A TRIANGULATION OF $\operatorname{GL}(n, F)$

ALEXANDRU TUPAN

Abstract

Let F be a non-Archimedian field. We prove that each open and compact subset of $\mathrm{GL}_{n}(F)$ can be decomposed into finitely many open, compact, and self-conjugate subsets. As a corollary, we obtain a short, elementary proof of a well-known theorem of I.M. Gelfand and D.A. Kazhdan.

1. Introduction

Notation. Throughout this paper, F will denote a non-archimedian local field. By $\nu, \mathcal{O}_{F}, \omega$, we denote the valuation, the ring of integers, and the uniformizer of F, respectively.

Let $K=\operatorname{GL}\left(n, \mathcal{O}_{F}\right)$ be the maximal compact subgroup of the general linear group $G=\operatorname{GL}(n, F)$. By $\operatorname{End}(n, F), \operatorname{End}\left(n, \mathcal{O}_{F}\right)$ we denote the set of $n \times n$ matrices with entries in F, \mathcal{O}_{F}, respectively.

The transpose of a matrix $a \in G$ is denoted by a^{\top}. Similarly, we denote by \mathcal{A}^{\top} the action of the transposing operator on a subset $\mathcal{A} \subset \operatorname{End}(n, F)$.

For a given representation π of G we let $\widetilde{\pi}$ denote its contragredient representation.

Definition 1. A set $\mathcal{A} \subset \operatorname{End}(n, F)$ is called self-conjugate under the transposing operator if there exists at least one element $x \in G$ such that $\mathcal{A}^{\top}=x \mathcal{A} x^{-1}$.

The goal of this paper is to prove the following triangulation theorem.
Theorem 1. Let $C \subset G$ be an open and compact set. There exist finitely many open and compact sets $C_{1}, \ldots, C_{s} \subset C$ such that

1) $C=\bigcup_{i=1}^{s} C_{i}$ and $C_{i} \cap C_{j}=\emptyset$ if $i \neq j$;
2) each C_{i} is self-conjugate under the transposing operator.

The theorem will be proved in the next section. As an application of Theorem 1 we shall give a new proof of the next classical result.
Theorem 2. Let π be an irreducible admissible representation of G. If $\widehat{\pi}$ is the representation given by $\widehat{\pi}(g)=\pi\left(g^{\top}\right)^{-1}$, then $\widetilde{\pi}$ and $\widehat{\pi}$ are isomorphic.

Theorem 2 goes back to Gelfand and Kazhdan. In fact, in [4, the more general case of a regular group G is discussed. Later, Bernstein and Zelevinsky gave a different proof for GL (n, F) (see [1, Ch. III, §7). A key tool for Gelfand and Kazhdan's arguments is a result concerning the existence of certain geometrical factor spaces for the action of an algebraic group on an algebraic variety (see Deligne's

[^0]Theorem 5.8.1 in [3], or Rosenlicht's theorem in [5]). Bernstein and Zelevinsky do not make use of this result, the core of their arguments being based on Gelfand and Kazhdan's theory of derivations of representations. A nice exposition of these ideas, together with a proof for the case of $\mathrm{GL}(2, F)$, can also be found in [2, pp. 433-451].

The proof we give for Theorem 2 is elementary and self-contained. It starts from the observation that if a compact open $\mathcal{A} \subset \mathrm{GL}(n, F)$ is self-conjugate under the transposing operator, then the operators $\pi\left(\operatorname{char}_{\mathcal{A}}\right)$ and $\pi\left(\operatorname{char}_{\mathcal{A}^{\top}}\right)$ have the same trace. Using this fact together with a standard argument (see §3), we show that Theorem 2 is a consequence of Theorem 1.

The organization of this paper is as follows. In $\S 2$ we introduce the necessary tools and give the proof of Theorem 1. In $\S 3$ we show how Theorem 1 implies Theorem 2. At the end of the same section we give a very simple proof of Theorem 2 , independent of Theorem 1, for the case $n=2$. This proof is based on the observation that in $\mathrm{GL}(2, F)$, a matrix and its transpose are in the same K-orbit with respect to the action by conjugation. The appendix contains a known algebraic result which is used in an essential way in $\S 2$.

2. Proofs of Results

The proof of Theorem 1 is organized along the following lines. In Lemma 1 we introduce a set of conditions under which one can describe a fundamental system of self-conjugate neighborhoods for a given element $a \in G$. In Lemmas 2 and 3 we show that these conditions can always be satisfied. The purpose of Lemma 4 is to show that one can partition $G=G^{0} \cup G^{1} \cup \ldots$, such that for each $i \geq 0$ and $a, b \in G^{i}$, the fundamental systems of self-conjugate neighborhoods for a, b, constructed via Lemmas 1,2 , and 3 , are translates of each other. This idea is then used to write any open and compact C as a union of self-conjugate, relatively disjoint parts.

Lemma 1. Let $\mathcal{A} \subset \operatorname{End}\left(n, \mathcal{O}_{F}\right)$ be a compact and open set for which $0 \in \mathcal{A}$, and let $a \in G$. If there exists an element $x \in G$ satisfying the conditions

$$
a^{\top}=x a x^{-1}, \quad \mathcal{A}^{\top}=x \mathcal{A} x^{-1}
$$

then the set $a\left(1+\omega^{\mu} \mathcal{A}\right)(\mu \geq 1)$, is a compact, open neighborhood of a in G which is self-conjugate under the transposing operator.

Proof. We only need to check that $a\left(1+\omega^{\mu} \mathcal{A}\right)$ is self-conjugate under the transposing operator. Indeed,

$$
\begin{array}{r}
\left(a\left(1+\omega^{\mu} \mathcal{A}\right)\right)^{\top}=\left(1+\omega^{\mu} \mathcal{A}\right)^{\top} a^{\top}=x\left(1+\omega^{\mu} \mathcal{A}\right) a x^{-1} \\
=\left(x a^{-1}\right) a\left(1+\omega^{\mu} \mathcal{A}\right)\left(x a^{-1}\right)^{-1}
\end{array}
$$

Lemma 2. Let $a \in G$. Then there exists a symmetric matrix $x \in G$, such that $a^{\top}=x a x^{-1}$.

Proof. The desired matrix identity can be rewritten as

$$
a^{\top} x=x a
$$

and using the symmetry condition on x, the above equation becomes a system in the variables $x_{i j}(i \leq j)$. Denote by x_{1}, \ldots, x_{r} the independent variables of this system, all the other variables being linear combinations over F, of x_{1}, \ldots, x_{r}. We
want to get an F-solution of this system satisfying the extra-condition that the matrix x has a nonzero determinant. This translates into a nonvanishing condition for a polynomial in the variables x_{1}, \ldots, x_{r}, say

$$
P\left(x_{1}, \ldots, x_{r}\right) \neq 0, \quad\left(P \in F\left[X_{1}, \ldots, X_{r}\right]\right)
$$

If by absurd, P vanishes completely over F, then $P \equiv 0$, so P will vanish completely over \bar{F}. This contradicts the appendix lemma. The proof is complete.

Lemma 3. Let $x \in G$ be a symmetric matrix. Then the compact, open subset $\mathcal{A}(x) \subset \operatorname{End}\left(n, \mathcal{O}_{F}\right)$ given by

$$
\mathcal{A}(x):=\left(x^{-1} \cdot \operatorname{End}\left(n, \mathcal{O}_{F}\right) \cdot x\right) \cap \operatorname{End}\left(n, \mathcal{O}_{F}\right)
$$

satisfies the identity $\mathcal{A}(x)^{\top}=x \mathcal{A}(x) x^{-1}$.
Proof. Since x is symmetric, we have

$$
\mathcal{A}(x)^{\top}=\left(x \cdot \operatorname{End}\left(n, \mathcal{O}_{F}\right) \cdot x^{-1}\right) \cap \operatorname{End}\left(n, \mathcal{O}_{F}\right)=x \mathcal{A}(x) x^{-1}
$$

Lemma 4. For every $m \geq 1$, the following family is finite:

$$
\mathcal{F}_{m}:=\left\{\mathcal{A}(x): x \in G \cap \operatorname{End}\left(n, \mathcal{O}_{F}\right), x-\text { symmetric, } \nu(\operatorname{det} x)=m\right\}
$$

where $\mathcal{A}(x)$ is the set defined in Lemma 3.
Proof. Let $x \in G$ be a symmetric matrix. By the Cartan decomposition, we have

$$
x=\alpha d \beta
$$

where $\alpha, \beta \in K, d=\operatorname{diag}\left(\omega^{\mu_{1}}, \ldots, \omega^{\mu_{n}}\right)$, and $0 \leq \mu_{1} \leq \ldots \leq \mu_{n}$. Using the fact that $\operatorname{End}\left(n, \mathcal{O}_{F}\right)$ is invariant under the multiplicative action of K, the subset $\mathcal{A}(x)$ can be written

$$
\mathcal{A}(x)=\beta^{-1}\left(\left(d^{-1} \cdot \operatorname{End}\left(n, \mathcal{O}_{F}\right) \cdot d\right) \cap \operatorname{End}\left(n, \mathcal{O}_{F}\right)\right) \beta=\beta^{-1} \mathcal{A}(d) \beta
$$

Moreover, $\mathcal{A}(d)$ is invariant under the multiplicative action of $\left(d^{-1} K d\right) \cap K$, the latter being a subgroup of finite index in K. Therefore, one can conclude that for a fixed diagonal matrix d, the family

$$
\{\mathcal{A}(x): \quad x=\alpha d \beta, \alpha, \beta \in K\},
$$

is finite, so \mathcal{F}_{m} is finite.
Proof of Theorem 1. We may assume that $C=c K_{\lambda_{0}}$, where $c \in G, \lambda_{0} \geq 1$. In particular, $a K_{\lambda_{0}} \subseteq C$ for all $a \in C$. Here $K_{\lambda_{0}} \subset K$ is the kernel of the reduction map

$$
K \ni k \longmapsto k \quad\left(\bmod \omega^{\lambda_{0}}\right) \in \operatorname{GL}\left(n, \mathcal{O}_{F} / \omega^{\lambda_{0}} \mathcal{O}_{F}\right)
$$

By Lemma 2, for each element $a \in C$ there exists a symmetric matrix $x_{a} \in G$ with the property that $a^{\top}=x_{a} a x_{a}^{-1}$. Multiplying by an appropriate scalar, we may assume that all entries of x_{a} are in \mathcal{O}_{F} and their gcd is 1 . If $i \geq 0$, we define $C^{i} \subset C$ to be the set

$$
C^{i}=\left\{a \in C \quad: \quad \nu\left(\operatorname{det} x_{a}\right)=i\right\} .
$$

Since $\mathcal{F}_{0}=\left\{\operatorname{End}\left(n, \mathcal{O}_{F}\right)\right\}$ (by Lemma 3), we shall associate to all $a \in C^{0}$ the group $H_{a}\left(=K_{\lambda_{0}}\right)$,

$$
H_{a}:=1+\omega^{\lambda_{0}} \operatorname{End}\left(n, \mathcal{O}_{F}\right)=1+\omega^{\lambda_{0}} \mathcal{A}\left(x_{a}\right) .
$$

By Lemmas 1,2 , and 3, the set $N_{a}:=a H_{a}$ is a compact, open neighborhood of a in C which is self-conjugate under the transposing operator.

Now let $\mathcal{F}_{1}=\left\{\mathcal{A}_{1}, \ldots, \mathcal{A}_{r_{1}}\right\}$. Since all $\mathcal{A}(x)$ are compact neighborhoods of 0 , we can find some weights $\lambda_{1}, \ldots, \lambda_{r_{1}}$, so that the following inclusions are true:

$$
\omega^{\lambda_{0}} \operatorname{End}\left(n, \mathcal{O}_{F}\right) \supset \omega^{\lambda_{1}} \mathcal{A}_{1} \supset \omega^{\lambda_{2}} \mathcal{A}_{2} \supset \ldots \omega^{\lambda_{r_{1}}} \mathcal{A}_{r_{1}}
$$

To each $a \in C^{1}$ we associate the subgroup $H_{a} \subset K_{\lambda_{0}}$,

$$
H_{a}:=1+\omega^{\lambda_{i}} \mathcal{A}_{i},
$$

where $\mathcal{A}_{i}=\mathcal{A}\left(x_{a}\right)$. As before, $N_{a}:=a H_{a}$ is a compact, open neighborhood of a in C which is self-conjugate under the transposing operator.

Inductively on i, we can associate to each $a \in C^{i}$ a neighborhood $N_{a}=a H_{a}$ which is self-adjoint under the transposing operator, where H_{a} is a compact, open subgroup of $K_{\lambda_{0}}$. Moreover, with respect to the inclusion relation \supset, the family

$$
\left\{H_{a} \quad: \quad a \in C\right\}
$$

is a lattice isomorphic to (\mathbb{N}, \leq). This way we can conclude that

$$
\begin{equation*}
N_{a_{1}} \cap N_{a_{2}} \neq \emptyset \text { if and only if } N_{a_{1}} \subset N_{a_{2}} \text { or } N_{a_{2}} \subset N_{a_{1}} . \tag{1}
\end{equation*}
$$

By (1) and the compactness of C, one can find a finite relatively disjoint cover of C with subsets of the form N_{a}, which proves the theorem.

3. Applications

3.1. Proof of Theorem 2. We start this section by showing how Theorem 2 can be reduced to Theorem 1. This is accomplished by using the following lemma (see [4] (2), pp. 103-104.
Lemma 5. Let π be an irreducible admissible representation of G. Then $\widetilde{\pi}$ is isomorphic to $\widehat{\pi}$ if and only if for all open compact $C \subset G$, we have

$$
\operatorname{Tr}\left(\pi\left(\operatorname{char}_{C}\right)\right)=\operatorname{Tr}\left(\pi\left(\operatorname{char}_{C^{\top}}\right)\right)
$$

Proof. Since π is irreducible, the representations $\widehat{\pi}$ and $\widetilde{\pi}$ will be irreducible. In order to show that $\widehat{\pi}$ and $\widetilde{\pi}$ are isomorphic, it is enough to prove that their characters are the same, i.e.,

$$
\begin{equation*}
\operatorname{Tr}(\widehat{\pi}(f))=\operatorname{Tr}(\widetilde{\pi}(f)), \text { for all } f \in \mathcal{H}(G) \tag{2}
\end{equation*}
$$

where $\mathcal{H}(G)$ is the Hecke algebra of G. If for $f \in \mathcal{H}(G)$ one defines $f^{-}(g)=f\left(g^{-1}\right)$, then it is known that $\operatorname{Tr}(\widetilde{\pi}(f))=\operatorname{Tr}\left(\pi\left(f^{-}\right)\right)$, while a change of variables shows that $\widehat{\pi}(f)=\pi\left(\left(f^{-}\right)^{\top}\right)$, where $f^{\top}(g)=f\left(g^{\top}\right)$. Thus relation (2) is equivalent to

$$
\begin{equation*}
\operatorname{Tr}(\pi(f))=\operatorname{Tr}\left(\pi\left(f^{\top}\right)\right), \text { for all } f \in \mathcal{H}(G) \tag{3}
\end{equation*}
$$

Our conclusion follows from the fact that f is a linear combination of characteristic functions of compact open subsets of G.

Proof of Theorem 2. By Theorem 1 and Lemma 5, it is sufficient to show that if $C \subseteq G$ is compact open and $C^{\top}=c C c^{-1}$, then

$$
\pi\left(\operatorname{char}_{C^{\top}}\right)=\pi(c) \pi\left(\operatorname{char}_{C}\right) \pi(c)^{-1}
$$

This is a simple change of variables.
3.2. The case $n=2$. The following lemma is the key tool when $n=2$. It is not true for higher n, thus the argument works only in this particular case.
Lemma 6. If $a \in \operatorname{End}(2, F)$, then there exists $x \in K$ satisfying $a^{\top}=x a x^{-1}$.
Proof. The equation $x a=a^{\top} x$ can be written as a four-dimensional linear system:

$$
\left\{\begin{array}{l}
a_{11} x_{11}+a_{21} x_{12}=a_{11} x_{11}+a_{21} x_{21} \\
a_{12} x_{11}+a_{22} x_{12}=a_{11} x_{12}+a_{21} x_{22} \\
a_{11} x_{21}+a_{21} x_{22}=a_{12} x_{11}+a_{22} x_{21} \\
a_{12} x_{21}+a_{22} x_{22}=a_{12} x_{12}+a_{22} x_{22}
\end{array}\right.
$$

where $a=\left(a_{i j}\right), x=\left(x_{i j}\right),(1 \leq i, j \leq 2)$. By imposing the symmetry condition $x_{21}=x_{12}$ we can see that the first and the fourth equations are true, and the second and the third are the same. So the system reduces to the equation

$$
\left(a_{22}-a_{11}\right) x_{12}+a_{12} x_{11}-a_{21} x_{22}=0
$$

This can be solved in \mathcal{O}_{F} as follows.
Case 1: $\nu\left(a_{22}-a_{11}\right) \geq \min \left\{\nu\left(a_{12}\right), \nu\left(a_{21}\right)\right\}$. Without loss of generality, we may assume that $\nu\left(a_{12}\right) \geq \nu\left(a_{21}\right)$. Then the numbers

$$
x_{12}=1, x_{11}=0, x_{22}=a_{21}^{-1}\left(a_{22}-a_{11}\right),
$$

form a solution to our equation.
Case 2: $\nu\left(a_{11}-a_{22}\right)<\min \left\{\nu\left(a_{12}\right), \nu\left(a_{21}\right)\right\}$. Then the numbers

$$
x_{12}=\left(a_{11}-a_{22}\right)^{-1} \cdot\left(a_{12}-a_{21}\right), x_{11}=1, x_{22}=1,
$$

form a solution to our equation. It is now easy to see that in both cases the discriminant of x is a unit \mathcal{O}_{F}, i.e., $x \in \operatorname{GL}\left(2, \mathcal{O}_{F}\right)$ as required.
Lemma 7. Let $a \in G$. Then $a K_{\lambda}$ and $\left(a K_{\lambda}\right)^{\top}$ are conjugate for all $\lambda \geq 1$.
Proof. By Lemma 6, there exists $x \in K$ such that $a^{\top}=x a x^{-1}$. Then

$$
\left(a K_{\lambda}\right)^{\top}=K_{\lambda}^{\top} a^{\top}=K_{\lambda} x a x^{-1}=x K_{\lambda} a x^{-1}=\left(x a^{-1}\right) a K_{\lambda}\left(x a^{-1}\right)^{-1}
$$

Proof of Theorem 2 (under the assumption $n=2$). Replace Theorem 1 by Lemma 7 in the corresponding argument of $\S 3.1$.

4. Appendix

The following lemma is part of the mathematical folklore. We include it for the sake of completeness.
Lemma 8. Let $a \in \operatorname{GL}(n, F)$. Let \bar{F} be an algebraic closure of F. There exists a symmetric matrix $x \in \mathrm{GL}(n, \bar{F})$ satisfying the identity

$$
a^{\top}=x a x^{-1}
$$

Proof. Over the field \bar{F}, the matrix a can be brought to a Jordan canonical form with $i \times i$ diagonal cells of the form

$$
J_{\lambda}:=\left(\begin{array}{cccc}
\lambda & 0 & \ldots & 0 \\
1 & \lambda & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & \ldots & \ldots & \lambda
\end{array}\right) \quad(\lambda \in \bar{F}, 1 \leq i \leq n)
$$

If w is the $i \times i$ matrix with 1 on the anti-diagonal and zero in the rest, then the following identity is true:

$$
J_{\lambda}^{\top}=w J_{\lambda} w^{-1}
$$

We can conclude that there exist matrices $\gamma \in \mathrm{GL}(n, \bar{F}), \alpha \in \mathrm{GL}(n, \mathbb{Z})$, such that α is symmetric, $\gamma a \gamma^{-1}$ is the Jordan canonical form of a, and

$$
\left(\gamma a \gamma^{-1}\right)^{\top}=\alpha\left(\gamma a \gamma^{-1}\right) \alpha^{-1}
$$

But this is equivalent to $a^{\top}=\left(\gamma^{\top} \alpha \gamma\right) a\left(\gamma^{\top} \alpha \gamma\right)^{-1}$.

Acknowledgment

I would like to thank Gopal Prasad for his comments on a draft of this paper and his encouragement.

References

[1] Bernstein, I.N. and Zelevinsky, A.N. Representations of the group GL (n, F) where F is a local non-Archimedian field, Russian Mathematical Surveys 3 (1976), 1-68. MR0425030 (54:12988)
[2] Bump, D. Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, Cambridge, 1997. MR1431508 (97k:11080)
[3] Demazure, M. and Grothendieck, A. Schémas en groupes I. Propriétés générales des schémas en groupes. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), Springer Lecture Notes, Vol. 151, 1970. MR0274458 (43:223a)
[4] Gelfand, I.M. and Kazhdan, D.A. (1) Representations of the group GL(n, K) where K is a local field, Funkcional Anal. i Priložen 6 (1972), no 4, 73-74; (2) Representations of the group $\mathrm{GL}(n, K)$ where K is a local field, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest 1971), Halsted, New York (1975), 95-118. MR0333080 (48:11405) MR0404534 (53:8334)
[5] Rosenlicht, M., A remark on quotient spaces, An. Acad. Brasil, 35 (1963), 487-489. MR0171782 (30:2009)

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824

E-mail address: tupan@math.msu.edu

[^0]: Received by the editors December 17, 2003 and, in revised form, February 18, 2006.
 2000 Mathematics Subject Classification. Primary 20G05.

