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A TRIANGULATION OF GL(n, F )

ALEXANDRU TUPAN

Abstract. Let F be a non-Archimedian field. We prove that each open and
compact subset of GLn(F ) can be decomposed into finitely many open, com-
pact, and self-conjugate subsets. As a corollary, we obtain a short, elementary
proof of a well-known theorem of I.M. Gelfand and D.A. Kazhdan.

1. Introduction

Notation. Throughout this paper, F will denote a non-archimedian local field. By
ν, OF , ω, we denote the valuation, the ring of integers, and the uniformizer of F ,
respectively.

Let K = GL(n,OF ) be the maximal compact subgroup of the general linear
group G = GL(n, F ). By End(n, F ), End(n,OF ) we denote the set of n × n
matrices with entries in F , OF , respectively.

The transpose of a matrix a ∈ G is denoted by a�. Similarly, we denote by A�

the action of the transposing operator on a subset A ⊂ End(n, F ).
For a given representation π of G we let π̃ denote its contragredient representa-

tion.

Definition 1. A set A ⊂ End(n, F ) is called self-conjugate under the transposing
operator if there exists at least one element x ∈ G such that A� = xAx−1.

The goal of this paper is to prove the following triangulation theorem.

Theorem 1. Let C ⊂ G be an open and compact set. There exist finitely many
open and compact sets C1, . . . , Cs ⊂ C such that

1) C =
⋃s

i=1 Ci and Ci ∩ Cj = ∅ if i �= j;
2) each Ci is self-conjugate under the transposing operator.

The theorem will be proved in the next section. As an application of Theorem
1 we shall give a new proof of the next classical result.

Theorem 2. Let π be an irreducible admissible representation of G. If π̂ is the
representation given by π̂(g) = π(g�)−1, then π̃ and π̂ are isomorphic.

Theorem 2 goes back to Gelfand and Kazhdan. In fact, in [4], the more general
case of a regular group G is discussed. Later, Bernstein and Zelevinsky gave a
different proof for GL(n, F ) (see [1], Ch. III, §7). A key tool for Gelfand and Kazh-
dan’s arguments is a result concerning the existence of certain geometrical factor
spaces for the action of an algebraic group on an algebraic variety (see Deligne’s
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Theorem 5.8.1 in [3], or Rosenlicht’s theorem in [5]). Bernstein and Zelevinsky do
not make use of this result, the core of their arguments being based on Gelfand
and Kazhdan’s theory of derivations of representations. A nice exposition of these
ideas, together with a proof for the case of GL(2, F ), can also be found in [2, pp.
433–451].

The proof we give for Theorem 2 is elementary and self-contained. It starts from
the observation that if a compact open A ⊂ GL(n, F ) is self-conjugate under the
transposing operator, then the operators π(charA) and π(charA�) have the same
trace. Using this fact together with a standard argument (see §3), we show that
Theorem 2 is a consequence of Theorem 1.

The organization of this paper is as follows. In §2 we introduce the necessary
tools and give the proof of Theorem 1. In §3 we show how Theorem 1 implies
Theorem 2. At the end of the same section we give a very simple proof of Theorem
2, independent of Theorem 1, for the case n = 2. This proof is based on the
observation that in GL(2, F ), a matrix and its transpose are in the same K-orbit
with respect to the action by conjugation. The appendix contains a known algebraic
result which is used in an essential way in §2.

2. Proofs of results

The proof of Theorem 1 is organized along the following lines. In Lemma 1 we
introduce a set of conditions under which one can describe a fundamental system
of self-conjugate neighborhoods for a given element a ∈ G. In Lemmas 2 and 3 we
show that these conditions can always be satisfied. The purpose of Lemma 4 is to
show that one can partition G = G0∪G1∪. . ., such that for each i ≥ 0 and a, b ∈ Gi,
the fundamental systems of self-conjugate neighborhoods for a, b, constructed via
Lemmas 1, 2, and 3, are translates of each other. This idea is then used to write
any open and compact C as a union of self-conjugate, relatively disjoint parts.

Lemma 1. Let A ⊂ End(n,OF ) be a compact and open set for which 0 ∈ A, and
let a ∈ G. If there exists an element x ∈ G satisfying the conditions

a� = xax−1, A� = xAx−1,

then the set a(1 + ωµA) (µ ≥ 1), is a compact, open neighborhood of a in G which
is self-conjugate under the transposing operator.

Proof. We only need to check that a(1 + ωµA) is self-conjugate under the trans-
posing operator. Indeed,

(a(1 + ωµA))� = (1 + ωµA)�a� = x(1 + ωµA)ax−1

= (xa−1)a(1 + ωµA)(xa−1)−1.

�

Lemma 2. Let a ∈ G. Then there exists a symmetric matrix x ∈ G, such that
a� = xax−1.

Proof. The desired matrix identity can be rewritten as

a�x = xa,

and using the symmetry condition on x, the above equation becomes a system in
the variables xij (i ≤ j). Denote by x1, . . . , xr the independent variables of this
system, all the other variables being linear combinations over F , of x1, . . . , xr. We
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want to get an F -solution of this system satisfying the extra-condition that the
matrix x has a nonzero determinant. This translates into a nonvanishing condition
for a polynomial in the variables x1, . . . , xr, say

P (x1, . . . , xr) �= 0, (P ∈ F [X1, . . . , Xr]).

If by absurd, P vanishes completely over F , then P ≡ 0, so P will vanish completely
over F . This contradicts the appendix lemma. The proof is complete. �

Lemma 3. Let x ∈ G be a symmetric matrix. Then the compact, open subset
A(x) ⊂ End(n,OF ) given by

A(x) := (x−1 · End(n,OF ) · x) ∩ End(n,OF ),

satisfies the identity A(x)� = xA(x)x−1.

Proof. Since x is symmetric, we have

A(x)� = (x · End(n,OF ) · x−1) ∩ End(n,OF ) = xA(x)x−1.

�

Lemma 4. For every m ≥ 1, the following family is finite:

Fm := {A(x) : x ∈ G ∩ End(n,OF ), x − symmetric, ν(detx) = m},
where A(x) is the set defined in Lemma 3.

Proof. Let x ∈ G be a symmetric matrix. By the Cartan decomposition, we have

x = αdβ

where α, β ∈ K, d = diag(ωµ1 , . . . , ωµn), and 0 ≤ µ1 ≤ . . . ≤ µn. Using the fact
that End(n,OF ) is invariant under the multiplicative action of K, the subset A(x)
can be written

A(x) = β−1((d−1 · End(n,OF ) · d) ∩ End(n,OF ))β = β−1A(d)β.

Moreover, A(d) is invariant under the multiplicative action of (d−1Kd) ∩ K, the
latter being a subgroup of finite index in K. Therefore, one can conclude that for
a fixed diagonal matrix d, the family

{A(x) : x = αdβ, α, β ∈ K},
is finite, so Fm is finite. �

Proof of Theorem 1. We may assume that C = cKλ0 , where c ∈ G, λ0 ≥ 1. In
particular, aKλ0 ⊆ C for all a ∈ C. Here Kλ0 ⊂ K is the kernel of the reduction
map

K � k �−→ k (mod ωλ0) ∈ GL(n,OF /ωλ0OF ).
By Lemma 2, for each element a ∈ C there exists a symmetric matrix xa ∈ G
with the property that a� = xaax−1

a . Multiplying by an appropriate scalar, we
may assume that all entries of xa are in OF and their gcd is 1. If i ≥ 0, we define
Ci ⊂ C to be the set

Ci = {a ∈ C : ν(detxa) = i}.
Since F0 = {End(n,OF )} (by Lemma 3), we shall associate to all a ∈ C0 the group
Ha(= Kλ0),

Ha := 1 + ωλ0End(n,OF ) = 1 + ωλ0A(xa).
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By Lemmas 1, 2, and 3, the set Na := aHa is a compact, open neighborhood of a
in C which is self-conjugate under the transposing operator.

Now let F1 = {A1, . . . ,Ar1}. Since all A(x) are compact neighborhoods of 0, we
can find some weights λ1, . . . , λr1 , so that the following inclusions are true:

ωλ0End(n,OF ) ⊃ ωλ1A1 ⊃ ωλ2A2 ⊃ . . . ωλr1Ar1 .

To each a ∈ C1 we associate the subgroup Ha ⊂ Kλ0 ,

Ha := 1 + ωλiAi,

where Ai = A(xa). As before, Na := aHa is a compact, open neighborhood of a in
C which is self-conjugate under the transposing operator.

Inductively on i, we can associate to each a ∈ Ci a neighborhood Na = aHa

which is self-adjoint under the transposing operator, where Ha is a compact, open
subgroup of Kλ0 . Moreover, with respect to the inclusion relation ⊃, the family

{Ha : a ∈ C}
is a lattice isomorphic to (N,≤). This way we can conclude that

Na1 ∩ Na2 �= ∅ if and only if Na1 ⊂ Na2 or Na2 ⊂ Na1 .(1)

By (1) and the compactness of C, one can find a finite relatively disjoint cover of
C with subsets of the form Na, which proves the theorem. �

3. Applications

3.1. Proof of Theorem 2. We start this section by showing how Theorem 2 can
be reduced to Theorem 1. This is accomplished by using the following lemma (see
[4](2), pp. 103–104.

Lemma 5. Let π be an irreducible admissible representation of G. Then π̃ is
isomorphic to π̂ if and only if for all open compact C ⊂ G, we have

Tr (π(charC)) = Tr (π(charC�)) .

Proof. Since π is irreducible, the representations π̂ and π̃ will be irreducible. In
order to show that π̂ and π̃ are isomorphic, it is enough to prove that their characters
are the same, i.e.,

Tr(π̂(f)) = Tr(π̃(f)), for all f ∈ H(G),(2)

where H(G) is the Hecke algebra of G. If for f ∈ H(G) one defines f−(g) = f(g−1),
then it is known that Tr(π̃(f)) = Tr(π(f−)), while a change of variables shows that
π̂(f) = π((f−)�), where f�(g) = f(g�). Thus relation (2) is equivalent to

Tr(π(f)) = Tr(π(f�)), for all f ∈ H(G).(3)

Our conclusion follows from the fact that f is a linear combination of characteristic
functions of compact open subsets of G. �

Proof of Theorem 2. By Theorem 1 and Lemma 5, it is sufficient to show that if
C ⊆ G is compact open and C� = cCc−1, then

π(charC�) = π(c)π(charC)π(c)−1.

This is a simple change of variables. �
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3.2. The case n = 2. The following lemma is the key tool when n = 2. It is not
true for higher n, thus the argument works only in this particular case.

Lemma 6. If a ∈ End(2, F ), then there exists x ∈ K satisfying a� = xax−1.

Proof. The equation xa = a�x can be written as a four-dimensional linear system:⎧⎪⎪⎨
⎪⎪⎩

a11x11 + a21x12 = a11x11 + a21x21,
a12x11 + a22x12 = a11x12 + a21x22,
a11x21 + a21x22 = a12x11 + a22x21,
a12x21 + a22x22 = a12x12 + a22x22,

where a = (aij), x = (xij), (1 ≤ i, j ≤ 2). By imposing the symmetry condition
x21 = x12 we can see that the first and the fourth equations are true, and the
second and the third are the same. So the system reduces to the equation

(a22 − a11)x12 + a12x11 − a21x22 = 0.

This can be solved in OF as follows.
Case 1: ν(a22 − a11) ≥ min{ν(a12), ν(a21)}. Without loss of generality, we may
assume that ν(a12) ≥ ν(a21). Then the numbers

x12 = 1, x11 = 0, x22 = a−1
21 (a22 − a11),

form a solution to our equation.
Case 2: ν(a11 − a22) < min{ν(a12), ν(a21)}. Then the numbers

x12 = (a11 − a22)−1 · (a12 − a21), x11 = 1, x22 = 1,

form a solution to our equation. It is now easy to see that in both cases the
discriminant of x is a unit OF , i.e., x ∈ GL(2,OF ) as required. �
Lemma 7. Let a ∈ G. Then aKλ and (aKλ)� are conjugate for all λ ≥ 1.

Proof. By Lemma 6, there exists x ∈ K such that a� = xax−1. Then

(aKλ)� = K�
λ a� = Kλxax−1 = xKλax−1 = (xa−1)aKλ(xa−1)−1.

�
Proof of Theorem 2 (under the assumption n = 2). Replace Theorem 1 by Lemma
7 in the corresponding argument of §3.1. �

4. Appendix

The following lemma is part of the mathematical folklore. We include it for the
sake of completeness.

Lemma 8. Let a ∈ GL(n, F ). Let F be an algebraic closure of F . There exists a
symmetric matrix x ∈ GL(n, F ) satisfying the identity

a� = xax−1.

Proof. Over the field F , the matrix a can be brought to a Jordan canonical form
with i × i diagonal cells of the form

Jλ :=

⎛
⎜⎜⎜⎜⎝

λ 0 . . . 0
1 λ . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 . . . . . . λ

⎞
⎟⎟⎟⎟⎠ (λ ∈ F , 1 ≤ i ≤ n).
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If w is the i × i matrix with 1 on the anti-diagonal and zero in the rest, then the
following identity is true:

J�
λ = wJλw−1.

We can conclude that there exist matrices γ ∈ GL(n, F ), α ∈ GL(n, Z), such that
α is symmetric, γaγ−1 is the Jordan canonical form of a, and

(γaγ−1)� = α(γaγ−1)α−1.

But this is equivalent to a� = (γ�αγ)a(γ�αγ)−1. �
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