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The present study concentrates on a situation where a Renner-Teller (RT) system is entangled with
Jahn-Teller (JT) conical intersections. Studies of this type were performed in the past for contours
that surround the RT seam located along the collinear axis [see, for instance, G. J. Halász, Á. Vibók,
R. Baer, and M. Baer, J. Chem. Phys. 125, 094102 (2006)]. The present study is characterized by
planar contours that intersect the collinear axis, thus, forming a unique type of RT-non-adiabatic cou-
pling terms (NACT) expressed in terms of Dirac-δ functions. Consequently, to calculate the required
adiabatic-to-diabatic (mixing) angles, a new approach is developed. During this study we revealed
the existence of a novel molecular parameter, η, which yields the coupling between the RT and the
JT NACTs. This parameter was found to be a pure number η = 2

√
2/π (and therefore independent of

any particular molecular system) and is designated as Renner-Jahn coupling parameter. The present
study also reveals an unexpected result of the following kind: It is well known that each (complete)
group of states, responsible for either the JT-effect or the RT-effect, forms a Hilbert space of its own.
However, the entanglement between these two effects forms a third effect, namely, the RT/JT effect
and the states that take part in it form a different Hilbert space. © 2013 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4773352]

I. INTRODUCTION

This article is one additional link in a series of articles1–4

devoted to the problem of revealing rigorous, efficient, and ac-
curate methods to construct diabatic potential energy surfaces
(PES) for multi-state, poly-atomic molecular systems. In the
past, most of such articles were devoted to the calculation of
diabatic PESs for limited regions in configuration space (CS),
mainly, planar contours5–12 (see also a list of studies in Ref. 4).
Extending the available approaches to the required chemical
volume, so that studies of chemical processes can be facili-
tated, was and still a formidable task. The main difficulty is
associated with the single-valuedness of these diabatic PESs,
which is difficult to guarantee even for simple CSs such as
planes once they extend to large sizes. The severity of this
issue increases significantly if one is interested in studying
chemical exchange processes that require two or more ar-
rangement channels.

Recently, while studying the HHF system, we managed
to overcome, partially, this difficulty by introducing an ap-
proximate approach that fulfills two basic requirements: (a) It
yields single-valued diabatic potentials for an arbitrary large
plane; (b) it is rigorous in the sense that it originates from
the Born-Oppenheimer (BO) treatment.13, 14 This approxima-

a)Email: michaelb@fh.huji.ac.il.

tion is based on complementary contours and by activating it
we calculated planar PESs for the HHF system for a (R, θ )
grid (see Fig. 1) covering the range 2.8 < R < 10 a.u. and
−π /2 < θ < +π /2, respectively.4 The planes under con-
sideration are formed by the three atoms (a fluorine and
two hydrogens in our case) and are parameterized via val-
ues of r, the inter-atomic distance of H2. The (R, θ ) grid
points describe the polar coordinates of the F-atom with
respect to the center-of-mass of the H2 molecule on that
plane.

In the present article, we consider a more advanced ap-
proach which is expected to yield diabatic PESs with higher
accuracy.3 It is based on three (or more) interacting states
and therefore requires treating the adiabatic-to-diabatic trans-
formation (ADT) matrices, A(s),5, 12 rather than the ordi-
nary ADT (mixing) angles, γ (s) (see Eq. (1) in Ref. 4).
As is well known, the literature contains numerous stud-
ies based on these matrices in connection with various dif-
ferent, tri-atomic, tetra-atomic, and poly-atomic molecular
systems.6(a), 9, 11, 15,16(a), 17, 18 These studies are divided into two
general categories based on the type of non-adiabatic cou-
pling terms (NACT) included in the study: (a) ADT matrices
formed by Jahn-Teller (JT) NACTs;6(a), 9, 11, 15 (b) ADT matri-
ces formed by a mixture of both Renner-Teller (RT) NACTs
and JT NACTs.16(a), 17,18(b), 18(c) This partitioning is somewhat
artificial (in particular the existence of “pure” JT NACTs)

0021-9606/2013/138(2)/024113/11/$30.00 © 2013 American Institute of Physics138, 024113-1
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FIG. 1. A schematic picture of the system of coordinates: (a) Positions of
atoms, point of (1,2) ci and the center of all circular contours. (b) System of
coordinates: (R,θ |r) vs. (ϕ,q|r). In this figure, atoms F, H1, and H2 stand for
atoms A, B, and C, respectively, mentioned in the text.

because molecular systems always contain both types of
NACTs.

Since our aim is deriving diabatic PESs for the required
chemical volume we have to guarantee that the approach to be
developed treats the two kinds of NACTs. This was achieved
in the just mentioned studies16(a), 17,18(b), 18(c) in which the ADT
matrices are calculated employing line integrals along con-
tours that surround the collinear axis, where the NACTs ma-
trices contain both the RT and the JT NACTs (see also Ref.
16(b)).

The main shortcoming of this approach is that the ADT
matrices are calculated for grids on a series of planes perpen-
dicular to the collinear axis instead for the required grid on the
tri-atomic plane. (We remind the reader that dynamical treat-
ments are carried out on tri-atomic planes.) In other words,
this approach demands intricate transformations from these
numerous grids to the tri-atomic grid—a process that severely
complicates the dynamical treatment (may be makes it even,
altogether, infeasible). In what follows, we suggest calculat-
ing the ADT matrices for the tri-atomic grid directly. Another
reason for this choice is that, for each value of the vibra-
tional coordinate r, such a plane contains all JT cis as well as
the collinear axis that contains all RT degeneracy points and
therefore the corresponding planar grid points are exposed to
all the topological effects.

However, there is still one hurdle to overcome. Since all
contours are assumed to be in the plane no contour is capable
to surround this axis (which is in the plane) and therefore a
different way to include the RT effect has to be found. Based
on our past experience19–21 a trustful way to include the RT
effect is to let the contours intersect the degeneracy line and
in this way to enable the corresponding NACT matrix ele-
ments to pick up the resulting RT effect. The only problem en-
countered here is that these calculated NACTs are extremely
spiky—reminiscent of the Dirac δ-function (see, e.g., Fig. 2
in Ref. 21(a))—and therefore their correct shape is frequently
missed.

This situation opened up the way for a theoretical/
mathematical study according to which these NACTs
are indeed, up to a normalization factor, pure Dirac δ-
functions.19,21(b) The theoretical findings of this study are in-
corporated in the present study (see Eqs. (11a) and (11b)).

The article is arranged in the following way: In Sec. II
is given the theoretical background which concentrates on the
NACT matrices (for the tri-state and the tetra-state cases), on
the corresponding extended (privileged) two-state ADT (mix-
ing) angles and finally refers to the derivation of the Renner-
Jahn parameter η,3 in Sec. III are presented the calculations
and in Sec. IV is given the discussion and summary of the
results. We also mention Appendix A which briefly discusses
the connection between the original Renner theory and the
present RT NACT.

II. THEORETICAL BACKGROUND

A. Introductory remarks

Our approach is based on solving the following multi-
dimensional first order differential equation:5, 12

∇A(s) + τ (s)A(s) =0, (1)

where A(s), as previously mentioned, is the ADT matrix, τ (s)
is an anti-symmetric matrix that contains the above mentioned
vectorial NACTs and s is a variable that presents the collec-
tion of internal nuclear coordinates. The matrix τ (s), which
frequently contains singular elements, appears (together with
the adiabatic, diagonal PES, u(s)) in the nuclear Schrödinger
equation (SE) following the BO treatment.13, 14 One way to
avoid these singularities is to eliminate the τ (s)-matrix and
form a modified SE free of all singularities but governed by
V(s), a full potential matrix, which replaces the original, di-
agonal matrix, u(s). The two potential matrices are related via
the following transformation:5, 12

V(s) = A(s)†u(s)A(s), (2)

where A(s)† is the complex conjugate matrix of A(s). The ma-
trix V(s) is known as the diabatic PES—its diagonal elements
are the corresponding diabatic potentials and its off diagonal
elements form the diabatic coupling terms (reminiscing of the
NACTs).

The common way to solve Eq. (1) is to assume contours,
	, and to integrate it along such contours. Since V(s) has to be
presented at a given grid of points we must guarantee that the
chosen contours (along which A(s) and V(s), are calculated)
cover efficiently the full corresponding CS. While doing that
we face again the troublesome singularities of the matrix τ (s)
which are also known as points of conical intersections (ci).
These cis may cause the diabatic potential V(s) to be multi-
valued (namely, non-single-valued) and therefore, essentially,
of no physical use. To overcome this difficulty, the A-matrix
(which, according to Eq. (2), is responsible for the single-
valuedness of V(s)) has to be calculated employing numer-
ous (usually 3-4) states so that upon completion of any closed
contour in that CS it ends up as a diagonal matrix.22

A different way to treat these matrices is as follows: Since
A(s) is an orthogonal matrix it can be presented in terms of
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FIG. 2. Schematic figures describing the two RT/JT models: (a) the tri-state
RT/JT model; (b) the tetra-state RT/JT model.

Euler kind of angles18, 23 and consequently its diagonality is
guaranteed if and only if these angles, at the end of a closed
contour, become integer multiples of π .18(a), 23(b)

So far we referred to CSs in general but the above men-
tioned planar CSs are the ones to be considered for our pur-
poses. (These planar CSs are, at a later stage, extended to form
the full required chemical CS.) We remind the reader that in
these planes the JT cis appear as isolated points and the RT de-
generacy is located along the collinear tri-atomic axis which,
obviously, is contained in the same plane (see Fig. 1).

B. Molecular states and the NACT matrix

Returning now to the last paragraph of the Introduction
our aim is to construct NACT-matrices, τ (s), which contain
the two types of NACTs: the JT NACTs and the RT NACTs.
This will be done for two molecular situations: (i) A system
of three states, two A′-state and one A′′-state (see Fig. 2(a));
(ii) a system of four states, three A′ and one A′′ (see Fig. 2(b)).

1. Tri-state NACT-matrix

Here, the coupling between 1A′ and 2A′ is of the JT-type
and designated as τ 12 and the coupling between 1A′ and 1A′′

is of the RT-type and designated as τ 11′′ (see Fig. 2(a)). We
remind the reader that the two states 1A′ and 1A′′ form a RT
degeneracy line along the collinear HHF axis.

The NACT-matrix takes the form

τ (s) =
⎛
⎝ 0 τ11′′ τ12

−τ11′′ 0 0
−τ12 0 0

⎞
⎠ , (3)

where we assumed that τ 21′′≡0.
However, this form is not well suited for the numerical

treatment as will be elaborated next. For reasons of conve-
nience, we prefer to have τ 12 at the (1,2) position of τ (s). To
achieve this arrangement, we permute between the last two
rows and then between the last two columns so that τ (s) be-
comes

τ (s) =
⎛
⎝ 0 τ12 τ11′′

−τ12 0 0
−τ11′′ 0 0

⎞
⎠ (3′)

which is the NACT-matrix of the desired form. It is important
to mention that the solution of Eq. (1) is not affected by these
permutations.

2. Tetra-state NACT matrix

Here, the NACTs between 1A′ and 2A′, between 1A′ and
3A′ and between 2A′ and 3A′ are of a JT-type, designated as
τ 12, τ 13, and τ 23, respectively, and the coupling between 1A′

and 1A′′ is, like before, of the RT-type and designated as τ 11′′

(see Fig. 2(b)).
The NACT-matrix takes form

τ (s) =

⎛
⎜⎜⎝

0 τ11′′ τ12 τ13

−τ11′′ 0 0 0
−τ12 0 0 τ23

−τ13 0 −τ23 0

⎞
⎟⎟⎠ . (4)

As in the previous case, this matrix is not well suited for
our numerical treatment. Again for reason of convenience we
prefer to have the six JT-NACTs to be concentrated in the up-
per 3 × 3 diagonal corner of the 4 × 4 matrix and the two
RT-NACTs to be at the peripheral positions. To achieve this,
we permute between the second and the third rows and then
between the second and the third columns, so that τ (s) be-
comes

τ (s) =

⎛
⎜⎜⎝

0 τ12 τ11′′ τ13

−τ12 0 0 τ23

−τ11′′ 0 0 0
−τ13 −τ23 0 0

⎞
⎟⎟⎠ . (4′)

Next, we permute between the two last rows and then between
the two last columns so that τ (s) becomes

τ (s) =

⎛
⎜⎜⎝

0 τ12 τ13 τ11′′

−τ12 0 τ23 0
−τ13 −τ23 0 0
−τ11′′ 0 0 0

⎞
⎟⎟⎠ (4′′)

which is the NACT-matrix of the required form.
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C. ADT matrices and privileged angles

1. Two-state case and the ADT angle

In the early days, we used to solve Eq. (1) by treating the
full A-matrix as it stands without paying much attention to its
internal structure. The only exceptional case is the two-state
case where the A-matrix which can be expressed in terms of
one angle γ (s) (to be termed as the ADT or mixing angle) and
this leads to the following simple line integral:12

γ12(s|	) =
∫ s

s0

ds′ · τ12(s′|	). (5)

Here, τ 12 was introduced earlier, 	 designates the contour
along which is carried out the integration and the dot presents
the scalar product. Since we intend to consider circular con-
tours only the integration can be simplified to become over an
angle, ϕ

γ12(ϕ, q) =
∫ ϕ

0
τϕ12(ϕ′, q)dϕ′, (6)

where (ϕ, q) are polar coordinates: q is the radius, ϕ is the
angle associated with the (nuclear) rotation. Consequently,
the corresponding angular component of τ 12 is, as usual, pre-
sented in the form: (1/q)τϕ12(ϕ,q), where

τϕ12(ϕ, q) =
〈
ζ1(se|ϕ, q)

∣∣∣∣ ∂

∂ϕ
ζ2(se|ϕ, q)

〉
. (7)

Here ζ j(ϕ|q); j = 1, 2 are the corresponding eigenfunctions
related to the two lower states (in our case the states 12A′ and
22A′). In addition to the ADT angle, we are also interested in
the angle α12(q)—the-end-of-the-contour phase—defined as

α12(q) =
∫ 2π

0
τϕ12(ϕ′, q)dϕ′ (8)

and is known as the topological/geometrical phase.
Comment: About two decades ago it was suggested24 to

identify the topological phase with the Berry phase for a two-
state system.25 This connection was found to be valid for
all reported numerical studies of molecular systems with two
quasi-isolated states.4, 15–17,21(a), 26–28

In case the two-state system forms a Hilbert subspace the
topological phase becomes an integer multiple of π (or zero).
In the Introduction, we already mentioned that the necessary
and sufficient condition that the diabatic potentials, formed by
Eq. (2), are of physical value in a given region in CS is that
the topological phase (see Eq. (8)) is equal to nπ (where n
is an integer) for any closed contour in that region. In case
the two-state topological phase is not equal to nπ in the con-
sidered region, we are forced to include three states or some-
times more to guarantee that the relevant topological phase(s)
is(are) integer multiples of π . This will be done next.

2. Tri-state privileged angle

As already mentioned in the Introduction, we take ad-
vantage of the fact that A(ϕ,q) is a 3 × 3 orthogonal ma-
trix and therefore its nine elements can be presented in
terms of the three quasi-Euler angles.18, 23 This idea was
already elaborated, applied, and analyzed in a series of

articles3, 7, 9, 11, 18, 29, 30 and, therefore, is only briefly discussed
here.

As in case of the ordinary Euler matrix, the orthogonal
A-matrix is presented as a product of three rotation matrices
Qij(γ ij) (i < j = 2, 3) where the product A = QklQmnQpq can
be written in any order. Substituting this product in Eq. (1)
yields three coupled first-order differential equations for the
three corresponding quasi-Euler angles, γ ij. The final set of
equations as well as their solution depends on the order of the
Q-matrices.18(a)

In an analysis carried out several years ago,18(b), 18(c), 29 we
attributed physical meaning only to one of the three ADT an-
gles, γ ij, privileged with an equation that contains the corre-
sponding NACT, τ ij, as a free isolated term (there is one equa-
tion like that in every group of three coupled equations). In
what follows, we assume γ 12 to be such an angle and consider
for this purpose the product: A = Q12(γ 12)Q13(γ 13)Q23(γ 23).
Substituting this product in Eq. (1) yields three first order
equations, of which two equations (for γ 12 and γ 13) form a
closed subgroup of two coupled equations3

∂

∂ϕ
γ12 = −τ12 − tan γ13(τ23cosγ12 + τ13 sin γ12), (9a)

∂

∂ϕ
γ13 = τ23 sin γ12 − τ13 cos γ12. (9b)

These two equations are solved with the aim of calculat-
ing the privileged ADT angle γ 12(ϕ, q). The introduction of
the privileged angle enables the extension of the earlier de-
fined two-state topological phase, α12, to three-state systems.
A straightforward choice is the end-of-the-contour value of
the angle γ 12. Thus, α12(q) = γ 12(ϕ = 2π , q).

3. Tetra-state privileged angle

To treat the four-state case, we need to express the
4 × 4 A-matrix in terms of six quasi-Euler angles which
implies—similar to the tri-state case—that A has to be pre-
sented as a product of six rotational matrices: Qij(γ ij) (i < j
= 2, 3, 4).18(c), 30 In this context we refer, again, to the
corresponding privileged angle, γ 12 and employ for this
purpose the corresponding product of elementary rotational
matrices18(c)

A = Q12Q13Q14Q23Q24Q34 ⇒ Qij = Qij(γij).

Substituting this product in Eq. (1) yields a group of six
first-order differential equations (see Eq. (20) in Ref. 18(c)),
of which the first three equations (for the angles γ 12, γ 13, and
γ 14) form a closed subgroup of coupled equations

∇γ12 = −τ12 − tan γ13(τ13 sin γ12 + τ23cosγ12)

− tan γ14 sec γ13(τ14 sin γ12 + τ24 cos γ12), (10a)

∇γ13 = tanγ14 sin γ13(τ24 sin γ12 − τ14 cos γ12)

+ τ23 sin γ12 − τ13cosγ12 − τ34tanγ14 cos γ13, (10b)

∇γ14 = −τ14 cos γ12 cos γ13 + τ24 sin γ12 cos γ13 + τ34 sin γ13.

(10c)
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These three equations are solved with aim of calculat-
ing, γ 12(ϕ,q), the privileged ADT angle and α12(q), the cor-
responding topological phase, which, as before, is defined as
the end-of-the-contour value of the angle γ 12, namely, α12(q)
= γ 12(ϕ = 2π , q).

D. The inclusion of the Renner-Teller effect

1. Presentation of the intra-planar RT NACT

Whereas the calculations of two-state JT-NACTs along
circular contours, 	, in the tri-atomic plane is well known we,
mainly, concentrate on the RT-NACT, τ 11′′ , along the same
contour (see Sec. II B 1). As already mentioned earlier, we
concentrate on circles that have their centers on the collinear
axis. Since the collinear axis is an infinite long interval
−∞ < R < +∞ each such circle intersects this line at two
points, i.e., at ϕ = 0 and at ϕ = π (see Fig. 1(b)). It is well
known that at each such intersection point, along a short in-
terval perpendicular to the collinear axis, is formed a spiky
non-zero NACT (in this case an angular NACT) with features
reminiscent of a Dirac δ-function.21(b), 31 Thus, our first ten-
dency is to assume that the angular RT-NACTs in the planar
CS take the form3

τ 11′′ (ϕ|q, 	) = π

2
δ(ϕ − ϑ) (11a)

for any circle 	 with a radius q (here ϑ designates the inter-
section points and is either zero or π—see Fig. 1(b)). Equa-
tion (11a) has to be applied with some care because as it
stands it yields, for any circle, a quantized topological phase
(=π ) to be expected for an undisturbed RT effect along 	.
However, in Sec. II A we assumed the existence of a JT
ci on the collinear axis and therefore the RT effect is most
likely weakened (or, eventually, intensified) by this ci.32 Con-
sequently, the pure RT quantization is affected and a way to
incorporate this possibility is to extend Eq. (11a) by adding a
normalization factor, η, thus,

τ 11′′ (ϕ|q, 	) = π

2
ηδ(ϕ − ϑ), (11b)

where η (most likely ≤1) is a parameter to be determined the-
oretically. In what follows Eq. (11b) is termed as the quasi-
Dirac δ-function and η is termed as the Renner-Jahn coupling
parameter (RJCP). More about Eq. (11b) is given in Sec. IV.

Although the circular contour intersects the HHF axis at
two points, namely, at ϕ = 0, π we consider only what hap-
pens at ϕ = π . It can be shown that the RT-NACT at ϕ = 0
has no affect on the results.

2. The tri-state JT/RT coupled equations

In order to derive the corresponding differential equa-
tions for the tri-state RT/JT coupled system, we consider the
NACT-matrix given in Eq. (3′) and substitute the relevant ma-
trix elements in Eqs. (9a) and (9b). Thus,

∂

∂ϕ
γ12(ϕ) = −τ12(ϕ) − τ11′′ (ϕ) tan γ13(ϕ) sin γ12(ϕ), (12a)

∂

∂ϕ
γ13(ϕ) = −τ11′′ (ϕ) cos γ12(ϕ), (12b)

where the integration is done along a circular contour, and
therefore the first-order differentiation operator ∇, is replaced
by the angular derivative: (∂/∂ϕ). Parts of Eqs. (12) can be in-
tegrated analytically taking advantage of Eq. (11b). Defining
the following Heaviside step function:

�(ϕ − π ) =
⎧⎨
⎩

0; 0 ≤ ϕ ≤ π

1; π ≤ ϕ ≤ 2π

, (13)

it can be shown that the solution of Eq. (12b) is proportional
to this step function

γ13(ϕ) = �(ϕ − π )γ (0)
13 (ϕ), (14a)

where

γ
(0)
13 (ϕ) = −η

π

2
cos{γ12(ϕ = π )} (14b)

and that the solution of Eq. (12a) is also a step function of a
somewhat more involved form

γ12(ϕ) = −
∫ ϕ

0
dϕ′τ12(ϕ′) + �(ϕ − π )χ (ϕ = π ), (15a)

where χ (ϕ = π ) is given in the form

χ (ϕ = π ) = −η
π

2
tan

{
γ

(0)
13 (ϕ = π )

}
sin{γ12(ϕ = π )}.

(16)

Equation (16) is characterized by the following features:
(i) In case |γ 12(ϕ = π )|>π /2 the sign of χ (ϕ = π ) is opposite
to the sign of γ 12(ϕ = π ), e.g., when γ 12(ϕ = π ) < 0, then
χ (ϕ = π ) > 0. (ii) In case |γ 12(ϕ = π )|<π /2, the sign of
χ (ϕ = π ) is identical to the sign of γ 12(ϕ = π ), e.g., when
γ 12(ϕ = π ) < 0, then χ (ϕ = π ) < 0.

For the whole approach to be meaningful the up-
ward/downward vertical shifts, as expressed in terms of
χ (ϕ = π ), have to fulfill two conditions (see Appendix B for
additional information)

(1) Since the diabatic potentials have to be single-valued at
every point in CS they have to be so also at ϕ = π . Con-
sequently, the value of χ (ϕ = π ) has to guarantee the
equality: sin[γ 12(ϕ = π )] = sin[γ 12(ϕ = π )+χ ] and a
similar equality (up to a sign) for the cosine function.

(2) Since the value of γ 12(ϕ) at the end of the closed circu-
lar contour, namely, at ϕ = 2π has to be γ 12(ϕ = 2π )
= ±nπ the vertical shift, χ (ϕ = π ), has to guarantee the
following quantization condition:

α(q) = −
∫ 2π

0
dϕ′τ12(ϕ′) + χ (ϕ = π ) = ±nπ, (15b)

where α(q) is recognized as the relevant topological
phase (see Eq. (8)).

In Sec. II D 4, these conditions will be discussed in more de-
tail for the case of infinite small deviations.

3. The tetra-state JT/RT coupled equations

In what follows are derived the differential equations for
the tetra RT/JT coupled system. For this purpose, we consider
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the NACT-matrix given in Eq. (4′′) (thus, τ 24 and τ 34 are iden-
tically zero and τ 14 is replaced by τ 11′′ ) and substitute the rel-
evant matrix elements in Eqs. (10a)–(10c). Thus,

∂

∂ϕ
γ12 = −τ12 − tan γ13(τ13 sin γ12 + τ23cosγ12)

− τ11′′ tan γ14 sec γ13 sin γ12, (17a)

∂

∂ϕ
γ13 = τ23 sin γ12 − τ13cosγ12 − τ11′′ tanγ14 sin γ13 cos γ12,

(17b)

∂

∂ϕ
γ14 = −τ11′′ cos γ12 cos γ13. (17c)

Next, Eq. (17c) is integrated analytically taking advan-
tage of Eq. (11b). Thus,

γ14(ϕ) = �(ϕ − π )γ (0)
14 (ϕ), (18a)

where

γ
(0)
14 (ϕ) = −η

π

2
cos[γ12(ϕ = π )] cos[γ13(ϕ = π )]. (18b)

To continue we distinguish between the two intervals:

(i) 0 ≤ ϕ < π . Along this interval γ 14(ϕ) ≡ 0 and we are
left with following two equations (for γ 12, γ 13):

∇γ12 = −τ12 − tan γ13 (τ13 sin γ12 + τ23cosγ12) ,

(19a)

∇γ13 = τ23 sin γ12 − τ13cosγ12. (19b)

These equations are solved for the initial conditions
γ 12(ϕ = 0) = γ 13(ϕ = 0) ≡ 0.

It is interesting to emphasize that Eqs. (19a) and (19b)
are identical to the set of equations which have to be
solved for an ordinary system of three coupled JT states.

(ii) π < ϕ ≤ 2π . Along this interval are encountered the
(same) equations as given by Eqs. (19a) and (19b)
(because τ 11′′ (ϕ) ≡ 0) but here γ 14(ϕ), although be-
ing a constant, differs from zero (see Eqs. (18a) and
(18b)). Equations (19a) and (19b) are, therefore, solved
along the interval (ϕ ≥ π ), for the following initial
conditions:
(I)

γ
(0)
12 (ϕ = π ) = γ12(ϕ = π ) + χ12(ϕ = π ), (20a)

where χ12(ϕ = π ) — the (1,2) vertical shift — is given
as

χ12(ϕ = π ) = −π

2
η tan

{
γ

(0)
14 (ϕ = π )

}

× sin {γ12(ϕ = π )} sec{γ13(ϕ = π )}
(21a)

and
(II)

γ
(0)
13 (ϕ = π ) = γ13(ϕ = π ) + χ13(ϕ = π ), (20b)

where χ13(ϕ = π ) — the corresponding (1, 3) vertical
shift — is given in the form

χ13(ϕ = π ) = −π

2
η tan

{
γ

(0)
14 (ϕ = π )

}
× cos{γ12(ϕ = π )} sin{γ13(ϕ = π )}.

(21b)

Corollary: Equations (21a) and (21b) indicate, unam-
biguously, that no shift takes place whenever γ 12(ϕ = π )
= π /2. This conclusion is independent of the value RJCP, η.

4. Derivation of the Renner-Jahn coupling
parameter η

To derive the RJCP, η, we consider the solution for γ 12(ϕ)
as given in Eq. (15a) for the case that γ 12(ϕ) at ϕ = π is
slightly larger than π /2, namely,

γ12(ϕ = π ) = π/2 + ε. (22)

Here, ε is a constant assumed to be small enough to guarantee
the fulfillment of the required approximations. Substituting
Eq. (22) in Eq. (16) yields for the corresponding vertical shift,
χ (ϕ = π ), the value3

χ (ϕ = π ) =
(
η
π

2

)2
ε. (23)

Based on continuity we expect that, for ε → 0, two re-
quirements have to be fulfilled by χ (ϕ) at ϕ = π . We start
with the single-valuedness for the diabatic potentials (see Ap-
pendix B for additional information) which is fulfilled when
sin(π /2 + ε) = sin(π /2 + ε − χ ) {≡sin(π /2 − ε)}. In other
words, the single-valuedness is fulfilled when (π /2 + ε − χ )
= (π /2 − ε) or χ (ϕ = π ) = 2ε. Recalling Eq. (23) we see
that this happens when η is3

η = 2
√

2

π
= 0.9003. (24)

We continue with the quantization requirement and for
this purpose we employ Eq. (15b). From Eq. (22) we get, due
to symmetry, that γ 12(ϕ) at ϕ = 2π becomes π + 2ε. Sub-
stituting this outcome in (16), we find that the quantization
is fulfilled whenever 2ε−χ = 0 thus, as before, this equality
yields for η the result given in Eq. (23) and consequently also
Eq. (24).

So far the η-value in Eq. (24) was determined for the case
that ε → 0 or when γ 12(ϕ = π ) is only slightly larger than
π /2 (see Eq. (22)). In Ref. 3 we conducted, for the F + H2

system, a numerical study with the aim of finding out to what
extent this value of η applies also for arbitrary large shifts. In-
deed, for all considered cases (even for vertical shifts up to
∼ 2 Rad.), we find the differences between the theoretical
shifts and the required numerical ones to be negligibly small
(see a comparison along the two last columns of Table 1 given
in Ref. 3).

So far this derivation was carried out for the tri-state case.
It can be shown that an identical result is obtained for the
tetra-state case. In other words, the transition from a tri-state
system to a tetra-state system leaves RJCP unaffected.
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Comment: As already mentioned in the Introduction, we
also studied systems affected by both, JT-NACTs and RT-
NACTs16(a), 17, 18 where the contours surround the RT seams
(and therefore do not intersect them) so that the resulting RT
NACTs are not of the Dirac δ-function type and the need for
η-type parameters becomes redundant.

III. NUMERICAL RESULTS

A. Introductory comments

As mentioned earlier we apply the numerical treatment
to the H2 + F system (the model described in Sec. II B is con-
structed to be suitable for this system). The F + H2 system
was treated by numerous groups during the last half-century
but we mention here only the studies by Werner et al.33, 34

In particular, we refer to the numerical treatment by Stark
and Werner33(a) who not only produced the up-to-date, ground
state (adiabatic) potential for this system but also revealed the
existence of a JT ci located on the collinear axis in vicinity of
R ∼ 5.5 a.u. (mentioned earlier while constructing the model)
and derived the first diabatic potentials for this system (more
details are given in Refs. 1, 2, and 4).

Our study is carried out for the planar CS as formed by
assuming r(= RHH) to be fixed at r = 1.4 a.u. (see Fig. 1).

In this treatment are calculated, employing MOLPRO,33(b)

only JT-NACTs (see Appendix C for details) and the corre-
sponding ADT angles. For this purpose are considered the
three lowest states of type A′ coupled at three collinear (JT)
ci-points: the (1,2) ci-point is located at the vicinity of R
= Rci∼5.5 a.u.;33(a) the (2,3) ci-point located at the vicinity of
R = Rci∼ 1.9 a.u. and the (3,4) ci-point located at the vicinity
of R = Rci∼1.8 a.u. (see Fig. 1). In this respect, we mention
that the (1,2)ci is formed by a �-state, assigned as 2A′ and
one of the two �-states (with the same symmetry) assigned
as 1A′ (see Fig. 2).

As mentioned earlier the RT degeneracy is formed by two
�-states, designated as 1A′ and 1A′′ (see Fig. 2) and, as usual,
are located along the (collinear) HHF axis. The corresponding
RT-NACTs required for the present study are not calculated
but assumed to be quasi-Dirac-δ functions as discussed in
Sec. II D.

The calculations and the theoretical study are done (as
frequently mentioned) along closed circular contours. All cir-
cles have their centers at the same fixed point on the collinear
axis at R = Rc = 6 a.u. This common center is chosen in such
a way as to guarantee that the various circles (with the varying
radii) cover the whole planar CS of interest.

B. JT-NACTs along closed circles

In Fig. 3 are presented angular JT-NACTs as calculated
along four different (closed) circles with the radii: q = 0.4,
3.0, 3,7, 4.0 a.u. In panel (a) is presented one NACT, namely,
τ 12(ϕ|q = 0.4 a.u.) whereas in all other panels we present
three NACTs, namely, τ 12(ϕ|q), τ 13(ϕ|q), τ 23(ϕ|q) (that cou-
ple the three lower A′ states) calculated along circles with
larger radii: q = 3.0, 3.7, 4.0 a.u. The feature that character-
izes the NACTs for q = 0.4 a.u. is that the circle does not sur-
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FIG. 3. Angular NACTs, τϕ (ϕ|q), for circular contours at R = Rce = 6 a.u.
along the interval 0 ≤ ϕ ≤ 2π : (a) τ 12ϕ (ϕ|q), for q = 0.4 a.u.; (b) τ 12ϕ (ϕ|q),
τ 13ϕ (ϕ|q) and τ 23ϕ(ϕ|q), for q = 3 a.u.; (c) the same as in (b) but for q = 3.7
a.u.; (d) the same as in (b) but for q = 4 a.u.

round the point of ci which is located at a distance of 0.5 a.u.
from the center of the circle. In all other cases, the cir-
cles surround the ci-point and therefore the various τ 12(ϕ|q
>0.5 a.u.)’s exhibit a slightly more complicated structure. As
for the two NACTs that couple the third state the following
can be said: (a) τ 13(ϕ|q) hardly changes as q increases; (b)
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τ 23(ϕ|q) changes significantly and becomes spikier. The rea-
son is associated with the fact that at {R ∼ 1.8 a.u., θ = 0}
≡ {q ∼ 4.2 a.u., ϕ = π} (see Fig. 1)) are located two ad-
ditional JT cis (as already mentioned earlier): a (2,3)ci and
a (3,4)ci. As a result, the more remote is the center of the
circle from these cis the spikier (as a function of ϕ) is the
corresponding NACT, τ 23(ϕ|q). These spiky NACTs may
lead to inaccuracies in calculating the corresponding ADT
angles.

C. (1,2) ADT angles along closed circles

1. Tri-state results

In Fig. 4 are presented the (vertical) shifted (1,2) ADT
angles, γ 12(ϕ|q), as calculated according to the recipe in
Eqs. (15a) and (16). Curves for nine q-values in the range 0.4
< q < 5.0 a.u. are given. We distinguish between three types
of curves: (1) The curve for q = 0.4 a.u. is not shifted (in other
words, the shift is zero) and its topological phase, α12(q), is
zero which results from the fact that the circle does not sur-
round the (1,2)ci. (2) The curve for q = 1.0 a.u. is not shifted
(or the shift is negligible small) and is characteristic for the
situation that the circle surrounds the (1,2)ci and therefore
yields: α12(q) = π . (3) In all other cases, the circles surround
the (1,2) ci and are shifted downwards (at ϕ = π ). These two
facts are the reason that all the topological phases α12(q) are
correctly quantized (namely, become equal to π when ϕ =
2π ). At this stage, we emphasize again that the downwards
shifts for the various cases were calculated according to for-
mula in Eq. (16) (see, also, Eq. (14b)) where η is given by Eq.
(24) and γ 12(ϕ = π |q) is the corresponding privileged ADT
angle. In other words, no artificial fitting is done!

Figure 4 reveals one interesting (and important) feature:
The ϕ-dependence of the various curves become similar and
the curves are converging to each other as the radius, q, of
the circles increases. This phenomenon is general but is en-
hanced in the interval of π /2 < ϕ < 3π /4. Figure 5 shows,
schematically, the region in CS — in the shape of a square —

0 π/2 π 3π/2 2π

ϕ  [radian]

0

π/2

π

3-
st

at
e 

γ 12

q=0.4 au

q=1.0 au

q=2.0 au

q=3.0 au

q=3.7 auq=4.0 auq=4.6 au

q=5.0 au

q=4.2 au

FIG. 4. The tri-state ADT (mixing) angle, γ 12(ϕ|q), for circular contours at
R = Rce = 6 a.u. along the interval 0 ≤ ϕ ≤ 2π as calculated employing the
RT/JT Eqs. (15a) and (16). Results are shown for q = 0.4, 1.0, 2.0, 3.0, 3.7,
4.0, 4.6, 5.0 a.u.

FIG. 5. The transition region, presented as a square, from reagents channel
to products channel.

where the convergence is most efficient. As it happens this is
the region where the chemical reaction takes place. In other
words, it overlaps with the transition region from the reagents
arrangement to the products arrangement.

2. Tetra-state results

In Fig. 6 is presented a comparison between privileged
ADT angles, γ 12(ϕ|q) as calculated, once employing three
states (see Eqs. (15a) and (16)) and once employing four
states (see Eqs. (19)–(21)). These ADT angles are calcu-
lated along circles with the following radii: q = 3.0, 3.7,
4.0 a.u. presented in the relevant panels. As is noticed the re-
sults are well converged for all three cases. The encouraged
fact from this comparison is that although the tetra-state ADT
angles are calculated using two additional NACTs, namely,
τ 13(ϕ|q) and τ 23(ϕ|q) (and therefore are based on more in-
volved expressions to calculate the shifts at ϕ = π — see
Eqs. (20) and (21) — still, the ADT angles, are reasonably
well converged.

IV. DISCUSSION AND CONCLUSIONS

In this article is studied the privileged, ADT angle
γ 12(ϕ|q) due to two entangled NACTs—the JT-NACT and the
RT-NACTs. This was not the situation when we started study-
ing the FHH system.1, 2 At that stage we employed one JT-
NACT, namely, τ 12(ϕ|q), and following Eq. (6), we got quan-
tized topological angles, α12(q), only along circles with small
radii (q < 2.0 a.u.). To improve the quantization for circles
with larger radii (q > 2.0 a.u.), we added another A′-state as
well as its two corresponding NACTs, τ 13(ϕ|q) and τ 23(ϕ|q),
and solved Eqs. (19a) and (19b) — the relevant equations
for the three-state JT situation (solved with the initial condi-
tions: γ12(ϕ = 0) = γ13(ϕ = 0) ≡ 0). In Fig. 7 are compared
the two JT-ADT angles γ 12(ϕ|q), as calculated for q = 4.0 a.u.
(once by solving Eq. (6) and once by Eqs. (19a) and (19b)).
It is well noticed that the two kinds of calculations yield sim-
ilar values for the topological phases, α12(q) but which differ
significantly from π . In other words, increasing the JT sub-
Hilbert space from two states to three did not yield the ex-
pected quantization (unlike in numerous other cases27, 29).

Downloaded 14 Jan 2013 to 129.206.21.195. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



024113-9 Csehi et al. J. Chem. Phys. 138, 024113 (2013)

0 π/2 π 3π/2 2π0

π/2

π

γ 12
  [

ra
di

an
]

3-state γ12
4-state γ12

0 π/2 π 3π/2 2π0

π/2

π

γ 12
  [

ra
di

an
]

3-state γ12 
4-state γ12

0 π/2 π 3π/2 2π

ϕ  [radian]

0

π/2

π

γ 12
  [

ra
di

an
]

3-state γ12
4-state γ12

(a)

(b)

(c)

q=3.0 au

q=3.7 au

q=4.0 au

FIG. 6. A comparison between tri-state and tetra-state ADT (mixing) angles
γ 12(ϕ|q), for circular contours at R = Rce = 6 a.u. along the interval 0 ≤ ϕ

≤ 2π . The tri-state angles were calculated employing the RT/JT Eqs. (15a)
and (16) and the tetra-state angles were calculated employing the RT/JT Eqs.
(19a)–(21b). The comparison is presented in panel (a) for q = 3.0 a.u., in
panel (b) for q = 3.7 a.u. and in panel (c) for q = 4.0 a.u.
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FIG. 7. ADT (mixing) angles, γ 12(ϕ|q), calculated for a circular contour at
R = Rce = 6 a.u. with radius q = 4.0 a.u., along the interval 0 ≤ ϕ ≤ 2π :
Two JT curves are shown: a two-state curve calculated with Eq. (6) and a
three-state curve calculated with Eqs. (19a) and (19b).

This fact led to the conclusion that the sharp increase of
γ 12(ϕ|q) in the region of π /2 < ϕ < 3π /4 is not caused by
the existence of additional JT-cis (between higher states) but
due to another factor, eventually, the RT-degeneracy which is
formed between the two �-states. To test this possibility, we
developed a new methodology which enabled the numerical
study of the entangled RT/JT system. This entangled system
lent itself from the start to yield the desired improvement in
the quantization (a feature required for guaranteeing single-
valued diabatic PESs1, 2).

The methodology presented here was introduced about
a year ago,3 for a tri-state system, and revealed the exis-
tence of a novel molecular parameter, η, responsible for the
intra-planar coupling between the RT and the JT NACTs.
This parameter was found to be a pure number η = 2

√
2/π

(= 0.9003). At the start we expected η to be dependent on the
NACTs which would make it system dependent. So far the pa-
rameter η was not studied for other systems but the fact that
the theoretical derivation yields a pure number implies that η

is, probably, a kind of a universal molecular constant, at least
as far as tri-atomic systems are concerned. This conclusion is
further supported by the fact that an identical value for η is
obtained for a tetra-state system.

The present study revealed an additional result: It is well
known that each (complete) group of states responsible for
one of the two effects, namely, the RT effect and the JT effect,
forms an independent Hilbert space. However, most likely
the entanglement (or engagement) between these two effects
forms a third effect, namely, the RT/JT effect and the group
of states responsible for it belongs to a more extensive Hilbert
space.

Another aspect revealed in this study is that JT effects
are not produced by conical intersections as in the ordinary
case but by more elaborated intersections. This finding will
be further studied in forthcoming publications.

As a final subject we refer to an issue which is fre-
quently raised and expressed in different ways, for instance,
“no unique solution exists for ADT matrices unless the num-
ber of states is ∞”9 or how one overcomes the lack of a
“closed sub-Hilbert space” in molecular systems, etc. Our an-
swer is usually based on Mathematics and can be summarized
in one word: Convergence. But this is not always sufficient
as convergence might be attained for a non-physical situation
(see, for example, in the first paragraph of this section and
Fig. 7). In our field of research, we demand convergence to a
meaningful physical limit and this implies attaining quantized
phases. Thus, the idea is to increase the number of electronic
states (which belong to an infinite large Hilbert space) un-
til this goal is reached, namely, quantized phases along any
closed contour in the region of interest. We can see that such
a goal was reached in Fig. 6 when the number of states is
increased from 3 to 4 (see Sec. III C 2).

Coming back to the authors in Ref. 9 (who demand an
infinite number of states), their incriminating statements can-
not be considered seriously as they did not deliver any de-
tails of their study (neither the number of states nor the size
of configuration space used) that led them to draw their neg-
ative conclusions. Unfortunately, general statements of this
kind cannot be productive.
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APPENDIX A: THE RENNER THEORY AND
THE RENNER-TELLER NACT

In 1934, Renner published a detailed study of a lin-
ear poly-atomic molecule, originally, characterized by the z-
component of the electronic orbital angular momentum �¯

(where ��=0) and by a nuclear angular momentum com-
ponent, �¯, associated with the bending vibrations of the
molecule, both defined with respect to the molecule axis (con-
sidered to be the z-axis).35 To be more specific, in this study
Renner concentrated on those states that split to become two
(coupled) states when moving away from collinearity. Thus,
if we consider, e.g., a �-state characterized by the quan-
tum number � = 1 and a single eigenfunction, ζ� = 1(se|s),
then, after moving away from collinearity, one encounters two
eigenfunctions, namely, ζ±

�=1(se|s) related to the two decou-
pled states (in this notation se and s stand for the collective
electronic and nuclear coordinates, respectively).

Taking this model one step further and assuming the de-
viation from collinearity to be small enough (thus, the coor-
dinate s is removed only slightly from the collinear arrange-
ment) it is expected that the following result still holds:

L(±)
z�=1(s) = 〈

ζ+
�=1(se|s)

∣∣ Lz

∣∣ζ−
�=1(se|s)

〉 ∼ −i
1

q
�(= 1).

(A1)
Based on transformation between space fixed and body-

fixed coordinates36 one can show that in fact the z-component
of the nuclear angular momentum operator R, i.e., Rz can be
expressed in terms of the associated nuclear angular coordi-
nate ϕ, namely,

L(±)
z�=1(s) ∼ R(±)

z�=1(s) = − i
1

q

〈
ζ+
�=1(se|s)

∣∣ ∂

∂ϕ

∣∣ζ−
�=1(se|s)

〉
.

(A2)
It is well noticed that Eq. (A2) is an expression reminis-

cent of the BO treatment and can be identified with rotational
NACT as presented in Eq. (7).

To complete this presentation, we mention that recently
Zhou et al.37 employed the expression in Eq. (A1) in their
dynamical study of the N + H2 system.

APPENDIX B: THE DIABATIC POTENTIALS
EXPRESSED IN TERMS OF ADT (MIXING) ANGLE

The diabatic potentials are given in the form38

V1(ϕ|q) = u1(ϕ|q) cos2 γ12(ϕ|q)+u2(ϕ|q) sin2 γ12(ϕ|q),

V2(ϕ|q) = u1(ϕ|q) sin2 γ12(ϕ|q)+u2(ϕ|q) cos2 γ12(ϕ|q),

V12(ϕ|q) = (1/2) (u2(ϕ|q) − u1(ϕ|q)) sin (2γ12(ϕ|q)) , (B1)

where u1 and u2 are the adiabatic potentials, γ 12 is ADT an-
gle, and q and ϕ are the polar coordinates in the tri-atomic
plane (see Fig. 1). A similar set of equations will hold for any
other planar angles, e.g., (R,θ )—see Fig. 1.

APPENDIX C: THE NUMERICAL TREATMENT

The calculation of the NACTs (along chosen circles)
was carried out at the state-average complete active space
self-consistent field (CASSCF) level using the MOLPRO

program.33(b) Within this calculation we used all seven va-
lence electrons distributed on eight orbitals. Six electronic
states, including the two/three studied states, were computed
by this method applying equal weights.

The active space is made up of the 3σ -6σ orbitals, 1π va-
lence orbital, and one additional set of correlating π -orbitals.
Care has been taken to avoid the swap of 2σ and 3σ or-
bitals during the optimization of the orbitals at the CASSCF
level.33(b) The basis set employed are: (a) for the fluorine we
applied s and p functions from the cc-pV5Z set and d and f
functions from cc-pVQZ set augmented with diffuse s, p, d,
and f functions; (b) for the hydrogens we employed s func-
tions from the cc-pV5Z set and p and d functions from the
cc-pVQZ set augmented with diffuse s and p functions.
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