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In this paper, we present a block hybrid trigonometrically �tted Runge-Kutta-Nyström method (BHTRKNM), whose coe�cients
are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs), including
Hamiltonian systems such as the energy conserving equations and systems arising from the semidiscretization of partial dierential
equations (PDEs). Four discrete hybrid formulas used to formulate the BHTRKNM are provided by a continuous one-step hybrid
trigonometrically �tted method with an o-grid point. We implement BHTRKNM in a block-by-block fashion; in this way, the
method does not suer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector
methods. �e stability property of the BHTRKNM is discussed and the performance of the method is demonstrated on some
numerical examples to show accuracy and e�ciency advantages.

1. Introduction

In what follows, we consider the numerical solution of the
general second-order IVPs of the form

��� = � (�, �, ��) ,� (�0) = �0,�� (�0) = ��0, � ∈ [�0, ��] ,
(1)

where � : R × R
2� → R

2�,  > 0 is an integer, and � is
the dimension of the system. Problems of form (1) frequently
arise in several areas of science and engineering such as clas-
sical mechanics, celestial mechanics, quantum mechanics,
control theory, circuit theory, astrophysics, and biological sci-
ences. Equation (1) is traditionally solved by reducing it into
a system of �rst-order IVPs of double dimension and then
solved using the variousmethods that are available for solving

systems of �rst-order IVPs (see Lambert [1, 2], Hairer and
Wanner in [3], Hairer [4], and Brugnano andTrigiante [5, 6]).

Nevertheless, there are numerous methods for directly
solving the special second-order IVPs in which the �rst
derivative does not appear explicitly and it has been shown
that these methods have the advantages of requiring less
storage space and fewer number of function evaluations (see
Hairer [4], Hairer et al. [7], Simos [8], Lambert and Watson,
and [9], Twizell and Khaliq [10]). Fewer methods have been
proposed for directly solving second-order IVPs in which the
�rst derivative appears explicitly (seeVigo-Aguiar andRamos
[11], Awoyemi [12], Chawla and Sharma [13], Mahmoud and
Osman [14], Franco [15], and Jator [16, 17]). It is also the
case that some of these IVPs possess solutions with special
properties that may be known in advance and take advantage
of when designing numerical methods. In this light, several
methods have been presented in the literature which take
advantage of the special properties of the solution thatmay be
known in advance (see Coleman and Duxbury [18], Coleman
and Ixaru [19], Simos [20], Vanden Berghe et al. [21], Vigo-
Aguiar and Ramos [11], Fang et al. [22], Nguyen et al. [23],
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Ramos and Vigo-Aguiar [24], Franco and Gómez [25], and
Ozawa [26]). However, most of these methods are restricted
to solving special second-order IVPs in a predictor-corrector
mode.

Our objective is to present a BHTRKNM that is imple-
mented in a block-by-block fashion; in this way, the method
does not suer from the disadvantages of requiring start-
ing values and predictors which are inherent in predictor-
correctormethods (see Jator et al. [27], Jator [16], andNgwane
and Jator [28]). We note that multiderivative trigonometri-
cally �tted blockmethods for ��� = �(�, �, ��) have been pro-
posed in Jator [29] and Jator [16]. However, the BHTRKNM
proposed in this paper avoids the computation of higher
order derivatives which have the potential to increase compu-
tational cost, especially, when applied to nonlinear systems.
In this paper, we propose a BHTRKNM which is of order 3
and its application is extended to solving oscillatory systems,
PDEs, and Hamiltonian systems including the energy con-
serving equation.

�e organization of this article is as follows. In Section 2,
we derive the BHTRKNM for solving (1). �e analysis and
implementation of the BHTRKNMare discussed in Section 3.
Numerical examples are given in Section 4 to show the accu-
racy and e�ciency of the BHTRKNM. Finally, the conclusion
of the paper is given in Section 5.

2. Development of the BHTRKNM

In order to numerical integrate (1) we de�ne the BHTRKNM
as consisting of the following four discrete formulas:

��+1 = �� + ℎ��� + ℎ2( 1∑
�=0
����+� + ��+V��+V) ,

��+V = �� + ℎ��� + ℎ2( 1∑
�=0
����+� + ��+V��+V) ,

ℎ���+1 = ℎ��� + ℎ2( 1∑
�=0
�����+� + ���+V��+V) ,

ℎ���+V = ℎ��� + ℎ2( 1∑
�=0
�����+� + ���+V��+V) ,

(2)

where ��, ���, ��, and ��� are coe�cients that depend on the

step-length ℎ and frequency �. In general, the frequency �
is chosen near the exact frequency of the true solution (see
[30]). �e coe�cients of the method are chosen so that the
method integrates the IVP (1) exactly where the solutions are

members of the linear space ⟨1, �, �2, sin(��), cos(��)⟩.
�e main method has the form

��+1 = �0�� + �0ℎ��� + ℎ2( 1∑
�=0
����+� + ��+V��+V) , (3)

where �0, �0, and �0, �V, and �1 are to be determined coe�-
cient functions of the frequency and step-size. In order to

derive the main method and additional methods we initially
seek a continuous local approximation Π(�) on the interval[��, ��+1] of the formΠ (�) = �0 (�) �� + �0 (�) ℎ���

+ ℎ2( 1∑
�=0
�� (�) ��+� + ��+V (�) ��+V) , (4)

where �0(�), �0(�), and ��(�), � = 0, V, 1, are continuous
coe�cients. �e �rst derivative of (4) is given by

Π� (�) = ���Π (�) . (5)

We assume that ��+� = Π(��+�) is the numerical approxima-

tion to the analytical solution �(��+�), ���+� = Π�(��+�) is the
numerical approximation to ��(��+�), and ��+� = Π��(��+�) is
an approximation to ��(��+�), � = 0, V, 1.

�e following theorem shows how the continuous
method (4) is constructed. �is is done by requiring that on
the interval from �� to ��+1 = �� + ℎ the exact solution is
locally approximated by function (4) with (5) obtained as a
consequence.

�eorem 1. Let ��(�) = ��, � = 0, 1, 2, �3(�) = sin��, and�4(�) = cos�� be basis functions and let� = (��, ���, ��, ��+V,��+1)� be a vector, where  is the transpose. De
ne the matrix! by

! =(((
(

�0 (��) ⋅ ⋅ ⋅ �4 (��)��0 (��) ⋅ ⋅ ⋅ ��4 (��)���0 (��) ⋅ ⋅ ⋅ ���4 (��)���0 (��+V) ⋅ ⋅ ⋅ ���4 (��+V)���0 (��+1) ⋅ ⋅ ⋅ ���4 (��+1)
)))
)

(6)

and!� is obtained by replacing the �th column of! by the vector�. Let the following conditions be satis
ed:Π(��) = ��,Π� (��) = ���,Π�� (�� + �) = ��+�,� = 0, V, 1;
(7)

then the continuous representations (4) and (5) are equivalent
to the following:

Π (�) = 4∑
�=0

det (!�)
det (!) �� (�) , (8)

Π� (�) = ��� ( 4∑�=0det (!�)det (!) �� (�)) . (9)

Proof. To prove this theorem, we use the approach given in
Jator [17] with appropriate notational modi�cation. We start
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by requiring that the method (4) be de�ned by the assumed
basis functions

�0 (�) = 4∑
�=0
��+1,0�� (�) ,

ℎ�0 (�) = 4∑
�=0
ℎ��+1,0�� (�) ,

ℎ2�� (�) = 4∑
�=0
ℎ2��+1,��� (�) ,

(10)

where ��+1,0, ℎ��+1,0, and ℎ2��+1,� are coe�cients to be deter-
mined. Substituting (10) into (4) we get

Π (�) = 4∑
�=0
��+1,0�� (�) �� + 4∑

�=0
ℎ��+1,0�� (�) ���

+ 1∑
�=0

4∑
�=0
ℎ2��+1,��� (�) ��+� (11)

which is simpli�ed to

Π (�) = 4∑
�=0
(��+1,0�� (�) �� + ℎ��+1,0�� (�) ���

+ 1∑
�=0
ℎ2��+1,��� (�) ��+�) (12)

and expressed as

Π (�) = 4∑
�=0
ℓ��� (�) , (13)

where

ℓ� = ��+1,0�� + ℎ��+1,0��� + 1∑
�=0
ℎ2��+1,���+�. (14)

By imposing conditions (7) on (13), we obtain a system of �ve
equations which can be expressed as!4 = �, (15)

where 4 = (ℓ0, ℓ1, . . . , ℓ4)� is a vector whose coe�cients are
determined via Cramer’s rule as

ℓ� = det (!�)
det (!) , � = 0, 1, . . . , 4, (16)

where !� is obtained by replacing the �th column of ! by �.
In order to obtain the continuous approximation, we use the
elements of 4 to rewrite (13) as

Π (�) = 4∑
�=0

det (!�)
det (!) �� (�) , (17)

whose �rst derivative is given by

Π� (�) = ��� ( 4∑�=0det (!�)det (!) �� (�)) . (18)

Remark 2. Wenote that, in the derivation of the BHTRKNM,
the basis functions ��(�) = ��, � = 0, 1, 2, �3(�) = sin��, and�4(�) = cos�� are chosen because they are simple to analyze.
Nevertheless, other possible bases are possible (see Nguyen et
al. [23]).

2.1. Speci
cation of the Method. �e continuous methods (8)
and (9) which are equivalent to forms (4) and (5) are used to
generate two discrete methods and two additional methods.
�e discrete and additional methods are then applied as a
BHTRKNMfor solving (1).We choose V = 1/2 and evaluating
(8) at � = ��+V and � = ��+1, respectively, gives the two dis-
crete methods ��+V = Π(�� + Vℎ) and ��+1 = Π(�� +ℎ)which
takes the form of themainmethod. Evaluating (9) at � = ��+V
and � = ��+1, respectively, gives the additional methods���+V = Π�(��+Vℎ) and ���+1 = Π�(��+ℎ).�e coe�cients and
their corresponding Taylor series equivalence of ��+V, ��+1,ℎ���+V, and ℎ���+1 are, respectively, given as follows:

�
V,0 = 1,�
V,0 = 12 ,�
V,0 = csc (7/4) csc (7/2) ((8 + 72) cos (7/4) − 4 (2 cos (37/4) + 7 sin (37/4)))1672
= 796 + 7727680 + 71743870720 + 5376123863040 + 23782179989504 + ⋅ ⋅ ⋅ ,

�
V,V = −csc (7/4)2 (8 + (−8 + 72) cos (7/2) − 47 sin (7/2))1672 = 116 − 722304 − 74276480 − 7634406400 − 784459069440 + ⋅ ⋅ ⋅ ,
�
V,1 = csc (7/4)2 (7 + 4 cot (7/2) − 4 csc (7/2))327 = − 196 − 117223040 − 19741290240 − 24776619315200 − 10137898099527680 + ⋅ ⋅ ⋅ ,

(19)
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�1,0 = 1,�1,0 = 1,
�1,0 = csc (7/4) csc (7/2) ((2 + 72) cos (7/4) − 2 (cos (37/4) + 7 sin (37/4)))472

= 16 + 72480 + 1974483840 + 177619353600 + 29781362493440 + ⋅ ⋅ ⋅ ,
�1,V = −csc (7/4)2 csc (7/2) (−2 + 2 cos 7 + 7 sin 7)87 = 13 − 72720 − 7480640 − 769676800 − 781226244096 + ⋅ ⋅ ⋅ ,
�1,1 = csc (7/4)2 (−4 + 72 + 4 cos (7/2) + 27 cot (7/2) − 27 csc (7/2))872

= − 721440 − 1374483840 − 761290240 − 2517812262440960 + ⋅ ⋅ ⋅ ,

(20)

�
V,0 = 0,�
V,0 = 1,
��
V,0 = −cot (7/2)7 + 18 csc(74)2 = 524 + 19725760 + 2374322560 + 26376154828800 + 10337824524881920 + ⋅ ⋅ ⋅ ,
��
V,V = −csc (7/4)2 csc (7/2) (−2 + 2 cos (7) + 7 sin (7))87 = 13 − 72720 − 7480640 − 769676800 − 781226244096 + ⋅ ⋅ ⋅ ,
��
V,1 = csc (7/4)2 (7 + 4 cot (7/2) − 4 csc (7/2))87 = − 124 − 11725760 − 1974322560 − 24776154828800 − 10137824524881920 + ⋅ ⋅ ⋅ ,

(21)

�1,0 = 0,�1,0 = 1,
��1,0 = csc (7/4)2 (7 − 2 sin (7/2))47 = 16 + 72720 + 7480640 + 769676800 + 781226244096 + ⋅ ⋅ ⋅ ,
��1,V = csc (7/4)2 (7 − 2 sin (7/2))47 = 23 − 72360 − 7440320 − 764838400 − 78613122048 + ⋅ ⋅ ⋅ ,
��1,1 = csc (7/4)2 (−4 + 72 + 4 cos (7/2) + 27 cot (7/2) − 27 csc (7/2))872

= 16 + 72720 + 7480640 + 769676800 + 781226244096 + ⋅ ⋅ ⋅ .

(22)

Remark 3. We note that the Taylor series expansions in (19)
through (22) must be used when 7 → 0 because the corre-
sponding trigonometric coe�cients given in these equations
are vulnerable to heavy cancelations (see [8]).

2.2. Block Form. BHTRKNM is formulated from the four dis-
crete hybrid formulas stated in (2) which are provided by the

continuous one-step hybrid trigonometrically �tted method
with one o-grid point given by (4) and its �rst derivative (5).
We de�ne the following vectors:D	+1 = [��+V, ��+1, ℎ���+V, ℎ���+1]� ,

D	 = [��−V, ��, ℎ���−V, ℎ���]� ,
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�	+1 = [��+V, ��+1, ℎ���+V, ℎ���+1]� ,�	 = [��−V, ��, ℎ���−V, ℎ���]� ,
(23)

where G = 0, . . . , , H = 0, . . . , . �e methods in (2)
speci�ed by the coe�cients (19)–(22) are combined to give
the BHTRKNM, which is expressed asI1D	+1 = I0D	 + ℎ2 (J0�	 + J1�	+1) , (24)

where I0, I1, J0, and J1 are matrices of dimension four
whose elements characterize the method and are given by the
coe�cients of (2).

3. Error Analysis and Stability

3.1. Local Truncation Error (LTE). We de�ne the local trun-
cation error of (24) as4 [(K (�) ; ℎ)] = K	+1 − [IK	 + ℎ2J�	 + ℎ2L�	+1] , (25)

whereK	+1 = [� (��+V) , � (��+1) , ℎ�� (��+V) , ℎ�� (��+1)]� ,K	 = [� (��−V) , � (��) , ℎ�� (��−V) , ℎ�� (��)]� ,�	+1 = [� (��+V, ��+V) , � (��+1, ��+1) , ℎ�� (��+V, ��+V) ,ℎ�� (��+1, ��+1)]� ,�	 = [� (��−V, ��−V) , � (��, ��) , ℎ�� (��−V, ��−V) ,ℎ�� (��, ��)]� ,

(26)

and 4[(K(�); ℎ)] = [41[M(�); ℎ], 42[M(�); ℎ], . . . , 44[M(�);ℎ]]� is linear dierent operator.
Suppose that K(�) is su�ciently dierentiable. �en, a

Taylor series expansion of the terms in (25) about the point �
gives the following expression for local truncation error:4 [K (�) ; ℎ] = L0K (�) + L1ℎK� (�) + ⋅ ⋅ ⋅+ L
ℎ
K
 (�) + ⋅ ⋅ ⋅ , (27)

where L�, � = 0, 1, . . ., are constant coe�cients (see [17]).

De
nition 4. �e block method (24) has algebraic order at
least N ≥ 1 provided there exists a constant L�+2 ̸= 0 such
that the local truncation error Q	 satis�es ‖Q	‖ = L�+2ℎ�+2 +S(ℎ�+3), where ‖ ⋅ ‖ is the maximum norm.

Remark 5. (i) �e local truncation error constants (L�+2) of(��+V, ��+1, ℎ���+V, ℎ���+1)� of the block method (24) are given,

respectively, by L5 = (1/1440, 1/720, 1/384, 0)�, where L0 =L1 = L2 = L3 = L4 = 0.
(ii) From the local truncation error constant computa-

tion, it follows that the method (24) has order N at least three.
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Figure 1: �e stability region plotted in the (T, 7)-plane.
3.2. Stability. �e linear-stability of the BHTRKNM is dis-
cussed by applying the method to the test equation ��� =−U2�, where U is a real constant (see [18]). Letting Υ = Uℎ,
it is easily shown as in [19] that the application of (24) to the
test equation yieldsD	+1 = W(Υ2; 7) D	,W (Υ2; 7) fl (I1 − Υ2J1)−1 (I0 + Υ2J0) , (28)

where the matrixW(Υ2; 7) is the ampli�cation matrix which
determines the stability of the method. In the spirit of [22],

the spectral radius of X(W(Υ2; 7)) can be obtained from the
characteristics equationX2 − 2Γ (Υ2; 7) X + Θ (Υ2; 7) = 0, (29)

where 7 = \ℎ, Γ(Υ2; 7) = traceW(Υ2; 7), and Θ(Υ2; 7) =
detW(Υ2; 7) are rational functions. We let T = Uℎ in the
following de�nition.

De
nition 6. A region of stability is a region in the T-7 plane,
throughout which X(W(Υ2; 7)) ≤ 1 and any closed curve

given by X(W(Υ2; 7)) = 1 de�nes the stability boundary of
the method (see [22]). We note that the plot for the stability
region of the BHTRKNMmethod is given in Figure 1.

Remark 7. It is observed that, in the T-7 plane, the
BHTRKNM is stable for T ∈ [0, 47.96] and 7 ∈ [−_, _] (see
Figure 1).

3.3. Implementation. �e main method and the additional
methods speci�ed by (19)–(22) are combined to form the
block method BHTRKNM (24), which is used to solve (1)
without requiring starting values and predictors. BHTRKNM
is implemented in a block-by-block fashion using a Mathe-
matica 10.0 code, enhanced by the feature`abVc[ ] for linear
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problems while nonlinear problems were solved by Newton’s
method enhanced by the feature ��H�daae[ ] (see Keiper and
Gear [33]). Mathematica can symbolically compute deriva-
tives and so the entries of the Jacobian matrix which involve
partial derivatives are automatically generated. In what fol-
lows, we summarize how BHTRKNM is applied.

Step 1. Choose, ℎ = (f − g)/, and the number of blocksΓ = . Using (24), H = 0, and G = 0, the values of(�1/2, �1, ��1/2, ��1)� are simultaneously obtained over the sub-

interval [�0, �1], as �0 and ��0 are known from the IVP (1).

Step 2. For H = 1 and G = 1, the values of (�3/2, �2, ��3/2, ��2)�
are simultaneously obtained over the subinterval [�1, �2], as�1 and ��1 are known from the previous block.

Step 3. �e process is continued for H = 2, . . . ,  − 1 and G =2, . . . , Γ−1 to obtain the numerical solution to (1) on the sub-
intervals [�0, �1], [�1, �2], . . . , [��−1, ��].

In order to illustrate the e�ciency of our method, we
solved a variety of problems including oscillatory systems,
PDEs such as the Telegraph equation, and Hamiltonian
systems. �e following methods are selected for comparison:

(i) BHTRKNM given in this paper.

(ii) ARKN: adapted Runge-Kutta-Nyström method in
[34] which has order �ve.

(iii) (DS3.12): dierence scheme (3.12) in [32].

(iv) ESDIRK: explicit singly diagonally implicit Runge-
Kutta method in [26].

(v) FESDIRK: functionally �tted ESDIRK in [26].

(vi) EFRK: exponentially �tted Runge-Kutta method
(Method (b)) in Simos [8].

(vii) N4: fourth-order standard Runge-Kutta-Nyström
method in [35].

4. Numerical Examples

In this section, numerical experiments are performed using
a code in Mathematica 10.0 to illustrate the accuracy and
e�ciency of the method.

Example 1. We consider the following inhomogeneous IVP
by Simos [8].

��� = −100� + 99 sin (�) ,� (0) = 1,�� (0) = 11, � ∈ [0, 1000] ,
(30)

where the analytical solution is given by

Exact: � (�) = cos (10�) + sin (10�) + sin (�) . (31)

Table 1: Results, with \ = 10, for Example 1.

Our method Simos [8] Err  Err

1000 2.14 × 10−3 1000 1.4 × 10−1
2000 5.98 × 10−5 2000 3.5 × 10−2
4000 2.06 × 10−5 4000 1.1 × 10−3
8000 1.26 × 10−6 8000 8.4 × 10−5
16000 7.79 × 10−8 16000 5.5 × 10−6
32000 4.67 × 10−9 32000 3.5 × 10−7

50,000 100,000 150,000

NFEs

Our method

Simos

lo
g 1

0
(|

E
rr

o
r|
)

−10

−5

0

Figure 2: E�ciency curve for Example 1.

�is example was solved using the order 3 BHTRKNM
and the endpoint errors (Err = |�(��) − ��|) obtained were
compared to the order 4 exponentially �tted method given
in Simos [8]. In Table 1 it is shown that BHTRKNM is more
e�cient than the method in Simos [8]. We also compare the
computational e�ciency of the two methods in Figure 2 by
considering the FNEs (number of function evaluations) over integration steps for each method.�is example illustrates
that the BHTRKNM performs better.

Example 2. We consider the nonlinear Du�ng equation
which was also solved by Simos [8] and Ixaru and Vanden
Berghe [31]:

��� + � + �3 = J cos (Ω�) ,� (0) = L0,�� (0) = 0. (32)

�e analytical solution is given by

Exact: � (�) = L1 cos (Ω�) + L2 cos (3Ω�)+ L3 cos (5Ω�) + L4 cos (7Ω�) , (33)

where Ω = 1.01, J = 0.002, L0 = 0.200426728069, L1 =0.200179477536, L2 = 0.246946143 × 10−3, L3 = 0.304016 ×10−6, and L4 = 0.374 × 10−9. We choose \ = 1.01.
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Table 2: Results, with \ = 1.01, for Example 2.

Our method Simos [8]
Ixaru and Vanden

Berghe [31] Err  Err  Err300 7.52 × 10−5 300 1.7 × 10−3 300 1.1×10−3600 2.47 × 10−6 600 1.9 × 10−4 600 5.4×10−51200 1.34 × 10−7 1200 1.4 × 10−5 1200 1.9×10−62400 8.11 × 10−9 2400 8.7 × 10−7 2400 6.2×10−8
Table 3: Steps and absolute errors, with \ = 1, for Example 3 [0, 50_].

Our method FESDIRK4(3) [26] ESDIRK4(3) [26]
Steps Err Steps Err Steps Err

200 4.42 × 10−4 381 1.40 × 10−3 884 9.36 × 10−3
300 3.2 × 10−5 680 1.69 × 10−4 1573 6.20 × 10−4
400 5.39 × 10−8 1207 1.85 × 10−5 2796 4.42 × 10−5
600 4.25 × 10−7 2144 1.94 × 10−6 4970 3.41 × 10−6
1000 1.06 × 10−8 3806 1.99 × 10−7 8833 2.85 × 10−7
1200 1.76 × 10−9 6762 2.02 × 10−8 15706 2.53 × 10−8

5000 10,000 15,000

NFEs

Our method

Ixaru and Vanden Berghe

Simos

lo
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Figure 3: E�ciency curves for Example 2.

We compare the endpoint global errors for our method
with those of Simos [8] and Ixaru andVandenBerghe [31].We
see from Table 2 that the results produced by our method are
competitive to those given in Simos [8] and Ixaru andVanden
Berghe [31]. Hence our method is more accurate and e�cient
as demonstrated in Figure 3.

Example 3. We consider the following two-body problem
which was solved by Ozawa [26] on [0, 50_]:

���1 = −�1i3 ,���2 = −�2i3 ,i = √�21 + �22 ,

�1 (0) = 1 − c,��1 (0) = 0,�2 (0) = 0,
��2 (0) = √1 + c1 − c ,

(34)

where c (0 ≤ c < 1) is an eccentricity. �e exact solution of
this problem is

Exact: �1 (�) = cos (m) − c,�2 (�) = √1 − c2 sin (m) , (35)

where m is the solution of Kepler’s equation m = � + c sin(m).
We choose \ = 1.

We show in Table 3 that the results obtained using the
BHTRKNMmethod are more accurate than the explicit sin-
gly diagonally implicit Runge-Kutta (ESDIRK) and the func-
tionally �tted ESDIRK (FESDIRK) methods given in Ozawa
[26]. In Figure 4, we also illustrate the e�ciency advantage of
the BHTRKNMmethod over those in Ozawa [26].

Example 4. We consider the sti second-order IVP (see [16]
and references herein)

���1 = (o − 2) �1 + (2o − 2) �2,���2 = (1 − o) �1 + (1 − 2o) �2,�1 (0) = 2,��1 (0) = 0,
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Table 4: Results for Example 5.

Our method ARKN Error (� = 10−6) Error (� = 10−10)  Error (� = 10−6) Error (� = 10−10)
2000 1.82 × 10−8 2.00 × 10−12 2000 9.05 × 10−8 9.00 × 10−12
4000 1.14 × 10−9 8.32 × 10−14 4000 5.43 × 10−9 7.06 × 10−13
8000 7.13 × 10−11 3.50 × 10−13 8000 2.03 × 10−10 2.87 × 10−13
16000 4.33 × 10−12 1.17 × 10−13 16000 7.25 × 10−12 3.56 × 10−13
32000 5.22 × 10−14 1.59 × 10−12 32000 3.45 × 10−13 5.91 × 10−13

5000 10,000 15,000

Steps

Our method

FESDIRK4(3)

ESDIRK4(3)

lo
g 1

0
(|

E
rr

o
r|
)

−15

−10

−5

Figure 4: E�ciency curves for Example 3.

�2 (0) = −1,��2 (0) = 0,o = 2500,� = 1,� ∈ [0, 100] .
(36)

�1(�) = 2 cos�; �2(�) = − cos� where o is an arbitrary
parameter.

�is problem was chosen to demonstrate the stability of
the BHTRKNM (Figure 5). As mentioned in Remark 7, the
method is stable when T ∈ [0, 47.06] and 7 ∈ [−_, _].
4.1. Problems Where �� Appears Explicitly
Example 5. We consider the harmonic oscillator with fre-
quencyΩ and small perturbation � that was solved in Franco
[15] and Guo and Yan [34]:

��� + ��� + Ω2� = 0,� (0) = 0,

−2 −1 1 2

−2

−1

1

2

(a) 0 ≤ 
 ≤ 47.96

−2

−2

−1

−1

1 32

1

3

2

(b) 
 > 47.96

Figure 5: �ese �gures illustrate the stability of the BHTRKNM
applied to Example 4. In (a) the method is stable with  = 722,T ∈ [0, 47.96], and the global error is 1.7 × 10−10, whereas in (b) the
method is unstable with = 721, T > 47.96, and the global error is7005.78.

�� (0) = −�2 ,� ∈ [0, 1000] ,
(37)

where the analytical solution is given by

Exact: � (�) = c(/2)� cos(Ω2 − �24 ) , (38)

where Ω = 1, � = 10−6, and � = 10−10. Guo and Yan [34]
solved this problem using ARKN method. �e results in
Table 4 show that the BHTRKNM is competitive with the
order 5 Runge-Kutta-Nyström method.
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Figure 6: Absolute errors for Example 6.

4.2. Hyperbolic PDE

Example 6. We consider the given Telegraph equation (see
Ding et al. [32]).r27re2 + 2_r7re + _27

= r27r�2 + _2 sin (_�) (sin (_e) + cos (_e))
0 ≤ � ≤ 1, 0 ≤ e ≤ 1.

(39)

�e exact solution is given by 7(�, �) = sin(_�) sin(_e).
In order to solve this PDEusing the BHTRKNM,we carry

out the semidiscretization of the spatial variable � using the
second-order �nite dierencemethod to obtain the following
second-order system in the second variable e.r27�re2 + 2_r7�re + _27� − (7�+1 − 27� + 7�−1)(Δ�)2= t�, 0 < e < 1, � = 1, . . . ,W − 1,7 (��, 0) = 7�,7� (��, 0) = 7��,

(40)

where Δ� = (f − g)/W, �� = g + �Δ�,� = 0, 1, . . . ,W, u =[71(e), . . . , 7�(e)]�, g = [t1(e), . . . , t�(e)]�, 7�(e) ≈ 7(��, e),
and t�(e) ≈ t(��, e) = _2 sin(_��)(sin(_e)+cos(_e)), which
can be written in the form

u
�� = f (e, u, u�) , (41)

subject to the boundary conditionsu(e0) = u0 andu
�(e0) = u�0

where f(e,u,u�) = Au + g, and A is (W − 1) × (W − 1), matrix
arising from the semidiscretized system, and g is a vector of
constants.

Table 5: Results, with \ = _, for Example 6.

Our method Ding et al. [32]� Err Err

0.2 2.46 × 10−10 9.62 × 10−10
0.4 3.96 × 10−10 1.56 × 10−9
0.6 3.98 × 10−10 1.56 × 10−9
0.8 2.46 × 10−10 9.62 × 10−10

�e boundary conditions are chosen accordingly. �is
example was chosen to demonstrate that the BHTRKNM can
be used to solve the Telegraph equation. In Table 5, the results
produced by the BHTRKNMusingΔe = 1/100 and space stepΔ� = 1/100 are compared to scheme (3.12) (U1 = 1/12 andU2 = 5/6), time step Δe = 1/200, and space step Δ� = 1/100,
given in Ding et al. [32]. It is obvious from Table 5 that the
BHTRKNM is more accurate than the method given in [32].
Moreover, the errors produced by BHTRKNMmethod usingΔe = 1/100 and space step Δ� = 1/100 are given in Figure 6.

4.3. Hamiltonian Systems and Energy Conservation. In this
section we present additional examples to show that the
BHTRKNM preserves energy. To do so we consider Hamil-
tonian systems of the form

N� = −∇
w(N, T) ,T� = −∇�w(N, T) , (42)

wherew(N, T) is an arbitrary scalar function of the variables(N, T). Let W be a positive de�nite matrix and let x(T) be a
potential and the total energyw expressed as the sum of the
kinetic and potential energy namely in the form

w(N, T) = 12N�W−1N + x (T) ; (43)



10 International Journal of Dierential Equations

200 400 600 800 1000

t

H
M

−12.5

−12.0

−11.5

−11.0

(a) � = 1000; ℎ = 0.2

200 400 600 800 1000

t

L
M

−12.5

−12.0

−11.5

−11.0

(b) � = 1000; ℎ = 0.2

3.2 3.4 3.6 3.8 4.0 4.2 4.4

BHTRKNM

N4

−8

−6

−4

−2

0

2

4

lo
g 1

0
(E

rr
)

log10(N)

(c) E�ciency curves for BHTRKNM and N4

BHTRKNM

N4

200 300 400 500100

t

−14

−12

−10

−8

−6

−4

−2

lo
g 1

0
(|

E
rr

o
r|
)

(d) Timing curves for BHTRKNM and N4

−1.0 −0.5 0.5 1.0

−1.0

−0.5

0.5

1.0

(e) BHTRKNM solution, ℎ = 0.2

500 1000 1500 2000

−2

2

4

6

8

(f) N4 solution, ℎ = 0.2

Figure 7: Perturbed Kepler problem: the logarithm of the global error of the Hamiltonian EH = |w� − w0| against e for ℎ = 0.2 and the
momentum EL = |4� − 40| are presented in (a) and (b), respectively. In (c) we compare the e�ciency curves for the BHTRKNM and N4.
Timing comparison is provided in (d). It is clear from the timing curves that BHTRKNM is very e�cient.

then systems (42) can be written as a system of �rst-order
dierential equations

T� = V,
V
� = � (T) , (44)

where the momentra N = WV is in terms of the velocities

and �(T) = −W−1∇x(T) is in terms of the negative
gradient of a potential. See [36–39] and references therein for
further details. �e Hamiltonian function, w(�), de�ned by

w(�) = w(N, T) is a polynomial in the variables N and T. �e
Hamiltonian function conserves energy ifw(��+1) = w (��) , ∀H, ℎ > 0. (45)

Example 7. We consider the perturbed Kepler’s problem in
[40] given by

T��1 = − T1(T21 + T22)3/2 − (2o + o
2) T1(T21 + T22)5/2 ,T1 (0) = 1,
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Figure 8: �e pendulum problem: phase diagrams for BHTRKNM with � = 1, 1.4, 2 are presented in (a), (b), and (c), respectively. (d)
illustrates a distortion in the �ow for the RK4, while (e) shows exact �ow of the pendulum problem. In the diagrams, � = T; �� = T�.

T�1 (0) = 0,
T��2 = − T2(T21 + T22)3/2 − (2o + o

2) T2(T21 + T22)5/2 ,T2 (0) = 0,T�2 (0) = 1 + o.
(46)

�e exact solution of this problem isT1 (e) = cos (e + oe) ,T2 (e) = sin (e + oe) . (47)

�e Hamiltonian is

w = 12 (T�21 + T�22 ) − 1√T21 + T22 − (2o + o2)3 (T21 + T22)3/2 . (48)
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Figure 9: �e pendulum problem: Hamiltonian error EH = |w� − w0| using RK4 with ℎ = 0.5 is presented in (a), while (b) shows EH for
BHTRKNM.We also solve the problem on a larger interval of integration [0, 500], using the BHTRNM in (c) and (d) and the RK4 in (e) and
(f), respectively.

�e system also has the angular momentum 4 = T1T�2 − T2T�1
as a �rst integral. We take the parameter value o = 10−3.

�is problem is solved in the interval [0, 1000] using the
BHTRKNM for various values of ℎ = 0.1/2�−1, � = 0, 1, 2, 3, 4.
�e BHTRKNM preserves the Hamiltonian energy and to
demonstrate this, we plot the logarithm of the global error of
the Hamiltonian EH = |w� − w0| and the momentum EL =|4� − 40| as given in Figures 7(a) and 7(b), respectively. �e
problem was also solved using N4 given in Sommeijer [35]
and in Figure 7(c), the e�ciency curves for the BHTRKNM
and N4 are compared showing that the BHTRKNM is
superior.

Example 8. We consider the pendulum oscillator in [36] (and
references herein) given byT�� = − sin T (49)

with initial conditions T (0) = 0,T� (0) = 1.5 (50)

and Hamiltonian w = 12T�2 − cos T. (51)

�is problem is solved using the BHTRKNM on the
interval [0, 50] for ℎ = 1 and � = 1, 1.4, 2 and the results for
the phase diagrams produced by the BHTRKNM in the T-T�
plane are presented in Figures 8(a), 8(b), and 8(c), respec-
tively. We observe that the BHTRKNM gives good results for
all the values of�, since all the diagrams follow the exact �ow
of the pendulum problem as given in Figure 8(e). As illus-
trated in these Figures, the numerical solutions are periodic
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and in accordance with the fact that the pendulum equation
has a periodic solution. We note that Van Daele and Vanden
Berghe in [36] obtained similar results for a smaller step-sizeℎ = 0.5 and� = 1 using `/�method including other versions
of the `/�method and it was observed that the `Q1��method
in [36] produced better numerical results for � = 1 than for� = 1.4. �e problem was also solved using the fourth-order
Runge-Kutta method (RK4) and the results presented in
Figure 8(d) show a distortion in the �owdiagram for the RK4;
hence the BHTRKNM is superior. �e pendulum problem
was also presented in Figure 9.

5. Conclusion

�is paper presents a BHTRKNM whose coe�cients are
functions of the frequency and the step-size for directly solv-
ing general second-order initial value problems (IVPs), oscil-
latory systems, and Hamiltonian systems, as well as systems
arising from the semidiscretization of hyperbolic PDEs, such
as the Telegraph equation. We implement the BHTRKNM
in a block-by-block fashion; thus the method does not
need starting values and predictors which are inherent in
predictor-corrector methods. Numerical experiments pre-
sented in this paper clearly demonstrate that our method has
a reasonably wide stability region and enjoys accuracy and
e�ciency advantages when compared to existing methods
in the literature. Technique for accurately estimating the
frequency as suggested in [30, 41] as well as implementing the
method in a variable step mode will be considered in future.
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