based models address a severe limitation of the IBM models by allowing many-

to-many alignment mappings between source and target words. Phrase-based alignments

may include such pairings as marktwirtschaften with market economies, fast alle with nearly

all, and als marktwirtschaften betrachtet werden with qualify as market economies.

The use of many-to-many phrasal alignments means that these systems can capture

some lexical reorderings as well as the translation of idiomatic expressions. For example,

consider the English-Spanish phrasal translation pair:

SPANISH: la casa roja

GLOSS: the house red

REFERENCE: the red house

The positions of the English noun house and the adjective red are reversed relative to the

positions of the Spanish noun casa and adjective roja. By learning that these phrases are

common translations of one another, the system has a better chance of outputting the words

in this phrase in the correct order. In contrast, the IBM models have to learn how to reorder

all of the words in the sentence as distinct units.

While the introduction of phrasal alignments was certainly an improvement upon strict

word-based alignments, one criticism of early phrase-based systems has been an over-

dependence on lexical phrase pairs. For instance, as we have seen, Spanish nouns tend

to precede adjectival dependents, while English nouns usually follow. The original phrase-

based systems model this swapping by memorizing lexical phrasal correspondences. How-

ever, they have no mechanism for generalizing this phenomenon to novel input phrases. So

if the phrase

SPANISH: la manzana roja

GLOSS: the apple red

REFERENCE: the red apple

appears during testing but not in the training data used to induce the phrase-pair dictionary,

the system will be unable to use a phrasal translation. Even if the system has seen a similar

phrase (say, la casa roja from above, it has no way of recognizing the similarity between

these phrases.

Some work has been done to give phrase-based systems access to sources of linguistic

information beyond lexical items (such as part-of-speech tags), and thereby endow them
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with increased generalization capability. For instance, the work by (Liang et al., 2006)

has shown some improvement in translation quality by using part-of-speech information in

the distortion model. Also, some important work has been done with factor-based models,

which behave much like phrase-based models while being able take into account additional

information such as morphology, lemmas, and phrase bracketing in the source and/or target

languages during decoding ((Koehn et al., 2007a; Koehn et al., 2007b)).

3.2.1 Phrase-Based Systems: The Underlying Probability Model

In this section, we review the design of a typical phrase-based system. The underlying

probability model is log-linear. It models the conditional probability of a target-language

sentence (T ) given a source-language sentence (S):

Pr(T |S) =
exp

∑
i λihi(S, T )∑

T ′ exp
∑

i λihi(S, T ′)
(3.1)

The λi are weights associated with the feature functions hi(S, T ). The weights are usually

trained using minimum error rate training (Och, 2003), although (Liang et al., 2006) found

an online perceptron training algorithm to be effective as well. There are usually on the

order of ten feature functions, among which may be

• bidirectional phrase models (models that score phrasal translations);

• bidirectional lexical models (models that look up pairs of words from phrasal trans-

lations in a translation dictionary);

• target-language models (often n-gram language models (Jelinek & Mercer, 1980) —

nth order Markov models whose parameters are trained on large amounts of mono-

lingual data; the probability of each word in a phrase is conditioned on the preceding

n − 1 words, and the probability of the phrase is the product of the probabilities the

words);

• distortion models (models that consider how target-language phrases get reordered in

the translation).
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3.2.2 Phrase-Based Search

In general, phrase-based models use a search algorithm similar to the one used by Pharaoh

(Koehn, 2004). Pharaoh relies on a variation of beam search to generate the best target-

language translation given a sentence in the source language. The basic process is a loop

that takes a partially-complete translation and

1. identifies all possible untranslated phrases in the source-language sentence;

2. for each source-language phrase, forms new partial translations by appending a target-

language phrase in the dictionary to the end of the partially-complete translation;

3. scores the newly-formed partial translations;

4. places each partial translation in a stack containing other partial translations with

the same number of already-translated source words.

At the start of the search process, the partial translation is the empty string.

Figure 3-3 shows phrase-based search in progress. The system is expanding a partial

translation of the Spanish sentence Sin embargo, no queda claro si el acuerdo llevará a

progresos poĺıticos en la región. It has already produced translations of four phrases span-

ning nine words, and it now must choose some substring of the remaining Spanish text

to translate and append to the partial translation. In the example, it chooses to trans-

late the phrase a progresos poĺıticos. One possible translation of this phrase, to political

progress, is appended to the partial translation, forming a new partial translation. The

new partial translation will be placed in a stack containing other partial translations that

have covered twelve source words. The stacks are continually pruned so as to retain only

the highest-scoring partial translations. The search continues until there are only complete

translations (i.e., translations which have accounted for all of the words in the source sen-

tence). See (Koehn, 2004) for a more detailed technical description of the search process

used by Pharaoh.

An important characteristic of phrase-based search is that the feature functions (see

Section 3.2.1) must decompose more or less along phrasal boundaries.1 This is so that

the feature functions may be used to score partial translations for pruning the stacks.

1The n-gram language model score can be derived using the previous target-language phrase because the
translation is constructed monotonically.
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Figure 3-3: Phrase-based search.

This constraint on feature functions makes it difficult to evaluate global properties of a

translation. For instance, it is difficult to evaluate a translation during decoding for certain

syntactic properties such as whether each clause contains a verb, or whether the subject

follows or precedes the verb, etc.

3.2.3 Strengths and Limitations of Phrase-Based Systems

From observing the output of phrase-based systems, in our view they are often quite good

at modeling phrasal translations and conveying content words. However, they can also fail

to produce syntactically-appropriate output, output that conveys the roles of these content

words and their meaning in the original sentence.

Consider, for instance, the following English translation, generated by a phrase-based

system trained using over 700,000 German-English sentence pairs from the European Par-

liament dataset (the baseline system described in (Collins et al., 2005)):

GERMAN: die berichte sollen den kandidaten helfen , notwendige refor-
men fortzusetzen und noch bestehende defizite abzubauen
.

GLOSS: the reports should the candidates help , necessary reforms
continue and still existing shortcomings to abolish.
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REFERENCE: the reports are intended to help candidate countries con-
tinue with the necessary reforms and rectify persistent
shortcomings .

PHRASE-BASED: the reports will help the candidate countries , the necessary
reforms continue and residual reducing deficits .

Note, first of all, that the first segment of the phrase-based translation — the reports

will help the candidate countries — is very coherent. Comparing this to the gloss, the

reports should the candidates help, we can see quite clearly that the phrase-based system

is capturing some important phrasal reorderings: the verb help has been repositioned so

that it sits between the auxiliary verb will and the object the candidate countries. Bear in

mind that the phrase-based system achieves this reordering with no explicit knowledge of

source-language or target-language syntax.

In the remainder of the sentence, the phrase-based system outputs all of the important

content words: necessary, reforms, continue, residual, reducing, and deficits. However,

their roles in the sentence are not clear. For instance, it is not clear that the phrase the

necessary reforms is the object of the verb continue. Nor is it clear what role the segment

and residual reducing deficits has to the remainder of the sentence. As a matter of fact, this

segment could be translated as a clause (something like and reduce residual deficits), but

the word reducing is behaving more like an adjective modifying deficits than the main verb

of a clause.

A few additional examples of phrase-based output, taken from the test set described in

(Collins et al., 2005), illustrate some of the syntactic errors this system tends to make when

translating from German to English. We present two examples in detail here before making

some general observations.

Example 1

GERMAN: damit die umsetzung der menschenrechte jedoch auch prak-
tisch überwacht werden kann , müssen der union eindeutige
regelungen über mögliche sanktionsmechanismen gegenüber
den mitgliedstaaten zur verfügung stehen .
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GLOSS: for the implementation of human rights however also practi-
cal monitored be can , must the union clear rules regarding
possible sanction mechanisms against the member states to
be used .

REFERENCE: for the implementation of human rights to be monitored
in practice also , however, the union must have clear rules
regarding possible sanction mechanisms to be used against
member states .

PHRASE-BASED: thus the implementation of human rights practical can be
monitored , the union must have clear rules on possible
penalties against the member states are available .

The German sentence in this example contains two clauses: damit die umsetzung... and

müssen der union.... In the original text, the first clause is a subordinate clause that modifies

the second, independent clause. In the phrase-based translation, however, this relationship

has been lost, and both clauses read more like independent clauses. Furthermore, in the

first clause, the phrase-based system has introduced the adjective practical, a translation

of praktisch, and placed it before the verb phrase (can be monitored). In the reference

translation, this same word has been translated as the adverbial in practice, modifying the

verb monitored. In the second clause, the system has introduced two finite verb phrases:

(must have and are). This mishandling of verb phrases and their modifiers seems to be

a common error of phrase-based systems. Phrase-based systems do not overtly model the

appropriate handling of such phenomena.

Example 2

GERMAN: herr präsident , meine sehr verehrten kolleginnen und kol-
legen ! unter dem beifall der gerichtshöfe in luxemburg
und straßburg hat der konvent einen entwurf einer grun-
drechtecharta in bemerkenswert ausgewogener weise for-
muliert und in die hände des rates gelegt .

GLOSS: mr president , my very honored ladies and gentlemen ! with
the approval of the courts in luxembourg and strasbourg has
the convention a draft of a charter of fundamental rights in
a remarkably balanced way formulated and in the hands of
the council delivered .
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REFERENCE: mr president , ladies and gentlemen, with the approval of
the courts in luxembourg and strasbourg, the convention
has put together a draft charter of fundamental rights which
is remarkably balanced , and has delivered it into the hands
of the council .

PHRASE-BASED: mr president , ladies and gentlemen , under the applause of
the courts in luxembourg and strasbourg , the convention
has a draft a charter of fundamental rights in a balanced
way remarkable and formulated in the hands of the council
laid .

This example contains two clauses: unter dem beifall... and und in die hände.... The

phrase-based system introduces the conjunction and before formulated, the main verb,

thereby isolating it from the first clause. This is another example of a poorly-constructed

verb phrase. In the second clause, the prepositional phrase in the hands of the council

appears before the verb it modifies (laid), which is unusual in English. This clause is also

a missing an object, in this case the referring pronoun (it). I.e., the final part of the sen-

tence should say something like ...laid it in the hands of the council. These are examples of

misplaced or missing verbal arguments and modifiers.

Missing arguments and poorly-constructed verb phrases are problems that are likely to

arise in phrase-based systems due to their indifference to syntax. In examples 2, 4, and 5

(examples 3, 4, and 5 can be found in the table in Figure 3-4), the phrase-based system has

produced clauses that are missing verbal arguments. Either the system has dropped them

from the original text (example 4) or failed to produce an argument for a verb that requires

one (examples 2 and 5). Examples 1, 4, and 5 demonstrate what can go wrong with verb

phrases in a phrase-based system: in example 1, there are two finite verbs in the clause;

example 4 contains two ungrammatical verb phrases; example 5 is missing a verb.

As we saw in the first example, the misplacement of modifiers and arguments with

respect to other elements in the sentence can also be a problem. For instance, the misplace-

ment of verbs with respect to their modifiers, as in examples 1, 2, and 3 (see Figure 3-4

for examples 3, 4, and 5), is a very common error for German-to-English translation. Ar-

guments such as subjects and objects may also need to be repositioned relative to the

source-language input in order to produce syntactically-sound output (see, for instance,

examples 2 and 3).
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Phrase-based systems generally do not model the syntactically-correct construction of

clauses and verb phrases; nor do they model the argument structure of verbs. As we

saw during the discussion of phrase-based search in Section 3.2.2, it would be difficult to

incorporate features to sensitize the model to these phenomena: it would require analysis

that could cross phrasal boundaries, and phrase-based search generally uses features that

decompose along phrasal (non-syntactic) boundaries. Our AEP approach directly addresses

the construction of satisfactory verb phrases by explicitly modeling clausal main verbs and

their accompanying modals and auxiliaries.

3.3 Syntax-Based Statistical Models

The challenge of incorporating syntactic information in a statistical framework has been of

increasing interest to many researchers in the past several years. The tree-to-tree discrim-

inative model we present in this thesis is one possible approach to statistical syntax-based

translation. In this section we present a review of several representative papers in the field

to offer a sense of the range of possibilities.

3.3.1 Some Differences Among Syntax-Based Systems

The body of work we present resists a definitive taxonomy. Rather, there appear to be a

few broad dimensions along which the approaches tend to differ. We describe two of these

dimensions here before presenting the literature review, arranged simply in chronological

order.

Approaches to Reordering A concern of general interest to many researchers working

on MT is the reordering problem: how to find a syntactically-satisfying order for the words

in the target-language translation. In syntax-based statistical models in particular, there

may be structural information available to the system to help it make appropriate decisions.

Researchers developing such models have devised different ways of leveraging this informa-

tion. For instance, restructuring approaches such as (Collins et al., 2005; Xia & McCord,

2004; Nießen & Ney, 2004) make use of linguistic information (syntactic and/or morpho-

logical) to restructure the source-language sentence in some way to make reordering easier.

The approach of (Yamada & Knight, 2001) implements reordering by modeling permuta-
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EXAMPLE 3

GR: ich gehe mit ihm konform , dass es notwendig ist , das institutionelle gle-
ichgewicht durch eine politische aufwertung sowohl der kommission als auch des
rates aufrechtzuerhalten .

GL: i go with him conform , that it necessary is , the institutional balance by a political
revaluation both of the commission as also the council to maintain .

R: i agree with him on the need to maintain the institutional balance and enhance the
role , in political terms , of both the commission and the council .

P: i am with him that it is necessary , the institutional balance by means of a political
revaluation of both the commission and the council to maintain .

EXAMPLE 4

GR: unabhängig davon möchte ich sie jedoch bitten , diese zukunft nicht schon für
morgen zu erwarten , denn sie wird schrittweise , stein für stein , errichtet .

GL: independent thereof would like i you however ask , this future not yet for tomorrow
to expect , because it will be gradually , stone for stone , constructed .

R: that is why i invite you , in spite of everything , not to throw yourselves headlong
into the future , as this is a future that should be built step by step , and stone by
stone .

P: irrespective of this , however , i should like to ask for this future is not already
expect tomorrow , because they will gradually , stone for stone , erected .

EXAMPLE 5

GR: fünftens scheint uns auch die haushaltsvorausschau nicht angemessen zu sein .

GL: fifthly feel we also the budgetary forecasts not adequate are .

R: fifthly , we also feel that the budgetary forecasts are not sufficient .

P: fifthly , seems to us the budget perspectives not appropriate .

Figure 3-4: More examples of phrase-based output (P). R is a human-generated translation,
GL is a word-for-word translation, and GR is the German input.

79



tions of children nodes in parse trees. Several approaches (e.g., (Chiang, 2005; Wu, 1997))

use synchronous grammar formalisms to model reordering. Some approaches involving de-

pendency structures may use heuristics (Lin, 2004) or separate reordering models (Menezes

& Quirk, 2007) to flatten and linearize target-language dependency structures. (Riezler

& Maxwell, 2006) use a grammar-based generator to flatten dependency structures, then

apply language and reordering models to generate a translation. (Alshawi et al., 2000) con-

struct transducers that process and linearize automatically-induced dependency structures.

Some tree-to-string models using constituent trees (e.g., (Galley et al., 2006; Huang et al.,

2006)) embed reordering information in tree-to-string transfer rules. (Marcu et al., 2006)

use target-language syntax over phrases that may give their model more detailed informa-

tion when it comes to their reordering. The model of (Chiang, 2005) induces CFG-like rules

from an unannotated parallel corpus, allowing for variables injected in lexical phrases that

may help with reordering.

The Use of Syntax An important distinction between the various syntax-based models

is whether syntax is used on the source side only, the target side only, or on both sides.

We call these approaches tree-to-string, string-to-tree, and tree-to-tree, respectively. Among

tree-to-string models, for instance, are restructuring models (Collins et al., 2005; Xia &

McCord, 2004; Nießen & Ney, 2004) that use source-side syntax to rearrange the input to

try to simplify the translation task. The dependency models of (Menezes & Quirk, 2007)

and (Lin, 2004) use source-side dependency parses to induce target-language dependency

structures. Alternatively, many systems make use of target-side syntax. Among these are

(Marcu et al., 2006; Galley et al., 2006; Yamada & Knight, 2001). In general, there has

been a good deal of literature on tree-to-string theory and methods, for example (Huang

et al., 2006; Galley et al., 2006; Graehl & Knight, 2004; Gildea, 2003).

There is also a some literature on tree-to-tree models. With the steady improvement

in performance of parsers of various languages, tree-to-tree systems have arguably become

more feasible. (Nesson & Shieber, 2007; Melamed, 2004; Graehl & Knight, 2004; Eisner,

2003) offer some important theoretical results involving tree-to-tree algorithms. (Ding &

Palmer, 2005) present a system that maps dependency trees in the source language to

dependency trees in the target language. The work of (Gildea, 2003) also involves methods

that make use of syntactic information in both the source and target languages. (Riezler
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& Maxwell, 2006) employ LFG grammars of both the source and target languages, and

(Nesson et al., 2006) present a method using synchronous tree-insertion grammars.

Finally, there are some methods that use syntactic formalisms such as synchronous

context-free grammars (CFG) without committing to any particular grammar. Chiang

(Chiang, 2005) calls these systems formally syntactic as opposed to linguistically syntactic.

Among such approaches are (Chiang, 2005) and (Wu, 1997), both of which describe systems

that learn a grammar that can simultaneously generate two CFG trees.

3.3.2 Literature Review

(Wu, 1997)

Wu describes early work on a formalism called inversion transduction grammar that can

be used to parse two languages synchronously with a very simple inversion ordering rule.

The formalism consists of context-free grammar rules that simultaneously generate both

nonterminals (common to both languages) and terminal symbols. The child nodes of any

left-hand side nonterminal may be generated in inverted order (left-to-right in one language

and right-to-left in the other). Wu presents an EM-style (Dempster et al., 1977) algorithm

for carrying out the synchronous parsing.

(Alshawi et al., 2000; Alshawi, 1996)

The work of (Alshawi et al., 2000) describes methods for building a translation model from

automatically-learned dependency head transducers. The model takes as input an unan-

notated parallel corpus and, using a dynamic programming algorithm, learns dependency

structures over the translation string pairs. The dependency structures allow for a syn-

chronous, hierarchical alignment between the two languages. Head transducers are then

constructed using the induced dependency structures.

(Yamada & Knight, 2001; Yamada & Knight, 2002; Charniak et al., 2001)

Yamada and Knight describe methods that make use of syntactic information in the tar-

get language alone. Working within a noisy-channel framework, they present a model for

P (f |e), the probability of a source-language string given a target-language parse tree. The

nodes of the input tree are probabilistically subjected to three transformative operations:

a reordering operation, an insertion operation, and a translation operation. The source-

language string is then read off of the leaves of the transformed tree. To train their model,
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Yamada and Knight use a variant of EM. A human evaluation found word alignments in-

duced by their syntax-based model to be of higher quality than those induced by IBM Model

5. In (Yamada & Knight, 2002), the authors present a decoding algorithm for their model.

They also extend the earlier model to handle phrasal translations. In Charniak et al., the

translation model of (Yamada & Knight, 2001) is combined in a noisy-channel framework

with an English language model based on the syntactic parser of (Charniak, 2000).

(Fox, 2002)

Fox carries out a study on phrasal cohesion between French and English. Using a manually-

aligned corpus with automatically-generated parses of the English sentences, Fox examines

the number of head and modifier crossings between the two languages. While the numbers

differ dramatically depending on the experimental setup, the author concludes that there

is overall less cohesion between French and English than one might expect. Much of the

difference appears to be due to three identifiable structural divergences between the lan-

guages, while a good portion is due to errors, rewordings, and reorderings in the corpus.

The number of crossings is smaller when dealing with dependency structures instead of

constituent structures.

(Eisner, 2003)

Eisner discusses methods for learning non-isomorphic tree mappings in the context of the

synchronous tree-substitution grammar (TSG) formalism.2 He presents algorithms for train-

ing, decoding, and deriving the single best syntactic alignment between two trees. The

methods are based on an EM-type algorithm (Dempster et al., 1977). Eisner mentions

that the methods described were implemented in a Czech-to-English translation system,

although no results are reported.

(Gildea, 2003)

Gildea develops tree-to-string and tree-to-tree models for machine translation that specif-

ically address non-isomorphic alignments. Like (Ding & Palmer, 2005; Eisner, 2003; Fox,

2002), Gildea makes the point that for many language pairs, syntactic divergences may be

quite common, either because the languages truly differ syntactically or because the corpus

translations are sufficiently different. Gildea addresses the problem of non-isomorphism

2TSG is like tree-adjoining grammar, TAG, except that it uses only the substitution operation, not the
adjunction operation.
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between tree structures by introducing a clone operation that allows for the copying of

a subtree in position α to a different position β. Cloning, combined with a deletion op-

eration, permits more dramatic restructuring of a parse tree than a model that permits

solely insertion, reordering of child nodes, and translation (e.g., (Yamada & Knight, 2001)).

Gildea tests the alignments generated by his tree-to-string and tree-to-tree models in a

Korean-to-English translation task. His models show an improvement (in terms of align-

ment error rate) over IBM Models 1, 2, and 3, and other syntax-based statistical systems

trained without the clone operation.

(Galley et al., 2004)

Galley et al. aim to test the complexity of transformation rules necessary to carry out

automatic translation. The authors describe methods for the extraction of tree-based rules.

Their methods depend on the availability of a target-language parser and a word-aligned

parallel corpus. They conclude that rules that perform only local child reorderings are not

adequate for producing high-quality translations.

(Graehl & Knight, 2004)

Graehl and Knight describe methods for training tree transducers. A tree transducer is a

generalization of a finite-state transducer: a finite-state transducer is restricted to trans-

formations on strings, while a tree transducer is able to compute transformations on trees.

The paper focuses on an algorithm for training a tree transducer, i.e., for assigning weights

to each of the productions. The algorithm is a generalization of the forward-backward algo-

rithm for training a finite-state transducer. A tree transduction framework can be used as a

model for a tree-to-tree or tree-to-string machine translation system. For example, Graehl

and Knight describe a set of tree-transducer productions to implement the tree-to-string

MT system of (Yamada & Knight, 2001).

(Lin, 2004)

Lin presents a method for translation using dependency trees in a probabilistic framework

that models P (T |S), the probability of a target-language tree given a source-language tree.

The method involves inducing a set of transfer rules that are used to produce translations.

The transfer rules express a mapping from source-language to target-language dependency

trees. Lin presents an algorithm for extracting transfer rules from a parallel corpus of parsed

source-language sentences and unannotated target-language sentences. He also presents a
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method for decoding and formulates it as a graph-theoretic problem he calls Minimum Path

Covering of Trees.

(Melamed, 2004)

Melamed establishes a theoretical framework for generalized synchronous parsing and trans-

lation using multitext grammars (a generalization of context-free grammars to the syn-

chronous case). He describes an abstract design for a full, n-dimensional translation system

starting with nothing other than some parallel text and at least one monolingual treebank.

With these resources, the system induces a parallel treebank; from the parallel treebank, it

induces a probabilistic multitree grammar; the grammar enables the system to decode new

inputs and produce translations.

(Nießen & Ney, 2004; Nießen & Ney, 2001)

Nießen and Ney investigate two reordering rules for translation between English and Ger-

man. The rules address the phenomena of (1) German separable verb prefixes,3 and (2)

interrogative word order.4 To deal with German separable verb prefixes, the authors pre-

process their training data to identify the prefixes and prepend them to the verb to which

they belong (for German-to-English translation). When translating in the opposite direc-

tion, they train their MT model to attach the prefix to the verb and then use a separate

postprocessor to find the most likely placement. For interrogatives, they preprocess the

training data to normalize their form such that they more closely resemble declaratives.

Postprocessing is necessary to map the normalized interrogatives to their correct form in

the target language. Both of these techniques generate improved scores according to four

different scoring metrics compared to a baseline system that does not use pre-translation

reordering.

(Och et al., 2004)

The work by Och et al. incorporates syntactic information through reranking approaches

applied to n-best output from phrase-based systems. Several features are defined, including

simple word-level feature functions (e.g., IBM Model 1 score), shallow syntactic feature

functions (e.g., probabilities derived from part-of-speech sequences), and tree-based feature

functions (including one feature that uses the score derived from the tree-to-string model

3In German, certain verbs contain prefixes that are removable and may be placed elsewhere in the sentence
4Interrogatives in both English and German have different word order than declaratives.
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described in (Yamada & Knight, 2001) and (Yamada & Knight, 2002)). Of all the features

described, the one that has the largest impact on BLEU score is the IBM Model 1 score.

(Xia & McCord, 2004)

Xia and McCord present a method for automatically learning rewrite rules that reorder a

source-language parse tree such that it more closely resembles the word order of the target

language. This work is very similar to the approach by (Collins et al., 2005), except that in

that work the six rules are specified by hand, whereas in this work, over 3 million rewrite

patterns are automatically generated (only 56K are retained for use after filtering, and only

1.4 patterns per sentence are actually employed, on average). The experimental results

show more noted improvement on out-of-domain test data than in-domain.

(Chiang, 2005)

Chiang shows significant improvements in translation accuracy using learned hierarchical

phrases in a synchronous probabilistic context-free grammar. The technique he describes

involves inducing PCFG-like rules from a parallel corpus devoid of any a priori syntactic

annotations. Chiang uses a feature-based log-linear model to determine the weights on the

extracted rules, and a form of beam-search to implement decoding. Chiang’s model allows

for the learning of templates involving a mixture of lexical items and phrasal placeholders,

thereby facilitating the reordering problem.

(Collins et al., 2005)

Collins et al. describe an approach that involves parsing and reordering the input prior to

translating it. In their experiments, they work with translation from German to English,

two languages that differ sufficiently in word order to make the results meaningful. The

reordering transformations that are applied to the parsed input are intended to alter the

input such that it more closely resembles the word order of the target language. The

six transformations they apply are hand-written. The results show an improvement over

a standard phrase-based system both in terms of BLEU score and in terms of a human

evaluation.

(Ding & Palmer, 2005)

Ding and Palmer describe a method for producing target-language translations via a tree-to-

tree transduction method using dependency trees. They induce a grammar from an aligned,
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parsed parallel corpus (Chinese, English); the grammar relates subtrees of the dependency

trees (elementary trees) to one another in an isomorphic manner. To decode a sentence, it is

first parsed into a dependency tree and then transduced into a target-language dependency

via an HMM-like probabilistic transduction process that uses the induced grammar. The

ordering of related elementary trees is kept constant through the transduction from, in this

case, Chinese to English, both SOV languages.

(Galley et al., 2006)

Working within a noisy-channel framework, the authors define a probability distribution for

Pr(f |π), the probability of a source-language string f given an target-language tree π. Like

(Galley et al., 2004), this model defines this probability in terms of a derivation dependent on

the extraction of tree-based rules. Unlike the earlier work, however, this model’s extracted

rules are larger in scope and more complex, conditioning on more syntactic context. The

reported BLEU scores (on both Arabic-to-English and Chinese-to-English) are around six

points lower than a state-of-the-art alignment template model. However, they represent a

3.63 BLEU point increase over the (Galley et al., 2004) model.

(Huang et al., 2006)

The authors make use of parse trees on the source-language side in an English-to-Chinese

translation system. The parsing is done in an independent step, and then a derivation

from the English parse tree to a Chinese string is computed. The left-hand sides of the

rules (used to form the derivations) are allowed to span multiple levels in the tree; in other

words, they exhibit the TAG property of extended domain of locality. The tree-to-string

probability model is combined with a Chinese language model and a sentence-length model

in a log-linear framework. When compared with a phrase-based model, the Huang et al.

model scores about three BLEU points higher.

(Marcu et al., 2006)

Marcu et al. make use of target-side syntax to augment source-target phrase pairs. The

syntactic information is used in the extraction of tree-to-string rules that are used to form

derivations of 〈source-string,target-tree,alignment〉 triples. Probabilities on these rules are

estimated using frequency counts. The syntax-augmented models (the authors define five

variations) are employed in the context of a log-linear framework. All of the models out-

perform a phrase-based system in Chinese-to-English translation, both according to BLEU
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score and in a human evaluation.

(Nesson et al., 2006)

The work by Nesson et al. is representative of a larger body of work that has been conducted

by Shieber, Nesson, and Rush in the past few years (Shieber, 2007; Nesson & Shieber, 2007;

Nesson & Shieber, 2006) with the larger goal of exploring the use of synchronous grammars

for machine translation. (Nesson & Shieber, 2006) and (Nesson & Shieber, 2007) both

investigate the use of synchronous tree-adjoining grammar, in particular, as a formalism

with sufficient expressivity, efficiency, and simplicity to meet the demands of the translation

task. In (Nesson et al., 2006) the authors implement an MT system based on probabilistic

tree-insertion grammar5 and trained on a small amount of data (around 15K sentences).

The resulting system outperforms a phrase-based system, when trained using the same data,

in terms of BLEU score and in human evaluations for fluency and adequacy.

(Quirk & Corston-Oliver, 2006)

Quirk and Corston-Oliver investigate the impact of parse quality on the output of a statis-

tical syntax-based MT system. The system they test on is the dependency treelet system

described in (Menezes & Quirk, 2007). The experimental method involves using varying

amounts of training data to produce English parsers of varying quality. These parsers

were then used in the context of the syntax-based system. For both English-to-Japanese

and English-to-German translation, the MT systems trained with better-quality parsers

produced higher-quality translations.

(Riezler & Maxwell, 2006)

Riezler and Maxwell describe a method for learning a probabilistic model that maps LFG

parse structures in German into LFG parse structures in English. The method uses LFG

parsers along with word alignment information to extract aligned LFG transfer rules. A

chart-based algorithm is used to generate candidate translations, and a translation is se-

lected using a beam search over the transfer chart. Features are computed over the candidate

translations, with weights on the features being trained using minimum error-rate training.

Riezler and Maxwell’s system performs comparably to a standard phrase-based system us-

ing the NIST metric for evaluation when the test set is restricted to in-coverage sentences

5Tree-insertion grammar (Schabes & Waters, 1995) is a tree-based formalism similar to TAG with both
substitution and adjunction. Restrictions on adjunction and the form of elementary trees allows for cubic-
time monolingual parsing.
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(roughly, sentences that parse completely), but performs comparably to IBM Model 4 with

an unrestricted test set. In a human evaluation, their system was found to improve on

in-coverage sentences in terms of both translational adequacy and grammaticality.

(Menezes & Quirk, 2007; Quirk et al., 2005)

The methods of Menezes and Quirk build on an earlier dependency treelet model (Quirk

et al., 2005) that makes use of dependency parses of the source language. In the treelet

model, source-side parses are projected onto the target-language translation via a set of word

alignments. Dependency treelets are then extracted from the aligned, parallel dependency-

tree corpus. Several features including an order model are trained and combined using a

log-linear framework. The best results for the system (translating from English into French)

are obtained using a bottom-up exhaustive search method; however, the search space has

to be pruned substantially in order for the method to work. In the newer work, Menezes

and Quirk take advantage of the fact that reordering is decoupled from lexical choice in the

treelet model and focus on improving the reordering model so as to reduce the size of the

search space in a more informed manner. While the results show only a slight improvement

(in terms of BLEU score) over the original treelet method, the authors point out that the

new method is a lot more time-efficient.

(Wang et al., 2007)

This work suggests that restructuring the trees in a treebank used in syntax-based MT may

lead to improved translation quality. The authors present several methods for binarizing

trees, including a method that induces binarizations using the EM algorithm (Dempster

et al., 1977). These methods are tested in the context of a syntax-based system based on

the work described in (Zhang et al., 2006) and (Galley et al., 2006). The system performs

translation from Chinese to English and yields a BLEU score of 37.94, the highest score on

this particular test set to date.
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Chapter 4

A Discriminative Model for

Statistical Parsing

In this chapter, we present a syntactic parser for Spanish that could easily be used for

AEP-based MT. The parser uses a linear structured prediction model to rerank parses

in an n-best list generated by a PCFG-based first-pass model.1 The linear model allows

us to incorporate arbitrary global features of parse trees in the second pass to select the

best parse among the candidates. The reranking model reaches 85.1% F1 accuracy on the

Spanish parsing task.

The first-pass parser is a lexicalized PCFG model that incorporates features based on

Spanish morphology. The morphologically-informed first-pass parser itself achieves an F1

constituency score of 83.6%, an absolute improvement of 1.4% over a baseline which makes

little use of morphology.

Throughout this chapter, we refer to the morphological model as Model M and the

reranking model as Model R. This chapter is based on work originally described in (Cowan

& Collins, 2005).

4.1 Introduction

A clear application of statistical parsing is to tree-to-tree MT approaches. However, early

methods for statistical parsing were mainly developed through experimentation on English

data sets. While subsequent research has focused on applying these methods to other lan-

1See Chapter 2 for an explanation of linear structured prediction models, reranking, and PCFGs.
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guages, there is often a gap between the performance of English parsers and non-English

parsers. There has been widespread evidence that new languages exhibit linguistic phe-

nomena that pose considerable challenges to techniques originally developed for English;

because of this, an important area of current research concerns how to model these phe-

nomena more accurately within statistical approaches. In this chapter, we investigate this

question within the context of parsing Spanish. We develop two models that incorporate

detailed features in a Spanish parser. The baseline model, which also forms the underlying

model for our Model M parser, is a lexicalized PCFG originally developed for English.

We incorporate morphology into the PCFG model (the Model 1 parser in (Collins,

1999)) by modifying its part-of-speech (POS) tagset; in this chapter, we explain how this

mechanism allows the parser to better capture syntactic constraints.

All of the experiments in this paper have been carried out using a freely-available Spanish

treebank produced by the 3LB project (Navarro et al., 2003). The version of the treebank

used in this chapter contains around 3,500 hand-annotated trees. Each tree encodes a large

amount of morphological information. One of the research questions posed by this chapter

is to what extent we can make use of all this information: does it help to use as much

information as we can? We expect there to be diminishing returns since adding features

adds complexity to the model, complexity that it may not be able to handle given a limited

amount of training data. If this is the case, then is there a subset of morphological features

with strong predictive power? If so, why is this subset more predictive than other subsets?

To get at these questions, we use development data to test the performance of sev-

eral first-pass Model M parsers, each incorporating a subset of morphological information.

We have found that those models sensitive to less morphology do exhibit better parsing

performance than those sensitive to more. The highest-accuracy model on the develop-

ment set is sensitive to the mode and number of verbs, as well as the number of adjec-

tives, determiners, nouns, and pronouns. On test data, this model obtains an F1 accuracy

of 83.6%/83.9%/79.4% for labeled constituents, unlabeled dependencies, and labeled de-

pendencies, respectively. The baseline model, which makes almost no use of morphology,

achieves 81.2%/82.5%/77.0% in these same measures.

In a set of reranking experiments, we use the highest-performing Model M parser as

the first-pass parser. Here we investigate the efficacy of a reranking approach for parsing

Spanish by using arbitrary structural features in a second pass. Previous work in statistical
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parsing (Collins & Koo, 2005) has shown that applying reranking techniques to the n-best

output of a base parser can improve parsing performance. Applying the exponentiated

gradient reranking algorithm (Bartlett et al., 2004) to a linear model trained using the n-

best output of our morphologically-informed Model M gives us similar improvements. This

reranking model – Model R – performs at 85.1%/84.7%/80.2% F1 accuracy for labeled

constituents, unlabeled dependencies, and labeled dependencies.

4.2 Background: Spanish Morphology

Model M makes use of Spanish morphology to improve the performance of a baseline PCFG

model. Relative to English, Spanish has a rich set of morphological characteristics. Fig-

ure 4-1 illustrates how the forms of Spanish nouns, determiners, and adjectives reflect both

number and gender. Spanish pronouns also reflect gender, number, person, and case, and

Spanish verbs inflect for number and person. Figure 4-3 gives a more global picture of

Spanish morphological features for various parts of speech. In general, even when both

Spanish and English exhibit the same morphological phenomenon, Spanish is usually far

more morphologically complex. For instance, English verbs usually only have two present-

tense forms, one for the 3rd-person singular (e.g., he/she/it eats), and one for everything else

I/you/we/they eat); Spanish, on the other hand, generally has six distinct inflected forms

for the present tense alone, one for each possible pairing of number (singular or plural) and

person (1st, 2nd, or 3rd, see Figure 4-2).

The morphological features used in Figure 4-3 are explained below:

• Gender: Grammatical gender signifies noun classes, which in Spanish are masculine or

feminine; in rare cases, Spanish gender can also be neutral. Use of gender in English is

fairly limited (e.g., words like actor and actress have a gender associated with them),

whereas in Spanish, nearly every noun has a gender.

• Number: Grammatical number in general refers to count distinctions, which in Span-

ish (like English) is the difference between singular or plural. Spanish inflects deter-

miners, nouns, pronouns, adjectives, and verbs for number, whereas English only does

so for nouns, pronouns, and, to a very limited extent, verbs.

• Person: Grammatical person distinguishes between different types of referents in a
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Figure 4-1: Morphological agreement in Spanish is sometimes constrained by syntax. The
tree in the upper left (el gato negro, or the black cat) shows how the number (singular)
and gender (masculine) of the determiner and adjective are constrained to agree with the
noun. Likewise for the tree in the upper right, headed by a plural masculine noun (gatos,
or cats): here the determiner and noun both take the plural, masculine form. The trees on
the bottom illustrate the same concept for a head noun that is feminine (caja, or box).

sentence; in Spanish (as in English), these different types are first person (i.e., I, we),

second person (i.e., you), or third person (i.e., she, he, it). Verbal inflection for person

is far more extensive in Spanish than in English.

• Mode: Grammatical mode or mood describes the relationship of a verb with reality or

intent; Spanish is usually said to have two modes: indicative and subjunctive. While

English could also be said to distinguish these modes, use of the subjunctive is more

frequent in Spanish than in English.

• Case: The grammatical case of a noun or pronoun indicates its function in a phrase

or sentence. In Spanish, pronomial case distinctions are made for the nominative,

accusative, and dative cases. This is also true for English, although there are more

Spanish pronomial forms than there are English.

Spanish morphology is often constrained by syntax, a fact which may be exploited in

automatic syntactic parsing. For instance, any constituent noun, adjective, and determiner

in a noun phrase is constrained to agree in number and gender with the head noun (see

Figure 4-1); a verb is constrained to agree in number and person with its subject (see Fig-

ure 4-2). This means that morphology offers important structural clues about the syntactic
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S
✟✟ ❍❍

NP

P

yo

VP

brinqué

S

✟✟✟
❍❍❍

NP

P

nosotros

VP

brincamos

S

✟✟✟ ❍❍❍

NP

P

tú

VP

brincaste

S

✟✟✟
❍❍❍

NP

P

vosotros

VP

brincasteis

S

✟✟✟
❍❍❍

NP

P

ella/él/Usted

VP

brincó

S

✟✟✟✟

❍❍❍❍

NP

P

ellos/ellas/Ustedes

VP

brincaron

Figure 4-2: Spanish verb forms are inflected to agree with the person and number of their
subject. In this figure, six preterite (past tense) verb forms are shown for each of first,
second, and third person, singular and plural.

CATEGORY gender number person mode case

noun
√ √

verb
√ √ √

determiner
√ √

adjective
√ √

pronoun
√ √ √ √

Figure 4-3: Spanish morphological features according to part-of-speech category.
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dependencies in a Spanish sentence.

4.3 Models

This section details our two approaches for adding features to a baseline parsing model.

First, we describe how morphological information can be added to a parsing model by

modifying the POS tagset. Second, we describe an approach that reranks the n-best output

of the morphologically-rich parser, using arbitrary, general features of the parse trees as

additional information.

4.3.1 Model M: Adding Morphological Information

We incorporate morphological information into our Model M parser by modifying the POS

tagset of a lexicalized PCFG2 — the Model 1 parser described in (Collins, 1999) (hereafter

Model 1).

As we mentioned in Section 4.1, the trees in the 3LB corpus contain a lot of annotated

morphological information. One of the questions we aim to address in this chapter is to

what extent we can make use of this information. In order to answer to this question, we

created different models corresponding to distinct POS tagsets, each one encoding a subset

of the information available to us. We will evaluate the performance of each of these parsers

to test the efficacy of each subset.

The table in Figure 4-4 shows the complete subset of morphological features we con-

sidered when forming Spanish POS tagsets.3 A parser trained using a certain tagset will

be sensitive to the morphological features it encodes. There are 22 morphological features

in total in this table; different POS tagsets can be created by deciding whether or not to

include each of these 22 features, meaning that there are 222 different tagsets we could have

experimented with. For instance, one particular tagset might encode the modal information

of verbs. This tagset would contain six POS tags for verbs (one for each mode – indicative,

subjunctive, imperative, infinitive, gerund, and participle) instead of just one. A tagset

that encodes both the number and mode of verbs would have 18 verbal POS tags, assuming

three values (singular, plural, and neutral) for the number feature.

2Hand-crafted head rules are used to lexicalize the trees (see Appendix A).
3In other words, this is the union over all the subsets of features we experimented with. There are some

features included in the treebank that we never used; they are not included in the table.
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Category Attributes Values

Adjective
gender masculine, feminine, common
number singular, plural, invariable
participle yes, no

Determiner

gender masculine, feminine, common, neutral
number singular, plural, invariable
person first, second, third
possessor singular, plural

Noun
gender masculine, feminine, common
number singular, plural, invariable

Verb

gender masculine, feminine
number singular, plural
person first, second, third

mode
indicative, subjunctive, imperative,
infinitive, gerund, participle

tense present, imperfect, future, conditional,past

Preposition
gender masculine, feminine
number singular, plural
form simple, complex

Pronoun

gender masculine, feminine, common, neutral
number singular, plural, invariable
person first, second, third
case nominative, accusative, dative, oblique
possessor singular, plural

Figure 4-4: A list of the morphological features we used to create our models. For suc-
cinctness, we only list attributes with at least two values. See (Torruella, 2000) for a
comprehensive list of the morphological attributes included in the Spanish treebank.

The Effect of the Tagset on Collins’ Model 1

Modifying the POS tagset allows Model 1 to better distinguish events that are unlikely

from those that are likely, on the basis of morphological evidence. An example will help to

illustrate this point.

Model 1 relies on statistics conditioned on lexical headwords for practically all param-

eters in the model. This sensitivity to headwords is achieved by propagating lexical heads

and POS tags to the non-terminals in the parse tree. Thus, any statistic based on head-

words may also be sensitive to the associated POS tag. For instance, consider the subtree

in Figure 4-5. Note that this structure is ungrammatical because the subject, gatos (cats),

is plural, but the verb, corrió (ran), is singular. In Model 1, the probability of generating
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S(corrió,v)

✟✟✟✟
❍❍❍❍

NP(gatos,n) VP(corrió,v)

Figure 4-5: An ungrammatical dependency: the plural noun gatos is unlikely to modify the
singular verb corrió.

the noun phrase (NP) with headword gatos and headtag noun (n) is defined as follows:4

P (gatos, n, NP | corrió, v, S, VP) = P1(n, NP | corrió, v, S, VP) ×

P2(gatos | n, NP, corrió, v, S, VP)

The parser smooths parameter values using backed-off statistics, and in particular smooths

statistics based on headwords with coarser statistics based on POS tags alone. This allows

the parser to effectively use POS tags as a way of separating different lexical items into

subsets or classes depending on their syntactic behavior. In our example, each term is

estimated as follows:

P1(n, NP | corrió, v, S, VP) = λ1,1P̂1,1(n, NP | corrió, v, S, VP) +

λ1,2P̂1,2(n, NP | v, S, VP) +

λ1,3P̂1,3(n, NP | S, VP)

P2(gatos | n, NP, corrió, v, S, VP) = λ2,1P̂2,1(gatos | n, NP, corrió, v, S,VP) +

λ2,2P̂2,2(gatos | n, NP, v, S, VP) +

λ2,3P̂2,3(gatos | n)

Here the P̂i,j terms are maximum likelihood estimates derived directly from counts in the

training data. The λi,j parameters are defined so that λ1,1+λ1,2+λ1,3 = λ2,1+λ2,2+λ2,3 = 1.

They control the relative contribution of each level of back-off to the final estimate.

Note that thus far our example has not included any morphological information in the

POS tags. Because of this, we will see that there is a danger of the estimates P1 and P2

both being high, in spite of the dependency being ungrammatical. P1 will be high because

4Note that the parsing model includes other features such as distance which we omit from the parameter
definition for simplicity.

96



all three estimates P̂1,1, P̂1,2 and P̂1,3 will most likely be high: there is no indication in any

of these estimates that the NP sister is headed by a plural noun, while the VP on which it is

dependent is headed by a singular verb.

Next, consider P2. Of the three estimates P̂2,1, P̂2,2, and P̂2,3, only P̂2,1 contains any

indication that the noun is plural and the verb is singular. Thus P2 will be sensitive to

the morphological clash between gatos and corrió only if λ2,1 is high, reflecting a high level

of confidence in the estimate of P̂2,3. This will only happen if the context 〈corrió, v, S,
VP〉 is seen frequently enough for λ2,1 to take a high value. This is unlikely, given that this

context is quite specific. In summary, the model can only capture morphological restrictions

through lexically-specific estimates based on extremely sparse statistics.

Now consider a model that incorporates morphological information — in particular,

number information — in the noun and verb POS tags. gatos will have the POS tag pn,

signifying a plural noun; corrió will have the POS tag sv, signifying a singular verb. All

estimates in the previous equations will reflect these part-of-speech changes. For example,

P1 will now be estimated as follows:

P1(pn, NP | corrió, sv, S, VP) = λ1,1P̂1,1(pn, NP | corrió, sv, S, VP) +

λ1,2P̂1,2(pn, NP | sv, S, VP) +

λ1,3P̂1,3(pn, NP | S, VP)

Note that the two estimates P̂1,1 and P̂1,2 include an (unlikely) dependency between the

POS tags pn and sv. Both of these estimates will be 0, assuming that a plural noun is

never seen as the subject of a singular verb, and even if the context 〈corrió, sv, S, VP〉
isn’t seen frequently enough during training for λ1,1 to be very high, the context 〈sv, S, VP〉
should be. Therefore we’d expect P̂1,2 to be a reliable estimate, thus correctly assigning low

probability to the ungrammatical dependency.

The backed-off statistics used to estimate P2 will of course also be affected:

P2(gatos | pn, NP, corrió, sv, S, VP) = λ2,1P̂2,1(gatos | pn, NP, corrió, sv, S,VP) +

λ2,2P̂2,2(gatos | pn, NP, sv, S, VP) +

λ2,3P̂2,3(gatos | pn)
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Note, however, that the effect on P2 is likely not to be as powerful as that on P1: assuming

it is unlikely to see a plural noun coupled with a singular verb during training, both λ2,1

and λ2,2 will probably be low, leaving most of the estimate for P2 to be determined by P̂2,3.

This is just the probability that the word gatos is a plural noun, which should be high.

In summary, the morphologically-rich Model M can make use of non-lexical statistics

such as P̂1,2(pn, NP | sv, S, VP) which contain dependencies between POS tags and which will

most likely be estimated reliably by the model. The hope is that for unlikely dependencies,

the corresponding loss in value for the estimate P1 will be greater than any potential gain

in value for P2.

4.3.2 Model R: The Reranking Model

In the reranking model, we use an n-best version of the Model M parser to generate a

number of candidate parse trees for each sentence in training and test data. These parse

trees are then represented through a combination of the log probability under the initial

model, together with a large number of global features. A linear reranking model uses the

information from these features to derive a new ranking of the n-best parses, with the hope

of improving upon the first-pass model. This same approach has been used with success in

parsing English (e.g., (Collins & Koo, 2005)). There are a variety of methods for training

the parameters of the model. In this work, we use the exponentiated gradient algorithm

described in (Bartlett et al., 2004).

The motivation for using the reranking model is that a wide variety of features, which

can essentially be sensitive to arbitrary context in the parse trees, can be incorporated by

choosing a feature-based model such as a linear model. In our work, we included all features

described in (Collins & Koo, 2005). As far as we are aware, this is the first time that a

reranking model has been applied to parsing a language other than English. One goal was

to investigate whether the improvements seen on English parsing can be carried across to

another language. We have found that features in (Collins & Koo, 2005), initially developed

for English parsing, also give appreciable gains in accuracy when applied to Spanish.
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Non-Terminal Significance

aq adjective
cc conjunction

COORD coordinated phrase
ESPEC determiner
GRUP base noun phrase
GV verb phrase

MORF impersonal pronoun
p pronoun

PREP base prepositional phrase
RELATIU relative pronoun phrase

s adjectival phrase
SN noun phrase
SP prepositional phrase

SADV adverbial phrase
S sentence
sps preposition
v verb

Figure 4-6: The non-terminals and part-of-speech labels from the Spanish 3LB corpus used
in this chapter.

4.4 Data

The corpus we use is a version of the Spanish 3LB treebank, a freely-available resource

with about 3,500 sentence/tree pairs. The average sentence length is 28 tokens. It is a

mixed–genre corpus containing data from 38 complete articles and short texts. Roughly

27% of the texts are news articles, 27% scientific articles, 14% narrative, 11% commentary,

11% sports articles, 6% essays, and 5% articles from weekly magazines. The trees contain

information about both constituency structure and syntactic functions.

4.4.1 Preprocessing

It is well-known that tree representation influences parsing performance (Johnson, 1998).

Prior to training our models, we made some systematic modifications to the corpus trees

in an effort to make it easier for Model 1 to represent the linguistic phenomena present in

the trees. The table in Figure 4-6 provides a key to the non-terminal labels in the 3LB

treebank that are used in this section’s discussion of preprocessing and in the remainder of

the chapter as well.
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Relative and Subordinate Clauses Cases of relative and subordinate clauses appearing

in the corpus trees have the basic structure of the top tree in Figure 4-7. The bottom tree in

the figure shows the modifications we make to such structures. The modified structure has

the advantage that the SBAR selects the CP node as its head, making the relative pronoun

quien the headword for the root of the subtree. This change allows, for example, better

modeling of verbs that select for particular complementizers. In addition, the new subtree

rooted at the S node now looks like a top-level sentence, making sentence types more uniform

in structure and easier to model statistically. Also, the new structure differentiates phrases

embedded in the complementizers of SBARs from those used in other contexts, allowing

relative pronouns like quien in Figure 4-7 to surface as lexical headwords when embedded

in larger phrases beneath the CP node.5

Coordination In the 3LB treebank, coordinated constituents and their coordinating con-

junction are placed as sister nodes in a flat structure. The modifications we make to this

structure are illustrated in Figure 4-8. The modifications help to rule out unlikely phrases

such as cats and dogs and: the model trained with the original treebank structures will

assign non-zero probability to ill-formed structures such as these.

Pro-Drop Subject pronouns in Spanish are often dropped, a phenomenon common to sev-

eral languages and known as pro-drop. The Spanish 3LB treebank marks this phenomenon

explicitly. In all of our experiments, we remove nodes representing these elliptical subjects.

Otherwise, our parser would have to predict structure for words missing from the input.

Punctuation Prior to training we delete all punctuation at the beginning and end of

sentences. In addition, we eliminate a punctuation node if it is the only child of its parent.

This guarantees that every non-terminal has a legitimate headchild. Finally, we raise any

remaining punctuation to the highest possible position in the tree. Specifically, anywhere

in the tree where punctuation is the left- or right-most child of its parent, we raise that

node in the tree until it falls between two non-punctuation non-terminals.

5This is achieved through our head rules.
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S(consideraban)

✟✟✟✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍❍❍❍❍

SP(a)

PREP(a)

✟✟✟✟
❍❍❍❍

sps(a)

a

RELATIU(quien)

p(quien)

quien

SN(todos)

GRUP(todos)

p(todos)

todos

GV(consideraban)

v(consideraban)

consideraban

SBAR-S(quien)

✟✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍❍❍

CP(quien)

SP-CP(quien)

✟✟✟✟✟✟

❍❍❍❍❍❍

PREP-CP(quien)

sps(a)

a

RELATIU-CP(quien)

p(quien)

quien

S(consideraban)

✟✟✟✟✟

❍❍❍❍❍

SN(todos)

GRUP(todos)

p(todos)

todos

GV(consideraban)

v(consideraban)

consideraban

Figure 4-7: Preprocessing of relative and subordinate clauses: the top tree in the figure is
the original structure from the 3LB treebank for the phrase a quien todos consideraban or
whom everyone considered. The lower tree shows the modifications we make (new nodes
are shown in bold): we insert SBAR and CP nodes and mark all non-terminals below the CP

with a -CP tag. In both trees, the headwords are shown in italics next to the nonterminal
labels.
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s

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

s

aq

parlamentarios

COORD

cc

y

s

aq

civiles

s

s-CC1

✟✟✟✟✟

❍❍❍❍❍

s

aq

parlamentarios

s-CC2

✟✟✟ ❍❍❍

COORD

cc

y

s

aq

civiles

Figure 4-8: In the 3LB corpus, phrases involving coordination are represented with a flat
structure as in the top tree. For coordination involving a non-terminal X (X = s in the
example), we insert new nodes X-CC1 and X-CC2 to form the structure in the bottom tree.
The new nodes are shown in bold face.
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4.5 Experiments

4.5.1 Experimental Setup

Our baseline model and Model M (the morphological model) were both trained using a

set consisting of 80% of the data (2,800 sentence/tree pairs, 75,372 words) available in

the 3LB treebank. Both models used the Collins’ thesis parser code, Model 1 (Collins,

1999). The only modifications to the code involved changes to accommodate the expanded

part-of-speech tagsets.

We reserved the remaining 20% of the 3LB data (692 sentences, 19,343 words) to use

as unseen data in a test set. We selected these subsets with two criteria in mind: first,

we wanted to respect the boundaries of the texts by placing articles in their entirety into

either one subset or the other; and second, we wanted to maintain, in each subset, the same

proportion of genres found in the original set of trees.

During development, we used a cross-validation approach on the training set to test

different tagsets. We divided the 2,800 training data trees into 14 different development data

sets, where each of these data sets consisted of 2,600 training sentences and 200 development

sentences. We took the average over the results of the 14 splits to gauge the effectiveness

of the tagset being tested.

4.5.2 Evaluation Metrics

To evaluate our models, we considered the recovery of labeled dependencies, unlabeled

dependencies, and labeled constituents. Unlabeled dependencies capture how the words in

a sentence depend on one another. Formally, they are tuples {headchild index, modifier

index}, where the indices indicate position in the sentence. Labeled dependencies include

the labels of the modifier, headchild, and parent non-terminals. The root of the tree has

a special dependency: {head index} in the unlabeled case and {TOP, headchild index, root

non-terminal} in the labeled case.

The labeled constituents in a tree are all of the non-terminals and, for each, the positions

of the words it spans.
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We use the standard definitions of precision, recall, and F-measure:6

precision = 100 ∗ num correct

num output by parser

recall = 100 ∗ num correct

num in gold standard

F-measure =
2 ∗ precision ∗ recall

precision + recall

where num correct represents the number of correct dependencies/constituents output by

the parser; num output by parser is the total number of dependencies/constituents output

by the parser; and num in gold standard is the total number of dependencies/constituents

found in the gold standard parses.

4.5.3 The Effects of Morphology

In our first set of experiments, we trained over 50 models, incorporating different morpho-

logical information into each via their tagsets. Prior to running the parsers, we trained the

POS tagger described in (Collins, 2002). The output from the tagger was used to assign

POS tags to unknown words. During both training and testing, we made no attempt to

parse sentences with length greater than 70 words.

The tables in Figures 4-9 and 4-10 give results for several of the tagsets we tried during

development. Our baseline model, which we used to evaluate the effects of using morphology,

was Model 1 (Collins, 1999) with a simple POS tagset containing almost no morphological

information.7 The morphological models we show are meant to be representative of both

the highest-scoring models and the performance of various morphological features. For

instance, we found that, in general, gender had only a slight impact on the performance

of the parser. Note that gender is not a morphological attribute of Spanish verbs, and

that the inclusion of verbal features, particularly number, mode, and person, generated the

6When extracting dependencies, we replaced all non-punctuation POS tags with a generic tag TAG to
avoid conflating tagging errors with dependency errors. We also included the structural changes that we
imposed during preprocessing. Results for constituent precision and recall were computed after we restored
the trees to the original treebank structure.

7I.e., a tagset with just the most basic POS labels: V for verb, N for noun, etc. We say this tagset
contains “almost no” morphological information because POS tags of any type can be said to carry some
morphological information.
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Labeled Dep Unlabeled Dep
Model Prec/Rec Gain Prec/Rec Gain

1 Baseline 76.0 — 82.1 —
2 NUM(p,n,v) 78.4 2.4 83.6 1.5
3 NUM(a,d,n,p,v) 78.2 2.2 83.5 1.4
4 NUM(v) 77.8 1.8 82.9 0.8
5 MODE(v) 78.4 2.4 83.1 1.0
6 TENSE(v) 77.6 1.6 82.7 0.6
7 PERS(v) 78.1 2.1 83.3 1.2
8 GEN(v) 76.3 0.3 82.2 0.1
9 NUM(a,d,n,v,p)+MODE(v) 79.0 3.0 84.0 1.9
10 NUM(p,n,v)+MODE(v) 78.9 2.9 83.7/83.8 1.6/1.7
11 NUM(a,d,n,v,p)+MODE(v)+PERS(v) 78.7 2.7 83.6 1.5
12 NUM(a,d,n,v,p)+PERS(v) 78.4 2.4 83.5/83.6 1.4/1.5
13 NUM(a,d,n,v,p)+GEN(a,d,n,v,p) 78.1 2.1 83.2 1.1

Figure 4-9: Results on recovery of labeled and unlabeled dependencies after training mor-
phological models during development. Note that dependencies are computed over parsed
structures which include the structural changes we described in Section 4.4.1, while the
dependencies extracted over the gold-standard structures have not undergone this prepro-
cessing. Because of this difference, precision and recall of dependencies may differ slightly.
Row 1 shows results on a baseline model containing almost no morphological information.
The subsequent rows represent the different tagsets we used for experimentation: NUM is
number, PERS person, and GEN gender. The letters in parentheses represent different POS
categories. We use “p” for pronoun, “n” for noun, “d” for determiner, “v” for verb, and
“a” for adjective. The results of the best-performing tagset are in bold.

strongest-performing models in our experiments.

The table in Figure 4-11 shows the results of running two models on the test set: the

baseline model and Model M — the best-performing morphological model from the devel-

opment stage. This model uses the number and mode of verbs, as well as the number of

adjectives, determiners, nouns, and pronouns.

The results in Figures 4-9, 4-10, and 4-11 show that adding some amount of morpho-

logical information to a parsing model is beneficial. We found, however, that adding more

information does not always lead to improved performance (see, for example, rows 11 and

13 in Figures 4-9 and 4-10). Presumably this is because the training set is too small to

adequately model all of the new tags in the tagset.8

8The number of new tags formed is the size of the set that results from taking the cross product between
the sets containing the possible values of each morphological feature added to the model.
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Labeled Const
<=70 words <=40 Words

Model Prec Rec Prec Rec
1 Baseline 81.6 80.4 82.6 81.4
2 NUM(p,n,v) 83.1 82.5 84.1 83.4
3 NUM(a,d,n,p,v) 83.3 82.4 84.2 83.3
4 NUM(v) 82.3 81.6 83.1 82.2
5 MODE(v) 82.8 82.0 83.8 82.9
6 TENSE(v) 82.4 81.4 83.2 82.3
7 PERS(v) 82.9 82.0 83.8 82.8
8 GEN(v) 81.6 80.6 82.7 81.7
9 NUM(a,d,n,v,p)+MODE(v) 83.9 83.2 84.7 84.1
10 NUM(p,n,v)+MODE(v) 83.6 82.8 84.6 83.7
11 NUM(a,d,n,v,p)+MODE(v)+PERS(v) 83.6 82.9 84.4 83.8
12 NUM(a,d,n,v,p)+PERS(v) 83.3 82.6 84.2 83.5
13 NUM(a,d,n,v,p)+GEN(a,d,n,v,p) 83.1 82.5 83.9 83.4

Figure 4-10: Results on development set for recovery of labeled constituents for sentences of
70 words or less and 40 words or less. When precision and recall differ in labeled or unlabeled
dependencies, both scores are shown. Row 1 shows results on a baseline model containing
almost no morphological information. The subsequent rows represent the different tagsets
we used for experimentation: NUM means number, PERS means person, and GEN means
gender. The letters in parentheses represent different POS categories. We use “p” for
pronoun, “n” for noun, “d” for determiner, “v” for verb, and “a” for adjective. The results
of the best-performing tagset are in bold.

Labeled Dep Unlabeled Dep Labeled Const
<=70 words <=40 Words

Model Prec/Rec Prec/Rec Prec Rec Prec Rec
1 Baseline 77.0 82.5 81.7 80.8 83.1 82.0
2 Model M 79.4 83.9 83.9 83.4 85.1 84.4
3 Model R 80.2 84.7 85.2 85.0 86.3 85.9
4 Model 1, Eng – – 82.9 82.9 83.5 83.4

Figure 4-11: Results after running the morphological and reranking models on test data.
Row 1 is our baseline model. Row 2 is the model with the highest-achieving tagset during
development (NUM(a,d,n,v,p)+MODE(v)). Row 3 gives the accuracy of the reranking
approach, when applied to n-best output from the model in Row 2. Row 4 shows the results
from training Model 1 (Collins, 1999) using 2,800 English trees from the Penn treebank and
testing on section 23. This row gives us an idea how Model 1 performs when trained with
the same amount of data we have to train the Spanish parser.

4.5.4 Experiments with Reranking

In the reranking experiments, we follow the procedure described in (Collins & Koo, 2005)

for creation of a training set with n-best parses for each sentence. This method involves

jack-knifing the data: the training set of 2,800 sentences was parsed in 200-sentence chunks
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by an n-best version of the Model M parser trained on the remaining 2,600 sentences.

This ensured that each sentence in the training data had n-best output from a baseline

model that was not trained on that sentence. We used the optimal morphological model

(NUM(a,d,n,v,p)+MODE(v)) to generate the n-best lists, and we used the feature set de-

scribed in (Collins & Koo, 2005). The test results are given in Figure 4-11.9

4.5.5 Statistical Significance

We tested the significance of the labeled precision and recall results in Figure 4-11 using

the sign test. When applying the sign test, for each sentence in the test data we calculated

the sentence-level F1 constituent score for the two parses being compared. This indicates

whether one model performs better on that sentence than the other model, or whether the

two models perform equally well, information used by the sign test. All differences were

found to be statistically significant at the level p = 0.01. When comparing the baseline

model to the morphological model on the 692 test sentences, F1 scores improved on 314

sentences, and became worse on 164 sentences. When comparing the baseline model to the

reranked model, 358 sentences had improved parses, while 157 had worse parses. When

comparing the morphological model to the reranked model, 199 sentences had improved

parses and 106 had worse parses.

4.6 Further Analysis of Model M

Figure 4-12 takes a closer look at the performance of Model M in the recovery of particular

labeled dependencies. The breakdown shows the top 15 dependencies in the gold-standard

trees across the entire training set. Collectively, these dependencies represent around 72%

of the dependencies seen in this data.

We see a large gain in the recovery of some of these dependencies when we add morpho-

logical information. Among these are the two involving postmodifiers to verbs (〈S GV SP

R〉 and 〈S GV SN R〉). When examining the output of the morphological model, we found

that much of this gain is due to the fact that there are two non-terminal labels used in the

treebank that specify modal information of verbs they dominate (infinitivals and gerunds):

9We also created development sets for development of the reranking approach, and for cross-validation
of the single parameter C for the exponentiated gradient training of (Bartlett et al., 2004).
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Dependency Count Model Prec/Rec

Determiner modifier 9680 BL 95.0/95.4
SN GRUP ESPEC L (15.5%) M 95.4/95.7

Complement of SP 9052 BL 92.4/92.9
SP PREP SN R (14.5%) M 93.2/93.9

SP modifier to noun 4500 BL 83.9/78.1
GRUP TAG SP R (7.2%) M 82.9/79.9

Subject 3106 BL 77.7/86.1
S GV SN L (5.0%) M 83.1/87.5

Sentential head 2758 BL 75.0/75.0
TOP S (4.4%) M 79.7/79.7

S modifier under SBAR 2728 BL 83.3/82.1
SBAR CP S R (4.4%) M 86.0/84.7

SP modifier to verb 2685 BL 62.4/78.8
S GV SP R (4.3%) M 72.6/82.5

SN modifier to verb 2677 BL 71.6/75.6
S GV SN R (4.3%) M 81.0/83.0

Adjective postmodifier 2522 BL 76.3/83.6
GRUP TAG s R (4.0%) M 76.4/83.5

Adjective premodifier 980 BL 79.2/80.0
GRUP TAG s L (1.6%) M 80.1/79.3

SBAR modifier to noun 928 BL 62.2/60.6
GRUP TAG SBAR R (1.4%) M 61.3/60.8

Coordination 895 BL 65.2/72.7
S-CC2 S coord L (1.4%) M 66.7/74.2

Coordination 870 BL 52.4/56.1
S-CC1 S-CC2 S L (1.4%) M 60.3/63.6

Impersonal pronoun 804 BL 93.3/96.4
S GV MORF L (1.3%) M 92.0/95.6

SN modifier to noun 736 BL 47.3/39.5
GRUP TAG SN R (1.2%) M 51.7/50.8

Figure 4-12: Labeled dependency accuracy for the top fifteen dependencies (representing
around 72% of all dependencies) in the gold-standard trees across all training data. The
first column shows the type and subtype, where the subtype is specified as the 4-tuple
{parent non-terminal, head non-terminal, modifier non-terminal, direction}; the second col-
umn shows the count for that subtype and the percent of the total that it represents (where
the total is 62,372) . The model BL is the baseline, and M is the morphological model
NUM(a,d,n,v,p)+MODE(v).

with insufficient morphological information, the baseline parser was unable to distinguish

regular verb phrases from these more specific verb phrases.

In order to see just how much mode information was being used to distinguish these

verbal non-terminals, we tried replacing all INFINITIU and GERUNDI non-terminals with the
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Dependency Count Model Prec/Rec
SN modifier to verb 3401 BL 79.9/81.6
S GV SP R (5.5%) M 82.1/83.3
SP modifier to verb 3313 BL 68.9/81.1
S GV SN R (5.3%) M 72.7/81.8

Figure 4-13: Accuracy for two labeled dependencies involving verbal modifiers using training
data that collapses three verb-phrase non-terminals (INFINITIU, GERUNDI, and GV) to a
single verb-phrase non-terminal. Results are given for the baseline model and Model M.

non-terminal GV in the training/development set, and then we retrained the baseline model

and Model M. In the baseline model, the recovery of labeled dependencies improved consid-

erably (77.8%), and the recovery of unlabeled dependencies was about constant (82.4%); in

the morphological model, performance remained fairly constant (79.4% labeled dependen-

cies, 84.0% unlabeled dependencies). Figure 4-13 shows how each model did in the recovery

of verbal postmodifiers in particular. We see that the behavior of Model M is roughly

equivalent to what it was when we had three different verb-phrase non-terminals, but that

the baseline model is doing much better. However, even though the baseline has improved,

it still does not do as well as Model M, suggesting that there is additional information

supplied by mode.

We’ve looked at how mode information is contributing to Model M’s improved perfor-

mance, but how is number being used? Number could help the parser decide not to attach

elements with differing number information in situations where they are constrained to

agree. Figure 4-14 suggests that this is (at least in part) what’s happening: of the top 20

dependencies with the largest difference in error when comparing Model M to the baseline,

half of them involve modifiers and heads with differing number information. For example,

the baseline model, without any notion of number, tries to attach an plural adjective to

a singular noun, creating a false dependency. This kind of error accounts for a smaller

proportion of the errors induced by the morphological model.

4.6.1 Is More Data Better?

The results in Figure 4-11 show that the morphological model we employ performs at least

as well as the Model 1 trained on a comparable amount of English data. Model 1 shows

a substantial gain in performance with an increased amount of training data (on the order

of 90% precision and recall with a training set of roughly 40,000 trees); would our model
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Diff Dependency
0.4 S GV(vsi) SN(n0) R
0.4 S GV(vsi) SP(sps) R
0.4 S GV(aqs) SP(sps) R
0.4 S#CC1 S#CC2(v0n) S(vsi) L
0.3 SBAR CP(cs) S(v0n) R
0.3 TOP(v0g) S(v0g)

0.3 TOP(v0n) S(v0n)

0.2 SP prep(sps) S(vsi) R
0.2 GRUP TAG(ns) s(aqp) R
0.2 S GV(v0g) SN(ns) L
0.2 S GV(vsi) S(vsi) R
0.2 GRUP TAG(n0) s(ns) L
0.2 GRUP TAG(ns) SN(np) R
0.2 SN GRUP(n0) ESPEC(dp) L
0.2 S GV(v0n) SN(ns) L
0.2 S GV(v0g) SN(np) L
0.2 GRUP TAG(n0) SP(sps) R
0.1 S GV(vpi) SN(n0) R
0.1 S GV(v0g) SADV(rg) L
0.1 S GV(vpi) SP(sps) R

Figure 4-14: The effects of adding number information to a morphologically-sensitive pars-
ing model. The table shows the twenty dependencies having the largest difference in er-
ror when comparing the baseline model to a morphological model in which GERUNDI and
INFINITIU have been collapsed to a single nonterminal GV. Half of these dependencies in-
volve a mismatch in number information, indicating that the morphological model is doing
a better job of predicting syntactic constraints based on number. In parentheses next to
each headchild and modifier in column 2 is the gold-standard POS tag of the headword
of that non-terminal. For adjectives, determiners, nouns, verbs, and pronouns, the second
character indicates the number attribute (s is singular; p is plural; and 0 is no number info).

exhibit a similar gain with more training data?

Figure 4-15 shows a plot of the performance of our best morphological model when

trained on data sets of varying sizes. For these experiments, we used the same approach

described in section 4.5.4; however, rather than use the entire training set of 2,600 trees at

each iteration, we selected a random sample of our target size. The development sets used

for testing were constant across experiments of different training-set sizes. Note that we

retrained the POS tagger employed by our parser to reflect a restricted amount of available

data.

The plot shows a substantial gain in accuracy when we increase the size of the training

set from 400 to 800 and from 800 to 1600. Between 1600 and 2800, however, the growth

rate slows considerably. Whether the performance would continue to improve, albeit at a
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Figure 4-15: The performance of the morphological model n(A,D,N,V,P)+m(V) when
trained on data sets of varying sizes (400, 800, 1200, 1600, 2000, 2400, 2800). The plot
shows size vs. F-measure accuracy of both labeled and unlabeled dependencies.

decreased rate, to reach the levels of English parsing performance given larger amounts of

data, or whether it would reach a plateau at an inferior level of performance is unknown.

However, we should also keep in mind that with larger amounts of data, we might be able to

employ more sophisticated morphological models that could also help parsing performance.
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Chapter 5

A Discriminative Model for

Tree-to-Tree Translation

This chapter proposes a statistical tree-to-tree model for producing translations. Two main

contributions are as follows: (1) the extraction of syntactic structures with alignment infor-

mation from a parallel corpus of translations, and (2) the use of a discriminative, feature-

based model for prediction of these target-language syntactic structures — which we call

aligned extended projections, or AEPs. An evaluation of the method on translation from

German to English shows similar performance to the phrase-based model of Koehn et al.

(Koehn et al., 2003). This chapter is based on work originally described in (Cowan et al.,

2006).

5.1 Introduction

Phrase-based approaches (Och & Ney, 2004) to statistical machine translation have recently

achieved impressive results, leading to significant improvements in accuracy over the original

IBM models (Brown et al., 1993). However, phrase-based models lack a direct representa-

tion of syntactic information in the source or target languages; this has prompted several

researchers to consider various approaches that make use of syntactic information.

This chapter describes a framework for tree-to-tree based statistical translation. Our

goal is to learn a model that maps parse trees in the source language to parse trees in

the target language. The model is learned from a corpus of translation pairs, where each

sentence in the source or target language has an associated parse tree. We see two major
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benefits of tree-to-tree based translation. First, it is possible to explicitly model the syntax

of the target language, thereby improving grammaticality. Second, we can build a detailed

model of the correspondence between the source and target parse trees, thereby attempting

to construct translations that preserve the meaning of source language sentences.

Our translation framework involves a process where the target-language parse tree is

broken down into a sequence of clauses, and each clause is then translated separately.

A central concept we introduce in the translation of clauses is that of an aligned extended

projection (AEP). AEPs are derived from the concept of an extended projection in lexicalized

tree adjoining grammars (LTAG) (Frank, 2002), with the addition of alignment information

that is based on work in synchronous LTAG (Shieber & Schabes, 1990). A key contribution

of this chapter is a method for learning to map parsed German clauses to AEPs using a

feature-based model with a perceptron learning algorithm.

We performed experiments on translation from German to English on the Europarl data

set. Evaluation in terms of both BLEU scores and human judgments shows that our system

performs similarly to the phrase-based model of Koehn et al. (Koehn et al., 2003).

5.1.1 A Sketch of the Approach

This section provides an overview of the translation process. We will use the German

sentence wir wissen daß das haupthemmnis der vorhersehbare widerstand der hersteller war

as a running example. For this example we take the desired translation to be we know that

the main obstacle has been the predictable resistance of manufacturers. Translation of a

German sentence proceeds in the following four steps:

Step 1: The German sentence is parsed and then broken down into separate parse struc-

tures for a sequence of clauses. For example, the German example above is broken into a

parse structure for the clause wir wissen followed by a parse structure for the subordinate

clause daß. . .war. Each of these clauses is then translated separately, using steps 2–3 below.

Step 2: A structure that we will call an aligned extended projection (AEP) is predicted

for each German clause. To illustrate this step, consider translation of the second German

clause, which has the following parse structure:
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�
�
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�
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�

❅
❅

❅
❅

❅
❅

PPPPPPPPPPPPPPPPPP

kous-cp

daß

np-sb 1

✟✟✟ ❍❍❍

art

das

nn

hauptemmnis

np-pd 2

✏✏✏✏✏✏

PPPPPP

der vorhersehbare

widerstand der hersteller

vafin-had

war

Note that we use the symbols 1 and 2 to identify the two modifiers (arguments or adjuncts)

in the clause, in this case a subject and an object.

A major part of the AEP is a parse-tree fragment similar to a TAG elementary tree (see

also Figure 5-1):

SBAR

✟✟✟
❍❍❍

that S

✟✟✟ ❍❍❍

NP VP

✟✟✟ ❍❍❍

V

has

VP

✟✟ ❍❍

V

been

NP

Following the work of (Frank, 2002), we will refer to a structure like this as an extended

projection (EP). The EP encapsulates the core syntactic structure in the English clause. It

contains the main verb been, as well as the function words that and has. It also contains

a parse tree “spine” which has the main verb been as one of its leaves, and has the clause

label SBAR as its root. In addition, it specifies positions for arguments in the clause — in

this case NPs corresponding to the subject and object.

An AEP contains an EP, as well as alignment information about where the German

modifiers should be placed in the extended projection. For example, the AEP in this case

would contain the tree fragment shown above, together with an alignment specifying that

the modifiers 1 and 2 from the German parse will appear in the EP as subject and object,

respectively.
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Step 3: The German modifiers are translated and placed in the appropriate positions

within the AEP. For example, the modifiers das haupthemmnis and der vorhersehbare wider-

stand der hersteller would be translated as the main obstacle, and the predictable resistance

of manufacturers, respectively, and then placed into the subject and object positions in the

AEP.

Step 4: The individual clause translations are combined to give a final translation. For

example, the translations we know and that the main obstacle has been . . . would be con-

catenated to give we know that the main obstacle has been . . ..

The main focus of this chapter will be Step 2: the prediction of AEPs from German

clauses. AEPs are detailed structural objects, and their relationship to the source-language

clause can be quite complex. We use a discriminative feature-based model, trained with the

perceptron algorithm, to incrementally predict the AEP in a sequence of steps. At each step

we define features that allow the model to capture a wide variety of dependencies within

the AEP itself, or between the AEP and the source-language clause.

5.1.2 Motivation for the Approach

Our approach to tree-to-tree translation is motivated by several observations. Breaking the

source-language tree into clauses (Step 1) considerably simplifies the difficult problem of

defining an alignment between source and target trees. Our impression is that high-quality

translations can be produced in a clause-by-clause fashion.1 The use of a feature-based

model for AEP prediction (Step 2) allows us to capture complex syntactic correspondences

between English and German, as well as grammaticality constraints on the English side.

In this chapter, we implement the translation of modifiers (Step 3) with the phrase-

based system of (Koehn et al., 2003). The modifiers in our data set are generally small

chunks of text such as NPs, PPs, and ADJPs, which by definition do not include clauses or

verbs. In our approach, we use the phrase-based system to generate n-best lists of candidate

translations and then rerank the translations based on grammaticality, i.e., using criteria

that judge how well they fit the position in the AEP. In future work, we might use finite

state machines in place of a reranking approach, or recursively apply the AEP approach to

1We do not assume that all of the translations in the training data have been produced in a clause-
by-clause fashion. Rather, we assume that good translations for test examples can be produced in this
way.
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the modifiers.

Stitching translated clauses back together (Step 4) is a relatively simple task: in a

substantial majority of cases, the German clauses are not embedded, but instead form

a linear sequence that accounts for the entire sentence. In these cases we can simply

concatenate the English clause translations to form the full translation. Embedded clauses

in German are slightly more complicated, but it is not difficult to form embedded structures

in the English translations.

Section 5.4.2 of this chapter provides an overview of the features we use for AEP predic-

tion in translation from German to English (see Appendix E for an in-depth description).

Many of the features of the AEP prediction model are specifically tuned to the choice of

German and English as the source and target languages. However, it should be easy to

develop new feature sets to deal with other languages or treebanking styles. This is one of

the strengths of the feature-based approach.

In the work presented in this chapter, we focus on the prediction of clausal AEPs,

i.e., AEPs associated with main verbs. One reason for this is that clause structures are

particularly rich and complex from a syntactic perspective. This means that there should

be considerable potential in improving translation quality if we can accurately predict these

structures. It also means that clause-level AEPs are a good test-bed for the discriminative

approach to AEP prediction; future work may consider applying these methods to other

structures such as NPs, PPs, ADJPs, and so on.

5.2 A Translation Architecture Based on AEPs

5.2.1 Aligned Extended Projections (AEPs)

We now build on the idea of extended projections (see Section 2.5.2) to give a detailed

description of AEPs. Figure 5-1 shows examples of German clauses paired with the AEPs

found in training data.2 The German clause is assumed to have n (where n ≥ 0) modifiers.

For example, the first German parse in Figure 5-1 has two arguments, indexed as 1 and 2 .3

Each of these modifiers must either have a translation in the corresponding English clause,

2Because we consider translation from German to English in Section 5.6 of this chapter, we take English

to be synonymous with the target language in translation and German to be synonymous with the source
language.

3The parses in the figure are shown in an indented format, where each indentation corresponds to a level
in the tree.
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or must be deleted. In the second example, the correspondence between the German clause

and its English translation is not entirely direct. The subject in the English is the expletive

there; the subject in the German clause becomes the object in English. This is a typical

pattern for the German verb bestehen. The German PP zwischen ... appears at the start of

the clause in German, but is post-verbal in the English. The modifier also — whose English

translation is so — is in an intermediate position in the German clause, but appears in the

pre-subject position in the English clause. The AEP representation is able to model these

and many other German/English correspondences.

An AEP consists of the following parts:

STEM: A string specifying the stemmed form of the main verb in the clause.

SPINE: A syntactic structure associated with the main verb. The structure has the

symbol V as one of its leaf nodes; this is the position of the main verb. It includes higher

projections of the verb such as VPs, Ss, and SBARs. It also includes leaf nodes NP-A in

positions corresponding to noun-phrase arguments (e.g., the subject or object) of the main

verb. In addition, it may contain leaf nodes labeled with categories such as WHNP or WHADVP

where a wh-phrase may be placed. It may include leaf nodes corresponding to one or more

complementizers (common examples being that, if, so that, and so on).

VOICE: One of two alternatives, active or passive, specifying the voice of the main

verb.

SUBJECT: This variable can be one of three types. If there is no subject position in

the SPINE variable, then the value for SUBJECT is NULL. Otherwise, SUBJECT can either be

a string, for example there,4 or an index of one of the n modifiers in the German clause.

OBJECT: This variable is similar to SUBJECT, and can also take three types: NULL, a

specific string, or an index of one of the n German modifiers. It is always NULL if there

is no object position in the SPINE; it can never be a modifier index that has already been

assigned to SUBJECT.

4This happens in the case where there exists a subject in the English clause but not in the German clause.
See, for instance, the second example in Figure 5-1.
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WH: This variable is always NULL if there is no wh-phrase position within the SPINE; it is

always a non-empty string (such as which, or in which) if a wh-phrase position does exist.

MODALS: This is a string of verbs that constitute the modals that appear within the

clause. We use NULL to signify that there are no modals.

INFL: The inflected form of the verb.

MOD(i): There are n modifier variables MOD(1), MOD(2), . . ., MOD(n) that specify the

positions for German arguments that have not already been assigned to the SUBJECT or

OBJECT positions in the spine. Each variable MOD(i) can take one of five possible values:

• null: This value is chosen if and only if the modifier has already been assigned to the

subject or object position.

• deleted: This means that a translation of the i’th German modifier is not present in

the English clause.

• pre-sub: The modifier appears after any complementizers or wh-phrases, but before

the subject of the English clause.

• post-sub: The modifier appears after the subject of the English clause, but before

the modals.

• in-modals: The modifier appears after the first modal in the sequence of modals, but

before the second modal or the main verb.

• post-verb: The modifier appears somewhere after the main verb.

5.3 Extracting AEPs from a Corpus

A crucial step in our approach is the extraction of training examples from a parsed trans-

lation corpus. Each training example consists of a parsed German clause paired with an

English AEP (see Figure 5-1). In our experiments, we used the Europarl bilingual parallel

corpus (Koehn, 2005a), parsed it, and extracted German clauses and English AEP from

the parses. For each sentence pair from the original data, we used a version of the German
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German Clause English AEP

s-oc kous-cp daß
np-sb 1 art das

nn haupthemmnis
np-pd 2 art der

adja vorhersehbare
nn widerstand
np-ag art der

nn hersteller
vafin-hd war

Paraphrase: that [np-sb the main obstacle] [np-pd
the predictable resistance of manufacturers] was

STEM: be
SPINE:
SBAR-A IN that

S NP-A
VP V

NP-A
VOICE: active
SUBJECT: 1

OBJECT: 2

WH: NULL
MODALS: has
INFL: been
MOD1: null
MOD2: null

s pp-mo 1 appr zwischen
piat beiden
nn gesetzen

vvfin-hd bestehen
adv-mo 2 also
np-sb 3 adja erhebliche

adja rechtliche
$, ,
adja praktische
kon und
adja wirtschaftliche
nn unterschiede

Paraphrase: [pp-mo between the two pieces of leg-
islation] exist so [np-sb significant legal, practical
and economic differences]

STEM: be
SPINE:
S NP-A

VP V
NP-A

VOICE: active
SUBJECT: “there”
OBJECT: 3

WH: NULL
MODALS: NULL
INFL: are
MOD1: post-verb
MOD2: pre-sub
MOD3: null

s-rc prels-sb die
vp pp-mo 1 appr an

pdat jenem
nn tag

pp-mo 2 appr in
ne tschernobyl

vvpp-hd gezündet
vafin-hd wurde

Paraphrase: which [pp-mo on that day] [pp-mo in
chernobyl] released were

STEM: release
SPINE:
SBAR WHNP

SG-A VP V
VOICE: passive
SUBJECT: NULL
OBJECT: NULL
WH: which
MODALS: was
INFL: released
MOD1: post-verb
MOD2: post-verb

Figure 5-1: Three examples of German parse trees, together with their aligned extended
projections (AEPs) in the training data.
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parser described in (Dubey, 2005) to parse the German component, and a version of the

English parser described in (Collins, 1999) to parse the English component. To extract

AEPs, we first align all German and English NPs and PPs. We then use these alignments

to constrain the alignment of clauses. After inducing an alignment at the clause level, we

extract AEPs from the English clauses. We explain these steps in further detail below.

NP and PP Alignment To align NPs and PPs, first all German and English nouns,

personal and possessive pronouns, numbers, and adjectives are identified in each sentence

and aligned using GIZA++ (Och & Ney, 2003). Next, each NP in an English tree is aligned

to an NP or PP in the corresponding German tree in a way that is consistent with the word-

alignment information. That is, the words dominated by the English node must be aligned

only to words dominated by the German node, and vice versa. Note that if there is more

than one German node that is consistent, then the one rooted at the minimal subtree is

selected.

Clause alignment, and AEP Extraction The next step in the extraction process is

to identify German/English clause pairs. We first break each English or German parse

tree into a set of clauses (see Appendix B for a description of how we identify clauses).

We retain only those training examples where the English and German sentences have the

same number of clauses. For these retained examples, we say the English sentence contains

the clause sequence 〈e1, e2, . . . , en〉, and the German sentence contains the clause sequence

〈g1, g2, . . . , gn〉. The clauses are ordered according to the position of their main verbs in the

original sentence. We create n candidate pairs 〈(e1, g1), (e2, g2), . . . , (en, gn)〉 (i.e., force a

one-to-one correspondence between the two clause sequences). We then discard any clause

pairs (e, g) which are inconsistent with the NP/PP alignments for that sentence.5

Note that this method is deliberately conservative (i.e., high precision, but lower re-

call), in that it discards sentence pairs where the English/German sentences have different

numbers of clauses. In practice, we have found that the method yields a large number of

training examples, and that these training examples are of relatively high quality. Future

work may consider improved methods for identifying clause pairs, for example methods that

make use of labeled training examples.

5A clause pair is inconsistent with the NP/PP alignments if it contains an NP/PP on either the German or
English side which is aligned to another NP/PP which is not within the clause pair.
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Once we have clause pairs, an AEP can be extracted. The EP for the clause is first

extracted, giving values for all variables except for SUBJECT, OBJECT, and MOD(1), . . . ,

MOD(n). The values for the SUBJECT, OBJECT, and MOD(i) variables are derived from the

alignments between NPs/PPs, and an alignment of other clauses (ADVPs, ADJPs, etc.) derived

from GIZA++ alignments. If the English clause has a subject or object which is not aligned

to a German modifier, then the value for SUBJECT or OBJECT is taken to be the full English

string.

5.4 The Model

5.4.1 Beam search and the perceptron

In this section we describe linear history-based models with beam search, and the perceptron

algorithm for learning these models. These methods will form the basis for our model that

maps German clauses to AEPs.

We have a training set of n examples, (xi, yi) for i = 1 . . . n, where each xi is a German

parse tree, and each yi is an AEP. We follow previous work on history-based models, by

representing each yi as a series of N decisions 〈d1, d2, . . . dN 〉. In our approach, N will be

a fixed number for any input x: we take the N decisions to correspond to the sequence

of variables STEM, SPINE, . . ., MOD(1), MOD(2), . . ., MOD(n) described in section 5.2.

Each di is a member of a set Di which specifies the set of allowable decisions at the i’th

point (for example, D2 would be the set of all possible values for SPINE). We assume a

function ADVANCE(x, 〈d1, d2, . . . , di−1〉) which maps an input x together with a prefix

of decisions d1 . . . di−1 to a subset of Di. ADVANCE is a function that specifies which

decisions are allowable for a past history 〈d1, . . . , di−1〉 and an input x. In our case the

ADVANCE function implements hard constraints on AEPs (for example, the constraint

that the SUBJECT variable must be NULL if no subject position exists in the SPINE). For

any input x, a well-formed decision sequence for x is a sequence 〈d1, . . . , dN 〉 such that

for i = 1 . . . n, di ∈ ADVANCE(x, 〈d1, . . . , di−1〉). We define GEN(x) to be the set of all

decision sequences (or AEPs) which are well-formed for x.

The model that we will use is a discriminatively-trained, feature-based model. A sig-

nificant advantage to feature-based models is their flexibility: it is very easy to sensitize

the model to dependencies in the data by encoding new features. To define a feature-based
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model, we assume a function f(x, 〈d1, . . . , di−1〉, di) ∈ R
d which maps a decision di in context

(x, 〈d1, . . . , di−1〉) to a feature vector. We also assume a vector w ∈ R
d of parameter values.

We define the score for any partial or complete decision sequence y = 〈d1, d2, . . . , dm〉 paired

with x as:

SCORE(x, y) = f(x, y) · w (5.1)

where f(x, y) =
∑m

i=1 f(x, 〈d1, . . . , di−1〉, di). In particular, given the definitions above, the

output structure F (x) for an input x is the highest–scoring well–formed structure for x:

F (x) = arg max
y∈GEN(x)

SCORE(x, y) (5.2)

To decode with the model we use a beam-search method. The method incrementally builds

an AEP in the decision order d1, d2, . . . , dN . At each point, a beam contains the top M

highest–scoring partial paths for the first m decisions, where M is taken to be a fixed

number. The score for any partial path is defined in Equation 5.1. The ADVANCE function

is used to specify the set of possible decisions that can extend any given path in the beam.

To train the model, we use the averaged perceptron algorithm described in (Collins,

2002). This combination of the perceptron algorithm with beam-search is similar to that

described in (Collins & Roark, 2004).6 The perceptron algorithm is a convenient choice

because it converges quickly — usually taking only a few iterations over the training set

(Collins, 2002), (Collins & Roark, 2004).

5.4.2 The Features of the Model

The model’s features allow it to capture dependencies between the AEP and the German

clause, as well as dependencies between different parts of the AEP itself. The features

included in f can consist of any function of the decision history 〈d1, . . . , di−1〉, the current

decision di, or the German clause. In defining features over AEP/clause pairs, we make use

of some basic functions which look at the German clause and the AEP (see Tables 5.1 and

5.2). We use various combinations of these basic functions in the prediction of each decision

di, as described below.

6Future work may consider alternative algorithms, such as those described in (Daumé & Marcu, 2005).
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1 main verb

2 any verb in the clause

3 all verbs, in sequence

4 spine

5 tree

6 preterminal label of left-most child of subject

7 terminal label of left-most child of subject

8 suffix of terminal label of right-most child of subject

9 preterminal label of left-most child of object

10 terminal label of left-most child of object

11 suffix of terminal label of right-most child of object

12 preterminal label of the negation word nicht (not)

13 is either of the strings es gibt (there is/are)
or es gab (there was/were) present?

14 complementizers and wh-words

15 labels of all wh-nonterminals

16 terminal labels of all wh-words

17 preterminal label of a verb in first position

18 terminal label of a verb in first position

19 terminal labels of all words in any relative pronoun
under a PP

20 are all of the verbs at the end?

21 nonterminal label of the root of the tree

22 terminal labels of all words constituting the subject

23 terminal labels of all words constituting the object

24 the leaves dominated by each node in the tree

25 each node in the context of a CFG rule

26 each node in the context of the RHS of a CFG rule

27 each node with its left and right sibling

28 the number of leaves dominated by each node
in the tree

Table 5.1: Functions of the German clause used for making features in the AEP prediction
model.
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1 does the SPINE have a subject?

2 does the SPINE have an object?

3 does the SPINE have any wh-words?

4 the labels of any complementizer nonterminals
in the SPINE

5 the labels of any wh-nonterminals in the SPINE

6 the nonterminal labels SQ or SBARQ in the SPINE

7 the nonterminal label of the root of the SPINE

8 the grammatical category of the finite verbal form
INFL (i.e., infinitive, 1st-, 2nd-, or 3rd-person pres,
pres participle, sing past, plur past, past participle)

Table 5.2: Functions of the English AEP used for making features in the AEP prediction
model.

STEM: Features for the prediction of STEM conjoin the value of this variable with each

of the functions in lines 1–13 of Table 5.1. For example, one feature is the value of STEM

conjoined with the main verb of the German clause. In addition, f includes features sensitive

to the rank of a candidate stem in an externally-compiled lexicon.7

SPINE: Spine prediction features make use of the values of the variables SPINE and STEM

from the AEP, as well as functions of the spine in lines 1–7 of Table 5.2, conjoined in various

ways with the functions in lines 4, 12, and 14–21 of Table 5.1. Note that the functions in

Table 5.2 allow us to look at substructure in the spine. For instance, one of the features for

SPINE is the label SBARQ or SQ, if it exists in the candidate spine, conjoined with a verbal

preterminal label if there is a verb in the first position of the German clause. This feature

captures the fact that German yes/no questions begin with a verb in the first position.

VOICE: Voice features in general combine values of VOICE, SPINE, and STEM, with the

functions in lines 1–5, 22, and 23 of Table 5.1.

SUBJECT: Features used for subject prediction make use of the AEP variables VOICE

and STEM. In addition, if the value of SUBJECT is an index i (see section 5.2), then f looks at

the nonterminal label of the German node indexed by i as well as the surrounding context

in the German clausal tree. Otherwise, f looks at the value of SUBJECT. These basic features

are combined with the functions in lines 1, 3, and 24–27 of Table 5.1.

7The lexicon is derived from GIZA++ and provides, for a large number of German main verbs, a ranked
list of possible English translations.

125



OBJECT: We make similar features to those for the prediction of SUBJECT. In addition,

f can look at the value predicted for SUBJECT.

WH: Features for WH look at the values of WH and SPINE, conjoined with the functions in

lines 1, 15, and 19 of Table 5.1.

MODALS: For the prediction of MODALS, f looks at MODALS, SPINE, and STEM, conjoined

with the functions in lines 2–5 and 12 of Table 5.1.

INFL: The features for INFL include the values of INFL, MODALS, and SUBJECT, and VOICE,

and the function in line 8 of Table 5.2.

MOD(i): For the MOD(i) variables, f looks at the value of MODALS, SPINE and the current

MOD(i), as well as the nonterminal label of the root node of the German modifier being

placed, and the functions in lines 24 and 28 of Table 5.1.

5.5 Deriving Full Translations

As we described in Section 5.1.1, the translation of a full German sentence proceeds in a

series of steps: a German parse tree is broken into a sequence of clauses; each clause is

individually translated; and finally, the clause-level translations are combined to form the

translation for a full sentence. The first and last steps are relatively straightforward. We

now show how the second step is achieved — i.e., how AEPs can be used to derive English

clause translations from German clauses.

We will again use the following translation pair as an example: daß das haupthemm-

nis der vorhersehbare widerstand der hersteller war./that the main obstacle has been the

predictable resistance of manufacturers.

First, an AEP like the one at the top of Figure 5-1 is predicted. Then, for each German

modifier which does not have the value deleted, an English translation is predicted. In the

example, the modifiers das haupthemmnis and der vorhersehbare widerstand der hersteller

would be translated to the main obstacle, and the predictable resistance of manufacturers,

respectively.
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A number of methods could be used for translation of the modifiers. In this chapter, we

use the phrase-based system of (Koehn et al., 2003) to generate n-best translations for each

of the modifiers, and we then use a discriminative reranking algorithm (Bartlett et al., 2004)

to choose between these modifiers. The features in the reranking model can be sensitive to

various properties of the candidate English translation, for example the words, the part-of-

speech sequence or the parse tree for the string. The reranker can also take into account

the original German string. Finally, the features can be sensitive to properties of the AEP,

such as the main verb or the position in which the modifier appears (e.g., subject, object,

pre-sub, post-verb, etc.) in the English clause. See Appendix C for a full description of

the features used in the modifier translation model. The reranking stage allows us to filter

translation candidates which do not fit syntactically with the position in the English tree.

For example, we can parse the members of the n-best list, and then learn a feature which

strongly disprefers prepositional phrases if the modifier appears in subject position.

Finally, the full string is predicted. In our example, the AEP variables SPINE, MODALS,

and INFL in Figure 5-1 give the ordering <that SUBJECT has been OBJECT>. The AEP

and modifier translations would be combined to give the final English string. In general,

any modifiers assigned to the pre-sub, post-sub, in-modals or post-verb are placed in

the corresponding position within the spine. For example, the second AEP in Figure 5-1

has a spine with ordering <SUBJECT are OBJECT>; modifiers 1 and 2 would be placed in

positions pre-sub and post-verb, giving the ordering <MOD2 SUBJECT are OBJECT MOD1>.

All modifiers assigned the post-verb position are placed after the object. If multiple

modifiers appear in the same position (e.g., post-verb), then they are placed in the order

seen in the original German clause.

5.6 Experiments

We applied the approach to translation from German to English, using the Europarl corpus

(Koehn, 2005a) for our training data. This corpus contains over 750,000 training sentences;

we extracted over 441,000 training examples for the AEP model from this corpus, using the

method described in section 5.3. We reserved 35,000 of these training examples as devel-

opment data for the model. We used a set of features derived from the those described in

section 5.4.2. This set was optimized using the development data through experimentation
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with several different feature subsets.

Modifiers within German clauses were translated using a phrase-based model (Koehn

et al., 2003). We first generated n-best lists for each modifier. We then built a reranking

model — see section 5.5 — to choose between the elements in the n-best lists. The reranker

was trained using around 800 labeled examples from a development set.

The test data for the experiments consisted of 2,000 sentences, and was the same test

set as that used by (Collins et al., 2005). We use the model of (Koehn et al., 2003) as

a baseline for our experiments. The AEP-driven model was used to translate all test set

sentences where all clauses within the German parse tree contained at least one verb and

there was no embedding of clauses — there were 1,335 sentences which met these criteria.

The remaining 665 sentences were translated with the baseline system. This set of 2,000

translations had a BLEU score of 23.96. The baseline system alone achieved a BLEU score

of 25.26 on the same set of 2,000 test sentences. We also obtained judgments from two

human annotators on 100 randomly-drawn sentences on which the baseline and AEP-based

outputs differed. For each example the annotator viewed the reference translation, together

with the two systems’ translations presented in a random order. Annotator 1 judged 62

translations to be equal in quality, 16 translations to be better under the AEP system, and

22 to be better for the baseline system. Annotator 2 judged 37 translations to be equal

in quality, 32 to be better under the baseline, and 31 to be better under the AEP-based

system.
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Chapter 6

Machine Translation with Lattices

In this chapter, we present an alternative lattice-based framework for deriving full trans-

lations from AEPs. The new framework has three important advantages over the one

presented in Chapter 5: 1. it accommodates n-best lists of AEPs; 2. it allows for the use of

a target language model; and 3. it can select argument and modifier translations in context.

In the first part of the chapter, we describe the new lattice-based framework. In the second

part, we present experimental results on a German-to-English translation task. Finally, in

the last part, we give an analysis of our system’s performance.

6.1 The Lattice-Based Framework

The lattice-based framework can be described in the following sequence of steps:

1. parse the input and break it into a series of clauses;

2. predict n-best AEPs for each clause;

3. generate translations for subjects, objects, and modifiers;

4. construct a sentence-level lattice of possible translations;

5. select a full translation by searching the lattice.

In this section, we provide an example to demonstrate each one of these steps. Throughout

the example, we consider the input to be the following German sentence:

129



GERMAN: wir sind zornig und wir müssen unseren kampf mit den
völkern gegen diese politiken verstärken .

GLOSS: we are angry and we must our fight with the people against
these policies extend .

REFERENCE: we are angry and we must extend our fight with the peoples
against these policies .

Step 1: Parse input and break into clauses This step is identical to the first step in

Chapter 5. The complete German input is parsed and then broken into a series of clauses.

In our example there are two clauses, wir sind zornig and und wir müssen.... The second

clause has the following parse structure:

s:und

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍❍

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

pper-sb 1

wir

vvfin-hd

müssen

np-oa 2

✏✏✏✏
PPPP

unseren kampf

pp-mnr

✟✟✟✟

❍❍❍❍

ppc 3

✏✏✏✏
PPPP

mit den völkern

pp-mnr

ppc 4

✏✏✏✏✏

PPPPP

gegen diese politiken

vvinf-hd

verstärken

Step 2: Predict AEPs for each clause In this step, we generate an n-best list of AEPs

for each clause. The AEP prediction model is the same as that described in Chapter 5,

except that it has been modified to produce an n-best list of AEPs rather than the single

best AEP. This modification is simple to implement since the AEP prediction model’s search

maintains a beam of the top-scoring sequences of decisions, as described in Section 5.4.

The following list of three top AEPs corresponds to the second clause in the example:
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STEM: extend
SPINE:
S:and S NP-A

VP V
NP-A

VOICE: active
SUBJECT: 1

OBJECT: 2

WH: NULL
MODALS: must
INFL: extend
MOD1: null
MOD2: null
MOD3: post-verb
MOD4: post-verb

STEM: strengthen
SPINE:
S:and S NP-A

VP V
NP-A

VOICE: active
SUBJECT: 1

OBJECT: 2

WH: NULL
MODALS: must
INFL: strengthen
MOD1: null
MOD2: null
MOD3: post-verb
MOD4: pre-subj

STEM: extend
SPINE:
S:and S NP-A

VP V
NP-A

VOICE: active
SUBJECT: 1

OBJECT: 2

WH: NULL
MODALS: are
INFL: extending
MOD1: null
MOD2: null
MOD3: post-verb
MOD4: post-verb

Step 3: Generate modifier translations A lattice of possible translations is generated

for each modifier. In the second clause of our example there are four modifiers: the subject

wir, the object unsere kampf, and the prepositional phrases mit den völkern and gegen diese

politiken. A simplified lattice is shown at the bottom of Figure 6-1 for the modifier mit

den völkern. This lattice represents the phrases with the citizens, with the nations, with the

people, with the peoples, by the people, by the peoples, of the people, and of the peoples. Note

that the lattices we use contain both words and scores on the arcs, while the schematic

shows only words.

Step 4: Construct sentence-level lattice A sentence-level lattice is constructed using

the AEPs from Step 2 and the modifier lattices from Step 3. First, lattices are constructed

for each AEP in the n-best list by concatenating the modifier lattices with the main verb

and any conjunctions, complementizers, or wh-words in the AEP. The subject and object

modifier lattices are placed before and after the verb, respectively; the remaining modifier

lattices are placed according to the positioning designated by the AEP. The schematic

labelled AEP 3 lattice, in the middle of Figure 6-1, represents an AEP lattice for the third

AEP shown above.

Once each of the AEP lattices have been formed, they are combined using the union

operation for finite-state machines. This operation is illustrated at the top of Figure 6-1.

131



Figure 6-1: A sentence lattice (top) is constructed from n-best AEP lattices. Each AEP lat-
tice (middle) consists of the different pieces of the AEP, concatenated together. Arguments
and modifier translation candidates are themselves represented by lattices (bottom).
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The final step in constructing the sentence-level lattice is to combine it with a language

model using the composition operation.

Step 5: Select translation Finally, a translation is selected by searching for the best

possible path through the lattice, as determined by the scores on the arcs. In Section 6.2

we describe how we compute these scores. The lattice can be searched using the Viterbi

algorithm.

6.2 Experiments

6.2.1 Data

We tested the lattice-based model on a German-to-English translation task. Our model

was trained and tested using the Europarl corpus (version 2) of (Koehn, 2005b). The

data was partitioned into four segments: TRAIN/DEV1 (751,088 sentence pairs),1 DEV2

(2000 sentence pairs), and TEST (7718 sentence pairs). The partitioning is summarized in

Figure 6-2.

TRAIN/DEV1, taken from the Europarl V2 standard training set, was used to train the

n-best AEP model: the first 701,014 sentences were used to extract 411,634 AEP-German

parse tree pairs to train the model; the remaining examples were used to generate 30K

AEP-German parse tree pairs for use as development data (see Figure 6-3).2

DEV2 and TEST were both extracted from the Europarl V2 standard test data (i.e.,

files in the range 10/00–12/00).3 DEV2 was used as development data to train weights

for the lattice search. TEST was used to test the lattice-based framework. For both of

these sets, we only included German sentences where the parser of (Dubey, 2005) produced

a parse, and where the German clauses involved no embedding. After this filtering step,

DEV2 contained 1494 sentences, and TEST contained 4694 sentences (see Figure 6-4).
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TRAIN DEV1 DEV2 TEST

700K 50K 2K 8K

EUROPARL V2 train EUROPARL V2 test

Figure 6-2: The data was partitioned into four segments of roughly 700K, 50K, 2K, and 8K.
TRAIN and DEV1 were taken from the standard Europarl version 2 training set; DEV2
and TEST were taken from the standard test set (10/00–12/00). DEV2 consists of the first
2000 examples from files 10/2/00–10/6/00; TEST is the remaining 8000 examples.

TRAIN DEV1

411K 30K

Figure 6-3: Approximate number of English AEP-German clause pairs in TRAIN and
DEV1.

6.2.2 From German Sentences to English Translations

The full experimental path from German sentences to English translations is shown in

Figure 6-5. The first step is to train an n-best AEP model (top) using data in TRAIN and

DEV1. We ran the averaged perceptron trainer described in Section 5.4 for ten iterations

and selected the model with the smallest number of total errors (where errors are summed

over all decisions).

The next step is to generate English translations from German sentences in TEST

(middle and bottom of Figure 6-5). We used n-best AEP model of the first step to generate

n-best AEPs for the TEST German sentences, which were first parsed with (Dubey, 2005)

and broken into clauses. To translate the arguments and modifiers of the n-best AEPs, we

used the phrase-based model of (Koehn et al., 2003) trained on the first 727,770 examples

from the TRAIN/DEV1 set. We used a different trigram language model with this system4

according to the type of the argument or modifier being translated. That is, we selected one

of six trigram language models, each of which was trained on examples of the appropriate

argument type (subject or object) or modifier type (pre-subject, post-subject, in-modals, or

post-verb). The arguments and modifiers used to train the language models were extracted

from the parse trees of the 727,770 examples used to train the system. The position-specific

translation candidates were stored as lattices and used as building blocks in the clause and

1This is the same 751,088 used to train the phrase-based and AEP-based systems in Chapter 5.
2The lexicon used in the AEP model’s feature set was trained on all 751,088 sentences in TRAIN/DEV1.
3Before extracting DEV2 and TEST from the Europarl V2 test data, we preprocessed it in three steps:

1. we filtered out XML lines; 2. we filtered out any line that appeared in the test set used in Section 5.6;
and 3. we filtered out 10 lines from the file dated 12/13/2000, which appeared as part of a speech we found
reiterated in part of the training data (file 06/14/2000).

4This phrase-based system includes a language model as one of its features.
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DEV2 TEST

1500 4700

Figure 6-4: Approximate number of sentence pairs in DEV2 and TEST after filtering.

sentence-level lattices (as described in Section 6.1).

There are a few details worth mentioning regarding the construction of the lattices:

• When building clause lattices, we first filtered the n-best list of AEPs: we kept only

those that had the same modifiers placed and deleted as the top-ranked AEP. This

ensured that the scores of the parallel clause paths in the sentence lattice were com-

parable. Then we took the top five AEPs in the resulting list and created lattices for

them.

• For any AEP lattice, if there was more than one modifier in any of the possible

modifier positions, we concatenated them in the same order they appeared in the

German sentence.

• If there was more than one clause in the original German sentence, we concatenated the

corresponding clause-level lattices in the same order of their German correspondents.

• The sentence-level lattice was intersected with a trigram language model trained on the

same 727,770 sentences that were used to train the phrase-based modifier translators.

To extract a translation from the sentence lattice, we used the Viterbi algorithm for

finite-state machines. The scores on the edges of the sentence lattices were a linear combi-

nation of two component scores: a language model score and a word insertion penalty. The

weights on these scores were trained using the examples in DEV2 and the simplex algorithm

(Nelder & Mead, 1964).

6.3 Results

We compared output from the lattice-based model to output from a phrase-based model

(Koehn et al., 2003) trained on the first 727,770 sentences from the TRAIN/DEV1 set

described above in Section 6.2.5 Output for both systems was generated using the final

5All BLEU scores and results from the human evaluation in this section were derived using output from
this phrase-based system. A phrase-based system trained on all 751,088 sentences in TRAIN/DEV generates
a BLEU score of 22.74 on the final test set.
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Figure 6-5: The path from German sentences to English translations within the lattice-based
frame
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BLEU

PB 22.66

AEP 21.42

Figure 6-6: BLEU scores on test set for both the phrase-based (PB) and the AEP-based
(AEP) system.

development and test sets (containing 1494 and 4694 sentences, respectively) that resulted

following the filtering regimen described above in Section 6.2. On the test set, the lattice-

based system achieved a BLEU score of 21.42 and the phrase-based system a score of 22.66.

These results are summarized in Figure 6-6.

6.3.1 Human Evaluation

We conducted a human evaluation to compare the fluency and adequacy of our system’s

output and a phrase-based system’s output on the test set. Fluency refers to the degree

to which a translation is well-formed according to the rules of standard written English. A

fluent sentence is one that is well-formed grammatically, contains correct spellings, adheres

to common use of terms, titles, and names, is intuitively acceptable and can be sensibly

interpreted by a native speaker of English.

We asked six native speakers of English to compare 200 translation pairs on the basis

of fluency and adequacy. Judges were only shown translations of sentences with length

between ten and twenty words (roughly 35% of the test set). The six judges were randomly

paired so that there would be two independent judgments of both fluency and adequacy for

each of 600 translation pairs. The 600 pairs were randomly ordered before being segmented

into chunks of 200. When providing fluency judgments, the annotators were presented with

a pair of sentences consisting of two randomly-ordered translations, one from each system.

The judges were asked to decide whether the first translation was more fluent, the second was

more fluent, or the two were the same. When providing adequacy judgments, the annotators

were shown, in addition to the output from the two MT systems, a reference translation.

They were asked to decide which translation was better, the first or the second, or whether

they were of the same quality, given the reference translation. They were told that an

ideal translation should correctly communicate the meaning of the reference translation

and should also be fluent/grammatically well-formed. We include the complete instructions

given to the judges in Appendix F.
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Results of the evaluation are summarized in Figure 6-7. The top tables show the corre-

lation between pair 1, annotator one and pair 1, annotator two’s judgments for fluency (left)

and adequacy (right). The middle tables are the results for pair 2, and the bottom tables

are pair three. Overall, averaged over all judges, they found the output of the AEP-based

system to be more fluent than the phrase-based system’s in 45% of the translation pairs; in

29% of cases they thought it was worse, and in 26% they thought the two were the same.

When judging adequacy, on average the annotators found the AEP-based system’s output

of higher quality in 36% of cases, of lesser quality in 33%, and of the same quality in 31%.

These averages are more or less in accord with what we found in the judgments of the

individual annotators: for fluency, all six preferred the AEP-based system, and for five of

the six the difference between the two systems was statistically significant using the sign

test (see, for example, (Lehmann, 1986)). For adequacy, only one annotator’s preference

for the AEP-based system was statistically significant using the sign test; for the remaining

five, the difference between the two systems was not statistically significant.

Figure 6-8 shows the correlation between each individual annotator’s fluency and ade-

quacy judgments. The top tables are pair 1; the middle ones are pair 2, and the bottom

are pair 3.

Figure 6-9 shows the correlation between fluency and adequacy on examples where the

two annotators in each pair were in complete agreement. The pair 1 annotators agreed on

both fluency and adequacy in 47.5% of cases, the pair 2 annotators in 45.5%, and the pair 3

annotators in 48%. The tables show the strongest correlation along the diagonal, suggesting

that fluency and adequacy may be related in people’s judgment of translation quality.

6.4 Analysis of Translation Output

In this section, we perform an analysis of the translation output of the lattice-based system.

The observations we make are based on our examination of the annotated data resulting

from the human evaluation we presented in the preceding section. Before discussing the

system’s errors, we begin with a discussion of its strengths.
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FLUENCY ADEQUACY

A1
PB AEP =

PB 0.2 0.065 0.02 0.285
A2 AEP 0.065 0.315 0.035 0.415

= 0.08 0.11 0.11 0.3
0.345 0.49 0.165

A1
PB AEP =

PB 0.25 0.08 0.025 0.355
A2 AEP 0.02 0.28 0.005 0.305

= 0.12 0.095 0.125 0.34
0.39 0.455 0.155

FLUENCY ADEQUACY

A1
PB AEP =

PB 0.195 0.045 0.005 0.245
A2 AEP 0.06 0.405 0.035 0.5

= 0.105 0.08 0.07 0.255
0.36 0.53 0.11

A1
PB AEP =

PB 0.225 0.03 0.02 0.275
A2 AEP 0.045 0.285 0.025 0.355

= 0.145 0.09 0.135 0.37
0.415 0.405 0.18

FLUENCY ADEQUACY

A1
PB AEP =

PB 0.155 0.015 0.04 0.21
A2 AEP 0.04 0.275 0.07 0.385

= 0.105 0.07 0.23 0.405
0.3 0.36 0.34

A1
PB AEP =

PB 0.18 0.005 0.045 0.23
A2 AEP 0.04 0.235 0.075 0.35

= 0.1 0.06 0.26 0.42
0.32 0.3 0.38

Figure 6-7: Confusion matrices comparing fluency and adequacy judgments of the two
annotators in pairs 1 (top), 2 (middle), and 3 (bottom). For each pair, A1 is annotator one,
and A2 is annotator two. The nine interior cells show inter-annotator agreement, and the
outer six cells summarize the judgments of each individual annotator.
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ANNOTATOR 1 ANNOTATOR 2

AD
PB AEP =

PB 0.235 0.065 0.045
FL AEP 0.115 0.345 0.03

= 0.04 0.045 0.08

AD
PB AEP =

PB 0.215 0.015 0.055
FL AEP 0.06 0.245 0.11

= 0.08 0.045 0.175

ANNOTATOR 1 ANNOTATOR 2

AD
PB AEP =

PB 0.26 0.04 0.06
FL AEP 0.11 0.355 0.065

= 0.045 0.01 0.055

AD
PB AEP =

PB 0.16 0.015 0.07
FL AEP 0.045 0.305 0.15

= 0.07 0.035 0.15

ANNOTATOR 1 ANNOTATOR 2

AD
PB AEP =

PB 0.215 0.02 0.065
FL AEP 0.045 0.235 0.08

= 0.06 0.045 0.235

AD
PB AEP =

PB 0.145 0.025 0.04
FL AEP 0.015 0.24 0.13

= 0.07 0.085 0.25

Figure 6-8: The tables show the correlation between fluency (FL) and adequacy (AD) for
each annotator. The top two tables are from pair one; the middle are from pair 2, and the
bottom are from pair three.
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PAIR 1
AD

PB AEP =

PB 0.115 0.005 0.005
FL AEP 0.005 0.17 0.025

= 0.01 0.005 0.135

PAIR 2
AD

PB AEP =

PB 0.145 0.005 0.01
FL AEP 0.01 0.21 0.01

= 0.005 0.005 0.055

PAIR 3
AD

PB AEP =

PB 0.12 0.005 0.02
FL AEP 0.015 0.24 0.03

= 0.01 0.0 0.04

Figure 6-9: Each table shows the correlation between fluency (FL) and adequacy (AD) for
only those examples where the annotators in each pair agreed. The proportion in each cell
was calculated out of the 200 examples each pair annotated. Pair 1 agreed on 47.5% of the
examples, pair 2 on 45.5%, and pair 3 on 48%.
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6.4.1 Strengths

Cases when the AEP-based system’s output is notably more fluent and more adequate than

that of the phrase-based system tend to be when the German word order diverges dramat-

ically from standard English subject-verb-object structure. The following is an example:

GERMAN: ich hoffe , dass wir slowenien in der ersten gruppe der neuen
mitglieder begrüßen können .

GLOSS: i hope , that we slovenia in the first group of new members
welcome can .

REFERENCE: i hope slovenia will be in the first group of new members .

PHRASE-BASED: i hope that we slovenia in the first group of the new members
welcome that fact .

AEP-BASED: i hope we can welcome slovenia in the first group of the new
member states .

In this example, the second clause of the German (beginning dass wir slowenien...)

follows the basic word order subject-object-verb.6 Furthermore, the object slowenien and

the verb phrase begrüßen können are separated by two prepositional phrases. As we pointed

out in Chapter 1, the phrase-based system is likely to rely on a reordering model to move

the verb phrase to an appropriate position (between the subject we and the object slovenia).

In this example, that reordering model is too weak to carry out the desired result. As a

consequence, the phrase-based system ends up mimicking the word order of the German.

In contrast, the AEP-based system correctly orders the verb and its arguments.

Figure 6-10 shows the parse tree for the clause we have been discussing. An interesting

property of this tree is that the parser has mistakenly placed the prepositional phrase

modifier in der ersten gruppe... in a position of dependence on the object slowenien instead

of the verb begrüßen. This means that the discriminative AEP model considers the entire

phrase slowenien in der ersten gruppe... to be the object. In this particular case, the AEP

model is robust to this error, and it has no negative impact on the translation. However,

we will see that parsing errors can have a deleterious effect on translation.

6It is required for verbs to come at the end of German subordinate clauses, so this is a frequently-occurring
phenomenon.
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❍❍❍❍❍❍❍❍❍❍

np-oa 2

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

ne-nk

slowenien

pp-mnr

✏✏✏✏✏✏✏✏✏✏

PPPPPPPPPP

in der ersten gruppe der neuen mitglieder

vvinf-hd

begrüßen

vmfin-hd

können

Figure 6-10: Parse of the German clause dass wir slowenien in der ersten gruppe der neuen
mitglieder begrüßen können. Note that the parser has incorrectly placed the prepositional
phrase modifier as a dependent of the object slowenien; it should be a dependent of the
verb begrüßen.

6.4.2 Errors

Based on the human evaluation, the AEP-based system is producing output more fluent

than a phrase-based system’s roughly 45% of the time; however, the AEP-based system

produces more adequate output only 36% of the time. It seems intuitive that more fluent

output should also be more adequate. Since our system’s output seems to be overall more

fluent than the phrase-based system, a natural question to ask is why it is not also more

adequate. In addition, the phrase-based system produces more fluent output than the AEP-

based system roughly 29% of the time. Since one of the explicit goals of the AEP approach

is to improve grammaticality, we would like to understand what is going on in those cases

where fluency is still worse than a system that does not explicitly take syntax into account.

In the sections that follow, we present some of the errors that our system is making, based

on observations we have made in reviewing the data generated during the human evaluation.

As we analyze these errors, we pay particularly close attention to phenomena that may help

to answer the two questions posed here.
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❅
❅
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PPPPPPPPPP

kous-cp
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✟✟✟✟✟✟

❍❍❍❍❍❍

pp-mo

✏✏✏✏✏✏✏✏✏

PPPPPPPPP

in nicht allzu ferner zukunft der union

vvinf-hd

beitreten

vafin-hd

wird

Figure 6-11: Parse of the German clause dass litauen in nicht allzu ferner zukunft der union
beitreten wird.

Misidentification of Arguments

One problem that appears with some frequency in the AEP-based system’s output is the

misidentification of arguments (subject and object). For example, in the following case, the

AEP prediction model generated at least one top-ranked AEP with subject they (filled in

from a list of common subjects), and placed the real subject litauen in the object position,

which ultimately leads to the following translation:

GERMAN: ich hoffe , dass litauen in nicht allzu ferner zukunft der union
beitreten wird .

GLOSS: i hope , that lithuania in not too distant future the union
join will .

REFERENCE: i look forward to lithuania joining the union in the not too
distant future .

PHRASE-BASED: i hope that lithuania in the not too distant future , join the
union .

AEP-BASED: i hope they will join lithuania in the not too distant future
of the european union .

In this particular case, the parse for the second clause where the error occurs does not

have any glaring errors (see Figure 6-11), and it seems that the fault lies with the AEP

prediction model itself. Parse errors can lead to poor translations, however. Here is an

example where a parse error very likely accounts for the obfuscated translation:
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❅
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PPPPPPPPPPPPPPPP

pp-mo 1

✏✏✏✏✏
PPPPP

in bezug auf die
überlebenden und
betroffenen

vafin-hd

sind

np-sb 2

✏✏✏✏✏
PPPPP

bereits jetzt zwei

vp-oc

✟✟✟✟

❍❍❍❍

nn-oa 3

schlüsse

vz-hd

✟✟✟
❍❍❍

ptkzu-pm

zu

vvinf-hd

ziehen

Figure 6-12: Parse of the German sentence in bezug auf die überlebenden und betroffenen
sind bereits jetzt zwei schlüsse zu ziehen.

GERMAN: in bezug auf die überlebenden und betroffenen sind bereits
jetzt zwei schlüsse zu ziehen .

GLOSS: in relation to the survivors and affected are already now two
conclusions to draw .

REFERENCE: judging from the survivors and those involved , we can al-
ready draw two conclusions .

PHRASE-BASED: in relation to the survivors and affected are already two
conclusions .

AEP-BASED: we are required to draw two already in relation to the sur-
vivors and those conclusions .

The correct object would be conclusions, but the AEP prediction module places the

phrase dominated by np-sb 2 in the object position. At least part of the problem in this

particular example is an imperfect parse tree (shown in Figure 6-13), in which the modifier

zwei/two is separated from its head schlüsse/conclusions.

Poor Translations of Arguments and Modifiers

While the lattice-based approach does allow for more contextual information in the selec-

tion of argument and modifier translations, it is not perfect: the phrase-based system can

introduce errors in producing the n-best list of candidate translations. Here’s one example:
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GERMAN: durch eine entscheidung der natur ist die frau trägerin der
zukunft der menschheit .

GLOSS: by a decision of nature is the woman carrier of the future
of humanity .

REFERENCE: nature has determined that woman should carry the future
of humanity in her womb .

PHRASE-BASED: by a decision of the nature of the madam indeed a recipient
of the future of humanity .

AEP-BASED: the commissioner is indeed a recipient of the future of
mankind , by a decision of the environment .

In this case, the AEP-prediction module has correctly predicted that the phrase die frau

is the subject of the sentence in every AEP in the n-best list. The phrase-based system used

to translate die frau must then have introduced the commissioner as a possible translation,

and it was then selected during the lattice search.

Problems Related to Verb Stem Choice

Another source of errors is related to AEP stem prediction. One instance of this problem

has to do with suboptimal selection of a stem candidate, resulting in translations such as

the following, in which the valence of the verb summoned is not quite right with respect to

the reference translation increased:

GERMAN: der verhandlungsprozess als solcher ist im letzten jahr noch
einmal deutlich beschleunigt worden .

GLOSS: the negotiation process as such is the last year again con-
siderably increased been .

REFERENCE: the pace of the negotiating process itself increased consid-
erably again last year .

PHRASE-BASED: the negotiation process , as such is the last year clear once
again been speeded up .

AEP-BASED: last year , the process as such , has been summoned once
again clearly .

Errors such as this one can have a strong impact on a human’s perception of adequacy.

Another instance of stem-choice problems occurs when the AEP-prediction module decides
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to translate a contentful German verb with an English verbal construction involving a light

verb such as to be, while dropping the verbal complement:

GERMAN: was uns allerdings beunruhigt , ist das schicksal von
vladimiro montesino .

GLOSS: what us however worries , is the fate of vladimiro montesino
.

REFERENCE: but we are concerned about the fate of mr montesinos .

PHRASE-BASED: what we are , however , is concerned , the fate of vladimiro
montesino .

AEP-BASED: what is to us , however , is the fate of vladimiro montesino
.

In the next section, we analyze stem prediction and other errors being made during

AEP prediction.

6.5 Analysis of AEP Model Output

Section 6.4 identifies three major sources of errors in the lattice-based translation system:

parsing errors, AEP-prediction errors, and modifier translation errors (made by the phrase-

based system). In this section, we take a closer look at errors made by the AEP prediction

model. During training, errors are detected by comparing the value of each decision in the

predicted AEP to those in the gold-standard (extracted) AEP. While this is a strict criterion

(the predicted AEP’s main verb might be synonymous with that of the gold-standard AEP;

a verb in the passive voice might work just as well as one in the active voice, etc.), it

is no more strict than most supervised MT methods with a single reference translation.

That said, it would be useful to know how many predicted AEPs might actually generate

reasonable translations, even if they differ from the gold standard.

To this end, we have undertaken an analysis of 200 randomly-selected AEPs from the

development set used to train the prediction model (the DEV1 set from Section 6.2). The

errors generated by the model during training on the full set are shown in Figure 6-13. Again,

these numbers were generated using the strict criterion of an exact match. According to

this criterion, 85.3% of the 30,000 AEPs in DEV1 had at least one decision error. Under a

different set of criteria, however, roughly 40% have at least one error.
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STEM SPINE VOICE SUBJ OBJ WH MODALS INFL MOD

48.5% 45.3% 0.09% 28.6% 29.9% 0.08% 39.5% 35.7% 33.0%

Figure 6-13: Percentage of errors by decision. These numbers were taken from the AEP
model used to generate n-best AEPs for DEV2 and TEST. The errors were made on the
DEV1 set (size 30K), during training.

To derive this number, we use a less stringent set of criteria than the exact match.

Under this new set of criteria, an AEP is considered satisfactory if

• it is formally equivalent to the gold-standard AEP, or

• it is functionally equivalent to the gold-standard AEP, or

• it is semantically equivalent to the gold-standard AEP.

The first criterion, formal equivalence, is the same as the exact match criterion of before:

a predicted AEP is formally equivalent to its gold-standard AEP if each one of its decision

values is an exact match with the gold. With the second criterion, functional equivalence,

the two AEPs may have one or more decision values that are different, but these differences

have no real effect. For example, the AEPs in Figure 6-14 are functionally equivalent.

Semantic equivalence is the most lenient of all the criteria. Two AEPs that are semantically

equivalent may differ considerably; however, the predicted AEP is deemed satisfactory in

the sense that it could lead to a perfectly valid translation. Semantic equivalence covers

cases where

• modifiers are placed in different but equally satisfying positions,

• the main verb is different but synonymous,

• the predicted output is passive and the gold is active (or vice versa) but the two are

semantically equivalent,

• the verbal inflection is different but sound,

and so on. The AEPs in Figure 6-15 are semantically equivalent.

Using these less stringent criteria, we evaluated the randomly-generated set of 200 AEP

described above. We found 121/200 (60%) of the AEPs to be satisfactory, and 79/200 (40%)

to have at least one error. Of these, 18/79 (22.8%) would be satisfactory if the model had
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German Clause

s-cc np-oa 1 npb art-oa ein
adja-nk klares
nn-nk signal

pp-mnr appr-ad an
cnp-nk npb nn-nk rat

kon-cd und
nn-nk kommission

vvfin-hd senden

Paraphrase: [[np-oa a clear signal] [pp-mnr to the
council and the commission]] send

Gold English AEP

STEM: send
SPINE:
SBAR-A IN in

SG-A VP V
NP-A

VOICE: active
SUBJECT: BLANK
OBJECT: 1

WH: NULL
MODALS: BLANK
INFL: sending
MOD1: null

Predicted English AEP

STEM: send
SPINE:
SBAR-A IN in

SG-A VP V
VOICE: active
SUBJECT: BLANK
OBJECT: BLANK
WH: NULL
MODALS: BLANK
INFL: sending
MOD1: post-verb

Figure 6-14: The gold AEP and the predicted AEP are functionally equivalent. The gold
AEP predicts an object in the spine and fills it with the German modifier labeled 1 ; the
predicted AEP predicts no object in the spine, but places the modifier labeled 1 after the
verb. Strictly speaking, the predicted AEP is incorrect, but functionally it produces the
same output as the gold AEP.
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German Clause

s np-sb 1 npb art-sb die
nn-nk kommission

vafin-hd hat
pp-mo 2 ppc apprart-da beim

nn-nk lernen
npb 3 nn-oa schwierigkeiten

Paraphrase: [np-sb the commission] has [pp-mo
with learning] [npb difficulties]

Gold English AEP

STEM: learn
SPINE:
S NP-A

VP V
VOICE: active
SUBJECT: 1

OBJECT: BLANK
WH: NULL
MODALS: BLANK
INFL: learns
MOD1: null
MOD2: delete
MOD3: post-verb

Predicted English AEP

STEM: have
SPINE:
S NP-A

VP V
NP-A

VOICE: active
SUBJECT: 1

OBJECT: 3

WH: NULL
MODALS: BLANK
INFL: has
MOD1: null
MOD2: post-verb
MOD3: null

Figure 6-15: The gold AEP and the predicted AEP are semantically equivalent. The
gold AEP maps to the English translation the commission learns with difficulty, while the
predicted AEP might lead to a translation such as the commission has difficulty learning.
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chosen a better main verb. These numbers suggest that by focusing on improving the main

verb decision, the AEP prediction model could be achieving roughly 69.4% accuracy.
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Chapter 7

Conclusion

We have presented an approach to tree-to-tree machine translation which leverages a new

representation — the aligned extended projection — within a discriminative, feature-based

framework. The AEP approach makes it possible to explicitly model the syntax of the

target language. The approach also makes it possible to build a detailed model of the

correspondence between the source and target-language parse trees, thereby constructing a

translation that preserves the meaning of the source-language sentence.

In the human evaluation of Chapter 6, we have seen evidence for a significant im-

provement in the grammaticality of the AEP-based system’s output when compared with

a phrase-based system. We have also seen evidence that the system could be improved

with respect to adequacy. The preservation of meaning is a complicated goal that can be

thwarted by poor parses, errors in the AEP-prediction model, or inadequate translations of

arguments and modifiers. Our hope is that future work may alleviate these problems and

help bring the AEP approach closer to its full potential.

7.1 Future Work

The AEP-based framework presents many opportunities for future work. We explore some

of these ideas here in the hope that it will be helpful for those wanting to make improvements

down the line.
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7.1.1 Improved AEP Prediction

Improving AEP prediction could have a significant impact on the overall quality of AEP-

based translation. Based on the errors of the current system (see Section 6.5), it is clear

that the prediction of particular parts of the AEP could be improved. For instance, we have

routinely observed that the choice of the main verb may not be optimal or even correct.

The feature-driven linear structured prediction framework allows a wide range of fea-

tures to be tested in attempting to improve AEP prediction accuracy. An overhaul of the

feature set would be an obvious place to start when thinking about the improvement of any

individual AEP decision. Alternatively, one might consider different definitions of AEPs.

For example, one might consider AEPs that include larger chunks of phrase structure, or

ones that contain more detailed information about the relative ordering of modifiers. Also,

not much has been done to test the order in which the decisions are made, or whether

certain decisions (e.g., voice, inflection) might be unnecessary or even harmful. Inflection

is something that might be better determined during the lattice search.

Something that we didn’t mention earlier but that ought to be documented are those

systematic bugs in the AEP extraction phase that are propagating through the AEP pre-

diction phase to the final translations:

1. interrogative structures are not being handled correctly in AEP extraction;

2. the prepositions or particles that certain verbs subcategorize for (e.g., on in vote on,

to in subject to, account in take account) are not being adequately modeled;

3. there’s a bug stemming from errors in GIZA++ alignments that causes gold-standard

AEPs to model two subjects (e.g., we we will vote);

The result of the first bug is that the word-order of interrogatives is almost always incor-

rect (e.g., you do want instead of do you want). This should be fairly simple to fix once

the appropriate spines, subjects, etc. are systematically applied to interrogatives during

AEP extraction. The second problem might be a bit more tricky. One idea is to identify

these prepositions with the verb, such that the verb is selected as vote on instead of just

vote. Another solution would be to create a separate decision that predicts these preposi-

tions. Or, they could be predicted as part of modifier translation, perhaps in a recursive

AEP-prediction stage (see Section 7.1.3). The last bug in the list is critical in that, in ad-
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dition to producing repeated words in inappropriate places, it may have other inadvertent

detrimental effects, like influencing the system’s tendency to introduce new subject strings

(“hallucinated” subjects) rather than find a good translation for some word in the German

input. For instance, the fact that the system sometimes introduces common English sub-

jects such as the european union when the true subject is, say, romania may be due to an

overestimated prior on these “hallucinated” subjects.

Finally, one last way of potentially improving AEP prediction would be to investigate

alternative learning methods. For example, a large-margin optimization technique such

as the exponentiated gradient approach to structured prediction (Bartlett et al., 2004)

might be adapted to the AEP prediction problem. We might also look into improving the

method by which training examples are extracted. Our current method involves heuristics

for determining modifier alignment; this might be done instead by using the EM algorithm

to induce the best alignment, or by annotating examples and using supervised learning

techniques.

In approaching any of the suggested improvements above, it would be good to think

about what people expect from automatic translations. I.e., what errors are people most

sensitive to? What errors can be most tolerated? I don’t think these questions have yet

been answered.

7.1.2 Better Integration with the Phrase-Based System

The translation framework we have developed in this thesis uses a phrase-based system

to produce n-best lists of modifier translations. One way that might improve modifier

translation within this framework would be to develop a better integration between the

AEP prediction model and the phrase-based system. For instance, rather than producing

modifier translations in isolation, we could use the syntax-based system to produce modified

MT input to the phrase-based system. Figure 7-1 illustrates how the input to the MT system

might be rearranged by the syntax-based AEP model. Note that in step two of the figure,

some of the input has been translated to English (the verb sequence would like to thank),

while some if it has merely been reordered. This allows the phrase-based system to decode

the entire AEP at once. This approach is similar to a clause-restructuring approach such as

that of (Collins et al., 2005). A different approach would be to build a classifier that selects

the best output after both the AEP-based and the phrase-based systems have decoded the

155



German input:

für seinen bericht möchte ich dem 

   berichterstatter danken

ich would like to thank dem berichterstatter

   für seinen bericht

i would like to thank the rapporteur

   for his report

AEP

MODEL

PHRASE-

BASED

MODEL

1

Modified German input:2

English output:3

Figure 7-1: The input to the MT system — für seinen bericht möchte ich dem berichter-
statter danken — is rearranged by the syntax-based system to produced modified input to
the phrase-based system.

input.

7.1.3 Recursive Prediction of Modifier AEPs

We might consider methods that relieve the AEP-based translation framework from any

reliance whatsoever on a phrase-based system. A natural modification to the current AEP

framework would be to apply AEP prediction to the translation of modifiers. The new AEP

models would be trained to predict NPs, PPs, ADJPs, and ADVPs. Nouns, adjectives, etc. (like

verbs) subcategorize lexically for certain types of arguments (Haegeman & Guéron, 1999),

and extended projections may be formed for many types of words. For example, given a

German modifier aligned to the English subject, we might try to predict a corresponding

AEP, which would likely involve the extended projection of a noun. This approach is

compelling not only because it suggests an AEP framework that is entirely self-contained,

without reliance on a phrase-based system, but also because it facilitates the modeling of

syntactic structure conditioned on the intended role (subject, object, etc) of the target-

language modifier.

7.1.4 Better Parsers

The German parser we are currently using (Dubey, 2005) achieves an F1 score of 76.2%

in the recovery of labeled brackets and is trained using the Negra German treebank (Skut

et al., 1997). In some work by (Kübler et al., 2006), experimentation was conducted with

parsers trained using Negra and another treebank TüBa-D/Z (Telljohann et al., 2005);

the performance of the parsers trained using Negra was consistently around 20% worse.
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The best parser trained with TüBa-D/Z performed at around 89% F1 in the recovery

of labeled constituents (compared with 69% for the same parser trained with Negra data)

when using gold-standard part-of-speech tags as input. It is therefore possible that we might

see a significant improvement in German parsing performance, and hence German/English

translation quality, by switching to a parser trained using the TüBa-D/Z treebank.

7.1.5 Spanish/English Translation

One language pair that would be interesting to work with is Spanish/English. (This thesis

does develop a Spanish parser, after all!) Spanish is interesting for a number of reasons

(Zagona, 2002), some of which are discussed in Chapter 4:

• it has a fairly rich morphology;

• constituent order is not fixed in declarative sentences (constituents may appear as

S-V-O, V-O-S, or V-S-O);

• if understood from context, the subject does not have to appear in a sentence;

• the use of the subjunctive mood is quite prevalent and may be triggered by a phrase

that appears far away from the inflected verb;

• the passive voice is used in many cases where active voice would be the natural choice

in English;

• Spanish uses two forms of past tense (preterite and imperfect) where English uses

only one (simple);

• Spanish has two forms of the verb to be;

• Spanish uses double clitics (that is, two clitics with the same referent), and there are

two possible positions when placing clitics in sentences where a verb appears in the

progressive or infinitive form.

7.2 Final Remarks

The goal of this research has been to make explicit use of syntactic information to produce

high-quality automatic translations within a discriminative statistical framework. We as-
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sume that we have at our disposal a sentence-aligned parallel corpus and automatic parsers

for the two languages involved. We believe that using syntax in both the source and tar-

get languages is the correct way to approach MT, and as parsers for languages other than

English continue to improve, our approach can only benefit.

In this thesis, we have developed methods for automatically extracting and predicting

target-language aligned extended projections, which are syntactic structures that contain

global information about the output. We have also presented a method for training the

AEP prediction model. The results of a human evaluation are very encouraging for the

approach, which we believe still holds much untapped potential. We hope that the work in

this thesis will lead to future work that not only produces better machine translation output,

but also sheds more light on what might be necessary and useful syntactic information in

the automatic translation process.
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Appendix A

Head Rules For Spanish Parsing

Table A.1 shows the set of head-finding rules used in the Spanish parsing models of Chap-

ter 4. This set of deterministic head rules specifies which child is the head of its parent. A

recursive algorithm then propagates headwords (lexical items) and headtags (POS tags) up

the tree from the leaves to the root via the head-children (see (Collins, 1999)).

The head rules identify the headchild for each non-terminal. Any non-terminal not in

this list takes the left-most child as its head. This is also the default case for all non-

terminals listed here (except *CC2 and *CP — where * is a wildcard— which always take

the right-most child to be the head). We illustrate the workings of the head rules with an

example: to find the headchild for the non-terminal SN, we first search for the right-most

child with label GRUP. If no such child exists, we look for the left-most SN. If no such child

exists, we look for the left-most S, RELATIU, or SP, and finally, the right-most N. In the

case that no head child has yet been assigned, we assign the left-most child to be the head.

Punctuation nodes are never assigned as head-children.
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Non-Terminal Dir Headchild
CONJ left CS

COORD left CC

GRUP right N,W,P,Z,AQ,GRUP

INC left S

INFINITIU left V

INTERJECCIO left I

NEG left RN

PREP left SP

SA left AO,AQ

SN right GRUP

left SN

left S,RELATIU,SP

right N

SP left PREP

left SP

SADV left RG

left P

left SADV

s right AO,AQ

left s

S left GV

left INFINITIU

left S

left GERUNDI

SBAR left CP

*CC1 left CC2

*CC2 right any child
*CP left RELATIU-CP,CONJ-CP

right any child

Table A.1: Spanish head rules.
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Appendix B

Identification of Clauses for

AEP-Based Translation

To generate training data for the AEP prediction model of Chapter 5, we need to extract

clause-level German parse trees and English AEPs from the parsed parallel corpus. Before

extracting AEPs using the algorithm in Section 5.3, we first identify the clauses in the

parse trees as follows. Any non-terminal labeled by the parser of (Collins, 1999) as SBAR

or SBAR-A is labeled as a clause root. Any node labeled by the parser as S or S-A is also

labeled as the root of a clause, unless it is directly dominated by a non-terminal labeled

SBAR or SBAR-A. Any node labeled SG or SG-A by the parser is labeled as a clause root,

unless (1) the node is directly dominated by SBAR or SBAR-A; or (2) the node is directly

dominated by a VP, and the node is not directly preceded by a verb (POS tag beginning

with V) or modal (POS tag beginning with M). Any node labeled VP is marked as a clause

root if (1) the node is not directly dominated by a VP, S, S-A, SBAR, SBAR-A, SG, or SG-A;

or (2) the node is directly preceded by a coordinating conjunction (i.e., a POS tag labeled

as CC).

In German parse trees, we identify any nodes labeled as S or CS as clause roots. In

addition, we mark any node labeled as VP as a clause root, provided that (1) it is preceded

by a coordinating conjunction, i.e., a POS tag labeled as KON; or (2) it has one of the

functional tags -mo, -re or -sb.
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Appendix C

Reranking Modifier Translations

The n-best reranking model for the translation of modifiers of Chapter 5 considers a list

of candidate translations. We hand-labeled 800 examples, marking the element in each list

that would lead to the best translation. The features of the n-best reranking algorithm are

combinations of the basic features in Tables C.1 and C.2.

Each list contained the n-best translations produced by the phrase-based system of

(Koehn et al., 2003). The lists also contained a supplementary candidate — “DELETED”

— signifying that the modifier should be deleted from the English translation. In addition,

each candidate derived from the phrase-based system contributed one new candidates to

the list signifying that the first word of the candidate should be deleted. These additional

candidates were motivated by our observation that the optimal candidate in the n-best

list produced by the phrase-based system often included an unwanted preposition at the

beginning of the string.
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1 candidate string
2 should the first word of the candidate be deleted?
3 POS tag of first word of candidate
4 POS tag of last word of candidate
5 top nonterminal of parse of candidate
6 modifier deleted from English translation?
7 first candidate on n-best list
8 first word of candidate
9 last word of candidate
10 rank of candidate in n-best list
11 is there punctuation at the beginning, middle,

or end of the string?
12 if the first word of the candidate should be deleted,

what is the string that is deleted?
13 if the first word of the candidate should be deleted,

what is the POS tag of the word that is deleted?

Table C.1: Functions of the candidate modifier translations used for making features in the
n-best reranking model.

1 the position of the modifier (0–4) in AEP
2 main verb in AEP
3 voice in AEP
4 subject in AEP
5 German input string

Table C.2: Functions of the German input string and predicted AEP output used for making
features in the n-best reranking model.
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Appendix D

German NEGRA Corpus

Throughout this thesis, we refer to syntactic parses generated from the parser of (Dubey,

2005). This parser was trained using the German NEGRA treebank (Skut et al., 1997). The

annotation scheme of the NEGRA treebank includes nonterminals representing phrasal and

functional categories, and preterminals from the standard “Stuttgart/Tübinger Tagsets”

(STTS). For the sake of completeness, in this appendix we include a comprehensive list of

the NEGRA nonterminals and preterminals, many of which are used in this thesis. Table D.1

lists the phrasal categories; Table D.2 lists the functional categories; and Table D.3 lists the

part-of-speech tags.
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AA superlative phrase with “am”

AP adjective phrase

AVP adverbial phrase

CAC coordinated adpositions

CAP coordinated adjective phrase

CAVP coordinated adverbial phrase

CCP coordinated complementizer

CH chunk

CNP coordinated noun phrase

CO coordination

CPP coordinated adpositional phrase

CS coordinated sentence

CVP coordinated non-finite verb phrase

CVZ coordinated zu-marked infinitive

DL discourse-level contituent

ISU idiosyncratic unit

MPN multi-word proper noun

MTA multi-token adjective

NM multi-token number

NP noun phrase

PP adpositional phrase

QL quasi-language

S sentence

VP verb phrase

VZ zu-marked infinitive

Table D.1: The phrasal categories used in the NEGRA corpus.

166



AC adpositional case marker MR rhetorical modifier

ADC adjective component MW way (directional modifier)

AMS measure argument of an adj/adv NG negation

APP apposition NK noun kernel modifier

AVC adverbial phrase component NMC numerical component

CC comparative complement OA accusative object

CD coordinating conjunction OA2 second accusative object

CJ conjunct OC clausal object

CM comparative conjunction OG genitive object

CP complementizer PD predicate

DA dative PG pseudo-genitive

DH discourse-level head PH placeholder

DM discourse marker PM morphological particle

EP expletive PNC proper noun component

GL prenominal genitive RC relative clause

GR postnominal genitive RE repeated element

HD head RS reported speech

JU junctor SB subject

MC comitative SBP passivized subject (PP)

MI instrumental SP subject or predicate

ML locative SVP separable verb prefix

MNR postnominal modifier UC unit component

MO modifier VO vocative

Table D.2: The functional categories used in the NEGRA corpus.
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ADJA attributive adj PWS subst interrogative pron

ADJD adverbial or predicative adj PWAT attr interrogative pron

ADV adverb PWAV adv interrogative or rel pron

APPR preposition PAV pronomial adverb

APPRART preposition with article PTKZU zu for infinitive

APPO postposition PTKNEG negation particle
APZR circumposition right part PTKVZ separated verbal particle

ART article PTKANT answer particle

CARD cardinal number PTKA particle with adjective

FM foreign text SGML SGML markup

ITJ interjection SPELL word spelled out

ORD ordinal number TRUNC truncated

KOUI subordinating conj with zu VVFIN finite verb

KOUS subordinating conj with sent VVIMP imperative

KON coordinating conjunction VVINF infinitive

KOKOM comparison particle VVIZU infinitive with zu

NN common noun VVPP perfect participle

NE proper noun VAFIN finite auxiliary

PDS substitutive demonstrative pron VAIMP auxiliary imperative

PDAT attributive demonstrative pron VAINF auxiliary infinitive

PIS substitutive indefinite pron VAPP auxiliary perfect participle

PIAT attributive indefinite pron VMFIN finite modal

PIDAT attributive indefinite pron VMINF modal infinitive

with determiner

PPER irreflexive personal pron VMPP modal perfect participle

PPOSS substitutive possessive pron XY not a word

PPOSAT attributive possessive pron $, comma

PRELS substitutive rel pron $. end of sentence punc

PRELAT attributive rel pron $( sentence-internal punc

PRF reflexive personal pron

Table D.3: The part-of-speech categories used in the NEGRA corpus. These are the stan-
dard “Stuttgart/Tübinger Tagsets” (STTS).
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Appendix E

AEP Prediction Model Features

for German-to-English Translation

In any feature-based model, the features themselves are crucial to the performance of the

model. Without good features, the model will not have the information it needs to un-

derstand the domain and make strong predictions. This appendix provides an in-depth

description of the features used for the decisions in our AEP prediction model for German-

to-English translation.

In this appendix, we make a distinction between feature types and features. A feature

type is the template used for stamping out a particular feature, which is constructed for an

individual example. For instance, a feature type for the English stem decision might be the

pair 〈English stem candidate value, German main verb〉. Then, given an individual English

stem candidate and a German parse, the actual feature might be 〈be, ist〉.
Throughout this chapter, we provide many examples of German trees that have been

parsed using the annotation scheme of the NEGRA corpus (Skut et al., 1997). Readers

unfamiliar with this annotation may wish to consult Appendix D.

E.1 Stem Prediction

Choosing the English stem is the first decision made during AEP prediction. The size of

the complete set of feature types for the stem decision is thirteen including the bias feature.

These thirteen feature types are listed in Figure E-1, and we describe each one in more

detail below. There are several example German trees and their stem features at the end
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Stem Features

0 (bias) STEM

1 STEM + German main verb

2 STEM + each German verb

3 STEM + German spine

4 STEM + German tree

5 STEM + German verb sequence

6 lexicon features

7 STEM + es gibt/es gab + German object

8 STEM + German object

9 STEM + German object + German main verb

10 STEM + es gibt/es gab + German subject

11 STEM + German subject

12 STEM + German negation

Figure E-1: The features used for prediction of the stem, the first decision in AEP prediction.

of this section to which we refer throughout the description for concreteness. Note that

throughout this chapter, we use the symbol “STEM” to refer to the value of the candidate

under consideration (e.g., take, put, be, etc.). The number of stems in the candidate set we

use in our model is 1,639. This list is generated from the training data.

0. STEM The bias feature type for the stem decision contains only the value of the

candidate English stem. The example in Figure E-2 instantiates this feature with the

English stem candidate take. Each different stem candidate would instantiate a different

bias feature according to its value (e.g., be, give, etc.).

1. STEM + German main verb This feature type pairs the value of the English

stem candidate and the value of the German main verb (extracted from the German parsed

input). This feature is intended to model likely English-German verb pairs. For example,

the clause in Figure E-3 has two verbs, können and übernehmen, the second of which is the

main verb. In Figure E-2, we see the feature instantiated as the pair 〈take, übernehmen〉.

2. STEM + each German verb This feature type is a set of sub-feature types, one for

each of the verbs in the German input conjoined with the value of the candidate stem. The

clause in Figure E-3 has two verbs and therefore two features in the set, 〈take,übernehmen〉
and 〈take, können〉, shown in Figure E-2. In contrast, the clause in Figure E-4 has only
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one verb and therefore one feature in the set for the stem candidate be, 〈be,gibt〉, shown in

Figure E-6. The intuition behind this feature is that sometimes the English verb translation

is better paired with a verb other than the main verb of the German input. For example,

in certain verbal phrases like the German ist befaßt, or is seized, the German main verb

(befaßt) does not directly correspond the correct English stem (be), but another verb (in

this case ist) does.

3. STEM + German spine This feature type conjoins the value of the English stem

candidate with the German spine. The spine-extraction algorithm extracts a subtree of

the parsed German input, keeping intact any structure involving a complementizer or wh

word, a subject, an object, and any verbs, and throwing away any remaining structure. A

sample German spine is shown in Figure E-2, extracted from the tree in Figure E-3. The

tag “kous” represents a complementizer; “sb” represents the subject; “oa” the object, and

“vb” the verbs. The spine encodes the information that the German input is a subordinate

clause of some kind, with a subject, an object, and two verbs. In contrast, the sample

spine in Figure E-6, extracted from the tree in Figure E-4, represents an input that is an

independent clause beginning with a conjunction (und/and) and has a subject, an object,

and a single verb.

4. STEM + German tree This feature type conjoins the value of the English stem

candidate with the entire parsed German input. The tables in Figures E-2 and E-6 each

show the value stem candidate with a tree, copied from Figures E-3 and E-4, respectively.

5. STEM + German verb sequence This feature type conjoins the value of the

English stem candidate with all of the verbs in the German input as a single sequence. For

the tree in Figure E-3, the two verbs übernehmen and können form the verb sequence that

gets paired with the candidate take in Figure E-2. The intuition here is that there may be

certain sequences of verbs that commonly translate to some English stem.

6. lexicon features This feature type is a set of sub-feature types each of which relates

the German main verb to the value of the candidate stem via its ranking in an externally-

compiled lexicon. The full set of features is as follows, where “rank” is the rank of a

candidate in a list of possible translations (stored in the lexicon) for the German main verb:
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• rank=NOT FOUND, if the candidate stem is not on the list of possible translations

for the German main verb.

• rank=1, rank=2, rank=3, rank=4, rank=5, if the rank of the candidate is 1–5.

• rank≤2, rank≤5, rank≤10, rank≤15, rank≤20, rank≤30, rank≤40, rank≤50, if the

rank of the candidate is at least 50.

Each of the above features has a corresponding negative feature that is instatiated in the

case that the positive one does not. For instance, if the stem is of rank one in the lexicon,

then in addition to having a feature “rank=1,” there will be features “rank6=2,” “rank6=3,”

etc. In the example in Figure E-2, the rank of the candidate take is one in the lexicon for

all possible translations of the main verb übernehmen. In Figure E-6, the rank of be for the

German verb gibt is “NOT FOUND.”1

The lexicon itself is derived from GIZA++ translation probabilities.2 These probabilities

are used to rank potential English translations of German words. English translations with

equal probability are given the same rank. The lexicon contains close to 160K German

entries (158,329), not all of which are verbs. The highest number of translations for any

single entry is 771 (for the word sich). The average number of translations per entry is 5.3.

82% of the translations are in rank 1–10, and 92% are in rank 1–20. 38% are rank 1.

7. STEM + es gibt/es gab + German object This feature type only applies to Ger-

man clauses of the form es gibt... or es gab... (there is..., there was..), or some permutation

thereof (e.g., is there...?, were there...?). It is a set of three sub-feature types, each of which

conjoins some piece of information about the German object (below) with the value of the

candidate stem:

• grandparent tag information of the left-most word in a noun phrase object

• parent tag information of the left-most word in a noun phrase object

• suffix information of the right-most word in a noun phrase object

1This is not because be is a poor candidate; rather it is because in the particular lexicon we used in
our experiments, we removed the stem candidate be from the lexicon to try to discourage the model from
selecting this stem too frequently. In fact, in an identical lexicon that still contains the candidate be, it is
the number one candidate for gibt.

2All of our training data was used to create this lexicon. The subset of this data that was used as a
development set to train the AEP models both in this appendix and Chapters 5 and 6 was also used to
create the lexicon.
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For example, the feature set in Figure E-4 (taken from the subtree in Figure E-5) contains

information about the parent and grandparent tags of allzu, the left-most word under the

noun phrase objectnp-oa; it also contains the final three characters of the right-most word,

anzeichen.

8. STEM + German object This feature type is identical to feature type 7 except

that the input is not constrained to be of any particular form. Therefore, this feature type

is instantiated for the example in Figure E-3 (shown in Figure E-2).

9. STEM + German object + German main verb This feature type is identical

to feature type 8, except that each subfeature is conjoined with the German main verb in

addition to the value of the English stem candidate. Examples are given in Figures E-2 and

E-6.

10. STEM + es gibt/es gab + German subject This feature type applies only to

German clauses of the form es gibt or es gab. It contains the same information as feature

type 7, only the information is extracted from a noun-phrase subject (np-sb).

11. STEM + German subject This feature type is identical to feature type 10 except

that the input is not constrained to be of any particular form. It is therefore instantiated

for the example in Figure E-3 (shown in Figure E-2).

12. STEM + German negation This feature type conjoins the value of the English

stem candidate with the parent and grandparent labels of the German negation word nicht

if it appears in the German input. The example in Figure E-4 contains a negation that

triggers the use of this feature, shown in Figure E-6. Here, a list containing the parent tag

ptkneg-ng and grandparent tag s:sc:und is paired with the candidate be. The intuition

behind this feature is that explicit negation on the German side may be embedded in the

English stem in the translation.

E.2 Spine Prediction

The English spine is selected as the second decision in the AEP prediction process, after the

stem. The spine contains crucial information about complementizers, wh-words, subjects,
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Stem Features

0 take

1 take + übernehmen

2 take + übernehmen
take + können

3 take + s-mo

✏✏✏✏✏✏

�
�

❅
❅

PPPPPP

kous sb vp-oc
✟✟ ❍❍

oa vb

vb

4 take + s-mo

✏✏✏✏✏✏✏✏✏✏✏✏

�
�

�
�

❅
❅

❅
❅

PPPPPPPPPPPP

kous-cp

damit

pper-sb

sie

vp-oc

✏✏✏✏✏
PPPPP

das eventuell bei
der abstimmung
übernehmen

vmfin-hd

können

5 take + übernehmen,können

6 rank6=NOT FOUND
rank=1, rank6=2 , rank6=3, rank6=4, rank6=5
rank≤2, rank≤5, rank≤10, rank≤15, rank≤20, rank≤30, rank≤40, rank≤50

7 N/A

8 take + das
take + NULL
take + NULL

9 take + das + übernehmen
take + NULL + übernehmen
take + NULL + übernehmen

10 N/A

11 take + sie
take + NULL
take + NULL

12 take + NULL

Figure E-2: Stem features for the German clause damit sie das eventuell bei der abstimmung
übernehmen können (shown in Figure E-3) with the English stem candidate take.
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s-mo

✏✏✏✏✏✏✏✏✏✏✏

�
�

�
�

❅
❅

❅
❅

PPPPPPPPPPP

kous-cp

damit

pper-sb

sie

vp-oc

✏✏✏✏✏
PPPPP

das eventuell bei
der abstimmung
übernehmen

vmfin-hd

können

Figure E-3: Parsed input for the German clause damit sie das eventuell bei der abstimmung
übernehmen können, or so that they can take control in the election. Figure E-2 shows the
stem features for this example tree.

s:sc:und

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

adv-mo

leider

vvfin-hd

gibt

np-sb

pper-ph

es

ptkneg-ng

nicht

np-oa

✏✏✏✏
PPPP

allzu viele
anzeichen dafür

Figure E-4: Parsed input for the German clause leider gibt es nicht allzu viele anzeichen
dafür, or unfortunately, there is not very much evidence for it. Figure E-6 shows the stem
features for this example tree.

np-oa

✟✟✟✟✟

❍❍❍❍❍

npb

✟✟✟✟
❍❍❍❍

ap-nk

✟✟✟ ❍❍❍

ptka-mo

allzu

piat-nd

viele

nn-nk

anzeichen

proav-mnr

dafür

Figure E-5: Detail of the object allzu viele anzeichen dafür (translation: very much evidence
for it) from Figure E-4, used to generate features 7 and 8 (shown in Figure E-6).
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Stem Features

0 be

1 be + gibt

2 be + gibt

3 be + s:sc:und

✟✟✟ ❍❍❍

sb vb oa

4 be + s:sc:und

✏✏✏✏✏✏✏✏✏

�
�

�

❅
❅

❅

PPPPPPPPP

adv-mo

leider

vvfin-hd

gibt

np-sb

pper-ph

es

ptkneg-ng

. . .

5 be + gibt

6 rank=NOT FOUND
rank6=1, rank6=2 , rank6=3, rank6=4, rank6=5

7 be + ap-nk
be + ptka-mo
be + hen

8 be + ap-nk
be + ptka-mo
be + hen

9 be + ap-nk + gibt
be + ptka-mo + gibt
be + hen + gibt

10 be + pper-ph
be + es
be + es

11 be + pper-ph
be + es
be + es

12 be + ptkneg-ng,s:sc:und

Figure E-6: Stem features for the input leider gibt es nicht allzu viele anzeichen dafür (in
Figure E-4) with the English stem candidate be.
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Spine Feature Types

0 SPINE

1 SPINE + STEM

2 SPINE + German spine

3 SPINE + German complementizer

4 SPINE + German relative pronoun

5 SPINE + German first verb

6a SPINE: has subj? + German spine
6b SPINE: has obj? + German spine
6c SPINE: has wh? + German spine

7 SPINE: has wh stub? + German relative pronoun

8 SPINE + German verbs at end?

9 SPINE: top NT + German spine: top NT

10 SPINE: top NT + German complementizer

11 SPINE: top NT + German relative pronoun

12 SPINE + German negation

13 English question NTs + German first verb

14 English question NTs + German first verb NT

15 English wh-NTs + German wh-NTs

16 English wh-NTs + German wh-words

17 English complementizer + German complementizer

18 English complementizer + German tree: top NT

Figure E-7: The full set of spine feature types.

and objects. It is a representation of the argument structure of the English translation, and

it contains many of the translation’s function words.

In total there are nineteen feature types in the complete set listed in Figure E-7. Each

of these feature types is explained in more detail below, and examples are provided at the

end of the section. Throughout this appendix, the symbol “SPINE” is used to signify the

value of the English spine candidate. The size of English spine candidate list is 385.

0. SPINE The bias feature type for the spine decision contains only the value of the

English spine candidate. In Figure E-8, the spine under consideration is a subordinate

clause (sbar) with a wh-noun phrase at the beginning, followed by a sentence containing a

subject and verb (e.g., what Mary ate). The spine in Figure E-11 is a subordinate clause

with the complementizer that at the beginning, followed by a sentence with both a subject

and an object (e.g., that Mary ate a banana).
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1. SPINE + STEM This feature type pairs the value of the English spine candidate

with the value of the stem predicted in the preceding decision. For example, the feature

shown in Figure E-8 shows the spine paired with the stem be. The idea behind this feature

is to model the relationship between stems and their argument structure. For instance,

transitive stems such as hold usually take an object, whereas intransitive stems such as

function do not.

2. SPINE + German spine This feature type conjoins the value of the English spine

candidate with the German spine, as defined in feature type 3 of the stem decision (Sec-

tion E.1). For example, the German spine in Figure E-8 contains an object (oa), a subject

(sb), and two verbs. The feature will try to measure how well that German spine pairs with

the English spine candidate, depicted in the bias feature of the same figure. The German

spine in Figure E-11 contains a complementizer (kous), an expletive (ep), and a verb.

3. SPINE + German complementizer This feature type conjoins the value of the

English spine candidate with the value and part-of-speech label of any complementizer found

in the German input. The idea here to model the relationship between English spines (in

particular those containing complementizers), and German inputs with complementizers.

Figures E-10 and E-11 show an example of a German input with complementizer daß and

part-of-speech tag kous-cp, paired with a candidate English spine that also contains a

complementizer.

4. SPINE + German relative pronoun This feature type conjoins the value of the

English spine candidate with the value of any relative pronoun found under a prepositional

phrase in the first position of the German input tree (the left-most child under the root). The

example in Figure E-16 has the prepositional phrase in denen (where) in the target position,

and the prepositional phrase contains the relative pronoun denen. The feature instantiated

for this example pairs the English spine candidate with the German prepositional phrase.

As in feature type 3 in this section, the idea is to model the relationship between specific

spines and German inputs containing relative pronouns.

5. SPINE + German first verb This feature type conjoins the value of the English

spine candidate and any verb that comes at the beginning of the German input. For
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example, in Figure E-12, the German input contains the verb lassen in the beginning of an

imperative sentence. The purpose of this feature type is to relate those German sentence

types in which verbs are placed in the first position of the sentence (such as imperatives

and interrogatives) with appropriate English spines.

6. SPINE questions + German spine This is a set of three sub-feature types, each

of which asks a question about the English spine candidate, conjoined with the value of the

German spine as defined in feature type 3 of the stem decision (Section E.1). The questions

are

• Does the spine have a subject?

• Does the spine have an object?

• Does the spine have a wh-word?

This feature is instantiated in Figures E-8 and E-11. In the first example, the English spine

candidate contains a subject and wh-word but not an object; in the second example, it

contains a subject and object but not a wh-word.

7. SPINE: has wh-word? + German relative pronoun This feature type asks

whether the English spine candidate has a wh-word, and conjoins the answer with the value

of the German relative pronoun, if there is one. The German relative pronoun is defined

in the same way as feature type 4 in this section. The example in Figure E-16 shows an

input that contains the prepositional phrase in denen, which contains a relative pronoun

(prels-ad). In this case, the English spine candidate under consideration does not contain

a wh-word.

8. SPINE + German verbs at end? This feature type asks whether all of the verbs

in the German input come at the end or not, and conjoins the answer with the value of the

English spine candidate. Both Figures E-9 and E-10 depicts inputs in which this situation

occurs. Since verbs come at the end of German subordinate clauses, this feature is trying

to model the relationship between subordinate clause inputs and specific types of English

spines.
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9. SPINE: top NT + German spine: top NT This feature type conjoins the nonter-

minal label at the top of the English spine candidate with the nonterminal label at the top

of the German spine. For the example in Figure E-8, this feature pairs the English label

sbar-a (signifying a subordinate clause) with the German label s-oc (signifying a clausal

object).

10. SPINE: top NT + German complementizer This feature type conjoins the

nonterminal label at the top of the English spine candidate with the German complementizer

if it appears in the input. For example, Figure E-11 pairs the English label sbar-a with

the German complementizer daß and its part-of-speech label kous-cp.

11. SPINE: top NT + German relative pronoun This feature type conjoins the

nonterminal label at the top of the English spine candidate with the German relative pro-

noun if it appears in the input. The German relative pronoun is defined in the same way as

feature type 4 of this section. The example in Figure E-17 depicts a case in which a relative

pronoun exists in the German input. In this case, the label at the top of the English spine is

s, and the German relative pronoun is in denen. The feature will model the relative merit

of choosing a spine rooted at s or a spine rooted at some other nonterminal (e.g., sbar-a)

for an input containing in denen (translated roughly as where).

12. SPINE + German negation This feature type conjoins the value of the English

spine candidate with the parent and grandparent labels of the German negation word nicht

if it appears in the German input. The example in Figure E-10 contains a negation that

instantiates this feature. In this case, the English spine is paired with the labels ptkneg-ng

and s-oc.

13. English question NTs + German first verb This feature type conjoins the values

of any nonterminals in the English spine candidate that are indicative of the interrogative

(i.e., sq and sbarq) with the value of any verb that comes at the beginning of the German

input. The input in Figure E-12 is an example of an input that contains a verb at the

beginning of the sentence. The verb, lassen, is in the imperative and means let.3 As in

3Since the feature was designed to model relationships between certain German sentential structures
and certain question-related English nonterminals, unfortunately this particular example adds noise to the
training procedure.
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feature type 5, the purpose of this feature is to try to choose appropriate English spines for

question-type inputs.

14. English question NTs + German first verb NT This feature type conjoins

the value of any nonterminals in the English spine candidate that are indicative of the

interrogative (i.e., sq and sbarq) with the part-of-speech tag of any verb that comes at the

beginning of the German input. This feature type is similar to feature type 13 above, except

that its purpose is to generalize over specific verb strings to their part-of-speech labels. The

example in Figure E-13 shows the difference between feature type 13 and this feature type:

whereas the former contains the German verb string lassen, this feature contains it tag

vvimp-hd. In both cases, there are no question-type nonterminals in the English spine

candidate.

15. English wh-NTs + German wh-NTs This feature type looks for wh-nonterminal

labels in both the English spine candidate and the German tree. The example in Figure E-

15 is a case where they exist in both: the English spine contains the label whnp, and the

German tree contains the label pws-oa.

16. English wh-NTs + German wh-words This feature type looks for wh-nonterminal

labels in the English spine candiate, and conjoins them with any wh-words in the German

input. The example in Figure E-8 shows that the English spine has a wh label (whnp)

but the German input does not contain any wh-words. The example in Figure E-14 is an

example where both exist.

17. English complementizer + German complementizer This feature type pairs

any complementizers in the English spine candidate with any complementizers in the Ger-

man input. In Figure E-11, this feature is used to model the relationship between the

English complementizer that and the German daß.

18. English complementizer + German tree: top NT This feature type pairs any

complementizers in the English spine candidate with the nonterminal label at the top of

the German tree. Again in Figure E-11 we see the English complementizer that in relation

to the German label s-oc (clausal object).
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Spine Features

0 sbar

✟✟✟ ❍❍❍

whnp s-a
✟✟ ❍❍

np-a vp

vb

vb

1 SPINE + have

2 SPINE + s-oc

✏✏✏✏✏
�
�

❅
❅

PPPPP

oa sb vp-oc

vb

vb

3 SPINE + NULL

4 SPINE + NULL

5 SPINE + NULL

6 yes + German spine
no + German spine
yes + German spine

7 yes + NULL

8 SPINE + yes

9 sbar-a + s-oc

10 sbar-a + NULL

11 sbar-a + NULL

12 SPINE + NULL

13 NULL + NULL

14 NULL + no

15 whnp + NULL

16 whnp + NULL

17 whnp + NULL

18 whnp + s-oc

Figure E-8: Spine features for the German clause was drittländer und nachbarstaaten die
ganze zeit über tun sollten from Figure E-9.

182



s-oc

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

np-oa

✟✟✟✟✟✟

❍❍❍❍❍❍

prels-oa

was

cnp-nk

✏✏✏✏✏✏✏✏

PPPPPPPP

drittländer und nachbarstaaten

np-sb

✏✏✏✏
PPPP

die ganze zeit

adv-mo

über

vp-oc

vvinf-hd

tun

vmfin-hd

sollten

Figure E-9: German example was drittländer und nachbarstaaten die ganze zeit über tun
sollten, or what third countries and peripheral states should do all the time.

s-oc

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

kous-cp

daß

pper-ep

es

ptkneg-ng

nicht

pp-op

✏✏✏✏✏✏

PPPPPP

um eine angelegenheit
der öffentlichen
gesundheit

vvfin-hd

handelt

Figure E-10: German input daß es nicht um eine angelegenheit der öffentlichen gesundheit
handelt, or that it is not a matter of public health.
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Spine Features

0 sbar-a

✟✟✟
❍❍❍

in

that

s-a

✟✟✟ ❍❍❍

np-a vp
✟✟ ❍❍

vb

vb

np-a

1 SPINE + be

2 SPINE + s-oc

✟✟✟✟
❍❍❍❍

kous-cp ep vb

3 SPINE + kous-cp

daß

4 SPINE + NULL

5 SPINE + NULL

6 yes + German spine
yes + German spine
no + German spine

7 no + NULL

8 SPINE + yes

9 sbar-a + s-oc

10 sbar-a + kous-cp

daß

11 sbar-a + NULL

12 SPINE + s-oc

ptkneg-ng

13 NULL + NULL

14 NULL + no

15 NULL + NULL

16 NULL + NULL

17 in

that

+ kous-cp

daß

18 in

that

+ s-oc

Figure E-11: Spine features for the German clause daß es nicht um eine angelegenheit der
öffentlichen gesundheit handelt from Figure E-10.

184



s-oc

✟✟✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍❍❍❍

vvimp-hd

lassen

pper-sb

sie

vp-oc

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

pper-oa

mich

avp-mo

✟✟✟ ❍❍❍

adv-mo

zunächst

adv-hd

einmal

vvinf-hd

klären

Figure E-12: German input lassen sie mich zunächst einmal klären, or let me first of all
clarify.

Spine Features

0 sbar

✟✟✟ ❍❍❍

in

let

s-a
✟✟ ❍❍

np-a vp

vb

vb

5 SPINE + lassen

13 NULL + lassen

14 NULL + vvimp-hd

Figure E-13: Spine features for the German clause lassen sie mich zunächst einmal klären
from Figure E-12.

s-re

✟✟✟✟✟✟

❍❍❍❍❍❍

pws-oa

was

pper-sb

wir

vvfin-hd

akzeptieren

Figure E-14: German input was wir akzeptieren, or what we accept.
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Spine Features

0 sbar

✟✟✟ ❍❍❍

whnp sg-a
✟✟ ❍❍

vp

vb

vb

adjp

15 whnp + pws-oa

16 whnp + was

Figure E-15: Spine features for the German clause was wir akzeptieren from Figure E-14.

s-rc

✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏✏

�
�

�
�

��

❅
❅

❅
❅

❅❅

PPPPPPPPPPPPPPPP

pp-mo

✟✟✟ ❍❍❍

appr-ad

in

prels-ad

denen

pper-ep

es

np-oa

npb

✟✟✟✟✟✟

❍❍❍❍❍❍

piat-oa

keine

ap-nk

adja-hd

befriedigende

nn-nk

lösung

vvin-hd

gibt

Figure E-16: German input in denen es keine befriedigende lösung gibt, or there is no
satisfactory solution.

Spine Features

0 s

✟✟✟ ❍❍❍

np-a vp
✟✟ ❍❍

vb

vb

np-a

4 SPINE + in denen

7 no + in denen

11 s + in denen

Figure E-17: Spine features for the German clause in denen es keine befriedigende lösung
gibt from Figure E-16.
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Voice Feature Types

0 VOICE

1 VOICE + STEM

2 VOICE + STEM + SPINE

3 VOICE + German verb sequence

4 VOICE + each German verb

5 VOICE + German main verb

6 VOICE + German spine

7 VOICE + German tree

8 VOICE + German subject words

9 VOICE + German object words

Figure E-18: The full set of voice feature types.

E.3 Voice Prediction

Choosing the voice of the English clause is the third decision made during AEP prediction.

The voice can be either active or passive. The size of the complete set of feature types

for the voice decision is ten including the bias feature. These ten feature types are listed in

Figure E-18, and we describe each one in more detail below.

0. VOICE The bias feature type for the voice decision contains only the value of the

English voice candidate (either passive or active). For the example in Figure E-20, the

bias feature is active.

1. VOICE + STEM This feature type conjoins the value of the voice decision with the

value of the earlier stem decision. In Figure E-20, the value of the stem was see.

2. VOICE + STEM + SPINE This feature type conjoins the English voice, stem, and

spine decisions. The spine in Figure E-20 contains slots for a subject and a verb.

3. VOICE + German verb sequence This feature type pairs the value of the English

voice decision with all of the verbs in the German input as a single sequence. In the example

of Figure E-20, the two verbs are kann and erkennen.

4. VOICE + each German verb This feature type is a set of sub-feature types, one for

each of the verbs in the German input conjoined with the value of the voice. The clause in

187



s-oc

✏✏✏✏✏✏✏✏✏✏✏

�
�

�
�

❅
❅

❅
❅

PPPPPPPPPPP

pper-sb

ich

vmfin-hd

kann

ptkneg-ng

nicht

vp-oc

✟✟ ❍❍
vvinf-hd

erkennen

$,

,

Figure E-19: German input ich kann nicht erkennen, or i cannot see.

Figure E-19 has two verbs and therefore two features in the set, 〈active,kann〉 and 〈active,
erkennen〉, shown in Figure E-20.

5. VOICE + German main verb This feature type conjoins the value of the voice and

the value of the main verb in the German input. For example, in Figure E-20, the voice

active is paired with the German verb erkennen.

6. VOICE + German spine This feature type conjoins the value of the voice with the

German spine. The spine extraction algorithm is the same as that described in feature #3

of Section E.1. An example is shown in Figure E-20, extracted from the tree in Figure E-19.

7. VOICE + German tree This feature type conjoins the value of the voice with the

entire parsed German input. The table in Figure E-20 shows the value of the stem candidate

with a tree, copied from Figure E-19.

8. VOICE + German subject words This feature type pairs the value of the voice

with the value of the German subject, if there is one. The German subject is a top-level

nonterminal with function tag “sb,” for example the subject personal pronoun ich with

label pper-sb in the example in Figure E-20.

9. VOICE + German object words This feature type pairs the value of the voice

with the value of the German object, if there is one. The German object is a top-level

nonterminal with function tag “oa,” (accusative object). The example in Figures E-19 has

no such tag.

188



Voice Features

0 active

1 active + see

2 active + see + s
✟✟ ❍❍

np-a vp

vb

vb

3 active + erkennen,kann

4 active + erkennen
active + kann

5 active + erkennen

6 active + s-oc

✟✟✟✟
❍❍❍❍

sb vb vp-oc

vb

7 active + s-oc

✏✏✏✏✏✏✏✏✏✏✏✏

�
�

�
�

❅
❅

❅
❅

PPPPPPPPPPPP

pper-sb

ich

vmfin-hd

kann

ptkneg-ng

nicht

vp-oc
✟✟ ❍❍

vvinf-hd

erkennen

$,

,

8 active + ich

9 active + null

Figure E-20: Voice features for the German clause ich kann nicht erkennen from Figure E-
19.
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E.4 Subject Prediction

The subject is chosen fourth in the AEP prediction process, following the stem, spine, and

voice of the English translation. Whether or not the English translation has a subject is

determined by the form of the spine chosen in the second decision. If there is a noun phrase

in the subject position of the spine, then some value for the subject must be predicted.

That value can come from one of two places: either a phrase in the German input, or a

list of 45 common English subjects without German counterpart (a list generated from the

training examples).

Whenever the value of the English subject is taken from the German input tree, it is

represented by the nonterminal label dominating the German phrase that will generate the

English subject. This phrase may or may not be the subject in the German input. For

example, if the German input is in the active voice, but the English translation is in the

passive voice, then the German object will most likely become the English subject, and

vice versa. In the example in Figures E-22 and E-23, the proposed subject of the English

translation is the object of the German input (labelled with np-oa).

Whenever the value of the English subject is taken instead from the list of 45 common

subjects, it is represented by the English string itself. For example, in Figures E-24 and

E-25, the proposed subject of the English translation is the string there, which has no direct

correspondence in the German input.

The size of the feature type set used for subject prediction is seventeen, and each of the

feature types is listed in Figure E-21. In the remainder of this section, we describe each of

these feature types in detail and provide examples of each one. Throughout this appendix,

we use the symbol “SBJ” to refer to the value of the candidate subject.

0. SBJ The bias feature type for the subject decision contains only the value of the

English subject candidate. For the example in Figure E-23, the bias feature contains a

pointer into the German tree (shown in Figure E-22): the nonterminal label np-oa that

dominates the phrase eine große konferenz. This phrase will be translated and placed in

the subject position in the English translation. For the example in Figure E-25, the bias

feature contains the string there, a candidate subject that has been taken from a list of 45

common English subjects with no correspondence in the German tree.
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Subject Feature Types

0 SBJ

1 SBJ + German verb sequence

2 SBJ + German verb sequence + STEM

3 SBJ + parent label

4 SBJ + German subject words

5 leaves under SBJ

6 SBJ + leaves under SBJ

7 SBJ + STEM

8 SBJ + German main verb

9 SBJ + STEM + German main verb

10 SBJ + PASSIVE/ACTIVE

11 SBJ: phrase label

12 SBJ: function label

13 number of leaves under SBJ

14 SBJ + SBJ label in CFG rule

15 SBJ + SBJ label in RHS context

16 SBJ + SBJ label with left and right sibs

Figure E-21: The full set of subject feature types.

1. SBJ + German verb sequence This feature type pairs the value of the English

subject candidate with all of the verbs in the German input as a single sequence. Both

the examples at the end of the section (in Figures E-23 and E-25) are taken from inputs

with only a single verb (gab). For inputs with more than one verb, such as the input in

Figure E-3 containing both übernehmen and können, the verbs would be gathered into a

list and paired with the value of the English subject.

2. SBJ + German verb sequence + STEM This feature type is the similar to feature

type 1, but has, in addition to the English subject and German verb sequence, the value of

the stem chosen earlier in the decision sequence (e.g., take, be, etc.).

3. SBJ + parent label This feature type conjoins the value of the English subject

candidate with its parent label, if there is one. In Figure E-23, this feature pairs the German

s (the parent of the np-oa) with the English subject. If the subject has no correspondence

in the German input (as in Figure E-25), then this feature type does not apply.

4. SBJ + German subject words This feature type pairs the value of the English

subject candidate with the value of the German subject, if there is one. The German
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subject is a top-level nonterminal with function tag “sb,” for example the subject personal

pronoun es with label pper-sb in the example in Figure E-25.

5. leaves under SBJ For English subject candidates that are derived from a phrase

in the German tree, this feature type contains just the German phrase dominated by that

nonterminal label. In that way, it’s similar to the bias feature type but more specific. For

example, the feature as instatiated in Figure E-23 contains the phrase under the np-oa, eine

große konferenz. If the value of the subject is derived from the list of 45 common subjects

(as in the example in Figure E-25), then this feature type does not apply.

6. SBJ + leaves under SBJ This feature type is similar to feature type 5 above

except that it contains the value of the English subject candidate in addition to the string

dominated by the German nonterminal. In Figure E-23, this means that the label np-oa is

added to the feature. In Figure E-25, this feature is not instantiated because the English

subject candidate does not have any direct correspondence to the German tree.

7. SBJ + STEM This feature type pairs the value of the English subject candidate

with the value of the stem chosen in the first decision (e.g., take, be, etc.). The idea is

that certain subjects may be commonly seen with certain stems (e.g., there and be, as in

Figure E-25).

8. SBJ + German main verb This feature type conjoins the value of the candidate

subject and the value of the main verb in the German input. For example, in Figure E-23,

the English subject pointer np-oa is paired with the German verb gab. In Figure E-25, the

English subject there is paired with the same German verb, gab. It might be helpful to

know, in this last case, that the phrase es gab (there is) is commonly seen with the English

subject there, for instance.

9. SBJ + STEM + German main verb This feature type is the same as feature

type 8 above except that, in addition to the English subject and the German main verb, it

contains the value of the stem chosen earlier in the decision process (e.g., take, be, etc.).

10. SBJ + PASSIVE/ACTIVE This feature type pairs the value of the English subject

candidate with the value of the third decision, the voice of the English translation (active
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or passive). In Figure E-23, the voice was predicted to be active, whereas in Figure E-25 is

was passive.

11. SBJ: phrase label This feature type splits the nonterminal label of the English

subject candidate into two parts — a phrase category and a function category — and lists

the phrase category. It only applies in the case where the English subject corresponds to

some phrase in the German tree, for example Figure E-23. In this example, the value of the

feature is the noun phrase category np, taken from the full tag np-oa. This feature type

was designed to try to generalize the labels seen in the bias feature for this decision.

12. SBJ: function label This feature type lists the functional category of the nontermi-

nal label of the subject. It only applies in the case where the English subject corresponds

to some phrase in the German tree. Again in Figure E-23, we see that the function label oa

has been stripped from the complete tag np-oa. The motivation behind this feature type

was the same as feature type 11: to try to generalize the labels seen in the bias feature for

this decision.

13. number of leaves under SBJ This feature type counts the number of leaves

dominated by the German nonterminal in cases where the English subject candidate is

derived from a phrase in the German tree, as in Figure E-23. In this case, the number of

leaves dominated by the np-oa is three. The feature was motivated by the hypothesis that

the model might favor phrases of certain length as English subjects.

14. SBJ + SBJ label in CFG rule This feature type and the next two feature types

look at the context in which the nonterminal label of the English subject candidate is

positioned as a node in the German tree. This feature type looks at the position of the

node in a CFG rule, where the node’s parent corresponds to the left-hand side of the rule,

and the node and its siblings correspond to the right-hand side. In Figure E-23, the CFG

rule in which the label np-oa appears is s→pp-mo vvfin-hd pper-ep np-oa. The idea

here is simply to try and put the German nonterminal in some context that might give the

model more information when making the subject decision.
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eine

adja-nk

große

nn-nk

konferenz

Figure E-22: German input in wien gab es eine große konferenz, or in vienna there was a
big conference.

15. SBJ + SBJ label in RHS context This feature type looks only at the right-

hand side of the CFG rule described above. In other words, it looks at the node and its

siblings only (i.e., pp-mo vvfin-hd pper-ep np-oa). The idea here was to back off from

the specificity of feature type 14.

16. SBJ + SBJ label with left and right sibs This feature type looks just at the left

and right siblings of the node (i.e., pper-ep np-oa STOP). This feature type is even more

general than feature type 15.

E.5 Object Prediction

The object is predicted fifth in the AEP prediction process, following the stem, spine, voice,

and subject. As is the case with the subject, the presence of an English object in the

translation is determined by the spine: if there is a noun phrase in the object position, then

some value for the object must be selected. Just like the subject, that value can come from

one of two places, either from the German input or from a list of common English objects

without German counterpart. This list contains 54 of the most frequently-seen objects of

this kind (derived from the training set).

The two examples at the end of this section, in Figures E-22 and E-23, show two

different scenarios: what happens when the proposed object of the English translation

has a correspondence in the German input, and what happens when there is no object slot

in the spine.
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Subject Features

0 np-oa

1 np-oa + gab

2 np-oa + gab + hold

3 np-oa + s

4 np-oa + NULL

5 eine große konferenz

6 np-oa + eine große konferenz

7 np-oa + hold

8 np-oa + gab

9 np-oa + gab + hold

10 np-oa + passive

11 np

12 oa

13 3

14 np-oa + s→pp-mo vvfin-hd pper-ep np-oa*

15 np-oa + pp-mo vvfin-hd pper-ep np-oa*

16 np-oa + pper-ep np-oa* STOP

Figure E-23: Subject features for the German clause in wien gab es eine große konferenz
from Figure E-22.

s

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

pper-sb

es

vvfin-hd

gab

np-oa

npb

✟✟✟ ❍❍❍

art-oa

ein

nn-nk

tribunal

Figure E-24: German input es gab ein tribunal, or There was a tribunal.

Subject Features

0 there

1 there + gab

2 there + gab + be

4 there + es

7 there + be

8 there + gab

9 there + gab + be

10 there + active

Figure E-25: Subject features for the German clause es gab ein tribunal from Figure E-24.

195



Object Feature Types

0 OBJ

1 OBJ + German verb sequence

2 OBJ + German verb sequence + STEM

3 SBJ + parent label

4 OBJ + German object words

5 OBJ + leaves under OBJ

6 OBJ + STEM

7 OBJ + German main verb

8 OBJ + SBJ

9 OBJ + PASSIVE/ACTIVE

10 OBJ: phrase label

11 OBJ: function label

12 number of leaves under OBJ

13 OBJ + OBJ label in CFG rule

14 OBJ + OBJ label in RHS context

15 OBJ + OBJ label with left and right sibs

Figure E-26: The full set of object feature types.

The object decision has a feature type set of size sixteen (Figure E-26). These are

described in detail in this section, with examples at the end. Due to a perceived similarity

between subject and object, many of these features have a direct correspondence with some

feature in the subject prediction section (Section E.4). In this section, we have starred

feature types that are different from any feature described in Section E.4 so that the reader

may focus on just the new features if he or she so desires.. In the remainder of this appendix,

we use the symbol “OBJ” to refer to the value of the candidate object.

0. OBJ The bias feature type for the object decision contains only the value of the English

object candidate. For the example in Figure E-28, the bias feature contains a pointer

into the German tree (shown in Figure E-27): the nonterminal label np-pd (predicate

nominative) that dominates the phrase der vorhersehbare widerstand der hersteller, the

predictable resistance of manufacturers. This phrase will be translated and placed in the

object position in the English translation. For the example in Figure E-25, the bias feature

contains the string BLANK indicating the spine has no object slot.

1. OBJ + German verb sequence This feature type pairs the value of the English

object candidate with all of the verbs in the German input as a single sequence. The
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example in Figure E-28 is taken from an input with a single verb (war). For inputs with

more than one verb, such as the input in Figure E-29 containing both stellen and fest, the

verbs are gathered into a list and paired with the value of the English object.

2. OBJ + German verb sequence + STEM This feature type is the similar to feature

type 1, but has, in addition to the English object and German verb sequence, the value of

the stem chosen earlier in the decision sequence (e.g., take, be, etc.).

3. OBJ + parent label This feature type conjoins the value of the English object

candidate with its parent label, if there is one. In Figure E-28, this feature pairs the

German s-oc (the parent of the np-pd) with the English object. If there is no object in

the spine, (as in Figure E-30), then this feature type has the value BLANK for the English

object.

4. OBJ + German object words This feature type pairs the value of the English

object candidate with the value of the German object, if there is one. The German object

is a top-level nonterminal with function tag “oa,” (accusative object). Neither examples in

Figures E-27 and E-29 have such a tag.

5. OBJ + leaves under OBJ For English object candidates that are derived from a

phrase in the German tree, this feature type contains just the German phrase dominated by

that nonterminal label. In that way, it’s similar to the bias feature type but more specific.

For example, the feature as instatiated in Figure E-28 contains the phrase under the np-pd,

der vorhersehbare widerstand der hersteller.

6. OBJ + STEM This feature type pairs the value of the English object candidate with

the value of the stem chosen in the first decision (e.g., take, be, etc.). The idea is that

certain objects may be commonly seen with certain stems, although this may be less true

than for English subjects.

7. OBJ + German main verb This feature type conjoins the value of the candidate

object and the value of the main verb in the German input. For example, in Figure E-28,

the English object pointer np-pd is paired with the German verb war.
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8. OBJ + SBJ This feature pairs the value of the English object candidate and the

value of the object chosen in the fourth decision.

9. OBJ + PASSIVE/ACTIVE This feature type pairs the value of the English object

candidate with the value of the third decision, the voice of the English translation (active or

passive). In both examples at the end of the section, the voice was predicted to be active.

10. OBJ: phrase label This feature type splits the nonterminal label of the English

object candidate into two parts — a phrase category and a function category — and lists

the phrase category. It only applies in the case where the English object corresponds to

some phrase in the German tree, for example Figure E-28. In this example, the value of the

feature is the noun phrase category np, taken from the full tag np-pd. This feature type

was designed to try to generalize the labels seen in the bias feature for this decision.

11. OBJ: function label This feature type lists the functional category of the nonter-

minal label of the object. It only applies in the case where the English object corresponds

to some phrase in the German tree. Again in Figure E-28, we see that the function label pd

has been stripped from the complete tag np-pd. The motivation behind this feature type

was the same as feature type 10: to try to generalize the labels seen in the bias feature for

this decision.

12. number of leaves under OBJ This feature type counts the number of leaves

dominated by the German nonterminal in cases where the English object candidate is

derived from a phrase in the German tree, as in Figure E-28. In this case, the number of

leaves dominated by the np-pd is five. The feature was motivated by the hypothesis that

the model might favor phrases of certain length as English objects.

13. OBJ + OBJ label in CFG rule This feature type and the next two feature

types look at the context in which the nonterminal label of the English object candidate

is positioned as a node in the German tree. This feature type looks at the position of the

node in a CFG rule, where the node’s parent corresponds to the left-hand side of the rule,

and the node and its siblings correspond to the right-hand side. In Figure E-28, the CFG

rule in which the label np-pd appears is s-oc→kous-cp np-sb np-pd vafin-hd. The idea
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daß

np-sb

✏✏✏✏✏
PPPPP

das haupthemmnis

np-pd

✏✏✏✏✏
PPPPP

der vorhersehbare
widerstand der
hersteller

vafin-hd

war

Figure E-27: German input daß das haupthemmnis der vorhersehbare widerstand der her-
steller war, or that the main obstacle has been the predictable resistance of manufacturers.

here is simply to try and put the German nonterminal in some context that might give the

model more information when making the object decision.

14. OBJ + OBJ label in RHS context This feature type looks only at the right-

hand side of the CFG rule described above. In other words, it looks at the node and its

siblings only (i.e., kous-cp np-sb np-pd vafin-hd). The idea here was to back off from

the specificity of feature type 13.

15. OBJ + OBJ label with left and right sibs This feature type looks just at the

left and right siblings of the node (i.e., np-sb np-pd vafin-hd). This feature type is even

more general than feature type 14.

E.6 WH Prediction

The wh words in the English clause are predicted sixth in the AEP prediction process just

after the object. As is the case with subject and object, the presence of an English wh

phrase in the translation is determined by the spine: if there is slot for a wh phrase (e.g.,

whnp or whadj), then some value must be selected. That value is selected from a list of

common English wh phrases. This list contains 79 phrases (derived from the training set).

There are eight feature types used to predict wh words.

0. WH The bias feature type for the wh decision contains just the proposed wh phrase.

In the example in Figure E-33, the bias feature is the word which. There has to be a slot

in the spine for a wh-phrase (e.g., a whnp or whadjp).
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Object Features

0 np-pd

1 np-pd + war

2 np-pd + war + be

3 np-pd + s-oc

4 np-pd + NULL

5 np-pd + der vorhersehbare widerstand der hersteller

6 np-pd + be

7 np-pd + war

8 np-pd + das hauptemmnis

9 np-pd + ACTIVE

10 np

11 pd

12 5

13 np-pd + s-oc→kous-cp np-sb np-pd* vafin-hd

14 np-pd + kous-cp np-sb np-pd* vafin-hd

15 np-pd + np-sb np-pd* vafin-hd

Figure E-28: Object features for the German clause daß das haupthemmnis der vorherse-
hbare widerstand der hersteller war from Figure E-29.
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✘✘✘✘✘✘✘✘✘✘

✟✟✟✟✟

❍❍❍❍❍

❳❳❳❳❳❳❳❳❳❳

$,

,

vvfin-hd

stellen

pper-sb

wir

ptkvz-svp

fest

$,

,

Figure E-29: German input stellen wir fest, or we note.

Object Features

0 BLANK

1 BLANK + stellen fest

2 BLANK + stellen fest + see

4 BLANK + NULL

6 BLANK + see

7 BLANK + stellen fest

8 BLANK + wir

9 BLANK + ACTIVE

Figure E-30: Object features for the German clause stellen wir fest from Figure E-29.
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WH Feature Types

0 WH

1 WH + SPINE

2 WH + German wh-NTs

3 WH + German main verb

4 WH + German wh-NTs + German main verb

5 WH + German wh-words

6 WH + German wh-words + German main verb

7 WH + German pp-rel words

Figure E-31: The full set of WH feature types.

1. WH + SPINE This feature type conjoins the candidate wh phrase with the value of

the spine predicted in decision two. Figure E-33 shows the spine that has a whnp slot and

an np subject.

2. WH + German wh-NTs This feature type looks for wh-nonterminal labels in the

German tree and conjoins them if they exist with the English wh candidate. The example

in Figure E-33 is a case where they do exist: the German tree contains the label pwat-nk.

3. WH + German main verb This feature type pairs the value of the candidate wh

phrase and the value of the German main verb (extracted from the German parsed input).

For example, the main verb in Figure E-32 is entfaltet.

4. WH + German wh-NTs + German main verb This feature type conjoins the

value of the wh phrase with any wh nonterminals in the German tree and the German main

verb.

5. WH + German wh-words This feature type looks for the leaves dominated by any

wh-nonterminal labels in the German tree and conjoins them, if they exist, with the English

wh candidate. The example in Figure E-33 conjoints welche with which.

6. WH + German wh-words + German main verb This feature type looks for the

leaves dominated by any wh-nonterminal labels in the German tree and conjoins them, if

they exist, with the English wh candidate and the German main verb.
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s-sb

✟✟✟✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍❍❍❍

np-sb

npb

✟✟✟
❍❍❍

pwat-nk

welche

nn-nk

aktivitäten

vp-oc

✟✟✟ ❍❍❍

vvpp-oc

entfaltet

vapp-hd

worden

vafin-hd

sind

Figure E-32: German input welche aktivitäten entfaltet worden sind, or which activities have
been developed.

7. WH + German relative pronoun This feature type conjoins the value of the

English wh candidate with the value of any relative pronoun found under a prepositional

phrase in the first position of the German input tree (the left-most child under the root).

The example in Figure E-32 doesn’t have a relative pronoun.

E.7 Modals Prediction

Predicting the modal sequence in the English translation is the seventh decison in the AEP

model. The modal sequence is selected from a list of 338 common sequences, taken from the

training data. There are nine features types used to predict modals, listed in Figure E-41

and described in more detail below.

0. MODALS The bias feature type for the modals decision contains just the proposed

English modal sequence. In the example in Figure E-36, the bias feature contains the

sequence wanted to.

1. MODALS + German verb sequence This feature type pairs the value of the

English modal sequence with all of the verbs in the German input as a single sequence. The

example in Figure E-36 is taken from an input with two verbs (wollte and vorschlagen).

2. MODALS + German spine This feature type conjoins the value of the English

modals with the German spine. The spine extraction algorithm is the same as that described

in feature #3 of Section E.1. An example is shown in Figure E-36, extracted from the tree
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WH Features

0 which

1 which + sbarq

✟✟✟ ❍❍❍

whnp sq
✟✟ ❍❍

np vp

vb

vb

2 which + pwat-nk

3 which + entfaltet

4 which + pwat-nk + entfaltet

5 which + welche

6 which + welche + entfaltet

7 which + BLANK

Figure E-33: Object features for the German clause welche aktivitäten entfaltet worden sind
from Figure E-32.

Modals Feature Types

0 MODALS

1 MODALS + German verb sequence

2 MODALS + German spine

3 MODALS + German tree

4 MODALS + SPINE

5 MODALS + SPINE + STEM

6 MODALS + German negation

7 MODALS + each German verb

8 MODALS + STEM

Figure E-34: The full set of modals feature types.
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pper-sb

ich

vp-oc

✟✟✟
❍❍❍

pper-da

ihnen

vvinf-hd

vorschlagen

Figure E-35: German input das wollte ich ihnen vorschlagen, or i wanted to propose that.

in Figure E-35.

3. MODALS + German tree This feature type conjoins the value of the English

modals with the entire parsed German input. The table in Figure E-36 shows the value of

the modals candidate with the tree from Figure E-35.

4. MODALS + SPINE This feature type conjoins the value of the English modals with

the value of the spine predicted in decision two. Figure E-36 shows the spine that has a

subject and a verb.

5. MODALS + SPINE + STEM This feature type conjoins the value of the English

modals with the value of the spine predicted in decision two and the stem predicted in

decision one.

6. MODALS + German negation This feature type conjoins the value of the English

modals candidate with the parent and grandparent labels of the German negation word

nicht if it appears in the German input. The example in Figure E-10 does not contain any

negation.

7. MODALS + each German verb This feature type is a set of sub-feature types, one

for each of the verbs in the German input conjoined with the value of the voice. The clause

in Figure E-35 has two verbs and therefore two features in the set, 〈wanted to,wollte〉 and

〈wanted to, vorschlagen〉, shown in Figure E-36.

8. MODALS + STEM This feature type pairs the value of the English modals candidate

with the value of the stem chosen in the first decision (e.g., take, be, etc.).

204



Modals Features

0 wanted to

1 wanted to + say

2 wanted to + say + wollte, vorschlagen

3 wanted to + say + s

✏✏✏✏✏
�� ❅❅ PPPPP

sb vb sb vp-oc

vb

4 wanted to + s

✏✏✏✏✏✏✏✏✏✏✏✏
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❅
❅

❅
❅

PPPPPPPPPPPP

pds-sb

das

vmfin-hd

wollte

pper-sb

ich

vp-oc

✟✟✟
❍❍❍

pper-da

ihnen

vvinf-hd

vorschlagen

5 wanted to + s

✟✟✟ ❍❍❍

np-a vp
✟✟ ❍❍

vb

vb

np-a

6 wanted to + say + s

✟✟✟ ❍❍❍

np-a vp
✟✟ ❍❍

vb

vb

np-a

7 wanted to + NULL

8 wanted to + wollte
wanted to + vorschlagen

Figure E-36: Object features for the German clause das wollte ich ihnen vorschlagen from
Figure E-35.
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Inflection Feature Types

0 INFL

1 INFL + STEM

2 INFL + STEM + MODALS are blank

3 INFL + are MODALS blank?

4 INFL + STEM + SBJ

5 INFL + SBJ

6 INFL + STEM + MODALS

7 INFL + MODALS

8 INFL + STEM + VOICE

9 INFL + VOICE

Figure E-37: The full set of inflection feature types.

E.8 Inflection Prediction

Predicting the inflection of the English main verb is the second-to-last decison in the AEP

model. Options for the inflection decision are root, first-person present, second-person

present, third-person present, past singular, past plural, present participle, past participle.

There are ten features types used to predict modals, listed in Figure E-41 and described in

more detail below.

0. INFL The bias feature type for the inflection decision contains just the proposed

inflection of the English main verb. In the example in Figure E-36, the bias feature is past

singular, which would cause the inflected form of the main verb say to be said.

1. INFL + STEM This feature type pairs the value of the inflection decision with the

value of the stem chosen in the first decision (e.g., say, be, etc.).

2. INFL + STEM + are MODALS blank? This feature type pairs the value of the

inflection decision with the value of the stem and whether or not this AEP has any predicted

modal verbs.

3. INFL + are MODALS blank? This feature type pairs the value of the inflection

decision with whether or not this AEP has any predicted modal verbs. Certain inflected

forms might be more commonly paired modals than others. For example, it would be

common for a present or past participle to be accompanied by some modal sequence.
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s:sc:denn

pper-sb

✟✟ ❍❍
er vvfin-hd

sagte

Figure E-38: German input denn er sagte, or because he said.

4. INFL + STEM + German subject words This feature type pairs the value of the

inflection decision with the value of the stem and the German subject, if there is one. The

German subject is a top-level nonterminal with function tag “sb,” for example the subject

personal pronoun er with label pper-sb in the example in Figure E-39.

5. INFL + German subject words This feature type pairs the value of the inflection

decision with the value of the German subject, if there is one.

6. INFL + STEM + MODALS This feature type pairs the value of the inflection

decision with the value of the stem and modals.

7. INFL + MODALS This feature type pairs the value of the inflection decision with

the value of the modals decision.

8. INFL + STEM + VOICE This feature type pairs the value of the inflection decision

with the value of the stem and voice decisions.

9. INFL + VOICE This feature type pairs the value of the inflection decision with the

value of the voice decision.

E.9 Modifier Prediction

Predicting placement of German modifiers in the English translation is the final decison

in the AEP model. For each modifier that has not already been designated the English

subject or object, features are generated that help predict where it should be placed: before

the English subject, between the subject and the modals, within the modals (specifically,

between the first and the second modal), or after the main verb. A schematic of these
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Inflection Features

0 past singular

1 past singular + say

2 past singular + say + true

3 past singular + true

4 past singular + say + er

5 past singular + er

6 past singular + say + BLANK

7 past singular + BLANK

8 past singular + say + active

9 past singular + active

Figure E-39: Inflection features for the German clause denn er sagte from Figure E-38.

[that]   [i]    [shall    be] [passing] [the appropriate notes]

post-object

complementizer subject modals verb object

pre-subject

post-subject

in-modals

Figure E-40: Possible positions for modifier placement.

options is given in Figure E-40. Sometimes, a German modifier does not appear in the

English translation, and in that case it is predicted as “deleted.”

There are nine features used to predict modifier placement, listed in Figure E-41 and

described in more detail below.

0. MOD The bias feature type for the modifier decision contains just the proposed posi-

tion of the German modifier. In the examples in Figure E-43, the bias feature is only created

if the modifier in question has not already been placed in some other role in the sentence

(i.e., subject or object). In the table, just nicht and so are in need of placement. The

features generated place nicht in an inter-modal position and so in a pre-subject position.

1. MOD + MOD: NT label This feature type conjoins the proposed placement of

the German modifier with the label of the nonterminal that dominates the modifier in the

German tree. For instance, in Figure E-43, the modifier nicht is dominated by the label

ptkneg, and the modifier so is dominated by the label adv-mo. The idea informing this

feature is that modifiers of certain classes might tend to be placed in similar positions.
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Modifier Feature Types

0 MOD

1 MOD + MOD: label

2 MOD + SPINE

3 MOD + leaves under MOD

4 MOD + child is leaf?

5 MOD + number of leaves under MOD

6 MOD + MOD: phrase label

7 MOD + MOD: function label

8 MOD + MODALS

Figure E-41: The complete set of modifier feature types.

2. MOD + SPINE This feature type conjoins the proposed placement of the German

modifier with the value of the spine predicted in decision two. Figure E-43 shows the spine

that has a subject and a verb. The idea here is that modifiers might tend to appear in

certain positions according to spinal structure.

3. MOD + leaves under MOD This feature type looks at the proposed placement of

the German modifier and its string value (i.e., the German actual phrase being placed). It

is very likely that, if seen with sufficient frequency, certain words and phrases might tend

to appear in certain positions in English sentences.

4. MOD + child is leaf? This feature type looks at whether or not the child of the

modifier label is a leaf node, i.e., whether the modifier is a single-word or a multi-word

phrase. Both modifiers in the figure are single-word phrases.

5. MOD + number of leaves under MOD This feature type examines the number of

words in the modifier phrase. Again, in the examples both phrases contain only one word.

6. MOD + MOD: phrase label This feature type splits the nonterminal label of

the modifier being placed into phrase category and functional category, and lists only the

phrasal category. For nicht in Figure E-43, the phrase category is ptkneg; for so, it’s adv.

7. MOD + MOD: function label This feature type contains just the functional cate-

gory of the nonterminal label of the modifier being placed (ng for nicht in the example and

mo for so).
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Figure E-42: German input es ist nicht so, or it is not so.

Modifier Features

es nicht so

0 NULL in-modals pre-subj

1 NULL in-modals + ptkneg-ng pre-subj + adv-mo

2 NULL in-modals + s
✟✟ ❍❍

np-a vp

vb

vb

pre-subj + s
✟✟ ❍❍

np-a vp

vb

vb

3 NULL in-modals + nicht pre-subj + so

4 NULL in-modals + yes pre-subj + yes

5 NULL in-modals + 1 pre-subj + 1

6 NULL in-modals + ptkneg pre-subj + adv

7 NULL in-modals + ng pre-subj + mo

8 NULL in-modals + have been pre-subj + BLANK

Figure E-43: Modifier features generated for two modifiers being placed: nicht and so. The
modifier es has already been placed as the subject of the translation, so it does not generate
any modifier features.

8. MOD + MODALS This feature type pairs the placement of the German modifier

with the value of the preceding modals decision. In Figure E-43, nicht is being considered

for an inter-modal position between have and been, which would generate the ordering have

〈nicht〉 been. For so, no modals were selected.
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Appendix F

Instructions for Judges

This appendix contains the instructions that were given to the six judges in the human

evaluation of Chapter 6. The evaluation was carried out in two separate stages. In stage 1,

the judges were asked to compare the translations on the basis of fluency. In stage 2, they

were asked to compare the translations on the basis of adequacy.

F.1 Fluency Instructions

Machine Translation Evaluation, Stage 1

Instructions For Judges

F.1.1 Goal

In this evaluation, you will compare the performance of two experimental German-to-

English machine translation systems. The evaluation will occur in two stages. In this

stage (the first of two), translations will be compared on the basis of fluency, which will be

discussed below.

F.1.2 Stage One: Fluency

In the first stage, you will receive a file containing 200 numbered pairs of translations

separated by a line of hyphens:
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15-----------------------------------------------

however , we want a comprehensive , serious and practicable

regulation for all concerned .

however , we want a comprehensive , serious and practical

arrangements for all the parties concerned .

-----------------------------------------------

Each pair consists of two automatically-generated translations, one from each system. In

each pair, the translations have been randomly ordered.

Your task in this part of the evaluation is to compare the translations on the basis

of fluency. Fluency refers to the degree to which a translation is well-formed

according to the rules of standard written English. A fluent sentence is one that

is well-formed grammatically, contains correct spellings, adheres to common

use of terms, titles, and names, is intuitively acceptable and can be sensibly

interpreted by a native speaker of English. For each example, you should decide

whether the first translation is more fluent, the second is more fluent, or the two are the

same.

You should spend, on average, no more than 30 seconds assessing the fluency

of a translation pair. We strongly encourage you to provide your intuitive

assessment of each pair and not to ponder your decisions.

F.1.3 How to Record Judgments

Once you’ve judged an example, you should record that judgment using the markings shown

in Figure F-1. The markings should be recorded directly in the text file, in the space between

the numbered line of hyphens at the top of the example and the first translation. I.e.,
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First is better F

Second is better S

They are the same =

Figure F-1: Use these markings to indicate whether the first translation is more fluent, the
second is more fluent, or the fluency is the same.

15-----------------------------------------------

F|S|= <-------MARK GOES HERE

however , we want a comprehensive , serious and practicable

regulation for all concerned .

however , we want a comprehensive , serious and practical

arrangements for all the parties concerned .

-----------------------------------------------

When you have finished the fluency judgments, please send the annotated file to Brooke.

Shortly thereafter, you will receive instructions for the second stage of the evaluation. Please

don’t hesitate to send mail if you have any questions during the evaluation!

F.1.4 Points To Be Aware Of

German words in the translations

Some automatically-generated translations will contain German words for which the system

was unable to find a translation. Not all translations are equally affected by these foreign

words. In sentences where foreign words appear, do your best to assess whether one of the

translations is better than the other in terms of fluency, or whether they are the same.

F.1.5 Notes

1. We strongly recommend not doing more than 100 judgments in one sitting.
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F.2 Adequacy Instructions

Machine Translation Evaluation, Stage 2

Instructions For Judges

F.2.1 Goal

In this evaluation, you will compare the performance of two experimental German-to-

English machine translation systems. The evaluation will occur in two stages. In this

stage (the second of two), translations will be compared on the basis of adequacy, which

will be discussed below.

F.2.2 Stage Two: Adequacy

In the second stage, you will receive a file containing 200 numbered triples of translations

separated by a line of hyphens:

15-----------------------------------------------

REFERENCE:

what we want is a comprehensive , prudent and practicable

arrangement for all concerned .

however , we want a comprehensive , serious and practicable

regulation for all concerned .

however , we want a comprehensive , serious and practical

arrangements for all the parties concerned .

-----------------------------------------------

Each triple consists of a reference translation followed by two automatically-generated trans-

lations, one from each system. In this stage, you should decide which translation is

better, the first or the second, or whether they are of the same quality, given the

reference translation. Use your intuition when deciding whether one translation
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First is better F

Second is better S

They are the same =

Figure F-2: Use these markings to indicate whether the first translation is better, the second
is better, or the two are of the same quality.

is better than the other: an ideal translation should correctly communicate the

meaning of the reference translation and should also be fluent/grammatically

well-formed.

You should spend, on average, no more than 30 seconds assessing the ade-

quacy of a translation pair. We strongly encourage you to provide your intuitive

assessment of each pair and not to ponder your decisions.

F.2.3 How to Record Judgments

Once you’ve judged an example, you should record that judgment using the markings shown

in Figure F-2. The markings should be recorded directly in the text file, in the space between

the numbered line of hyphens at the top of the example and the first translation. I.e.,

15-----------------------------------------------

F|S|= <-------MARK GOES HERE

REFERENCE:

what we want is a comprehensive , prudent and practicable

arrangement for all concerned .

however , we want a comprehensive , serious and practicable

regulation for all concerned .

however , we want a comprehensive , serious and practical

arrangements for all the parties concerned .

-----------------------------------------------

When you have finished the adequacy judgments, please send the annotated file to

Brooke. Please don’t hesitate to send mail if you have any questions during the evaluation!
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F.2.4 Points To Be Aware Of

German words in the translations

Some automatically-generated translations will contain German words for which the system

was unable to find a translation. Not all translations are equally affected by these foreign

words. In sentences where foreign words appear, do your best to assess whether one of the

translations is better than the other, or whether they are of the same quality.

Mismatched reference translation

Sometimes you might find that the reference translation doesn’t match the automatically-

generated output. Here’s an example:

43-----------------------------------------------

democratic basic values and rules are securely anchored .

of course , we are following further potential risks and

unresolved issues .

we are , of course , continue to potential risks and

unresolved issues .

-----------------------------------------------

This happens infrequently, but if you run into such a case, just say the translations are the

same quality.

F.2.5 Notes

1. We strongly recommend not doing more than 100 judgments in one sitting.
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Appendix G

Examples from Human Evaluation

The following nine tables each contain ten randomly-selected examples from the human

evaluation discussed in Chapter 6. In the first six tables, all of the examples have at least

one judgment in common. For example, in the first table, the AEP-based system’s output

was judged more fluent by at least one annotator; in the second table, the phrase-based

system’s output was more fluent, and so on. In the last three tables, all of the examples

were given the same fluency and adequacy judgment by two annotators. Overall, 47% of the

600 sentence pairs were given the same fluency and adequacy judgments by two annotators.

The theme of each table is stated above the table itself. On the left-hand side of the

table, there are two columns, one labeled F (fluency) and the other A (adequacy). The cells

in these columns contain check marks (
√

) indicating how the judge marked that example

for fluency and adequacy. In cases where the pair was judged of equal quality (either fluency

or adequacy), there is a check mark next to both the AEP systems output (labeled A) and

the phrase-based system’s output (labeled P). The human-generated reference translation

in each example is labeled R.

It is possible for a single example to appear in two different tables. This can happen

if the same example was randomly selected for both fluency and adequacy; or, it might be

selected more than once for the same metric (either fluency or adequacy) in the case that

the two annotators disagreed. In the case that two annotators agreed, the example might

appear in the first set of six tables and again in the last three.
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F A AEP SYSTEM IS MORE FLUENT

R: that , in a few words , should have been our message today .√ √
A: this should have been our message with a few words .
P: this would have today , with a few words , our signal should be .

R: a great deal of pressure has been placed upon traditional social values in the
former planned economies of central and eastern europe .√ √

A: there is considerable pressure in the former planned economies of central and
eastern europe to the traditional social values .

P: in the former planned economies of central and eastern europe , the traditional
social values considerable pressure .

R: it is also best to give local examples to show how this legislation is relevant .√ √
A: it is best to clarify the basis of a local examples such legislation is as important

.√
P: it is best , on the basis of local examples to show how important such legisla-

tion .

R: however strict quality criteria need to be laid down at community level for
these decontamination procedures .√ √

A: stringent quality criteria must be set for this dekontaminierungsverfahren at
community level .

P: for this dekontaminierungsverfahren must , however , at community level strict
quality criteria to be established .

R: it was also clear that the staff who work in romanian orphanages need further
child care opportunities .√

A: it is the betreuungsmöglichkeiten for the staff in the romanian orphanages
must be improved .√

P: became clear that the betreuungsmöglichkeiten for the staff in the romanian
orphanages must be improved .

R: ever since the beginning , it has been more or less clear that researchers could
not be part of the recommendation .√

A: from the outset , it is quite clear it can not be included in the recommendation
.√

P: it was quite clear from the outset that researchers not included in the recom-
mendation .

R: it is foreign intervention which is to blame for the partition of the island .√ √
A: the intervention of the outside world is responsible for the division of the

island .
P: responsible for the division of the island are the intervention from outside .

R: democratic elections were held there in 1990 , which the international com-
munity deemed fair and free .√ √

A: democratic elections have been held in 1990 which is in international judgment
fair and free .√

P: in 1990 there democratic elections were held under international judgment
fair and free goods .

R: this has been achieved by a fundamental reorganisation of the border police ,
once a demotivated conscript force ; it is now a professional volunteer service
.√ √

A: this has been achieved by way of a motivationslosen wehrpflichttruppe to a
berufskorps on a voluntary basis .

P: this overtaken by transformation of a motivationslosen wehrpflichttruppe a
berufskorps on a voluntary basis to be made .

218



F A PHRASE-BASED SYSTEM IS MORE FLUENT

R: i should like to point out that all the greek meps have now reacted against
this situation .√

A: i must emphasize now all greek members of parliament is in the european
parliament on this issue .√ √

P: i must emphasise that already all greek members of the european parliament
on this matter have expressed .

R: some of the members have referred to the particular problems that turkey has
with the kurdish language and the problems in turkey .

A: a number of members have referred to the specific problems which is in turkey
in relation to the kurdish language .√ √

P: a number of members have referred to the specific problems in turkey in
relation to the kurdish language there .

R: i thank mr mann for his support on this point .√
A: i thank mr mann for his support on this point .√
P: i would like to thank mr mann for his support on this point .

R: the family , for instance , remains a foundation and a pillar of our society .
A: the family , for example , is the basis of society and pillar unchanged .√ √
P: the family , for example , is unchanged basis and pillar of society .

R: farmers are still suffering today from that utterly criminal failure to protect
consumers .√

A: even today , the farmers are suffering for example , because the protection of
consumers is to the kriminellste .√

P: the farmers suffering even today , including , as the consumer protection on
the kriminellste abused .

R: the pace of the negotiating process itself increased considerably again last year
.

A: last year , the process as such , has been summoned once again clearly .√ √
P: the negotiation process , as such is the last year clear once again been speeded

up .

R: i am sure that we will manage it , because we must !√
A: i am sure we will manage it because we must build it !√ √
P: i am sure that we will succeed because we must create !

R: we are certain that mr milosevic will fall , possibly this evening , certainly
soon .

A: we are of course , that mr milosevic will fall perhaps this evening determine
as soon as possible .√ √

P: we are sure that mr milosevic will fall , perhaps this evening , certainly soon .

R: i would like to underline this , also on behalf of my group .
A: on behalf of my group , i would also like to stress this this .√ √
P: on behalf of my group , i would like to stress that too .

R: if you allow me , i would like to elaborate on two aspects .√
A: please you i go on two aspects of this mentioned in more detail .√ √
P: allow me to refer to two aspects mentioned in dwell .
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F A FLUENCY IS THE SAME

R: this is more than a question ; it is a real challenge , and it is up to us to accept
it .√ √

A: this is more than a question , but the real challenge , we have to face .√
P: this is more than a question , but the real challenge we must ask ourselves .

R: its political and macro-economic benefits will be greater than the additional
costs the member states will incur .√

A: the political and macroeconomic use will be as an additional costs incurred
to the members .√ √

P: the political and macroeconomic use will be greater than the additional costs
of the members to emerge .

R: there is no doubt at all that right-wing forces have been involved .√
A: of course , is the right to a very forces actively .√ √
P: there is no doubt that were the right forces very active .

R: the kozloduy nuclear power plant accounts for half the internal power gener-
ation in bulgaria .√ √

A: about half of the production of bulgaria falls to the nuclear power station
koslodui should be adhered .√ √

P: about half of the production of bulgaria falls to the nuclear power plant in
koslodui should be adhered to .

R: as mr titley pointed out - rightly so - the code can be made more transparent
by providing more and better information .√

A: as mr titley pointed right the code of conduct , more and better information
can be made more transparent .√ √

P: as mr titley rightly points out , can the code by more and better information
more transparent .

R: the regime ’s treatment of the nobel laureate , aung san suu kyi , is all of a
piece with their treatment of the burmese people .√

A: the other birmesen will also be taken as the nobelpreisträgerin aung san suu
kyi .√ √

P: as the nobelpreisträgerin aung san suu kyi will also be the other birmesen
dealt with .

R: i too believe that the staffing levels in those institutions are too low to warrant
extra manpower .√ √

A: the very limited staff of these institutions it is certainly not to provide addi-
tional resources .√

P: the very limited staffing of these institutions , it is difficult to be additional
resources available .

R: the good sense of the eea model is based on the idea that efforts to implement
legislation should be rewarded immediately . benefits and responsibilities go
hand in hand .√ √

A: this applies both to the citizens of the applicant countries and the current
member states .√ √

P: this applies both to the citizens of the applicant countries and the current
member states .

R: nonetheless , we have decided to vote against mr titley ’s report for the fol-
lowing reasons :√ √

A: however , we are voting against the report by mr titley , for the following
reasons :√ √

P: however , we are voting against the report by mr titley , for the following
reasons :
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F A AEP SYSTEM IS MORE ADEQUATE

R: we would be embarking on a magical mystery tour if we were to abandon the
project or postpone it indefinitely .√ √

A: an adventure would be it , or to abolish the project or postponing indefinitely
.√

P: an adventure , it would be the project halt or indefinitely to be postponed .

R: obviously , this crisis may have dangerous repercussions on the peace process
.√ √

A: it is quite clear that this crisis can have dangerous effects on the peace process
.

P: it is quite clear that this crisis dangerous effects on the peace process .

R: that , in a few words , should have been our message today .√ √
A: this should have been our message with a few words .
P: this would have today , with a few words , our signal should be .

R: a great deal of pressure has been placed upon traditional social values in the
former planned economies of central and eastern europe .√ √

A: there is considerable pressure in the former planned economies of central and
eastern europe to the traditional social values .

P: in the former planned economies of central and eastern europe , the traditional
social values considerable pressure .

R: this brings to mind another sound rule of thumb : ’ no one can achieve the
impossible ’ .√ √

A: there is a good principle : ’ l ’ impossible , nul n est tenu ”
P: there are good principle : ’ l ’ impossible , nul n ’ est tenu . ’

R: on a sociological basis , moreover , there is discrimination according to birth .√ √
A: and there is discrimination on the basis of birth in terms of the sociological .
P: and in sociological and there is discrimination on the basis of birth .

R: farmers are still suffering today from that utterly criminal failure to protect
consumers .√ √

A: even today , the farmers are suffering for example , because the protection of
consumers is to the kriminellste .

P: the farmers suffering even today , including , as the consumer protection on
the kriminellste abused .

R: secondly , the euro is an artificial currency and it would be a disaster to make
a complete changeover to the euro in the present circumstances .√ √

A: in the current context , the actual changeover to the euro would be a disaster
.

P: under present conditions would be the complete changeover to the euro a
disaster .

R: i am sure that we will manage it , because we must !√ √
A: i am sure we will manage it because we must build it !
P: i am sure that we will succeed because we must create !

R: nuclear power stations of first generation soviet construction are a particular
danger as far as europe is concerned .√ √

A: nuclear power stations soviet design of the first generation applies for europe
as a particularly dangerous .

P: nuclear power stations soviet design , the first generation apply for europe as
especially dangerous .
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F A PHRASE-BASED SYSTEM IS MORE ADEQUATE

R: today the lithuanian economy is on the mend .
A: the general direction of the economy in lithuania is today , positive .√ √
P: the general direction of the economy in lithuania today is positive .

R: this relates to the specific statement made about turkey ’s behaviour in this
regard .

A: i say this to this in relation to the specific proposal on the conduct of turkey
in this particular issue .√ √

P: i say this in relation to the specific proposal on turkey ’s conduct in this
particular issue .

R: allow me to make one more comment on the energy sector , which has already
been addressed once today .

A: let it dropped and made a comment on the energy sector which has already
been raised today .√ √

P: let me make a comment on the energy sector , the earlier today has been
mentioned .

R: democratic elections were held there in 1990 , which the international com-
munity deemed fair and free .

A: democratic elections have been held in 1990 which is in international judgment
fair and free .√ √

P: in 1990 there democratic elections were held under international judgment
fair and free goods .

R: its political and macro-economic benefits will be greater than the additional
costs the member states will incur .√

A: the political and macroeconomic use will be as an additional costs incurred
to the members .√ √

P: the political and macroeconomic use will be greater than the additional costs
of the members to emerge .

R: will there be waves of immigrants and what impact will this have on job
markets ?

A: it is going to happen to migration what it will be the impact on the labour
market ?√ √

P: there will migration and what impact on the labour market is that ?

R: to respect and value these differences shows that we still have our feet firmly
on the ground .√

A: it must be prepared to recognize this difference sense of reality .√
P: it is a sign of realism , this difference to respect and recognise .

R: judging from the survivors and those involved , we can already draw two
conclusions .√

A: we are required to draw two already in relation to the survivors and those
conclusions .√

P: in relation to the survivors and affected are already two conclusions .

R: without wishing to anticipate the results , i can report on some of the trends
in the new reports today .√

A: in order to want the results today , i can already give trends of the new reports
.√

P: without the results of pre-empt , i can trends of the new reports already today
to give .
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F A ADEQUACY IS THE SAME

R: this is why it is necessary for the economy to be rebuilt .√ √
A: we have to start with the reconstruction of the economy .√
P: therefore , must also with the reconstruction of the economy begun .

R: nuclear power stations of first generation soviet construction are a particular
danger as far as europe is concerned .√ √

A: nuclear power stations soviet design of the first generation applies for europe
as a particularly dangerous .√ √

P: nuclear power stations soviet design , the first generation apply for europe as
especially dangerous .

R: it will retain its specific character . this , moreover , is the wish of those who
negotiated the ecsc research programmes with the commission .√ √

A: in fact , this is the will of those who have negotiated the continuation of the
egks-forschungsprogramme with the commission .√

P: this was also the will of those who are the continuation of the egks-
forschungsprogramme with the commission negotiated .

R: this is something which everyone at each stage in the food chain should in
fact help with .√ √

A: this would be at all stages of the food chain good .√ √
P: this would at all stages of the food chain benefit .

R: the candidate states have spared no effort to meet the requirements .√ √
A: the candidate countries have made enormous efforts in order to meet the

requirements .√ √
P: the candidate countries have made enormous efforts in order to meet the

requirements .

R: only this afternoon i witnessed a fine demonstration .√ √
A: precisely this afternoon i have conducted this this on impressive way in mind

.√ √
P: this very afternoon , i was on impressive way brought .

R: independent counter-checks are essential in order to avoid errors .√ √
A: an independent gegenprüfung is essential in order to avoid them mistake .√ √
P: an independent gegenprüfung is essential to ensure mistake to avoid .

R: the kozloduy nuclear power plant accounts for half the internal power gener-
ation in bulgaria .√

A: about half of the production of bulgaria falls to the nuclear power station
koslodui should be adhered .√ √

P: about half of the production of bulgaria falls to the nuclear power plant in
koslodui should be adhered to .

R: the regime ’s treatment of the nobel laureate , aung san suu kyi , is all of a
piece with their treatment of the burmese people .√ √

A: the other birmesen will also be taken as the nobelpreisträgerin aung san suu
kyi .√ √

P: as the nobelpreisträgerin aung san suu kyi will also be the other birmesen
dealt with .

R: the only reference to companies is to do with a code of self-regulation .√ √
A: the only with regard to these companies is the call for the introduction of a

selbstkontroll-kodex .√ √
P: the only with regard to these companies is the call for the introduction of a

selbstkontroll-kodex .
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F A AEP SYSTEM IS MORE FLU, MORE ADE (2 JUDGES)

R: however strict quality criteria need to be laid down at community level for
these decontamination procedures .√ √

A: stringent quality criteria must be set for this dekontaminierungsverfahren at
community level .

P: for this dekontaminierungsverfahren must , however , at community level strict
quality criteria to be established .

R: as the commissioner has indicated , the reality is often quite different .√ √
A: as you have said the reality is often quite different .
P: as you said , is the reality is often quite different .

R: the fact is that elk hunting is extremely widespread in sweden and finland .√ √
A: the elchjagd has reached a considerable extent in sweden and finland .
P: the elchjagd has in sweden and finland is a considerable proportions .

R: amendment no 38 is unacceptable as it falls outside the scope of this directive
.√ √

A: we can not accept amendment no 38 because it does not fall within the scope
of the directive .

P: amendment no 38 we cannot accept , because it does not in the scope of the
directive falls .

R: i hope slovenia will be in the first group of new members .√ √
A: i hope we can welcome slovenia in the first group of the new member states .
P: i hope that we slovenia in the first group of the new members welcome that

fact .

R: as a french woman and citizen , this vision of the world is particularly alien
to me .√ √

A: as a french citizen such a point of view of the world is particularly alien .
P: as a french citizen is me such a point of view of the world , particularly alien

.

R: all three can be accepted for reasons of legal consistency .√ √
A: all three amendments can be accepted for reasons of legal coherence .
P: all three amendments can for reasons of legal coherence adopted .

R: the european parliament has failed in its duty to reflect a balanced approach
which i very much regret .√ √

A: the european parliament has not fulfilled its commitment to a balanced ap-
proach which i very much regret .

P: the european parliament has its commitment to a balanced approach is not
fulfilled , which i very much regret .

R: all afghan women , whatever their age , are faced with systematic violation
of their most fundamental rights .√ √

A: all the afghan women , whatever their age are facing a systematic violations
of their basic rights .

P: all the afghan women , irrespective of age , systematic violations of their most
basic rights suspended .

R: the commission is convinced of the usefulness of a positive list .√ √
A: in fact , the commission is convinced of the appropriateness of such a positive

list .
P: the commission is of the appropriateness of such a positive list even convinced

.
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F A PHRASE-BASED SYSTEM MORE FLU, MORE ADE (2 JUDGES)

R: however , i would like to say that this fight is not the exclusive property of
the left .

A: however , i would also like to say this fight is no domain of the left .√ √
P: but i would also like to say that this fight is not a domain of the left .

R: the information society is important to old as well as new sectors .
A: the information society is important for the elderly , as for the new industry .√ √
P: the information society is important for the old as for the new industry .

R: will there be waves of immigrants and what impact will this have on job
markets ?

A: it is going to happen to migration what it will be the impact on the labour
market ?√ √

P: there will migration and what impact on the labour market is that ?

R: this is ground-breaking legislation and it is a gigantic step forward but we
must go even further .

A: this directive sets all existing legislation and is a major step forward but we
need to go .√ √

P: this directive exceeds all existing legislation and is a tremendous step forward
, but we must go further .

R: croatia and the region deserve this in the interests of peace within europe .
A: croatia and the region it deserves the interests of the european peace .√ √
P: croatia and the region deserve it in the interests of the european peace .

R: the european method , imposing uniformity , is wrong .
A: the method of harmonisation at european level is the right way not .√ √
P: the method of harmonisation at european level is not the right way .

R: thank you for the very important statement you have just made .
A: we thank you very much interesting statement , which you have just given .√ √
P: we thank you for the very interesting statement you have just given .

R: i also say that very clearly in the context of the two reports we are dealing
with here today .

A: i am also saying that the very clearly in connection with the two reports , we
are dealing today .√ √

P: i would also say very clearly in connection with the two reports we are debating
today .

R: prosperity is created by restoring economic freedoms and nothing else .
A: what creating rise is the restoration of the economic freedoms , and nothing

else .√ √
P: what creates prosperity , is to restore the economic freedoms and nothing else

.

R: otherwise i do agree very much with this overall policy and the basic idea
behind it .

A: otherwise , i agree to a large extent , the overall strategy and the persecuted .√ √
P: otherwise , i agree with most of the overall strategy and the persecuted line .
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F A EQUAL FLUENCY, EQUAL ADEQUACY (2 JUDGES)

R: i do not want to encumber this agenda any more , nor do i want to lighten it
.√ √

A: i this do not want to complicate this , which does help but not .√ √
P: this , i would not even more difficult , but not easier .

R: enlargement is also good for the level of social security in europe .√ √
A: enlargement is also good for the level of social security in europe .√ √
P: enlargement is also good for the level of social security in europe .

R: a common arms exports policy is essential to this process .√ √
A: a common arms export policy is essential for this process .√ √
P: a common arms export policy is essential for this process .

R: to start , with she could not get into parliament except through the swing
doors .√ √

A: the problems are of achieving them jenny only by the pendeltüren at the
european parliament .√ √

P: the problems fingen already so that jenny only by the pendeltüren into par-
liament would reach .

R: mr president , commissioner , social policy is a cornerstone of the social model
within europe .√ √

A: mr president , commissioner , the social policy is a cornerstone of the european
social model .√ √

P: mr president , commissioner , the social policy is a cornerstone of the european
social model .

R: it can do that in the domain of foodstuffs , and it must also be able to do it
in the domain of animal feed .√ √

A: you can do this in the area of food and they must also be the in animal feed .√ √
P: it must in the area of food , and must have the same in the feedingstuffs .

R: there we can really see the change that takes place when a country ’s democ-
racy is consolidated .√ √

A: the changes will be here truly clearly that is if a democracy is to prevail in a
country .√ √

P: this is a truly change clearly that is if a democracy in a country prevail .

R: the next item is the joint debate on the following motions for resolutions :√ √
A: the next item is the joint debate on the following motions for resolutions :√ √
P: the next item is the joint debate on the following motions for resolutions :

R: we should therefore remain level-headed and focused in our attempts to create
openings for a development which will bring serbia nearer to europe , also from
a moral-political point of view .√ √

A: we must therefore create öffnungen for development soberly , and specifically
the serbia , expressed morally and politically in europe .√ √

P: we must therefore soberly specifically öffnungen for development create the
serbia morally and politically to europe brings .

R: earlier , the idea of abuse of the provisions was mentioned . i feel that this
may provide a major foothold for those most reactionary ideas .√ √

A: it could as is to support for such rückschrittlichen approach .√ √
P: it could , it seems to me that on support for such rückschrittlichen approach

serve .
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