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Ab.rfruct -Based on a well-known property of FIR half-hand filters, this 
correspondence shows how the design time for equiripple half-hand filters 
can be reduced by a considerable amount. The observation which leads up 
to this improved procedure also places in evidence new implementation 
schemes, which simultaneously ensure low passband and stopbund sensitiv- 
ities. Extension of the method to Mth-band filter design is also outlined. 

I. INTRODUCTION 

Linear-phase FIR half-band filters have found several applica- 
tions in the past [l], [4]. For instance, in the design of sharp 
cutoff FIR filters, a multistage design based on half-band filters 
is very efficient [2]. The efficiency of half-band filters derives 
from the fact that about 50 percent of the filter coefficients are 
zero, thus, cutting down the implementation cost. Half-cost filters 
have also been used in multirate filter bank applications, either 
directly or indirectly [3], [4]. 

Let H(z) denote the transfer function of a (linear-phase, FIR) 
half-band filter of order N - 1 

N-l 
H(z)= c h(n)z-“, h(n) real. (1) 

n=O 

These filters are restricted to be of Type 1 (i.e., N - 1 is even and 
h(n) = h( N - 1 - n) [12]). The frequency response is thus of the 
form H( t?) = ‘e-Jw N-1/2HO( ejw), where H,( ej”) represents the 
real-valued amplitude response. A typical plot of H,( d”) is 
shown in Fig. 1, assuming an equiripple type of design. There is a 
symmetry with respect to the half-band frequency 7r/2, i.e., the 
band edges are related as 

and the ripples are related as 

6,=6,=S. (2b) 

In view of this symmetry, the impulse response h(n) satisfies 

N-l 
n - - = even and nonzero 

2 
N-l (3) 

n=- 
2 

The simplest way to design equiripple half-band filters is to 
invoke the widely used McClellan-Parks algorithm [5] with the 
specifications satisfying (2a) and (2b). (If equiripple nature is not 
a requirement, then window designs are the fastest [2].) The 
resulting filter satisfies (3) with reasonable accuracy. The only 
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Fig. 1. Typical amplitude response of a half-band FIR filter 

disadvantage with this procedure is that those coefficients which 
are supposed to satisfy (3) are treated as unknowns in the 
optimization, and, accordingly, the design time is longer than 
necessary. 

In this correspondence, we first indicate a method (the “half- 
band trick”) for considerably reducing the design time by exploit- 
ing the partial knowledge (3) about the impulse response coeffi- 
cients. The technique also leads to a structural interpretation of 
half-band filters, which enables us to implement these filters in 
such a way that, if the structure has low passband sensitivity, 
then it au~omaticully has low stopband sensitivity as well. (This is 
significant in view of the fact that low passband and low stop- 
band sensitivities are often conflicting requirements [6].) We 
conclude by indicating how the ideas can be extended for Mth- 
band filters [7] (which find application in decimation and inter- 
polation filters). Design examples are presented demonstrating 
the significant features of the results. 

II. THE HALF-BAND DESIGN TRICK 

First notice that, in view of (3), we can always assume (N - 1)/2 
to be odd. (Indeed, if (N - 1)/2 were even, then (3) would imply 
h(0) = h( N - 1) = 0; by redefining h(1) to be h(O), we can cut 
down the order to N - 3.) Given the specifications wp, os, and 6, 
let us first design a one-band prototype linear-phase filter G(z) 
of order (N - 1)/2 with specifications as shown in Fig. 2. G(z) 
has a zero at o = rr, since (N - 1)/2 is odd [12]. Its passband 
extends from 0 to 2wp and the transition band is from 29, to 7r. 
If we now define 

H(z) = 
G( z’) + z-N-l’2 

2 (4) 
then H(z) is a half-band filter, with specifications as in Fig. 1. 
The conditions (2a), (2b), and (3) are satisfied exactly. The 
impulse response of H(z) is evidently related to that of G(z) by 

N-l 
n odd f - 

2 (5) 

1 N-l 

2’ 
n=- 

2 

G(z) can be designed with the help of the McClellan-Parks 
program. This design time is considerably lower than the time 
required to design H(z) directly, since the order of G(z) is only 
(N - 1)/2. Moreover, for large N - 1, the design-accuracy is 
better. 
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Fig. 4. Structure for half-band filter. 

III. Low SENSITIVITY STRUCTURES FOR HALF-BAND 

FILTERS 

It is well known [6], [8] that a digital filter structure having low 
passband sensitivity does not necessarily have low stopband 
sensitivity, and vice versa. The coefficient-sensitivity problem in 
FIR structures has been analyzed in the past [6], [9], [lo]. Based 
on the notion of structural passivity, certain lattice structures are 
proposed in [lo] which can be used to synthesize low-sensitivity 
structures for any arbitrary FIT transfer function. 

The lattice structures in [lo] satisfy two crucial properties: 
first, they provide very low passband sensitivity; second, if the 
transfer function has linear phase, this linearity is maintained 
even when the lattice coefficients are quantized. Now assume that 
we first implement the one-band filter G(z) using such a struc- 
ture. Then G(z) has how passband sensitivity. When the lattice 
coefficients are quantized, the magnitude response of the transfer 
function G,(z) remains very close to G(z). Since G,(z) retains 
linear phase and has odd order (N - 1)/2, it continues to have 
the zero at w = n despite quantization. Suppose we realize H(z) 
from this structure for G( z),‘exactly as suggested by (4) (see Fig. 
4). Then the stopband response of H(z) is exactly an image of its 
passband response, even if the coefficients of the lattice are 
quantized! Thus, H,(z) (the response of the quantized lattice) 
continues to remain a half-band filter and has low’passband as 
well as stopband sensitivities. 

Example 2: A half-band filter H(r) with wP = 0.4577, ws = 

0.556, and with stopband attenuation of about 86 dB was imple- 
mented as in Fig. 4. The required order was N - 1 = 102 (G(z) 
has order 51). The internal details of the lattice structure used to 
implement G(z) are not relevant here and can be found in [lo]. 
The lattice coefficients were quantized to 5 bits in canonical sign 
digit code, and the resulting response is as shown in Fig. 5(a). A 
direct-form implementation of H(z) with coefficients quantized 
to 5 bits in canonical sign digit code has response as in Fig. 5(b). 
It is evident that the lattice structure has good passband and 
stopband sensitivities. 

IV. EXTENSION TO THE DESIGN OF Mth BAND FILTERS 

An Mth band, linear-phase (low-pass) FIR filter [12] is a Type 
1 filter H(z) with amplitude response H,,( ej”) as shown in Fig. 
6. The impulse response h(n) has one out of M samples equal to 
zero; the main properties equal to zero; the main properties can 
be summarized as follows: 

Fig. 2. Amplitude response of G(r) 
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Fig. 3. Ex. 1: Magnitude response plot of G(r) and the half-band filter. 

TABLE I 
COMPARISON OF THE IMPROVED AND DIRECT METHODS IN 

HALF-BAND FILTER DESIGNS. 

IMPROVED METHOD DIRECT METHOD 

N-l A/ 61 CPU Time CPU Time 
(sec.) b=.) 

18 .l 1.135 x 10-2 0.6 1.9 

30 .l 1.360 x10-2 1.0 4.3 

42 .l 1.715 x lo-’ 1.4 6.4 

60 .0.5 3.550 x 10-s 1.3 9.4 

62 .OS 1.255 x lo-$ 2.4 14.9 

62 .05 2.275 x lo-’ 3.6 25.2 

N - 1 is the required order for peak passband ripple 6, and 
transition width Af. 

277 
cl+ + wcj = - 

M Example 1: A half-band linear phase FIR filter of order N - 1 
= 34, and wP = 0.4577 is designed using the above method. The 
magnitude responses of G( ej”) and H( e@) are shown in Fig. 3. 
To demonstrate the saving in design time of the above method, 
we compare the design time of this method with the conventional 
method for several half-band filters with various specifications. 
Table I summarizes the results. For higher orders, the savings is 
quite significant (about a factor of 7 for N - 1 = 82). 

S,<(M-1)6, 

N-l 
n - - = nonzero multiple of M 

2 
N-l (64 

n=- 
2 
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Fig. 5 (a) Ex. 2: Magnitude response of the half-band filter realized using 

the lattice structure with 5 bits per multiplier (broken lines denote ideal 
response). (b) Fx 2: Magnitude response of the half-band filter realized 
using the direct form structure with 5 bits per multiplier (broken lines denote 
ideal response). 
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Fig. 6. Typical amplitude response of a Mth-band FIR filter. 

where N - 1 is the order. The usual frequency-domain specifica- 
tions are such that the region 0 I o I oP represents the pass- 
band, and the stopband is interleaved with “don’t care” bands. 
The stopbands typically are defined by 

2k?r 2klr 
-c$+--,c$+- ) 

M M 1 lIM--1. 

A direct design of these filters based on judicious use of [S] is 
outlined in [7]. It is shown there that such a design requires a 
good guess of the relative values of 6, and 6, so that (6~) is 
satisfied. Since (6~) is only approximately satisfied by the result- 
ing design, its coefficients k(n) are readjusted so that (6~) holds 
exactly. This results in a loss of equiripple nature. Now, since (6~) 
prespecifies some of the impulse response coefficients, we can 
once again, in principle, save design time by eliminating these 
from the optimization problem. This strategy has the additional 
advantage that (6~) is then exactly satisfied. 

The natural question that arises here is: “Is there a logical 
extension of the half-band trick to the Mth-band case?” Basi- 
cally, we wish to first design a related “prototype” function G(z) 
of lower order (which does not involve the coefficients in (6~)) 
and the construct H(z) from G(z). The first issue is how to 
formulate such an improved procedure, and secondly, how much, 
if any, improvements of design time is obtainable? We feel that 
the answers to these are important to know. 

Let us first define a function V(z), related to the M&band 
filter H(z) of order N - 1, as follows: 

qz> =H(z)-+/2’. (7) 

Basically, the impulse response o(n) is same as k(n), with the 
middle term k (( N - 1)/2) replaced by zero. Thus 

N-l 
u(n) =o, n - - = multiple of M. 

2 (8) 

Let us represent V(z) in terms of its “polyphase components” [2] 
as follows: 

M-l 
V(z) = c ZCkFk(ZM) 

k=O 
(9) 

so that v(n) is related to the coefficients fk( n) of Fk(z) by 

fk(rl) =u(k+‘nM), Osk<M-1. (10) 

Because of the constraint (6c), we conclude that &(>) = 0, 
where no = N - 1/2mod M. We now define the prototype G(z) 
to be the function, whose impulse response g(n) is constructed 
from u(n) by eliminating the zero-valued samples in (8). Thus 

no-1 M-2 
G(z) = c z-&Fk(zM-l)+ c z-~F~+~(z~-~). (11) 

k=O k = no 

The relation (10) implies 

Fk(Z) =~“~l(zl/MW-‘)kV(zl/Mw-/) (12) I=0 
and therefore 

G(z) = ; “&k”fl (z(M-l)/Mw-~)k~(Z(M-l),MW-,) 
i k=O I=0 

M-2 M-l 
+ C Z-k C (Z(M-l)/M~-I)k+ll/(Z(M-l)/M~-l) (13) 

k=n, I=0 1 
where W = e-jZnlM. The design procedure is now the following: 
Given the specifications oP and os for H(z), find the specifica- 
tions of G(z) by using the relation (13). G(z) has a distorted 
low-pass specification, with cutoff frequencies 
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Fig. 7. Ex. 3: Magnitude response of a Sth-band FIR filter designed using 
the new method and Remez Exchange algorithm. 

The attenuation requirement in a given band (for G(z)) is not a 
constant any more because of the complicated relationship fea- 
tured by (13). However, because of the extreme flexibility of the 
software in [5], G(z) satisfying these specifications can indeed be 
designed. The impulse response k(n) of the Mth-band filter can 
then be computed from g(n) as 

I 
0, 

k(n)= ;, 

TABLE II 
COMPARISON OF THE NEW AND CONVENTIONAL METHODS IN 

MTH BAND FILTER DESIGNS 

88 

100 

124 

80 

126 

18 

126 

,025 0.00593 0.00683 

,025 0.00365 O.W401 

,025 0.00130 0.00143 

,025 0.00625 0.00735 

,025 0.00118 0.00120 

,025 om350 0.01070 

,025 O.Wl12 0.00140 

61 

NEW METBOD DIRECT METHOD 

h CPU Time 61 
f-c.) 

13.7 0.00810 

16.4 O.W4QO 

24.6 0.00173 

22.3 0.00466 

33.6 0.00126 

25.4 0.01085 

52.8 0.00111 

az 

0.00816 14.8 

O.W478 21.6 

0.00158 26.4 

0.00784 11.6 

0.00126 28.8 

0.01120 13.5 

O.Wl57 20.1 

CPU Time 
(-1 

are widely used in signal decimation, interpolation, filtering, and 
also in the minimization of intersymbol interference [ll], the 
improved designs presented above are expected to be of wide 
interest. 
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N-l 
n - ~ = nonzero multiple of M 

2 
N-l 

n=- 
2 (15) 

otherwise. 

Example 3: Consider a S&band FIR filter of order N - 1 = 56 
with transition band Af = 0.05. There are two stopbands (and a 
“don’t care” band) in the region 0 2 w I 7r. We use a relative 
weighting function 1: 5: 5 for the designs. Fig. 7 shows the 
relevant responses for the filter designed using the above method 
and also by method described in [7]. \ 

Table’11 compares the design time required by the new and 
conventional methods for Mth-band filters with various specifi- 
cations. Since G(z) has fewer coefficients than H(z), its design 
is usually faster. However, the complexity involved in mapping 
the specifications from H(z) to G(z) sometimes reduces the 
effectiveness of this approach, as seen from the table. Our 
conclusion is that, for M = 3, a marginal improvement is ob- 
tained, by using the above method, whereas for large M, the 
improvement is negligible (and often negative). 

V. CONCLUDING REMARKS 

In this paper, we described an improved method to design 
equiripple linear-phase FIR half-band and Mth-band digital 
filters. The new design method is considerably faster than the 
conventional approach for half-band filters. For third-band filters, 
there is hardly any difference in the design time, as compared to 
conventional methods. It, however, is slower than the conven- 
tional approach for M > 3 due to additional computations needed 
in the new method. Since half-band and Mth-band FIR filters 
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