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Abstract: In today’s world, efficiency and margin of safety are prime considerations for any appli-
cations. To address such parameters in aerospace or high-tech consumer products, there are still
limitations in terms of capabilities from a material perspective. Aluminium 7075 is predominantly
used as a combination material in these applications, but it has many drawbacks such as early
wear/friction, low fatigue life cycle, high weight ratios, high deformation and stresses. To over-
come these key issues, many reinforcements have been used to date. However, the results are not
so convincing with respect to tribological applications, and the aforementioned issues still persist.
In the current work, a novel hybrid composite comprising Aluminium 7075 as substrate and the
reinforcement of silicon carbide and aluminium oxide at varying combinations of 3 to 9% in steps
of 3% and a constant percentage of 5% were added, respectively. The exhaustive work focuses on
extracting the mechanical, tribological and physical properties of a hybrid composite. Furthermore,
a microcharacterisation study of these combinations was carried out using FE-SEM and EDX. In
a continuation to this simulation, a study was performed using ANSYS Workbench to identify a
suitable gear application with real-time loading conditions. The observed results show a tensile
strength of 366 MPa for 6%SiC, hardness of 93 VHN and wear rate of 0.00025 mm3/Nm for the 9%SiC
combination.

Keywords: tribology; Al 7075; SiC; Al2O3; spur gear

1. Introduction

Metal matrix composites (MMCs), as the name demonstrates, have a metal material as
a matrix. Matrices in these composites can be aluminium, magnesium, titanium, etc. The
reinforcements selected could be silicon carbide, aluminium oxide, boron carbide, carbon
fibre, glass fibre, etc. These composites are primarily used to give points of interest over
their monolithic counter parts. The main advantages include higher mechanical strength,
low material density. The advancement of high-quality and high-strength aluminium is
the essential necessity of aviation and automobile industry. The noted uses of aluminium
include electronic packaging, aircraft structures, internal combustion engine components
and power transmission towers. It is also encouraged in the preparation of a variety of
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recreational products [1]. Hybrid aluminium MMCs assisted with granular ceramics play a
significant part in advanced engineering materials having exceptional properties of high
hardness and fatigue strength, less weight and better wear resistance. Specially, these are
replacing ferrous established materials in the automotive, defence, and aviation sectors [2].
Mechanical properties such as strength, hardness, wear and fatigue resistance are upgraded
when aluminium is impregnated with different particle reinforcements when compared
to natural homogeneity. The fatigue behaviour of aluminium MMCs is demonstrated to
be better because of low crack propagation rates when contrasted with their unreinforced
materials [3]. The higher strength, lower density, excellent corrosion resistance, good
thermal properties, creep resistance and good fatigue behaviour of aluminium 7075 alloy
has been broadly utilised in the aviation industry [1,4,5]. Composites with more than
one reinforcement are called hybrid composites. The behaviour of hybrid composites is
a weighed sum of the individual additives in which there may be an extra-favourable
balance between the inherent benefits and drawbacks [6]. The contact stress analysis of
the aluminium metal matrix composite comes nearer to steel material and is better than
polymer material [7]. The performance of the aluminium metal matrix composite matches
with mild steel material [8]. For the same contact stress condition, aluminium metal
matrix composites have 45% less mass reduction compared to structural steel material.
Consequently, it tends to be suggested for all sorts of light weight applications [9]. The
structural model evaluated using the aluminium MMCs using computer-assisted analysis
proved to obtain higher efficiency and ease of manufacturing [10]. Through simulation
results, it tends to be demonstrated that aluminium composite gears give 60% lesser weight
contrasted with steel gears [11]. Aluminium matrix reinforced with silicon carbide can
be used in the manufacturing of power-transmitting elements such as gears [12]. In this
present investigation, aluminium 7075 reinforced with silicon carbide and aluminium
oxide are produced through a stir-casting process, and the mechanical and tribological
properties are studied. Aluminium MMCs that yield optimum mechanical and tribological
properties will be selected as gear material. A further simulation analysis of aluminium
matrix composite spur gears is carried out.

2. Materials and Methods

The aluminium 7075 hybrid composite material is fabricated with a stir-casting process.
Silicon carbide with varying weight percentages of 3%, 6%, 9% and aluminium oxide with
a fixed weight percentage of 5% will be added as reinforcements. Commercially available
aluminium 7075 ingots were used as a matrix material. Aluminium 7075 was supplied
by Bharat Aerospace Metals, Mumbai. Micro-sized aluminium oxide and silicon carbide
were used as the reinforcement for the aluminium metal matrix composite. Aluminium
7075 alloy was melted in a mild steel crucible at a temperature of 750 ◦C. After melting
and degassing by adding hexachloroethane tablets, molten metal was stirred with the help
of a zirconium-coated mild steel stirrer at 400 rpm for a duration of 15 min. At the time
of stirring, aluminium oxide and silicon carbide were added, which were preheated at
250 ◦C. Lastly, the composite material was poured into the already heated metal mould.
The aluminium 7075 along with various weight percentages of hybrid composites were
produced, and test specimens were machined as per ASTM standards.

3. Experimental Methods
3.1. Hardness Test

The cast samples were exposed to a Vickers hardness test to discover the hardness
values. The Vickers hardness test was performed in accordance with ASTM E92 (Fuel
instruments and Engineers pvt. Ltd., Yadrav, India) at room temperature. The diameter
and length of the test specimen were 20 mm and 20 mm, respectively. A load of 5 kgf was
applied utilising diamond tip indenter for a dwell time of 10 s. On each specimen, three
readings were taken, and the average of three readings was considered as the VHN for
that specimen.
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3.2. Tensile Test

A tensile test was carried to check the tensile properties, percentage of elongation and
ultimate tensile strength of aluminium 7075 without reinforcements and with reinforce-
ments. The figure shows the tensile specimen as per ASTM D3552-17 (Fuel instruments
and Engineers pvt. Ltd., Yadrav, India). Specimens were prepared from cast aluminium
MMCs, as shown in Figure 1. A tensile test was carried on round specimens with a diam-
eter 6 of mm and gauge length of 25 mm by using a universal testing machine of 100 kN
capacity. The results after testing were quantified based on average values of three samples.
The average strain rate was observed as 0.1355 s−1.
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3.3. Wear Test

Wear tests for dry sliding conditions were carried with a pin-on-disc apparatus
(Magnum, Bengaluru, India). The specimens were tested for different loads and disc radius
at a constant speed of 450 rpm. The wear test specimen is shown in Figure 2. It has a
diameter of 8 mm and length of 28 mm.
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3.4. Coefficient of Friction

The coefficient of friction was examined during the wear test with respect to load
and reinforcement.

4. Results and Discussion
4.1. Hardness Test

The outcomes of Vickers hardness values are shown in Figure 3. The test outcomes
confirm that the Vickers hardness values of the hybrid MMCs are higher in comparison
with their unreinforced counterpart, and furthermore, the hardness numbers increase as the
reinforcement ratio increases. The addition of Al2O3 and SiC particles upgrade hardness as
these particles are more hard than aluminium, which provide their intrinsic property of
hardness compared to a soft matrix. It is noted that the availability of reinforcements in
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an aluminium matrix block the shift of disruptions, which finally boosts the strength and
hardness of hybrid composites, as shown in Figure 3.
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Three readings are taken for each specimen, and the mean value is considered. Hard-
ness has increased by an amount of 48% due to the addition of 9% SiC and 5% Al2O3 to
aluminium alloy. Table 1 shows the different kinds of composite materials with Vickers
hardness numbers.

Table 1. VHN for different composite materials.

Material VHN Error Range

Aluminium 7075 alloy 51 1.5
Al 7075 + 3% SiC + 5% Al2O3 66 0.6
Al 7075 + 6% SiC + 5% Al2O3 73 2.1
Al 7075 + 9% SiC + 5% Al2O3 98 1

4.2. Tensile Strength Test

Figure 4 shows the results of tensile tests for different weight fractions of reinforce-
ments of SiC and Al2O3. Table 2 presents the ultimate tensile strength of unreinforced
aluminium 7075 and reinforced aluminium 7075 with SiC and Al2O3. From the results, it
is observed that with the increase in the addition of reinforcements, the ultimate tensile
strength increases up to an addition of 6% SiC and 5% Al2O3, but with further addition, i.e.,
at 9% SiC and 5% Al2O3, the ultimate tensile strength decreases. The increase in ultimate
tensile strength was up to 67.79%. The increase in ultimate tensile strength could be due to
the existence and equal distribution of reinforcement. The integrated reinforcement acts as
an obstacle to dislocation movements. A further increase in particle volume percentage
leads to a decrease in ultimate tensile strength, which is due to increased agglomeration
and porosity. The agglomeration of particles makes the material weaker and hence leads to
a reduction in tensile strength [6]. Figure 5 shows the stress–strain curve for unreinforced
aluminium 7075 and reinforced aluminium 7075 with SiC and Al2O3. From the curve,
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it is clear that a hybrid combination of 6% SiC and 5% Al2O3 provides more ductility
and strength to the material compared to its unreinforced counterpart, but with further
addition, i.e., at 9% SiC and 5% Al2O3, a reduction in ductility is observed. This seems to
be associated with hard particles distribution and percolation, as previously reported.
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4.3. Wear Test
Effect of Reinforcements

The response of reinforcements on wear rate at different values of loads is shown in
Figure 6a–c. It shows that the maximum wear rate was detected for aluminium 7075 alloy
and was decreased with the increase in percentage of silicon carbide and aluminium oxide.
This shows that the presence of reinforcement decreases the wear rate. The percentage
of aluminium oxide was restricted to 5% because a further increase in aluminium oxide
could have increased the wear rate [2]. A 5% inclusion of SiC and Al2O3 in Al7075 resulted
in a wear rate of 0.165 × 10−3 mm3/Nm at 20N load and sliding distance of 282 m [3],
whereas the current work for the composition of 6% SiC and 5% Al2O3 in Al7075 depicted
0.21 × 10−3 mm3/Nm at 20 N load and a sliding distance of 154 m. An increase in sliding
distance with constant load will promote a higher wear rate. The percentage of SiC in the
Al7075 hybrid composite increases the wear rate due to its ceramic material behaviour. The
effect of load on different hybrid composites is shown in Figure 6a–c. It shows that for all
the composite materials, the wear rate increases with increase in load [13]. The observed
wear rate is 0.00025 mm3/Nm, and it is least for all the cases.
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4.4. Coefficient of Friction

Figure 7 and Table 3 show the variations of coefficient of friction along with load and
reinforcement. It is seen that as the load increases, the coefficient of friction decreases, and
also, as the reinforcement increases, the coefficient of friction decreases. The decrease in
coefficient of friction is mainly due to the softening of material and due to the increase in
applied load, which increases the heat between the contact surfaces [14,15].
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Table 3. Coefficient of friction for different aluminium 7075 MMCs and loads.

Material
Load in N

10 Error Range 15 Error Range 20 Error Range

Al 7075 Unreinforced 0.612401 0.000002 0.562843 0.0000005 0.501195 0.000001
Al 7075 + 3% SiC + 5% Al2O3 0.596247 0.000001 0.557303 0.000001 0.500626 0.000001
Al 7075 + 6% SiC + 5% Al2O3 0.585846 0.000002 0.538051 0.000002 0.488562 0.000003
Al 7075 + 9% SiC + 5% Al2O3 0.564168 0.000001 0.532732 0.000003 0.487192 0.000001

5. Microcharacterisation Study
5.1. EDAX Analysis

To discover the chemical composition of the hybrid composite, energy dispersive X-ray
(EDAX) spectroscopy measurements are carried out in the SEM on specimens (Carl Zeiss,
Jena, Germany). The EDAX profile for the same is shown in Figure 8.
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Observations based on the studies about the nucleation of multi phases after stir cast-
ing and the continuation of it in heat treatment of 7075 aluminium alloys have shown that
as shown Figures 9 and 10, the aluminium Kα is the major key player with 98.93 to 100%
weight constituents. After slow cooling during the annealing process, chemical elements
such as Magnesium (Mg), Copper (Cu) and Iron (Fe) form a laminar structure. However, if
sudden cooling is subjected, these elements cluster together to form precipitates, or an ag-
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glomeration of intermetallic phases may result in dimensions larger than 1 µm [16]. Precip-
itations with dimensions between ≥1 and ≤10 µm cause stress concentration zones around
them and result in mis-orientation and grain boundaries breakdown. This phenomenon
initiates the nucleation of micro-cracks. The number of micro-cracks is proportional to the
number of stress fields, corroborating to the material fatigue strength [17,18].
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5.2. Scanning Electron Microscope Analysis

Specimens were developed from different composite combinations to carry out a
metallographic study of hybrid composites. To confirm the uniform distribution of rein-
forcements in matrix material, SEM analysis was be conducted for this required procedure.

5.2.1. Al7075 + 6% SiC + 5% Al2O3

Field emission SEM extracted for Al7075 with SiC for a tensile test failed components.
The failed component shows SiC patches visible in the form of a white colour along with
substrate Al 7075. Figure 11c,d illustrate the white edges covered with Al7075 for the
hybrid composite. Figure 11g,h demonstrate the powdered form of SiC adhered on the
Al7075 substrate. The entire set of images from Figure 11a–h depicted strong cohesion
among Al7075 with SiC. Furthermore, the particles pulled out during the fracture as in the
case of SiC and Carbon Black (CB) particulates [19].
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5.2.2. Al 7075 Unreinforced

From Figure 12a–g, it is evident that longitudinal hair line cracks or line patches
are clearly visible. However, these lines are developed due to a combination of SiC and
alumina composition, resulting in white patches. The fracture is still not clearly identifiable
as inter-granular or trans-granular behaviour. Figure 12c–f illustrates the worn surface area
of the Al7075 unreinforced condition.
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Figure 12. (a–g): SEM images for Al 7075 unreinforced.

5.2.3. Al7075 + 3% SiC + 5% Al2O3

To introduce more clarity on the micrographs at varied locations, SEM images were
captured to analyse the micro characteristic studies of the hybrid composite. Figure 13a–g
illustrates the specimen fracture at the edge location.
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5.2.4. Al7075 + 9% SiC + 5% Al2O3

From Figure 14, it is observed that the images are captured at the mid-region of the
failure, where a combination of Al 7075 with SiC and Al2O3 flakes is observed in Figure 14e.
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6. Simulation Study

Simulation study has become an integral part of research in recent days, as it saves
nearly 3/4 the time of the entire experimental work. At the same time, it will reduce the
cost incurred in conducting the experiments.

Static Structural Analysis

The exhaustive work focused on the development of the GEAR model, as shown
in Figure 15a. As the preference given to such an application, it will reduce the wear,
friction, and stress acting on the component. The effect of including alumina and SiC
at an optimal percentage such as 5% and 6%, respectively, has resulted in prospective
results. From Figure 15b, it can be observed that a tetrahedron 10-noded element with solid
188 [19–23] selected for analysis. The H-type method with element sizing and a P-Type
method with element order both are considered while solving the simulation [24–28].
Figure 15d illustrate the Al 7075 T6 material total deformation [29–34]. From Figure 15d, it
is clear that Al 7075 material alone shows 0.108 mm deformation, which is way too high in
comparison to Al 7075 + Alumina + SiC as 0.0725 mm. Furthermore, optimisation is also
quite feasible, as the model shows 10X better results compared with Al 7075 materials.
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7. Conclusions

A hybrid composite with aluminium 7075 and a varying percentage of silicon carbide
and aluminium oxide reinforcements was tested using a stir-casting process. Mechanical
and tribological tests were conducted to study material characterisation. Microstructural
analysis confirms the presence of reinforcements and their uniform distribution in an
aluminium substrate. Simulation analysis was performed using ANSYS Workbench ver
18.2 for a gear model to recommend the above said hybrid composite for gear application.
Furthermore, the findings are listed below:

(1) The Vickers hardness number (VHN) obtained for Al 7075 with 9% SiC and 5% Al2O3
was 98, which increased about 47% compared to unreinforced aluminium 7075.

(2) The ultimate tensile strength (UTS) obtained for Al 7075 with 6% SiC and 5% Al2O3
was 366 MPa, which is 67.79% higher in comparison to unreinforced aluminium 7075.
Another finding in tensile study was that for Al 7075 with 9% SiC and 5% Al2O3, the
ultimate tensile strength decreased to 228.6 MPa compared to its earlier counterpart.
These results of tensile test shows that hybrid composites are more advantageous
compared to conventional composites.

(3) The wear rate decreased with increase in reinforcements. The lowest wear rate was
observed for Al 7075 with 9% SiC and 5% Al2O3. However, the findings during the
wear test were with the increase in load, the sliding distance and sliding radius wear
rate increased for all hybrid reinforced Al 7075 composites and unreinforced Al 7075.
The coefficient of friction decreased with the increase in load for all specimens.

(4) Simulation study reveals the behaviour of mechanical properties such as total defor-
mation and von Mises stress for a given condition of Al 7075 + SiC + Alumina resulted
in 30% lower deformation and unaltered stress values (as stress is not a material
property) in comparison to pristine Al 7075 alloy.
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