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ABSTRACT The complexity of power systems is increasing as new generating units are added to power systems in order to supply 
power to the growing economies. This has resulted in further research into the generator maintenance scheduling (GMS) problem 
which seeks to ensure optimal preventive maintenance scheduling that is effective and reliable. This research is focused on developing 
a generator maintenance schedule using a tri-objective model. The GMS tri-objective model is solved using two solution 
methodologies. The first is an exact solution method using mathematical modelling software, Advanced Interactive Multidimensional 
Modelling System (AIMMS). The second solution method is a recently developed metaheuristic algorithm called Exchange Market 
Algorithm (EMA). Results show that the tri-objective model finds a trade-off solution of the individual solution methods. The 
metaheuristic algorithm gives a better solution for larger optimization problems. 
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NOMENCLARURE 
i    index of generators, i=1, …, I 
t    index of time periods, t = 1, …, T 
Gmaxi    maximum capacity of generator i 
Gmini    minimum capacity of generator i 
di    duration of maintenance of generator i 
Dt    demand at time period t 
St    safety margin at time period t 
xi,t    binary variable that is 1 when generator is on maintenance 
yi,t    binary variable that is 1 if maintenance of generator i starts at time t 
cmi    maintenance cost of generator i 
fi    fuel cost function 
ai, bi, ci    fuel cost coefficients for generator i 
λi    failure rate of generator i 
si    cost of starting up generator i 
Qt     maximum crew available at time period t 
RoFi    probability that generator i will fail before maintenance 
RoFmax maximum allowed probability that a generating unit will fail before    

maintenance 
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚     number of iterations 
k    iteration number 
𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝    population size 
𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝    number of the t-th member of the population 
g1min ,g1max    minimum and maximum risk co-efficients in  non-oscillating mode 
g2min ,g2max    minimum and maximum risk co-efficients in oscillating mode 
𝑖𝑖1 , 𝑖𝑖2, rand  random numbers between 0 and 1 
𝑠𝑠𝑘𝑘    share variation of group 3 members in non-oscillating mode 
∆𝑛𝑛𝑡𝑡1  share increase of group 2 members in oscillating mode 

∆𝑛𝑛𝑡𝑡2  share decrease of group 2 members in oscillating mode 
𝜂𝜂1  risk level associated with each member of the group 2 in oscillating 
mode 
𝜂𝜂2  risk level associated with each member of the group 3 in oscillating 
mode 
∆𝑛𝑛𝑡𝑡3  share variation of group 3 members in oscillating mode 

 

I. INTRODUCTION  
 

A.  MAINTENANCE SCHEDULING  

Due to the growth of economies, the demand for electricity has 
subsequently increased. If the increase in demand is not met with 
a corresponding increase in generation capacity, power systems 
end up with lower reserve margins. When reserve margins are 
low, power utilities tend to be reluctant to put generators offline 
for maintenance as the generation capacity will be close to the 
demand. This leads to an increase in the failure of generating 
units due to lack of maintenance [1]. 
In recent years South Africa has experienced shortage of 
generating capacity leading to load shedding. One of the major 
reasons that caused the load shedding is poor maintenance 
leading to boiler tube failures and breakdowns [2]. The power 
utility, Eskom, had to implement stage 4 load shedding because 
of the severe shortage of capacity. This meant that up to 
4000MW of national load could be shed at a time [3]. 
The generator maintenance scheduling is a preventive 
maintenance plan in which a well-planned schedule is prepared 
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for taking units out of service for maintenance in order to avert a 
crisis such as faced by generation companies. Various constraints 
are considered and should be satisfied by the schedule. An 
appropriate maintenance schedule should minimize the operating 
and maintenance cost of the power generating system or improve 
the reliability of the system [4]. The maintenance scheduling 
problem is very important as it affects other decisions regarding 
the operation of generating plants such as unit commitment and 
unit dispatch. 
Historically, maintenance scheduling has been conducted based 
on the expertise of maintenance personnel as well as instructions 
from generator manufacturers. However, this kind of approach is 
not satisfactory as it does not effectively take into consideration 
the system constraints and becomes difficult to apply to a multi-
unit system. A well planned, optimal GMS is crucial for the 
smooth and efficient operation of a power plant [5]. Many other 
short term and long-term planning activities in a power plant that 
include unit commitment, generation dispatch, import and export 
of power and generation expansion of a power utility are directly 
affected by the maintenance schedule [6]. A schedule which 
warrants timely maintenance of generating units thereby 
increasing lifespan has the effect of postponing the huge capital 
investment into new generation facilities [7]. 

B.  EXISTING SOLUTION METHODS  

The research into the GMS problem has gained traction over the 
years. Several criteria are used when modelling the GMS 
problem. The two most common criteria used are the reliability 
criteria and economic cost criteria [6],[8]. In some cases, the 
optimization of the generator maintenance schedule is done 
based on just one criterion, which is single objective 
optimization, [7],[9],[10]. In other cases, multi-objective 
optimization is performed to find a solution that takes into 
consideration both reliability and economic cost criteria [8]. A 
bi-objective maintenance schedule model is implemented in [11], 
[12] for substations in electrical railway systems and energy hub 
while in [13], a bi-objective scheduling of a micro-grid 
consisting of tidal resources and storage devices is studied. Often 
when multi-objective optimization is employed, the solution will 
be a trade-off of the objectives under consideration [8],[14]. 
The GMS model is formulated mathematically as a highly 
constrained combinatorial optimization problem. It is therefore 
obligatory to implement a suitable optimization tool to determine 
the best feasible maintenance schedule. Various solution 
methodologies are used for optimization. These include 
mathematical methods which are mainly based on Integer 
Programming, Dynamic Programming, Benders Decomposition 
and Branch and Bound techniques [15].Some modern exact 
software suites capable of solving mathematical programs 
generally use the branch and bound method [7]. Because of the 
large combinatorial nature of the GMS problem, exact solution 
approaches fall short in terms of reasonable computational time 
[9],[16]. Thus, there is growing attention in the development of 
approximate solution methodologies such as heuristic and meta-
heuristic techniques [17]. Unlike mathematical methods, 
metaheuristics can obtain an optimal solution to a complex 

problem fast and are not subjected to limitations such as 
linearity, continuity, differentiability and convexity that are faced 
by mathematical programs [18]. 
The application of new metaheuristic techniques to solve the 
GMS problem is still being investigated. As the number of 
generating units increases in power system networks, the 
complexity of the GMS problem grows. It becomes imperative to 
find solution methods that can solve and give a feasible 
maintenance schedule. Traditional methods of maintenance 
scheduling often recommend frequent unnecessary maintenance 
routines which are costly otherwise there will be increased risk of 
failures [19]. In [20], a discrete integer cuckoo search 
optimization algorithm is proposed to solve the GMS problem. 
Existing metaheuristic algorithms are also being modified to 
improve their solving capabilities. A Modified Genetic 
Algorithm is utilized in [21] to solve a bi-objective optimization 
problem.  
The objective of this research is to develop a robust GMS model 
that is formulated using three objectives, namely, reliability, 
economic cost and risk of expectation (of a generating unit 
breaking down before it is put on maintenance). The research 
aims to model the GMS problem in a comprehensive manner 
where several objectives are optimized concurrently. Minimizing 
the three objectives at the same time makes the solution reliable 
and robust in that the reliability criteria ensures that the system as 
a whole is able to meet load requirements by leveling the reserve 
over the maintenance horizon, the economic criteria ensures 
minimum cost in conducting maintenance and power system 
operation and the risk of failure objective seeks to ensure that 
each unit does not breakdown before its scheduled maintenance 
slot. It reduces the risk of having to change the schedule in the 
case where a generator fails before it reaches its maintenance 
time.  
The research also explores the use of the mathematical modeling 
package, AIMMS (Advanced Interactive Multidimensional 
Modeling System), in solving the GMS problem and validates 
the results with those of a relatively new metaheuristic search 
algorithm, EMA. To the authors’ knowledge, there is no 
literature where the tri-objective GMS problem is solved. In [6] 
and [22], single objective optimization based on the economic 
cost and reliability criterion respectively is used to solve for an 
optimal GMS. Bi-objective GMS is implemented in [8] to find a 
trade-off solution between energy production cost and levelling 
the reserve margin (reliability). The author is also not aware of 
any record of the GMS problem being solved using the solution 
methods employed in this paper. Reference [4] uses a modified 
ABC algorithm to solve the GMS problem while in [6] modified 
Particle Swarm Optimization is used. In [23], a proposal is put 
forward to compute the bi-objective GMS using simulated 
annealing (SA). In this study, the tri-objective GMS problem is 
solved. This research will contribute to the field of generator 
maintenance scheduling modelling and solution techniques in the 
following ways: 

1. Modelling and solving a tri-objective GMS problem 
resulting in an optimal solution that minimizes disruptions 
to the maintenance schedule due to breakdowns. 
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2. Showing the effectiveness of EMA and AIMMS in 
solving GMS problems of different complexity. 

3. Evaluation of the maintenance schedule obtained by each 
optimization criterion independently and the effect of each 
individual objective criterion on the value of the others 
and on the overall tri-objective function value. 

The outline of the rest of this paper is as follows. Section 2 gives 
the formulation of the GMS model and describes the objective 
functions and constraints. In section 3, the solution techniques 
used to solve the GMS problem are detailed. Section 4 discusses 
the simulation results of EMA and AIMMS on a common test 
case found in literature and the results of the tri-objective model 
of a real-life case study. Section 5 is the conclusion.    
 
II. FORMULATION OF THE GMS MODEL  
GMS problems typically consider a generator, i, in a power 
system with a total of I generating units. The maintenance must 
be done within a planning horizon of T periods. The planning 
horizon can vary in length. Each period, t, can be an hour, a day 
or a week. Maintenance on each generator must be done for a 
duration of Ni time periods (maintenance duration of each 
generator) without interruption. For each period, t, each 
generator that is not on maintenance must generate an output 
power of gi,t, and the total generation for that period must meet 
the demand, Dt and a safety margin St. The generators cannot, 
however, exceed their generation capacity, Gmaxi. 
 
A.  OBJECTIVE FUNCTIONS  
Objective functions are the performance indicators against which 
an optimization problem is solved [6].  Depending on the 
objective function, the goal can be either to minimize or 
maximize it. The most common objective functions considered in 
literature are the reliability and economic cost [4]. The desired 
outcome is a high system reliability and low operation and 
maintenance cost. 
 
1) RELIABILITY  
The reliability criterion aims to ensure that the power system is 
always able to meet demand regardless of load variations. In 
order to achieve this, the utility generally provides a spinning 
reserve by generating more power than demanded which 
improves system reliability at the expense of operation cost [24]. 
The reliability criterion has been defined in a number of different 
ways which include loss of load probability (LOLP) expected 
energy not supplied (EENS) and sum of squared reserves (SSR) 
[9]. 
The most common reliability criterion used is the sum of squared 
reserves [25]. The objective is to level the reserve over the 
planning period. The leveling of the reserve power enhances the 
reliable operation of the power system over the planning horizon 
enabling it to meet unexpected variations in load [20]. This is 
achieved by minimizing the sum of squared reserves. This 
approach is used in [9],[10],[20]. The objective function is 
formulated as follows: 
 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑚𝑚𝑖𝑖,𝑡𝑡

�∑ �∑ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ,𝑡𝑡 −∑ ∑ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ,𝑡𝑡× 𝑚𝑚𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑡𝑡𝑇𝑇
𝑡𝑡=1

𝐼𝐼
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 �2𝑇𝑇

𝑡𝑡=1 � (1) 

 
2) ECONOMIC COST  
Economic cost objective is concerned with minimizing the costs 
involved in the operation of a power plant. In the model 
developed in [6], these costs comprise of cost of maintenance, 
start-up and power generation. The cost of generation is 
sometimes taken as the fuel cost since fuel is the most significant 
cost associated with power generation [8]. As modern power 
systems are becoming decentralized, some recent literature has 
seen the economic criteria shifting from minimizing of 
operational costs to maximization of profits [26], [27]. In [28], 
various cost components that affect maintenance activities in 
deregulated power markets are modelled. These include costs 
due to failures, interruptions of maintenance, contractual 
compensation (having to buy power from other supplies in order 
to meet contractual obligations), rescheduling of maintenance 
and market opportunity [28]. The objective function for 
minimizing the operational cost, consisting of maintenance cost, 
start-up cost and cost of generation, over the planning horizon is 
given by:     
 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑚𝑚𝑖𝑖,𝑡𝑡𝑦𝑦𝑖𝑖,𝑡𝑡

�∑ ∑ 𝑐𝑐𝑚𝑚𝑖𝑖
𝑇𝑇
𝑡𝑡=1 × 𝑚𝑚𝑖𝑖,𝑡𝑡 + ∑ ∑ �𝑠𝑠 × 𝑦𝑦𝑖𝑖,𝑡𝑡 + 𝑓𝑓𝑖𝑖�𝐺𝐺𝑖𝑖,𝑡𝑡��𝑇𝑇

𝑡𝑡=1
𝐼𝐼
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 �(2) 

 
In some literature, the cost is taken as only the fuel cost, 𝑓𝑓𝑖𝑖(𝐺𝐺𝑖𝑖,𝑡𝑡), 
which is given in (3) [29]. This is because the fuel cost is the 
most dominant cost in the operation of a generator. 
 
𝑚𝑚𝑖𝑖𝑛𝑛
𝐺𝐺𝑖𝑖,𝑡𝑡

�𝑓𝑓𝑖𝑖�𝐺𝐺𝑖𝑖,𝑡𝑡�� = 𝑚𝑚𝑖𝑖𝑛𝑛
𝐺𝐺𝑖𝑖,𝑡𝑡

�∑ ∑ 𝑚𝑚𝑖𝑖 + 𝑏𝑏𝑖𝑖 × 𝐺𝐺𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝑖𝑖 × 𝐺𝐺𝑖𝑖,𝑡𝑡2𝑇𝑇
𝑡𝑡=1

𝐼𝐼
𝑖𝑖=1 �    (3) 

 
3) RISK OF FAILURE  
As generators are in operation, there is a gradual wear and tear 
that occurs. The degree of wear and tear depends on the age of 
the generating unit and on the time that has elapsed since its last 
refurbishment or repair. The risk of failure criterion aims to 
minimize the probability that a generating unit fails before its 
scheduled maintenance period. Failure of generating units can be 
estimated using methods from the reliability theory [25]. The 
objective will be to maximize the probability that a failure occurs 
at least t time units from the present time i.e. maximize the 
reliability given by: 
 
𝑅𝑅(𝑖𝑖) = 𝑖𝑖−𝜆𝜆𝑡𝑡 ′                      (4) 
 
To turn it into a minimization problem, the objective function is 
changed to: 
 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑡𝑡 ′
�1 − 𝑅𝑅(𝑖𝑖) = 1 − 𝑖𝑖−𝜆𝜆𝑡𝑡 ′�                                                       (5) 

 
This is to minimize the probability that a unit will fail before t 
time units. 
 
4) TRI-OBJECTIVE FUNCTION  
The combined objective function is formulated as a sum of the 
reliability, cost and risk of failure functions, (1), (2) and (5). The 
desired result is a set of solutions close to the true pareto-optimal 
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front. A challenge is introduced by the fact that the target space 
has more than one dimension. This is addressed by using the 
weighted sum method which scalarizes a set of objectives by pre-
multiplying each objective with a user supplied weight [30]. 
Since different objective functions can have different 
magnitudes, normalization of the objective functions is required 
to get a pareto optimal solution consistent with the assigned 
weights [31].This leads to a multi-objective constrained 
optimization problem of the form: 
 
𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠𝑖𝑖 ∑ 𝑢𝑢𝑖𝑖 × 𝜃𝜃𝑖𝑖 × 𝑓𝑓𝑖𝑖(𝑚𝑚)𝑖𝑖                   (6) 
s.t               𝑚𝑚 ∈ 𝛺𝛺 
Where 𝑢𝑢𝑖𝑖 is the weight of the i-th objective, 𝜃𝜃𝑖𝑖 is the 
normalization factor, 𝑓𝑓𝑖𝑖 is the i-th objective and 𝛺𝛺 is the set of 
constraints. The sum of the weighting factors should be 1. 
For this study, all the objectives are equally weighted by a 
weighting factor of 0.33. Different weighting factors can be 
assigned to objective functions in proportion to their relative 
importance. The objective function with the highest weighting 
factor will be minimized more at the expense of the other 
objective functions. A normalization factor is applied that puts all 
objective functions in the same order of magnitude to give the 
following tri-objective function. The objective function 
(Equation (7)) is a Mixed Integer Non-Linear Programming 
(MINLP) problem minimized over the planning period of one 
year which is discretized into 365 days. 
 
𝑚𝑚𝑖𝑖𝑛𝑛

𝑚𝑚𝑖𝑖,𝑡𝑡,𝑦𝑦𝑖𝑖,𝑡𝑡,𝐺𝐺𝑖𝑖,𝑡𝑡′
�1
3

× 𝜃𝜃1 ×

�∑ �∑ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖,𝑡𝑡 −∑ ∑ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖,𝑡𝑡× 𝑚𝑚𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑡𝑡𝑇𝑇
𝑡𝑡=1

𝐼𝐼
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 �2𝑇𝑇

𝑡𝑡=1 �� + 1
3

×

𝜃𝜃2 × �∑ ∑ 𝑐𝑐𝑚𝑚𝑖𝑖
𝑇𝑇
𝑡𝑡=1 × 𝑚𝑚𝑖𝑖,𝑡𝑡 + ∑ ∑ �𝑠𝑠 × 𝑦𝑦𝑖𝑖,𝑡𝑡 + 𝑓𝑓𝑖𝑖�𝐺𝐺𝑖𝑖,𝑡𝑡��𝑇𝑇

𝑡𝑡=1
𝐼𝐼
𝑖𝑖=1

𝐼𝐼
𝑖𝑖=1 � +

1
3

× 𝜃𝜃3 × ��1 − 𝑖𝑖−𝜆𝜆𝑡𝑡 ′��                                                               (7) 
 
 
5)  CONSTRAINTS  
A GMS that is developed must be able to satisfy specified 
constraints. These constraints ensure that the operational 
requirements of the power system are met and that it is feasible 
to conduct the maintenance of generating units at the allocated 
time periods. Several constraints are defined. 
 
Maintenance Window Constraint: 
 
∑ 𝑦𝑦𝑖𝑖,𝑤𝑤 = 1𝑤𝑤∈𝑊𝑊𝑖𝑖 : i Є I, {w Є Wi: ei ≤ w ≤ li}                             (8) 
                                                                                                                                            
Maintenance duration constraint: 
 
∑ 𝑚𝑚𝑖𝑖,𝑡𝑡 = 𝑑𝑑𝑖𝑖𝑡𝑡∈𝑇𝑇                            (9) 
and for uninterrupted maintenance: 
𝑚𝑚𝑖𝑖,𝑡𝑡 − 𝑚𝑚𝑖𝑖,𝑡𝑡−1 ≤  𝑦𝑦𝑖𝑖,𝑡𝑡                                                                                      (10) 
   
Load and minimum reserve constraint: 

∑ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 ,𝑡𝑡 −∑ ∑ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖,𝑡𝑡× 𝑚𝑚𝑖𝑖,𝑡𝑡 ≥ 𝐷𝐷𝑡𝑡 + 𝑅𝑅𝑡𝑡𝑡𝑡∈𝑇𝑇𝑖𝑖∈𝐼𝐼𝑖𝑖∈𝐼𝐼              (11) 

Risk of failure constraint: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 < 𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚                     (12) 

Generator output constraint: 

𝐺𝐺𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 ≤ 𝐺𝐺𝑖𝑖,𝑡𝑡 ≤ 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖                     (13) 

Crew constraint: 

∑ 𝑞𝑞𝑖𝑖,𝑡𝑡 × 𝑚𝑚𝑖𝑖,𝑡𝑡 ≤ 𝑄𝑄𝑡𝑡𝑖𝑖∈𝐼𝐼                  (14) 
The maintenance window constraint specifies the time interval 
during which the maintenance of a generating unit should take 
place. It is defined using the earliest and latest generator 
maintenance start times. The maintenance duration constraint 
sets the specific amount of time that a generating unit should be 
undergoing maintenance. Each maintenance instance must be 
carried over a continuous period without interruption. At any 
particular time, the available generation capacity should ensure a 
secure reserve capacity. This is enforced by the load and 
minimum reserve constraint. If there is a conflict between unit 
maintenance and minimum reserve, the system cannot operate in 
a secure and reliable way therefore the schedule will need to be 
rearranged. The generator output constraint limits the maximum 
output of a generator to its capacity. The crew constraint limits 
the number of units that can be put on maintenance at the same 
time based on the maintenance crew requirement of each 
generating unit. The maximum probability that a generating unit 
will fail before maintenance is defined by the risk of failure 
constraint. Any probability above the maximum will not be 
allowed. 
 
III.     SOLUTION METHODOLOGY  
The GMS problem is solved using the exact solution method, 
AIMMS, and the metaheuristic algorithm, EMA. 
 
A.  AIMMS IMPLEMENTATION  
AIMMS provides modelling and optimization capabilities across 
a wide variety of industries. It incorporates top class solvers for 
linear, mixed integer and non-linear programming such as 
Gurobi, Conopt, Baron, CPLEX etc. The formulation of 
optimization problems is done through declaration of language 
elements such sets and indices, scalar and multidimensional 
parameters, variables and constraints which allow for a concise 
description of most mathematical optimization problems [32]. 
Two major sets are defined in this model, the set of generators 
and the set of time periods. There are also subsets of the 
generator set which contain generators that cannot go on 
maintenance at the same time (exclusion sets). The generator and 
demand data are modelled as parameters and the constraints are 
defined explicitly in AIMMS. The objective function is defined 
as a variable and set as the Mathematical Program to be 
optimized. The model is then executed and gives the results. 
 
B.  EMA IMPLEMENTATION  
EMA is one of the most recent optimization algorithms [33]. In 
the same fashion as other metaheuristic algorithms like PSO [34], 
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ACO [35], FA [36] etc., it is population based. It is suitable for 
solving continuous non-linear optimization problems which are 
so common. The algorithm is inspired by the trading of shares on 
the stock market. In a stock market, each broker buys and sells 
shares, taking a certain level of risk, in order to increase their 
share portfolio. 
In EMA, each individual in the exchange market is a solution to 
the problem represented by the variable pop. The individuals 
compete to have the best share value and be ranked at the top. 
There are two different modes of the EMA which emulate how 
certain conditions in real world affect the stock market. The first 
mode is the balanced or non-oscillating mode. In the balanced 
mode, individuals in the lower ranks try to use the experience of 
the high ranked shareholders in order to improve their share 
value and be recruited into the elite class. The second mode is the 
oscillating mode in which the market is unstable and individuals 
tend to take calculated risks by identifying other shares that can 
improve their overall ranking. The algorithm goes through the 
two modes during each iteration. Due to the fact that EMA uses 
two efficient search and absorbing operators, it can overcome the 
limitations that are faced by other algorithms [37]. The solution 
in EMA is a vector of maintenance start time periods for all the 
generators in the power system. After each iteration, the 
members are sorted according to fitness. Members with the best 
solution are put in first group which consists of 10%-30% of the 
population, medium fitness members go into second group and 
are 20%-50% of the population and the third group which is also 
20%-50% of the population is made up of weak fitness members. 
For each iteration, members of the first group do not change their 
shares. 
 
1) NON-OSCILLATING MODE  
In the non-oscillating mode, individuals in the second and third 
group use the experiences of the individuals in the first group to 
enhance their rank standing. This mode seeks to find better 
solutions by searching within the proximity of the existing 
optimal solutions. The equations that define share trading of the 
second and third group members in the non-oscillating mode are 
as follows [37]: 
 
Individuals with intermediate fitness: 
𝑝𝑝𝑅𝑅𝑝𝑝𝑖𝑖

𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(2) = 𝑖𝑖 × 𝑝𝑝𝑅𝑅𝑝𝑝1,𝑖𝑖
𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(1) + (1 − 𝑖𝑖) × 𝑝𝑝𝑅𝑅𝑝𝑝2,𝑖𝑖

𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(1)         
(15) 

Where 𝑝𝑝𝑅𝑅𝑝𝑝𝑗𝑗
𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(2) is the new value of the jth member of the 

second group, which in this instance is an array of maintenance 
start times, r is a random number between 0 and 1, 𝑝𝑝𝑅𝑅𝑝𝑝1,𝑖𝑖

𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(1) 
and 𝑝𝑝𝑅𝑅𝑝𝑝2,𝑖𝑖

𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(1) are members of the first group. 
 
Individuals with weak fitness: 
𝑝𝑝𝑅𝑅𝑝𝑝𝑘𝑘

𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(3),𝑛𝑛𝑛𝑛𝑤𝑤 = 𝑝𝑝𝑅𝑅𝑝𝑝𝑘𝑘
𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(3) + 0.8 × 𝑠𝑠𝑘𝑘              (16) 

 
where 𝑝𝑝𝑅𝑅𝑝𝑝𝑘𝑘

𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(3),𝑛𝑛𝑛𝑛𝑤𝑤 is the new value of the kth member of the 
third group, 𝑠𝑠𝑘𝑘 is the share variation given by: 
 

𝑠𝑠𝑘𝑘 = 2 × 𝑖𝑖1 × �𝑝𝑝𝑅𝑅𝑝𝑝𝑖𝑖,1
𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(1) − 𝑝𝑝𝑅𝑅𝑝𝑝𝑘𝑘

𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(3)� + 2 × 𝑖𝑖2 ×

�𝑝𝑝𝑅𝑅𝑝𝑝𝑖𝑖,2
𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(1) − 𝑝𝑝𝑅𝑅𝑝𝑝𝑘𝑘

𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(3)�𝑠𝑠𝑘𝑘 = 2 × 𝑖𝑖1 × �𝑝𝑝𝑅𝑅𝑝𝑝𝑖𝑖,1
𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(1) −

𝑝𝑝𝑅𝑅𝑝𝑝𝑘𝑘
𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(3)� + 2 × 𝑖𝑖2 × �𝑝𝑝𝑅𝑅𝑝𝑝𝑖𝑖,2

𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(1) − 𝑝𝑝𝑅𝑅𝑝𝑝𝑘𝑘
𝑔𝑔𝑔𝑔𝑝𝑝𝑔𝑔𝑝𝑝(3)�         (17) 

   
Where 𝑖𝑖1and 𝑖𝑖2 are random numbers between 0 and 1. 
 
2) OSCILLATING MODE 
After the non-oscillating mode, the individuals are ranked 
according to fitness and the market changes to oscillating mode 
during each iteration of the algorithm. In oscillating mode, the 
individuals of the second and third group perform risks based on 
their rank position in order to improve their fitness. In this mode, 
the algorithm searches for optimal solutions in a wider search 
space. In this way, unknown points are evaluated thereby 
minimizing getting stuck in a local optimum. The individuals in 
the second and third group change their shares according to the 
following equations: 
 
Individuals with intermediate fitness: Initially, shares of the 
individuals increase according to the equation: 
 
𝛥𝛥𝑛𝑛𝑡𝑡1 = 𝑛𝑛𝑡𝑡1 − 𝛿𝛿 + (2 × 𝑖𝑖 × 𝜇𝜇 × 𝜂𝜂1)                                         (18) 
𝜇𝜇 = 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝

𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝
                                                                                    (19) 

𝑛𝑛𝑡𝑡1 = ∑ �𝑆𝑆𝑡𝑡𝑦𝑦�𝑛𝑛
𝑦𝑦=1                                     (20) 

𝜂𝜂1 = 𝑛𝑛𝑡𝑡1 × 𝑔𝑔1                 (21) 

k
iter

gg
gg k ×

−
×=

max

min,1max,1
max,11               (22 

where ∆𝑛𝑛𝑡𝑡1 is the number of shares to be added, 𝑛𝑛𝑡𝑡1 is total 
shares of the tth member before change, 𝑆𝑆𝑡𝑡𝑦𝑦 is the shares of the 
tth member, 𝛿𝛿 is the market information, 𝑖𝑖 is a random number 
between 0 and 1, 𝜂𝜂1 is risk level associated with each member of 
the group 2, 𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 is the number of the tth member, 𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝 is the 
number of members in the exchange market which is the 
population size, 𝜇𝜇 is a constant co-efficient for each member, 
𝑔𝑔1is a common market risk, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  is the total number of 
iterations, 𝑘𝑘 is iteration number, 𝑔𝑔1,𝑚𝑚𝑚𝑚𝑚𝑚and 𝑔𝑔1,𝑚𝑚𝑖𝑖𝑛𝑛 are the 
maximum and minimum values of the risk in the market 
respectively. Each individual will also have to reduce their shares 
by the following value, ∆𝑛𝑛𝑡𝑡2,  so that the sum of shares remains 
constant: 
 
∆𝑛𝑛𝑡𝑡2 = 𝑛𝑛𝑡𝑡2 −  𝛿𝛿         (23) 
 
where 𝑛𝑛𝑡𝑡2is the share amount of the tth member after share 
changes. Individuals with weak fitness: Individuals change share 
values by adding the following amount: 
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Each individual will also have to reduce their shares by the 
following value, ∆𝑛𝑛𝑡𝑡2,  so that the sum of shares remains 
constant: 
 
∆𝑛𝑛𝑡𝑡2 = 𝑛𝑛𝑡𝑡2 −  𝛿𝛿         (23) 
where 𝑛𝑛𝑡𝑡2is the share amount of the tth member after share 
changes. Individuals with weak fitness: Individuals change 
share values by adding the following amount: 
𝛥𝛥𝑛𝑛𝑡𝑡3 = 4 × 𝑖𝑖𝑠𝑠 × 𝜇𝜇 × 𝑛𝑛2                                                    (24) 
𝑖𝑖𝑠𝑠 = 0.5 − 𝑖𝑖𝑚𝑚𝑛𝑛𝑑𝑑          (25) 
𝜂𝜂2 = 𝑛𝑛𝑡𝑡1 × 𝑔𝑔2         (26) 

k
iter

gg
gg k ×

−
×=

max

min,2max,2
max,22                    (27) 

where ∆𝑛𝑛𝑡𝑡3 is the change in shares to be applied to the 
shares of each member in the third group, 𝑖𝑖𝑠𝑠 is a random 
number between -0.5 and 0.5, 𝜇𝜇 is a constant co-efficient for 
each member,𝜂𝜂2 is the risk associated with each member of 
the group and 𝑔𝑔2is the variable risk co-efficient. 
All these variables are used in randomly and intelligently 
changing the values of the maintenance start times in order 
to end up with the best maintenance schedule. Figure 1 
shows the flow chart for EMA. The parameters for this 
EMA implementation are given in Table 1. 
 
TABLE 1. EMA PARAMETERS. 

 
Parameter Value 

Population size 50 

Number of variables (dimension) 157 

Maximum number of iterations 10 000 

[g1min       g1max]  [0.01   0.005]  

[g2min       g2max]  [0.05   0.01]  

 
3) CONSTRAINT HANDLING  
Unlike in AIMMS where the constraints of the optimization 
problem are explicitly defined in the modelling language, 
metaheuristic methods are generally suited for 
unconstrained problems. The most common method of 
handling constraints in metaheuristic algorithms is the 
penalty function [38]. The penalty function is used for 
handling constraints and only solutions with no penalty 
violation are accepted. With the penalty function added, 
Equation 6 becomes: 
 
𝑀𝑀𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑠𝑠𝑖𝑖 ∑ 𝑢𝑢𝑖𝑖 × 𝜃𝜃𝑖𝑖 × 𝑓𝑓𝑖𝑖(𝑚𝑚)𝑖𝑖 + 𝐶𝐶𝑅𝑅𝑛𝑛𝑠𝑠𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 𝑉𝑉𝑖𝑖𝑅𝑅𝑉𝑉𝑚𝑚𝑖𝑖𝑖𝑖𝑅𝑅𝑛𝑛  (28)        
 
In EMA. each constraint equation is evaluated to determine 
if there is a violation at each iteration. If there is a violation, 
the equation gives a non-zero value and that value is 
amplified by a large number carefully chosen such that 
when the solutions are ranked according to best fit, the 

solutions with constraint violation are not selected among 
the best. 
 

 
 
FIGURE 1. EMA Flow Chart.  
 
 
III. TEST CASE STUDIES AND RESULTS  

 
A.  GENERATOR SYSTEM CASE STUDY  
The two solution methods are first applied on a common 
GMS problem that is used in [22],[39]. This case study 
consists of 21 Generator systems. The aim in this case study 
is to maximize the system reliability by minimizing the sum 
of squared reserves as depicted in (1). Table 2 shows the 
start times obtained using AIMMS, EMA and results 
obtained in [22] using Ant Lion Optimizer (ALO) and [39] 
using Modified Discrete Particle Optimization (MDPSO).   
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The corresponding objective function values which 
represent the SSR are given in Figure 2. 
Figure 2 shows that EMA and AIMMS give a lower 
objective function value than the solutions presented in the 
referenced literature. Of the two, AIMMS gives a minimum 
SSR of 13 286 403 while EMA gives 13 287 043. AIMMS 
therefore gives the better maintenance schedule in the least 
amount of time, < 65 seconds, compared to EMA’s 82 
seconds. The typical convergence curves of MDPSO and 
MS-MDPSO (a variant of MDPSO) are shown in Figure 3 
and the typical convergence curve of EMA is shown in 
Figure 4. These convergence curves are for the same GMS 
problem and the number of iterations is 100. The results 
show that the objective function converged to 13 863 021 
and 13 749 264 for MDPSO and MS-MDPSO respectively 
and 13 442 439 for EMA. This indicates that EMA 
converges to a better solution faster than MDPSO and MS-
MDPSO. 
 

TABLE 2. START TIMES OBTAINED BY DIFFERENT SOLUTION METHODS.  
 

Generator Unit (MDPSO)[39] (ALO)[22] EMA AIMMS 

1 17 19 9 14 
2 2 17 1 12 
3 1 4 26 13 

4 24 14 3 21 
5 14 1 6 24 

6 4 4 16 1 
7 8 8 23 8 

8 13 7 20 1 
9 5 5 21 2 

10 9 2 16 4 

11 12 17 17 4 
12 1 12 1 11 

13 5 7 20 1 
14 38 40 48 27 
15 44 35 36 40 

16 28 45 27 45 
17 21 27 45 33 

18 52 43 34 51 
19 34 44 34 51 

20 27 29 33 32 
21 49 31 41 36 

 
There are no constraint violations for the obtained solutions 
as depicted in the Figures 5 and 6 which show the available 
generation capacity and the crew required over the 
maintenance window. 
 
 
 
 

 
FIGURE 2. Comparison of objective function values. 
 

FIGURE 3.  Convergence Curves for MDPSO and MS-MDPSO [39]. 
 

 
FIGURE 4.  Convergence Curve for EMA. 
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FIGURE 5.  Crew required.  
 

 
FIGURE 6.  Available capacity.  
 

 
B. GENERATOR UNIT ESKOM CASE STUDY  
 
The solution methods, AIMMS and EMA, are then applied 
to the Eskom case study given in [40] to solve a tri-objective 
GMS model. Eskom is the sole electricity utility in South 
Africa. The system consists of 105 generating units, 
however, because some units require more than one 
maintenance instances, dummy units are added for the 
additional maintenance instances. This is because the 
solution methods require one maintenance period per 
generator for easy implementation. Due to confidentiality 
concerns, the data used is not the exact parameters in the 
field [40]. 
The individual criteria are solved independently at first. 
Figures 7 and 8 show the objective function values obtained 
when each criterion is optimized on its own. The objective 
function is the sum of the weighted objectives, SSR, the 
total cost and the probability that a unit will not reach its 
maintenance period before failure.7 

 
 
FIGURE 7.  Comparison of individual criterion objective functions – 
EMA. 

8 
FIGURE 8.  Comparison of individual criterion objective functions – 
AIMMS 
 
As can be seen from the Figures 7 and 8, the reliability 
criterion gave the lowest overall objective function, 
followed by the cost and lastly the risk of failure. The 
reliability criterion therefore gives the best maintenance 
schedule in terms of minimizing the objective function. The 
schedule obtained by the risk of failure objective function 
puts generating units off for maintenance at the earliest time 
possible, regardless of cost or reliability implications. This 
result was observed when solving with both EMA and 
AIMMS which shows solution consistency. Individual 
simulations showed that each variable (SSR, Cost, Risk of 
Failure) attained its minimum value when it is being 
optimized independently. This is because the solution aims 
to minimize only the single objective without considering 
the impact on the values of the other objectives. All 
solutions met the stipulated constraints of the problem. 
For the Eskom case study, the running time to reach a 
solution was longer for AIMMS than EMA. The Eskom 
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case study has more generators than the 21-generator unit 
case study and the planning horizon is discretized into days 
rather than weeks which makes it more complex. Because of 
the increase in number of variables, AIMMS takes much 
longer to solve the problem, which is a setback of exact 
solution methods, compared to EMA. AIMMS took 8028 
seconds to reach best solution while EMA took 1647 
seconds at most. 
The reliability criterion was solved independently in [40]. 
The solution obtained using EMA and the solutions in 
literature are compared in the Table 3. 
 
TABLE 3. COMPARISON OF EMA RESULT WITH LITERATURE RESULT. 

  EMA Literature [40] 
SSR 1.349E+10 1.355E+10 

 
The SSR obtained using EMA is lower than the one in 
literature which shows the superior solution search qualities 
of EMA. There is a 0.4% decrease in the SSR with EMA. 
 
1) TRI-OBJECTIVE GMS IMPLEMENTATION  
 
In the tri-objective model, the three objective functions are 
added together to form a combined objective function. Equal 
weighting factors of 0.33 are applied to the individual 
objective functions. The weighting factors are chosen in 
proportion to the relative importance of the objective 
function. In this study, the objective functions are 
considered equally important. A constraint violation is 
added to the equation so that solutions that do not fall within 
the system constraints are discarded. The constraint 
violation variable has a value of 0 for feasible solutions. The 
objective function is constructed in the following way: 

 
FIGURE 9.  EMA Comparison. 
 

𝑀𝑀𝑖𝑖𝑛𝑛 �1
3

× 𝐸𝐸𝑞𝑞(1) + 1
3

× 𝐸𝐸𝑞𝑞(3) + 1
3

× 𝐸𝐸𝑞𝑞(5) +

𝐶𝐶𝑅𝑅𝑛𝑛𝑠𝑠𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖 𝑉𝑉𝑖𝑖𝑅𝑅𝑉𝑉𝑚𝑚𝑖𝑖𝑖𝑖𝑅𝑅𝑛𝑛𝑠𝑠�                                                  (29) 
The constraint violations are only included in the EMA 
solution method. Figures 9 and 10 show how the objective 
function values, obtained using both AIMMS and EMA, of 
the single objective function optimization and tri-objective 
optimization compare. 
 
 

 
 
FIGURE 10.  AIMMS Comparison. 

 
TABLE 4. COMPARISON OF OBJECTIVE FUNCTIONS USING AIMMS AND 

EMA. 
  Reliability RoF Cost Tri-objective 

AIMMS 2,162E+10 2,169E+10 2,181E+10 2,159E+10 

EMA 2,161E+10 2,169E+10 2,162E+10 2,152E+10 

 
From Figures 9 and 10 and Table 4, the results show that 
EMA obtains a lower objective function that AIMMS for the 
157-generator unit system.  
The solution obtained using tri-objective optimization is a 
trade-off of the single objective optimization solutions. The 
tri-objective optimization solution minimizes all three 
objectives concurrently and therefore finds the lowest 
objective function value. In the EMA and AIMMS solution, 
the objective function value is the lowest. Although the 
values are different for the two solution methods, the tri-
objective solution remains the best. This solution ensures 
system reliability in a cost-effective manner while also 
minimizing the probability of pre-mature failure of units. 
Table 5 shows the tri-objective solution obtained using 
EMA and AIMMS. 
 
TABLE 5. TRI-OBJECTIVE SOLUTION COMPARISON. 

  AIMMS EMA 
Objective Function value 2.159+10 2.152+10 
Execution time (s) 8028 1996 
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From Table 5, it can be seen that EMA provides a better 
solution and in less execution time than AIMMS showing 
the superior solving capabilities of EMA for large 
optimization problems. 

 
FIGURE 11.  Demand, minimum reserve and available capacity – EMA. 
 
Both solutions satisfied the system constraints. The 
available capacity, the demand and minimum reserve during 
each period based on the EMA solution are shown in Figure 
11. 
 
V. CONCLUSIONS  
This research investigated the development of a tri-objective 
GMS model, with the aim of minimizing the Sum of 
Squared Reserves, cost and risk of failure concurrently. The 
GMS problem has load, maintenance window, maintenance 

duration, crew and non-interruption of maintenance 
constraints.  It also explored the application of two solution 
methods, AIMMS and EMA to solve the GMS problem. A 
comparison of the performance of the two solution methods, 
AIMMS, an exact solution method, and EMA, a 
metaheuristic solution algorithm, on two case studies is also 
done. 
The EMA and AIMMS 21-unit test system models are 
compared with the solutions obtained in literature for 
minimizing the sum of squared reserves. The objective 
function values obtained by EMA and AIMMS are 
13 287 043 and 13 286 403 respectively compared to 
literature values of 13 685 127 and 13 675 000. AIMMS, 
however, gives a better maintenance schedule than EMA for 
the 21-unit test system. The tri-objective GMS problem of 
the Eskom case study consisting of 105 generating units is 
also solved using AIMMS and EMA. The tri-objective 
solution is a trade-off of the single objective optimization 
solutions and ensures high system reliability at minimized 
cost and low probability of generator units failing. The tri-
objective solution gives the lowest objective function value 
as it minimizes the individual objective functions 
simultaneously. The Eskom case study is more complex 
than the 21-unit test system and EMA gave a better result 
than AIMMS.EMA obtained an objective function value of 
2.152×1010 while AIMMS obtained an objective function 
value of 2.159x1010.  
This study can be extended in future to include renewable 
energy sources which are fast growing on the national grid. 
Further work can involve integrating the Generator 
Maintenance Scheduling Model with transmission network 
maintenance in order to have a holistic model of the entire 
power supply system. 
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