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ABSTRACT

A triangular processor array for computing a singular value decomposition
(SVD) of an m X n (m >n) matrix is proposed. A Jacobi-type algorithm is used
to first triangularize the given matrix and then diagonalize the resultant triangu-
lar form. The requirements are O(m) time and % n®+ O(n) processors.
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1. Introduction
Two important factorizations of a given real mXn (m>n) matrix A are its QR-

decomposition (QRD):

R

o off]. "
where the matrix @ (m X m) is orthogonal and R (n Xn) is upper triangular, and its singular
value decomposition (SVD):

A=ULVT, (1.2)
where the matrices U (m X m) and V (n X n) are orthogonal, and the matrix £ (m X n) is nonne-
gative diagonal. For details about these decompositions see Golub and Luk[10], Golub and Van
Loan|[11] and Dongarra et al.[7]. Recently, there has been much interest in their computation
using systolic arrays, partially due to the needs of real time signal processing ( Bromley and
Speiser[5] ). QR-arrays are presented in Ahmed, Delosme and Morf{1], Bojanczyk, Brent and
Kung[2], Gentleman and Kung[9], Heller and Ipsen|13], Johnsson[14], Luk[16] and Sameh|[19]; SVD
arrays in Brent and Luk[3], Brent, Luk and Van Loan|[4], Finn, Luk and Pottle[8], Heller and

Ipsen[12] and Schreiber[20].

The fastest SVD algorithm ( effectively linear time ) is the Jacobi procedure described in [4].
Jacobi-type methods are natural for matrix computations on processor arrays: they have been pro-
posed for the syr;lmetric eigenvalue decomposition by Brent and Luk[3], for the QR-decomposition
by Luk[16], and for the Schur decomposition by Stewart[21]. In addition, the methods used for
finding eigenvalues and singular values on the first parallel computer, the ILLIAC IV, were also of
‘the Jacobi type ( Luk[15] and Sameh[18] ). Unfortunately, Jacobi-SVD algorithms are applicable
only to square matrices. For a rectangular matrix A, an obvious strategy is to first compute its
QR-decomposition and then apply the SVD procedure to the resultant square matrix R. This
approach is particularly suitable for the case where m >>n ( cf. Chan[6] ). However, the inter-
facing of different arrays can be a serious problem. In fact, all but one ( viz. Luk[16] ) of the

afore-mentioned QR-arrays are different from the square processor array described in [4]
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The purpose of this paper is to develop new QRD and SVD algorithms that can be imple-
mented on one programmable ‘‘triangular’’ processor array. The QRD algorithm is presented in
§2 and the SVD algorithm in §3. A distinctive feature of the latter algorithm is that it preserves
the triangular structure of R. To compute an mXn SVD, our two algorithms require
% n%+ O(n) processors and O(m) time, which compare favorably with the serial requirement of
O (mn?) time. If singular vectors were desired, we could extend the ‘‘triangular” array to a “‘rec-
tangular’’ one that is composed of % mn+ O(m) processors. The required time remains O(m).

Section 4 contains a discussion and some numerical results.



2. A QRD Algorithm

In this section we propose a parallel algorithm for triangularizing an m X n matrix A. Our
algorithm is similar to that of Gentleman and Kung[9]. A major difference is that we perform
2X2 QRDs, whereas they annihilate individual elements. Our ‘‘triangular” processor array is

quite alike in overall structure to the “square” Schur decomposition array of Stewart[17,21].

The basic transformation for this ( and the next ) section is a plane rotation

cosf sind
1(6) = -sinf cosf (2.1)
It is chosen such that
wz P q
ot =)

If y=0 we choose =0, otherwise we use the formulas:

p=£’-Ectn0 s sin0=m , cosfd = psind .
y 1+ p

Our computational network consists of a ‘‘triangular’ array of % n?+ O(n) processors and
a triangular array of storage cells. Each cell ( denoted by § ) contains a 2X 1 matrix, and each
processor ( denoted by (p,g) ) is associated with a 2X 2 matrix contained in the two } cells at its
two upper corners. Exceptions are processors on the right boundary: they each associates with
only one cell. We refer to the stored 2n X 2n ‘‘Hessenberg” matrix as H. See Figures 1 and 2 for
illustrations of H and the network. Let us denote the ith row of A by T and define a
(2n-1)X 2n matrix Z by
Z=1((¢€1,€2," ", €3,1,0), (2.3)
where e, denotes the jth coordinate vector. Premultiplying H by Z will thus annihilate the last
row of H.
Our algorithm has two stages: the first when the matrix A is fed into into array, and the
second when the ‘“‘Hessenberg’’ matrix is triangularized. We define one time step as the amount
of time required by one processor row to do a QRD. The first stage lasts from step 1 to m, and

the second from step m+ 1 to m+ n—1. The matrix H is initialized to be zero. A typical step
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(say i, 1<i<m ) of the first stage starts with the ¢th row of A entering the array, pushing . ..
down each row of H by one position and evicting its last row ( consisting of all zeros ). Step ¢
ends with each processor row computing an appropriate QRD: the diagonal processor determining
J(6) and the others applying it. A typical step (say m+j,1<j<n-1) of the second stage
starts with each storage cell on rows j, - - - ,n passing its bottom element to its southern neigh-
bor. Consequently, each cell on row j contains only one element and is denoted as a X cell ( see
Figures 3 and 4 ). Step m+ j ends after processor rows j+ l,‘- -+ ,n complete the appropriate
QRDs. The computing network completes its task after m+ n-1 time steps. All cells have
become X cells, and they store the desired triangular matrix R. We may ‘‘rigorize”’ the procedure

as follows:

Algorithm QRD.
H + 0

fort: =1,2 ---,mdo
begin

aT
H [ZH] ;
Processors perform QRDs { last row of H become zero }
end;
forj =12 ---,n-1do
begin
Cells on rows 7, - - - ,n pass their bottom elements to their southern neighbors;
Cells on row j become X cells;
Processors on rows j+ 1, j+ 2, - - -, n perform QRDs

end;

Cells on row n eject their bottom elements and become X cells. 0O

To avoid the broadcast of rotation parameters, we need to stagger both data entries and
processor operations. The scheme, illustrated in Figures 5 and 6, is well known in the study of
parallel algorithms ( cf. [3,4,16,17,21] ). It should be clear why element a,,, ; is annihilated one
time step after element a,;. The reason for a two-step delay between the annihilations of @, 4,

and a,, is that, since 2X 2 QRDs are performed, the arrival of element g, ;,; must be awaited.
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‘The whole procedure ( without broadcast ) requires m+ 2n-2 time steps.

Computing @ is a difficult task. Except for Luk[16], it has not been written how this
orthogonal matrix may be explicitly determined. Since R results from applying the rotations to

A:

o4 = o).
the matrix QT is obtainable from applying the same rotations to the m X m identity matrix /.
Yet this may be undesirable due to the requirement of O (m?) processors. Instead, we may extend
our ‘“triangular’’ network to a “rectangular’’ one, so as to determine an n X m matrix QT satisfy-
‘ ing
A = @R

That is, Q, is composed of the leading m columns of Q. See Figure 7 for an illustration of this
“‘rectangular’’ array of % mn+ O(n) processors. Essentially, the matrix I,, enters the array in

exactly the same fashion as A, and rotations for A are also applied to I, . Hence

but the network accumulates only the top n rows of @ T,
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FIG. 1. QRD computational network at time step t <m (n=>5).
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FIG. 2. Matriz H in network at time step t <m (n=>5).
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FIG. 3. QRD computational network at time step t=m+ 2 (n=>5).
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FIG. 4. Matriz ( becoming triangular ) in network at time step t=m+ 2 (n=5).
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FIG. 5. Data flow into the array (n=>5).

X X X X X
2 X X X X
3 5 X X X
4 6 8 X X
5 7 9 11 X
6 8 10 12 14
7 9 11 13 15

FIG. 6. Order of annihilations for a 7X5 matriz.
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} $ $ $ $
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FIG. 7. QRD computational network at time step t <m
( m=6, n=>5, QT is accumulated ).
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3. An SVD Algorithm

In this section we present an SVD algorithm for an n X n upper triangular matrix R. This
problem has been well studied in [4], where it is pointed out that one should merely reduce R to
diagonal form and not worry if all the diagonal elements were nonnegative and ordered. We
assume the same approach here. Our SVD algorithm has the distinction that it preserves the tri-

angular form of R, an advantage not shared by the algorithm in [4].

The basic problem again concerns a 2X 2 matrix. Plane rotations J(6) and K (#) are used to

diagonalize a given upper triangular matrix:

J(")’l'; z]K(¢)= [‘:',l :2 : (3.1)

The two-stage procedure recommended in [4] is adopted. First, find a rotation S(¥) that sym-

metrizes B:

wz P q :
T —
S(¥) [0 z] = [q r]' (3.2)
If z=0 we choose 1)=0, otherwise we compute -

vtz = ctny , siny = i‘ﬂfl , Cosy = p siny .

Vi+ pE

p=
Second, diagonalize the result:

d10]

ko[ P = o, (3)

Suppose ¢7#0 ( else choose ¢=x/2 ). It is well known that ¢ = tan¢ satisfies the quadratic equa-
tion
t2+ 2pt-1=0, (3.4)

where

p = ﬂEctn2¢.
29
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The two solutions to (3.4) are

t = —sign(p) [ |p]|+ V1+p*] , cosp = \/-l-ll——t_"’ , sing =t cos¢ (3.5)

and

i 1 .
t = b0 , cosp = , sing =t cos¢ . 3.6)
lo |+ V1+ P Vi+ 2 (

The angle ¢ associated with (3.5) is the larger of the two possibilities; it satisfies
7/4 < |#]| < n/2. We shall choose this larger angle because we want to perform ‘‘outer rota-
tions’’, recommended by Stewart[21] for his Schur decomposition array. If the given matrix were

diagonal ( z=0 ) then =0 and ¢=r/2, so that (3.1) becomes

B | P R Y
1 0oJlo 10T 0 w-
Finally, J(0) is given by

JO)T = K(#)TSsW)T,
ie., 8 = ¢ + ¥ . The general transformation is

T, : R «~ J,fR K, (3.7)
where J;; and K,; are rotations in the (i,j) plane chosen to annihilate the (i,7) and (j,i) ele-
ments of R. The pivot block will be restricted to contiguous diagonal elements, so as to preserve

the upper triangular structure of R. Defining

off(R)= Er,f,

1<y

we see that the transformation T, ,,, will produce a triangular matrix R satisfying

Off(R)'—' off(R)—rl?l-f-l .
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Our new algorithm is simply

Algorithm SVD.

do until convergence

begin -
fori=1,3--- (i odd)doR « JT 41 R K, 41;
fori =2,4,--- (ieven)doR ~ JT R K, 1,
end. 0O

By convergence we mean that the parameter off (R) has fallen below some prechosen tolerance.
However, it is difficult to monitor of f (R) in the settings of parallel computations. We propose
that iterations be stopped after a sufficiently large number, say ten, of sweeps ( cf. [4] and

Table 1). By one sweep we mean a group of n(n-1)/2 transformations.

Our Jacobi-SVD algorithm and related ‘‘triangular’”’ computational network are taken from
Stewart’s Jacobi-Schur algorithm and related ‘‘square’’ network[21] ( the ‘“‘lower triangular’’ part
of the network is discarded ). Each processor, denoted by (p,g), is associated with a 2X 2 matrix
stored in its four neighboring cells ( denoted by X ); the boundary processors are associated with
fewer than four nonzero elements. The network is illustrated in Figure 8, and the reader is
referred to [17,21] for details on the computing architecture, on the significance of “outer rota-
tions’’, and on the staggering of computﬁtions to avoid broadcasting. An important point is that
a sweep can be completed in O(n) time. Unlike Stewart’s algorithm, no example of nonconver-
gence is known of Algorithm SVD. Yet we must point out that computing the Schur decomposi-

tion is 2 much harder task than computing the SVD.

The n X n matrices Uz and Vg of singular vectors of R are easily computable ( if desired )
by accumulating the Jacobi rotations. We need to extend the ‘‘triangular’ processor array to the
“‘square’’ array of Stewart[21]. Both matrices are initialized to be the identity, and updated by

the formulae:

UR - UR Jl,l+l and VR Al VR Kl,l+l .
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With A = @,R and R = UrLVE , an SVD of A is given by

A= (QIUR)EV;{.
We may wish to determine the explicit product U, = @,Ug, which can be computed as follows:
U — JT U7,
with UJ initialized as Q7T. This computation can be performed on a ‘‘rectangular” array that is a
natural extension of the “square” one|[21]. See Figure 9 for an illustration and note the similarities
between the processor arrays in Figures 7 and 9. The “recténgular” network requires

% mn+ O(m) processors.
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(0,2) (0,4)

(1,3)

(2,2) (2,4)

(33)

(4,4)

FIG. 8. SVD computational network (n=y>5).

(0,2) (0,4)

(1.3)

(2,2) (2,4)

(33)

(4,2) (4,4)

(5:3)

FIG. 9. SVD computational network
( m=6, n=>5, UT and Vg are accumulated ).
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(4,6)
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4. Discussion

It is obvious from foregoing descriptions ( §§ 2, 3 and Figures 1, 3, 8 ) that Algorithms QRD
and SVD can both be implemented on one programmable ‘‘triangular’’ computational network.
Compared to previous SVD works, our network has the advantage that no complex array interfac-
ings are necessary, and its requirements of O(m) time and % n?+ O(n) processors are unsur-
passed. If singular vectors were desired, we would extend the network to a ‘‘rectangular” one
composed of % mn+ O(m) processors ( see §§ 2, 3 and Figures 7, 9 ). The required time remains
O(m). We know of no other network that can compute these vectors without using 0 (m? pro-

Cessors.

Algorithm SVD was programmed on a VAX-11/780 at Cornell University. Double floating
data types were used: each number was binary normalized, with an 8-bit signed exponent and a
57-bit signed fraction whose most significant bit was not represented. The machine precision was
thus given by

€~ 1.4x1077 .

Results of our experiments are presented in Table 1. The starting matrices R were n X n upper
triangular, and their elements were chosen from a uniform distribution in the interval (-1,1).- The—
algorithm convei’ged quadratically, confirming theoretical predictions, and only six or fewer

sweeps were required for n <20.

Acknowledgements. The author would like to thank W.M. Gentleman for a valuable sugges-

tion.
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Table 1. Off (R) After Each Sweep of Algorithm SVD.

Sweep
n
0 1 2 3 4 5

4 | 3.1e+ 00 | 4.4e-01 1.8e-03 | 5.5¢-09 <e

6 | 6.8e+00 | 1.6e-01 2.5e-04 | 7.2e-11 <e

8 | 1.6e+01 | 3.3¢e+00 | 7.6e-03 | 3.2e-08 <e
10 | 2.6e+01 | 4.3e+00 | 4.2¢e-01 | 1.1e-06 <e
12 | 3.5e+01 | 1.4¢e+ 00 | 9.3e-02 | 1.6e-03 | 3.5¢-10 <e
14 | 4.1e4+01 | 2.4¢e+ 00 | 8.5e-02 | 6.7e-04 | 4.6e-09 <ce
16 | 6.9e+01 | 1.6e+ 00 | 6.4e-02 | 3.5e-04 | 1.9e-09 <e
18 | 7.9e+01 | 7.3e+00 | 1.4e-01 | 3.2e-04 | 1.5e-08 <ce
20 | 1.0e+02 | 8.6e+00 | 5.2e-01 | 1.9e-02 | 2.2e-05 | 1.2e-11
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