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Abstract� We introduce a new Krylov subspace iteration for large scale eigenvalue problems
that is able to accelerate the convergence through an inexact �iterative� solution to a shift�invert
equation� The method also takes full advantage of exact solutions when when they can be obtained
with sparse direct method� We call this new iteration the Truncated RQ iteration �TRQ�� It is based
upon a recursion that develops in the leading k columns of the implicitly shifted RQ iteration for
dense matrices� Inverse�iteration�like convergence to a partial Schur decomposition occurs in the
leading k columns of the updated basis vectors and Hessenberg matrices� The TRQ iteration is
competitive with the Rational Krylov Method of Ruhe when the shift�invert equations can be solved
directly and with the Jacobi�Davidson Method of Sleijpen and Van der Vorst when these equations
are solved inexactly with a preconditioned iterative method� The TRQ iteration is related to both
of these but is derived directly from the RQ iteration and thus inherits the convergence properties
of that method� Existing RQ de�ation strategies may be employed directly in the TRQ iteration�
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�� Introduction� Recently� there have been a number of research developments
in the numerical solution of large scale eigenvalue problems ����� ����� ����� ���� ��	��
����� ��
�� ���� ���� The state of the art has advanced considerably and general purpose
numerical software is emerging for the nonsymmetric problem �
�� ���� ����� �
�� ��
��
����� The development of this new general purpose software for the nonsymmetric
problem is a welcomed advance� However� the methods in these packages are not able
to e�ectively utilize a preconditioned iterative solver to implement a shift and invert
spectral transformation to accelerate convergence� They all require highly accurate
solutions to the shift�invert equations and the cost of producing such accuracy with an
iterative method is generally prohibitive� In this paper� we introduce a new iteration
for large scale problems that is in the same spirit as the Implicitly Restarted Arnoldi
Method used in ARPACK ����� ����� However� this new method is very amenable
to acceleration of convergence with inexact �iterative� solutions to the shift�invert
equations� Moreover� the algorithm introduced here can take full advantage of exact
solutions when they can be obtained with a sparse direct method�

We call this new iteration the Truncated RQ iteration �TRQ�� It is based upon a
recursion that develops in the leading k columns of the implicitly shifted RQ iteration
for dense matrices� This iteration is analogous to the well known QR iteration� but it
implicitly factors the shifted Hessenberg matrix into an RQ factorization �triangular
times orthogonal� and then multiplies the factors in reverse order rather than using
a QR factorization for this iteration� The main advantage in the large scale setting
is that inverse�iteration�like convergence occurs in the leading column of the updated
basis matrix� Thus� eigenvalues rapidly converge in the leading principal submatrix of
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the iterated Hessenberg matrix� A partial Schur form rapidly emerges in the leading
portion of the factorization� The leading principal submatrix of the iterated Hes�
senberg matrix becomes upper triangular with the desired eigenvalues appearing as
diagonal elements�

A k�step TRQ iteration is derived by developing a set of equations that de�ne
the k � ��st column of the updated set of basis vectors and the updated projected
Hessenberg matrix that would occur if a full RQ iteration were carried out� The
resulting equations have a great deal in commonwith the update equation that de�nes
the Rational Krylov Method of Ruhe ����� and also with the projected correction
equation that de�nes the Jacobi�Davidson Method of Sleijpen and Van der Vorst� ��	��
The TRQ iteration is comparable to and quite competitive with the Rational Krylov
Method when it is possible to factor and solve the shift�invert equations directly�
With restarting� it is possible to de�ne an inexact TRQ iteration that compares very
favorably with the Jacobi�Davidson Method� The TRQ iterations developed here are
derived directly from the RQ iteration and may take advantage of all that is known
about de�ation strategies in the dense case� Moreover� the convergence behavior
follows directly from the convergence properties of the RQ iteration�

In Section �� we derive the TRQ equations that will de�ne the TRQ iteration
and investigate the existence and uniqueness of the solution to these equations� We
also introduce the formal speci�cation of the TRQ iteration� In Section 
 we turn
to some implementation issues that arise when a sparse direct solution to the shift�
invert equation is possible� We show that the Arnoldi relation existing in the leading
k columns may be used to greatly reduce the amount of computation required to
solve the TRQ equations� In Section 
 we also discuss the selection of shifts to be
used in the TRQ iteration when factorizations are only allowed intermittently� Also�
de�ation schemes are introduced� In Section � we give several numerical examples
to illustrate the convergence behavior of the TRQ iteration� We demonstrate that
the convergence is cubic on symmetric problems and quadratic on nonsymmetric
problems when a factorization is done at each step� We also show that the more
practical alternative of factoring intermittently is quite competitive with the Rational
Krylov Method employing the same type of shift strategy� A comparison is made with
Implicitly Restarted Arnoldi �IRA� in the case that only one factorization is allowed�
and we observe that IRA is more e�cient than TRQ in this case�

In Section �� we develop the inexact TRQ iteration with restarting� Restarting is
required to maintain an Arnoldi factorization and hence a Krylov relationship amongst
the columns of the k�step factorization� As convergence takes place� standard de�a�
tion techniques are employed to lock converged Schur vectors and orthogonalization
against these converged vectors takes place naturally through the Arnoldi process� In
some sense� this process is closely related to inverse iteration with Wielandt de�a�
tion ��
� pp� �	��� ���� pp� ����� We illustrate an apparent numerical advantage of
placing the inverse iteration within the context of the TRQ iteration and show some
explicit comparisons with de�ated inverse iteration indicating clear superiority of the
TRQ scheme� Of course� the purpose of introducing possibly inexact solutions to
the shift�invert equations is to provide for the use of preconditioned iterative solution
techniques on these equations� We show numerical experiments indicating very favor�
able comparison with the Jacobi�Davidson Method using the same iterative method
for solving the update equations in both schemes� Moreover� we give some prelimi�
nary evidence that a shifted form of a standard preconditioner for the original matrix
is a satisfactory preconditioner for the update equations� Constructing a modi�ed
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preconditioner for the projected update equations �as required in Jacobi�Davidson�
does not seem to be necessary with inexact TRQ�

Throughout this paper� capital and lower case Latin letters denote matrices and
vectors respectively� while lower case Greek letters denote scalars� The j�th canonical
basis vector is denoted by ej � The Euclidean norm is used exclusively and is denoted
by k � k � The transpose of a matrix A is denoted by AT and conjugate transpose by
AH � Upper Hessenberg matrices will appear frequently and are usually denoted by
the letter H� The subdiagonal elements of such Hessenberg matrices play a special
role in our algorithms� The j�th subdiagonal element �i�e� the �j � �� j��st element�
of an upper Hessenberg matrix H will be denoted by �j � The conjugate of a complex
number � is denoted by ���

�� Truncating the RQ Iteration � The implicitly shifted QR iteration is gen�
erally the method of choice for the computation of all the eigenvalues and eigenvectors
of a square matrix A� Practical implementation of the algorithm begins with a com�
plete reduction of A to upper Hessenberg form�

AV � V H

with V HV � I and H upper Hessenberg� The QR iteration is then applied to H to
produce a sequence of orthogonal similarity transformations

H�j��� � �Q�j��HH�j�Q�j�� V �j��� � V �j�Q�j�

with H��� � H� V ��� � V and Q�j� implicitly constructed and applied through a
�bulge chase� process that is mathematically equivalent to obtaining Q�j� through
the QR�factorization Q�j�R�j� � H�j�� �jI� j � �� �� � � �� where f�jg is a set of shifts

selected as the algorithm proceeds� We use v
�j�
i to denote the i�th column of V �j��

and �
�j�
ii to denote the �i� i��th entry of R�j�� It is straightforward to show that H�j�

remains upper Hessenberg throughout and that

v
�j���
� �

�j�
�� � �A � �jI�v

�j�
� and �A� �jI�

Hv�j���n � v�j�n ���j�nn�

Hence� the last column is an inverse iteration sequence and the �rst column is a
power method or polynomial iteration� The Implicitly Restarted Arnoldi Method
provides a means to truncate this QR iteration and take advantage of the shifted�
power�method�like convergence properties of the leading k columns of the iterated

basis V �j� without computing the full QR factorizations� The relations between v
�j���
i

and v
�j�
i for i � �� �� � � � � k on successive iterations are preserved in this truncated IRA

iteration as if the full QR iteration had been carried out� Appropriate shift selection
will force desired eigenvalues and corresponding eigenvectors to emerge in the leading
portion of the factorization as the iteration proceeds�

Some advantages of the IRA approach are� �i� the number of basis vectors stored
is pre�determined and �xed so that orthogonality of the Arnoldi basis vectors may
be enforced numerically� and �ii� the iteration proceeds without having to compute a
matrix factorization� In many situations this iteration is successful but it can be slow
to converge or fail when the desired portion of the spectrum does not have a favorable
distribution with respect to the entire spectrum of A� It would be very desirable to
devise a scheme that could take advantage of the inverse iteration properties of the
QR iteration instead of the power iteration properties�
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Algorithm �� Implicitly Shifted RQ�iteration

Input� �A� V�H� with AV � V H� V HV � I� and H is upper
Hessenberg�

Output� �V�H� such that AV � V H� V HV � I and H is upper triangular�

�� for j � �� �� 
� ��� until convergence�
���� Select a shift �� �j�
���� Factor H � �I � RQ�
���� H � QHQH � V � V QH �

�� end�

Fig� ���� Implicitly Shifted RQ�iteration�

An alternative to the Implicitly Shifted QR iteration is the Implicitly Shifted RQ
iteration� Again� the iteration begins with a reduction to Hessenberg form and then
the iteration demonstrated in Figure ��� is applied�

It is easily shown that

�A� �jI�v
�j���
� � v

�j�
� �

�j�
�� �

Thus� the sequence v�j�� in the �rst column is an inverse iteration sequence and one
would expect very rapid convergence of leading columns of V �j� to Schur vectors of
A�

In the large scale setting it is generally impossible to carry out the full iteration
involvingn�n orthogonal similarity transformations� It would be desirable to truncate
this update procedure after k steps to maintain and update only the leading portion
of the factorizations occurring in this sequence� This truncation is obtained from a
set of de�ning equations that emerge during the partial completion of an RQ step� To
derive these relations� partition V � �Vk� �V � where Vk denotes the leading k columns
of V and let

H �

�
Hk M

�ke�e
T
k

�H

�

be partitioned conformably so that

A�Vk� �V � � �Vk� �V �

�
Hk M

�ke�e
T
k

�H

�
������

Now� for a given shift �� partially factor H � �I to obtain

H � �I �

�
Hk � �Ik �M

�ke�e
T
k

�R

��
Ik �

� �Q

�

where �H � �I � �R �Q� Then

�A � �I��Vk � �V �Q
H� � �Vk� �V �

�
Hk � �Ik �M

�ke�e
T
k

�R

�
�����
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If Givens transformations were being used� for example� then to complete the RQ
factorization in ������ one would continue applying Givens rotations from the right
using each rotation to annihilate a subdiagonal element� However� at this point of
the factorization� there is a set of equations that uniquely determines the �rst column
v� of the matrix �V �QH � If these equations can be formulated and solved� then the
leading portion of this iteration may be obtained using just the leading k�� columns
�Vk� �V e�� and the leading k columns of the Hessenberg matrix H� The remaining
n� k� � columns of V and of H need never be formed or factored� To formulate the
de�ning relations� equate the leading k � � columns on both sides of equation �����
to obtain

�A� �I��Vk� v�� � �Vk� v�

�
Hk � �Ik h
�ke

T
k �

�

where v � �V e�� v� � �V �QHe�� h � �Me�� and � � eT�
�Re�� From this relationship� it

follows that v� must satisfy

�A� �I�v� � Vkh� v�����
�

with V H
k v� � � and kv�k � � since the columns of �Vk� v�� must be orthonormal�

These conditions may be expressed succinctly through the TRQ equations

�
A� �I Vk
V H
k �

��
v�
�h

�
�

�
v�
�

�
� kv�k � �������

In addition to these TRQ equations� we note that the �rst k columns on both sides
of ����� are in a k�step Arnoldi relationship

�A � �I�Vk � Vk�Hk � �Ik� � fke
T
k�����

with fk � v�k �
The algorithm we shall develop depends upon the determination of v�� h� and �

directly from equation ����� rather than from the RQ factorization procedure� The
fact that the RQ factorization exists assures that a solution to ����� exists even when
the bordered matrix in ����� is singular�

The following lemmas characterize how singularity can occur in these equations�
Moreover� we prove that the solution to ����� is unique even when the bordered matrix
is singular� In the next section we show that the singular case in ����� is benign and
easily dealt with numerically�

Lemma ���� Assume A � �I is nonsingular �i�e�� that � is not an eigenvalue of
A� and that equations ����� and ����� hold as a result of the partial RQ	factorization
described by ������ Then the bordered matrix

B �

�
A � �I Vk
V H
k �

�
�����

is nonsingular if and only if V H
k �A � �I���Vk is nonsingular� Moreover� if V H

k �A �
�I���Vk is singular and z is any nonzero vector such that V H

k �A � �I���Vkz � ��
then w � ��A � �I���Vkz is nonzero� and v� �

w
kwk � h � � z

kwk � and � � � satisfy

the TRQ equations�
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Proof� Since the RQ�factorization �R �Q � �H � �I always exists� it follows that
����� must hold in any case� The assumption that A� �I is nonsingular provides the
block factorization

B �

�
I �

V H
k �A � �I��� I

��
A� �I Vk
� �V H

k �A� �I���Vk

�
������

Clearly� B is nonsingular if and only if V H
k �A � �I���Vk is nonsingular�

To establish the second part of the lemma� we show that the equation�
A� �I Vk
� V H

k �A� �I���Vk

��
w
z

�
�

�
v

V H
k �A� �I���v

�
�����
�

has a nonzero solution �wH � zH�H with � � � if and only if and only if V H
k �A��I�

��Vk
is singular�

To prove this� suppose �rst that � � � and �wH � zH�H is a nonzero solution to
���
�� Then V H

k �A � �I���Vk must be singular because A � �I is assumed to be
nonsingular� On the other hand� if we assume V H

k �A� �I���Vk is singular and z is a
nonzero vector such that V H

k �A � �I���Vkz � �� then putting w � ��A � �I���Vkz
will provide a nonzero solution to ���
� with � � �� Moreover� w must be nonzero
since z is nonzero and �A � �I���Vk has linearly independent columns� Therefore�
v� �

w
kwk � h � � z

kwk � and � � � will satisfy the TRQ equations�

Lemma��� indicates that the solution to ����� will be unique if and only if V H
k �A�

�I���Vk is either nonsingular or has a one dimensional null space� The following
lemma establishes this fact and hence the uniqueness of the solution to the TRQ
equations ������

Lemma ���� Assume A � �I is nonsingular and that equations ����� and �����
hold� If G � V H

k �A� �I���Vk is singular� then the null space of GH is spanfekg�
Proof� Let y � V H

k �A � �I���fk and de�ne H� � Hk � �Ik� Then

GH� � V H
k �A � �I���VkH�

� V H
k �A � �I�����A� �I�Vk � fke

T
k �

� Ik � yeTk���	�

If G is singular� and x is any nonzero vector such that � � xHG� then ���	� implies

� � xHGH� � xH � �xHy�eTk �

Since x �� � this equation implies xHy �� � which in turn implies that x��xHy� � ek�
Hence eTkG � � and the null space of GH is spanfekg� This concludes the proof�

Finally� the following lemma indicates that exact singularity of B rarely occurs�
Lemma ���� Assume A � �I is nonsingular and that equations ����� and �����

hold� Then � � � in ����� and V H
k �A � �I���Vk is singular if and only if the shift �

is an eigenvalue of �H in equation ���
��
Proof� It is su�cient to show V H

k �A� �I���Vk is singular if and only if the shift

� is an eigenvalue of �H in equation ������ To this end� note that V H
k �A � �I���Vk is

singular if and only if V H
k �A��I���Vkz � � for some z �� �� Since �Vk� �V � is unitary�

any such z must satisfy

Vkz � �A� �I� �V g � �A� �I��Vk� �V �

�
�
g

�

D 

D 
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for some nonzero vector g �i�e� �A � �I���Vkz must be in the range of �V �� This
implies

Vkz � �Vk� �V �

�
Hk � �Ik M

�ke�e
T
k

�H � �In�k

��
�
g

�

� VkMg � �V � �H � �In�k�g�

Since �Vk� �V � is unitary� it follows that

� �H � �In�k�g � �������

and since g is nonzero this implies the singularity of � �H � �In�k��
Now� suppose that there is a nonzero g that satis�es ������� Observe thatMg �� �

since this would imply A � �I is singular� Hence� the argument just given may be
reversed to produce a nonzero z such that V H

k �A��I�
��Vkz � � and lemma is proved�

The TRQ equations may be used to develop a truncated k�step version of the Im�
plicitly Shifted RQ iteration� If a k�step Arnoldi factorization ����� has been obtained
then a k�step TRQ iteration may be implemented as shown in Algorithm � �Figure
�����

Algorithm �� �TRQ� Truncated RQ�iteration

Input� �A� Vk�Hk� fk� with AVk � VkHk � fke
T
k � V

H
k Vk � I� Hk upper

Hessenberg�
Output� �Vk�Hk� such that AVk � VkHk� V

H
k Vk � I and Hk is upper triangular�

�� Put �k � kfkk and put v � fk��k�
�� for j � �� �� 
� ��� until convergence�

���� Select a shift �� �j �

���� Solve

�
A � �I Vk
V H
k �

��
v�
�h

�
�

�
v�
�

�
with kv�k � ��

���� RQ Factor

�
Hk � �Ik h
�ke

T
k �

�
�

�
Rk r
� �

��
Qk q
	eTk 


�
�

���� Vk � VkQ
H
k � v�q

H �
���� �k � 	eTkRkek� v � vk�	 � v��
�
���� Hk � QkRk � �Ik�

�� end�

Fig� ���� The Truncated RQ�iteration�

The key idea here is to determine the k � ��st column v� of the updated matrix
V and the k � ��st column of H that would have been produced in the RQ iteration
by solving the linear system ������ Then� the iteration is completed through the nor�
mal RQ iteration� As eigenvalues converge� the standard de�ation rules of the RQ
iteration may be applied� Orthogonality of the basis vectors is explicitly maintained
through accurate solution of the de�ning equation� Moreover� even if the accuracy of
this solution is relaxed� orthogonality may be enforced explicitly through the orthog�
onalization scheme developed in ���� We shall refer to this as the DGKS procedure�

D 
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Potentially� the linear solve indicated at Step ��� of Algorithm � could be provided
by a straightforward block elimination scheme� However� considerable re�nements to
this scheme are possible due to the existing k�step Arnoldi relationship ������ This
will be discussed in the next section�

�� Implementation Issues� In this section� we address some practicalities as�
sociated with e�cient implementation of the TRQ iteration�

���� Solving the TRQ Equations� The Truncated RQ iteration described in
the previous section will only be e�ective in the large scale setting if there is an
e�cient means for solving the TRQ equations� Recall that A� Hk� Vk and fk � v�k
are in a k�step Arnoldi relation �
��� so that

�A � �I�Vk � Vk�Hk � �Ik� � fke
T
k ��
���

Rescaling the right hand side of the system ����� leads to

�
A� �I Vk
V H
k �

��
w
z

�
�

�
fk
�

�
��
���

If we put d � �A � �I���fk and y � V H
k d� then block Gaussian elimination leads to

solving the equations
�a� V H

k �A � �I���Vkz � y�
�b� �A � �I�w � fk � Vkz�

If A��I is nonsingular� these two equations together with equation �
��� may be used
to derive a solution to equation �
��� with just a single linear solve� It is not necessary
to solve a blocked system of k equations as the straightforward application of block
Gaussian elimination described in the previous section would indicate� Moreover� this
e�cient solution scheme does not depend on determining the singularity of the TRQ
equations ����� in any way� The underlying theory is developed with the following
lemma�

Lemma ���� Assume A � �I is nonsingular and de�ne G � V H
k �A � �I���Vk

and H� � �Hk � �Ik�� There is a vector s such that either

�Ik �H�G�s �� � or eTkGs �� ���
�
�

For any such s� put

w � �I � VkV
H
k ��A � �I���Vks�

Then w �� � and a solution v�� h� � to ����� is given by

v� � w�kwk� h � �Ik �H�G�s�kwk� � � ��ke
T
kGs�kwk�

Proof� If eTkGs � � for all vectors s� then the matrix H�G is singular and there
must be a nonzero vector s such that �Ik � H�G�s �� �� Therefore� there is a k�
dimensional vector s that satis�es either � � eTkGs �� � or �Ik �H�G�s �� ��

For any such s� put w � �I � VkV
H
k ��A� �I���Vks� Observe that

�A � �I�w � �A � �I��I � VkV
H
k ��A� �I���Vks

� Vks� �A� �I�VkGs

� Vks� �VkH� � fke
T
k �Gs

� Vk�Ik �H�G�s � fk���
���
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The conditions on s assure that the right hand side of �
��� is nonzero� It follows that
w �� � and that

�A� �I�v� � Vkh� v�

where v� � w�kwk� h � �Ik �H�G�s�kwk � and � � ��k��kwk�

Remark � Our original motivation for developing Lemma 
�� was to handle the case
when � is an eigenvalue of Hk� A particular choice of s for this case is to put s � q
where qHH� � �� and qHq � �� Then

qH�Ik �H�G�s � qHs � qHq � ��

The conditions of Lemma 
�� are clearly satis�ed with this choice of s� However� we
do not use this choice in practice�

Remark � The most general form of selecting a right hand side for constructing w
is to take

w � �I � VkV
H
k ��A� �I����Vkt� fk��

where s � t � H�ek� is chosen to satisfy the conditions of Lemma 
��� To see this�
observe that

Vkt � fk� � Vks � �VkH� � fke
T
k �ek�

� Vks � �A � �I�Vkek��

Hence�

�I � VkV
H
k ��A� �I����Vkt� fk�� � �I � VkV

H
k ��A� �I���Vks�

Thus� there is no mathematical reason to include the term fk�� but the additional
freedom may eventually have some numerical consequences that are not apparent at
the moment� Note that when the shift � is an eigenvalue of Hk then the combination
of t � ��� � � is prohibited because the corresponding vector s does not satisfy
either of the conditions 
�
 required for constructing the solution in Lemma 
���
The parameters t and � here are obviously related to the corresponding parameters
appearing in the RKS method� It is interesting to note that the choice t � ��� � � is
also prohibited in RKS when � is an eigenvalue of Hk�

Remark � An alternative to forming h as described in Lemma 
�� is to form w
as described above and normalize to get v� � w�kwk� Then� construct h and �
using the DGKS procedure to orthogonalize the vector �A��I�v� against Vk and fk
respectively� Thus

h� V H
k �A� �I�v� � V H

k Av�� �� fHk �A � �I�v��kfkk�

Lemma 
�� justi�es Algorithm 
 to solve the TRQ equations� Once again� we remark
that the DGKS procedure may be used at Steps ��
�� of Algorithm 
 to assure that
both V H

k v� � � and �A��I�v� � Vkh�v� to working accuracy� For relatively small

D 
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Algorithm �� Direct Solution of the TRQ Equations

Input� �A� Vk�Hk� fk� �� with AVk � VkHk � fke
T
k � V

H
k Vk � I and V H

k fk � ��
Output� �v�� h� �� such that �A��I�v� � Vkh� fk�� V H

k v� � � and kv�k � ��

�� Choose t and � and solve �A � �I�w � Vkt� fk��
�� y � V H

k w�
�� w� w � Vky�
�� v� � w

kwk � �� fHk �A� �I�v��kfkk� h� V H
k Av��

Fig� ���� Direct Solution of the TRQ Equations�

values of k� the main computational e�ort is the solution of the equation �A��I�w �
Vkt� fk�� As mentioned in Remark �� there may be advantageous choices of t and �
to overcome inaccuracies due to ill�conditioning when � is very nearly an eigenvalue
of A� We used t � ek and � � � in all of the experiments reported in Section ��
This choice seemed to perform consistently well as compared to many of the obvious
choices such as taking t to be an eigenvector ofHk� Finally� it is clear that incremental
re�scaling may be introduced as in inverse iteration to avoid over�ow and that the
scalar � appearing in the proof of Lemma 
�� need not be computed explicitly�

The formulation just developed is appropriate when a sparse direct factorization
of A��I is feasible� When this is not the case we must resort to an iterative scheme�
For an iterative scheme� there may be an advantage to solving the projected equation

�I � VkV
H
k ��A� �I��I � VkV

H
k � �w � fk

and putting

v� �
w

kwk
�

where w � �I � VkV
H
k � �w� This is mathematically equivalent to solving the TRQ

equations� The advantage here is that the matrix

�I � VkV
H
k ��A � �I��I � VkV

H
k �

is most likely to be much better conditioned than A��I when � is near an eigenvalue
of A� A projected equation of this form plays a key role in the Jacobi�Davidson
Method recently developed in ��	�� ����� �	�� It also provides a means for allowing
inaccurate solutions and preconditioning as we shall discuss later in Section ��

���� Selection of Shifts� Another important issue to be addressed in the TRQ
iteration is the selection of shifts� Various options are available� They lead to di�erent
convergence behavior� We discuss only a few simple options below� The tradeo�s and
comparison to other algorithms will also be discussed in Section ��

The simplest strategy is to use a �xed shift � throughout the TRQ iteration� This
shift is referred to as the target shift in the following discussion� In this case� a single
matrix factorization of A � �I may be used repeatedly to get inverse power method
type of convergence� However� if the ratio

	 �
j
j � �j

j
j�� � �j
�
���



TRUNCATED RQ�ITERATION ��

is close to �� the approximation to 
j converges extremely slow� In Section �� we
compare this approach with the shifted and inverted IRA� It is observed that the
shifted and inverted IRA is often more e�cient in obtaining a few eigenvalues near a
prescribed shift�

At the other extreme� we could adjust the shift at each iteration to enhance the
rate of convergence� Eigenvalues of Hk are natural candidates for the shift� They
provide the best approximations to eigenvalues of A from the subspace spanned by
the columns of Vk� and are referred to as the Ritz values� Before each TRQ update
we compute the Ritz values� and choose the one closest to the target shift as the next
shift� A converged Ritz value should not be selected as a shift�

This choice of shift usually leads to quadratic or cubic convergence rate� However�
this rapid convergence is obtained at the cost of factoring a matrix at each iteration�
It is observed from our experiments that Ritz values tend to jump around during the
early stage of the TRQ iteration� Thus� the target shift is used during the �rst few
iterations until Ritz values start to settle down�

A compromise between the �rst and the second choice is to use a �xed shift until
an eigenvalue has converged� Another possibility is to use each shift for �at most�
a �xed number of iterations� In either case� the best Ritz value that has not yet
converged may be selected as the next shift� Rapid convergence is generally obtained
with this strategy� The cost for matrix factorization is reduced in comparison with the
second approach� It will be shown in Section � that this scheme is very competitive
with the Rational Krylov method of Ruhe ����� ����� �����

Finally� the leading k�columns of the Implicitly Shifted RQ iteration may be
obtained by selecting the same set of shifts as the full dense algorithm if desired� For
example� if the elements of the matrix H are denoted by 
ij� we could use 
�� as the
shift� This corresponds to the Rayleigh quotient shift in the RQ algorithm� Another
alternative is the Wilkinson shift� This is de�ned to be the eigenvalue of the leading
�� � matrix �


�� 
��

�� 
��

�

that is the nearest to 
��� These strategies may be used when no target shift is given
in advance� or when the TRQ iteration is used in conjunction with a de�ation scheme
to compute the full spectrum of A�

Once the shift is chosen� an RQ update as described in Steps ��
 through ���
of Algorithm � is taken� Clearly� it can be done explicitly� but there may be some
advantage to an implicit application� An implicit shift application is straightforward
since �

Hk � �Ik h
�ke

T
k �

�
�

�
Hk h
�ke

T
k ��

�
� �

�
Ik �
� �

�
�

where �� � � � �� Thus the standard bulge�chase implementation of an RQ sweep
corresponding to the shift � may be applied to the matrix

�
Hk h
�ke

T
k ��

�
�

Finally� when the matrix A is real nonsymmetric� we would like to perform the
TRQ iteration in real arithmetic� However� there seems to be no simple analog to the
double shifting strategy used in the QR algorithm� Applying double shifts implicitly
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in the TRQ iteration is possible� However� the corresponding TRQ equation involves
�A � �A � ��I��A � �I�� and more work is required to solve this equation� It is still
questionable whether a truncated double implicit shifting strategy should be used in
practice� Therefore� shall not present the details here� A double shift algorithm that
involves solving �Aw � v may be found in �����

���� De�ation� As discussed earlier� in each TRQ iteration the TRQ equation
����� is solved so that a truncated Hessenberg reduction of the form

A�Vk� v�� � �Vk� v�

�
Hk h
�ke

T
k �

�
�
���

is maintained� As the TRQ iteration proceeds� the leading subdiagonal elements
of Hk become small� Usually� they will become small in order �from top down�
but occasionally this convergence happens further down the subdiagonal� When the
magnitude of a subdiagonal element �j falls below some numerical threshold� it is set
to zero and the matrix Hk is split to give

Hk �

�
Hj M

� �Hk�j

�
�

The �rst j columns of Vk form a basis for an invariant subspace of A� and j eigenvalues
of A may be extracted from Hj� The de�ation technique used in the QR algorithm
can be applied here to obtain subsequent eigenvalues� We rewrite �
��� as

�A� �I��Vj � �Vk�j� v
�� � �Vj � �Vk�j� v�

�
� Hj � �Ij M h�

� �Hk�j � �Ik�j h�
� �ke

T
k�j �

�
A ��
���

where

Vk � �Vj � �Vk�j� and h �

�
h�
h�

�
�

have been partitioned conformably with Vj representing the leading j columns of Vk
and h� representing the �rst j components of h�

An upper triangular matrix �R and an orthogonal matrix �Q of the form

�R �

�
R� r
� �

�
� �Q �

�
Q� q

	eTk�j 


�

are constructed such that

�
�Hk�j � �Ik�j h�

�ke
T
k�j �

�
� �R �Q�

Multiplying �
��� from the right by �QH �

�
Ij

�QH

�
yields

�A� �I��Vj � �V
�
k�j� �v�� � �Vj �

�Vk�j� v�

�
� Hj � �Ij �M �h�

� R� r
� � �

�
A �
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where �V �
k�j �

�Vk�jQH
� � v�q

H � �v� � �	 �Vk�jek�j � �
v�� �M �MQH
� � h�q

H �

and �h� � �	Mek�j � �
h�� Note that the Vj and Hj are not modi�ed during the
de�ation�

The next cycle of TRQ iteration starts with the selection of a new shift� The role
of �Hk�j� �Vj and �v� are replaced by �H�

k�j � Q�R� � �Ik�j� �V
�
j and �v� respectively�

If the subdiagonal elements of Hk converge to zero in order �from top to bottom�� a
partial Schur form

AVj � VjRj�

is obtained� Of course� when a subdiagonal �j approaches zero out of order� then the
splitting described in equation �split� above will still yield a partial Schur form since
the Schur form of HjQj � QjRj can be used to make an explicit transformation�

	� Numerical Examples� In this section� we evaluate the cost and performance
of the Truncated RQ �TRQ� iteration� We �rst show an example indicating that the
convergence rate of TRQ is exactly the same as that of the RQ iteration when the
TRQ equations ����� are solved exactly� Comparisons will be made with the shifted
and inverted IRA� the Rational Krylov Subspace �RKS� method and the recently
proposed Jacobi�Davidson QR �JDQR� method �	�� We show that if the the shift
is �xed� TRQ does not provide much advantage over the shifted and inverted IRA�
However� if the shifts are allowed to change during the iteration� TRQ often performs
better than IRA in terms of number of iterations� and is competitive with the RKS
and the JDQR algorithms� Numerical examples will be presented to demonstrate
the performance of the algorithm� All numerical experiments are performed using
MATLAB ��� on a SUN�SPARC ��

	��� Convergence Rate of TRQ� The rate of convergence of TRQ follows from
that of the full RQ iteration� For certain choices of shifts� it is cubic for symmetric
eigenvalue problems and quadratic for nonsymmetric problems� In fact� if the Arnoldi
iteration with the starting vector v� is used to produce the Hessenberg reduction
required by Algorithm � as an input� the �rst k eigenvalues appearing on the diagonal
of the output triangular matrix will be exactly the same as the those computed by
TRQ with the same starting vector�

In the following� we present an example that veri�es the fast convergence of TRQ�
We choose to work with a standard ��point discrete Laplacian de�ned on ��� ��� ��� ��
with zero Dirichlet boundary conditions� For simplicity� the ��� by ��� symmetric
matrix is scaled by h�� where h � ����� is the mesh size of the discretization� We
are interested in � eigenvalues with the smallest magnitude� The size of the Arnoldi
factorization used in the TRQ iteration is set to be � �k � ��� In each TRQ iteration�
eigenvalues of the � � � tridiagonal matrix H� de�ned in Step ��� of Algorithm �
are computed� The one nearest to zero that has not yet converged is chosen as the
next shift �� Table ��� lists the subdiagonal element �j �j � �� �� 
� �� of H� at each
iteration� Once j�jj��jHj�jj� jHj���j��j� drops below a prescribed tolerance of ������
we set �j to zero� Clearly� the �rst eigenvalue converges cubically� and the second
one shows cubic convergence rate after the �rst one has converged� At the end of the
���th iteration� all four eigenvalues
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� �����

Table ���

Convergence history of the � computed eigenvalues of a 
�D Laplacian�



 � ���
�		

are found� The convergence criterion here was a tolerance of ����� in the test for
declaring a subdiagonal element to be zero� The computed direct residuals for all
converged eigenpairs were on the order of ������ The multiplicity of the eigenvalue
��
	
�� is detected�

	��� Comparison with IRA� It is mentioned in Section 
�� that a simple way
of selecting a shift in Step ��� of Algorithm� is to use a �xed shift throughout the TRQ
iteration� Besides its simplicity� this strategy may also reduce the computational cost
when factoring A � �I is expensive� However� as one may expect� the convergence
rate of each desired eigenvalue is typically linear in this case� When the ratio 	
de�ned in �
��� is close to �� slow convergence is usually observed� In the following�
we compare this variant of the TRQ algorithmwith the shifted and inverted IRA since
both algorithms factor the matrix A � �I only once� It is shown in Table ��� that
TRQ requires slightly less work and storage per iteration� However� our numerical
experiments often show that the shifted and inverted IRA converges faster than TRQ
with the same shift� An example is presented below to demonstrate this phenomenon�
The problem involves the ��dimensional Laplacian used in the previous section� Four
smallest eigenvalues are sought� We placed the target shift at zero� and ran TRQ with
k � � �TRQ����� The results are compared with IRA with k � �� p � � �IRA����
and IRA with k � �� p � � �IRA����� The value of p indicates the number of shifts
used in the IRA iteration ����� Since the ratio � � j
�j�j
�j is close to �� we expect
TRQ to converge slowly� In Table ��
� we list the converged eigenvalues and the
number of linear systems solved before each eigenvalue has converged� One way to
accelerate the TRQ iteration is to increase the size of the Arnoldi factorization� The
motivation is to take advantage of large gaps that may exist in the unwanted portion
of the spectrum� However� the gain is usually not signi�cant unless such gaps are
large enough� In Table ���� we compare the total number of linear solves used in
�nding the four desired eigenvalues of the ��dimensional Laplacian with di�erent k
values� We observe that as k increases� the number of linear solves required in TRQ
does not always decrease� Clearly� one does not want to use a k that is too large for
this will increase the computational cost�
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TRQ IRA

initialization cost MATVEC �k times�� variable SOLVE �k � p times�� variable
GEMV� O�nk�� GEMV� O�n�k � p���
Factorization� variable Factorization� variable

cost per iteration SOLVE� variable SOLVE �p times�� variable
Shift selection O�k	� GEMV� O�n�k � p���
RQ update� O�nk� � k�� Shift selection�O��k � p�	�

QR update� O��k � p�	�
storage O�n�k � �� � �k � ���� O�n�k � p� �� � �k � p� ����

Table ���

Comparison of computational work and storage between TRQ and IRA� We assume that k
eigenvalues closest to the shift � are of interest� An Arnoldi factorization of length k is maintained
in TRQ� and p�� 
� shifts are applied in each IRA iteration �i�e�� an Arnoldi factorization of length
k � p is maintained�� We use MATVEC to denote the matrix vector multiplication used in TRQ�
and use SOLVE to indicate the cost of solving a linear system in both TRQ and IRA� The operation
GEMV refers to dense matrix vector multiplications needed in carrying out Arnoldi factorization�
The RQ or QR update refers to the bulge chase process used in both algorithms�

eigenvalue TRQ��� IRA��� IRA���

������
 
� �� �
��
	
�� �	 �� �
��
	
�� ��� �� 

���
�		 �
� �� ��

Table ���

Comparison of IRA and TRQ on a 
�D Laplacian�

	��� Comparison with RKS� The convergence rate of TRQ may be improved
if shifts are chosen to be the best eigenvalue approximations from the subspace
spanned by columns of Vk� However� this scheme requires factoring a matrix A� �jI
at each iteration� To reduce the overall cost of TRQ� the third shift selection strategy
discussed in Section 
�� may be used� i�e�� a shift is used repeatedly until either a
Ritz value has converged or a �xed number of iterations has occurred� Then a new
shift is selected� This strategy is also employed in the Rational Krylov Method �RKS�
introduced by Ruhe ����� ����� ����� In this section� we show by numerical example
that TRQ is competitive with RKS�

The basic recursion involved in RKS ���� may be characterized by the equation

AVk�� �Hk � Vk�� �Gk�

where Vk�� is n by k � �� �Hk and �Gk are k � � by k� and V H
k��Vk�� � Ik��� We

denote the j�th column of Vk��� �Hk and �Gk�� by vj� hj and gj respectively� They
are produced by a sequence of Arnoldi�like steps shown in Figure ����

The choice of tj is arbitrary� but tj � ej is recommended� The subspace spanned
by the columns of Vk do not form a Krylov subspace� and approximate eigenvalues
may be obtained by solving the generalized eigenvalue problem

Gks � �Hks������

where Gk and Hk are the submatrices consisting of the �rst k rows of �Gk and �Hk

respectively� The convergence of each Ritz value can be monitored by the estimate

I I I I I 
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k no� of linear solves

� �
�
�� �
�
�� �
�

Table ���

Comparison of TRQ�k� with di�erent values of k�

�RKS� Rational Krylov Subspace Iteration

Input� �A� v�� such that kv�k � ��
Output� �Vk��� �Hk� �Gk� such that AVk�� �Hk � Vk�� �Gk� V

H
k��Vk�� � I�

and Hk�� is upper Hessenberg�

�� Choose t� � e��
�� V� � �v��� �H� � � �� �G� � � ��
�� for j � �� �� 
� ���� k�

���� Choose a shift �j�
���� wj�� � �A� �jI����Vjtj��

���� hj � V H
j wj� �Hj � � �Hj��� hj��

���� gj � hj�j � tj� �Gj � � �Gj��� gj��
���� wj�� � wj�� � Vjhj � �j � kwj��k�

���� �Hj �

�
�Hj

�je
T
j

�
� �Gj �

�
�Gj

�j�je
T
j

�
�

���� vj�� � wj����j � Vj�� � �Vj � vj����
��	� Choose a vector tj���

�� end

Fig� ���� Rational Krylov Subspace Iteration�

derived in ����� De�ation must be done properly ���� to avoid missing multiple eigen�
values� The cost of RKS per iteration is listed in Table ����

It is mentioned in ���� that a large basis is needed when the eigenvalue problem is
ill�conditioned� Thus reorthogonalization becomes expensive� Purging and restarting
have been proposed in ����� However� these schemes are still experimental and not
well understood� In contrast� the size of Vk is �xed during the TRQ iteration� and the
update is done by an orthogonal transformation� The convergence can be monitored
by checking the magnitude of subdiagonal elements of Hk� De�ation is built into the
TRQ iteration� and eigenvalues with multiplicity greater than one cause no di�culty�
At convergence� a partial Schur form is constructed automatically without further
reordering�

In the following� we compare TRQ and RKS on a 
���
�� Tolosa matrix ���� The
Tolosa matrix is a model problem that has the important features of matrices that
arise in the stability analysis of an airplane in �ight� The full spectrum of this matrix
is plotted in Figure ���� Eigenvalues with largest imaginary parts are of interest� We
use the RKS code developed by Ruhe ���� for comparison� The same random starting
vector is used in both RKS and TRQ� In the RKS code� Ritz values are computed

I 
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Operation Cost

Factorization�intermittently� variable
SOLVE variable
GEMV O�nk��
Ritz approximation O�k	�
Purging  restart O�nkkd � k
�
storage O�n�k � �� � ��k � ����

Table ���

The cost of the RKS iteration� The value of k is usually much larger than the number of
desired eigenvalues kd� Again� SOLVE refers to solving a linear system in Step ��
 of the algorithm�
The operation GEMV refers to dense matrix vector multiplications needed in carrying out the RKS
factorization� Ritz approximation refers to solving the generalized eigenvalue problem Hks � �Gks�

from ����� at each iteration� A Ritz value is �agged as converged when the Ritz
estimate falls below tol � ������ The initial shift is placed at � � ���� � ���i� The
same shift is used for at most m iterations� A new shift is selected after the current
shift has been used for m iterations� or after convergence of a Ritz value� The same
shift selection strategy is used in TRQ for comparison� In Table ���� we list the �rst
�ve computed eigenvalues� and the number of iterations taken before each eigenvalue
has converged� We choose m � � and m � �� in RKS� The size of the Arnoldi
factorization used in TRQ is set to be � �k � ��� We tried m � � �optimal shift
selection�� m � � and m � �� in TRQ� At the bottom of the table� we accumulated
the total number of factorizations used in each run� For m � �� the convergence
history of RKS and TRQ are plotted in Figure ��
 and Figure ��� respectively� In
these �gures� we plot the residual norm of each approximate eigenvalue against the
number of �ops ��oating point operations�� The vertical dotted line marks the end
of each iteration� the dash�dot line marks the end of a matrix factorization� It is
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Fig� ���� The spectrum of a ���� ��� Tolosa matrix�

observed from Table ��� that it takes more than �� iterations for both RKS and TRQ
to locate the �rst eigenvalue� Once the �rst one emerges� both algorithms converge at
a rate of two iterations per eigenvalue� Notice that horizontal axes in Figure ��
 and
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eigenvalue RKS RKS TRQ��� TRQ��� TRQ��� IRA����
m � � m � �� m � � m � � m � ��

��
��
 � �
���i �� �� �� �� �� ��
�����	 � �����i �� �� �
 �� �� ��
���
�� � �����i �� �
 �� �� �
 ��
���	�
 � �����i �	 �� �� �	 �� ���
������ � �����i 
� �� �	 �� �� ���

factorizations 	 � �	 � � �
Table ���

Comparison of IRA and TRQ on a Tolosa matrix�

��� are labeled with di�erent scales� For this problem� RKS builds a larger subspace
than TRQ in order to capture all desired eigenpairs� Thus more orthogonalizations are
performed in RKS� This explains the larger number �ops required by RKS� Residual
norms of all Ritz pairs are plotted in Figure ��
� Only �ve of them have converged
to the desired tolerance of ������ Clearly� TRQ is competitive with RKS in terms of
both the number of factorizations and the number of iterations� and both algorithms
compare favorably with IRA with p � �� �IRA������
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Fig� ���� The convergence history of RKS�

	�	� Comparison with JDQR� If factoring A � �I is inexpensive� we may
consider using an optimal shift described in Section 
�� in each TRQ iteration� In
this case� the performance of TRQ is comparable with that of the Jacobi�Davidson
method�

Given an initial approximation v� of a desired eigenvector� the Jacobi�Davidson
method ��	� �nds� at each step� a correction vector zk that is orthogonal to the previous
approximate eigenvector uk� A new subspace is created by adjoining this vector to the
previous subspace and taking the span� The next approximate eigenpairs are drawn
from projection onto the new subspace� The correction vector zk is obtained from the

I I I I I I I 
I I I I I I I 

r I I I I I 
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Fig� ���� The convergence history of TRQ�

equation

�I � uku
H
k ��A � �kI��I � uku

H
k �zk � �rk and zk � uk������

where rk � Auk � �kuk� and �k is the current approximation to the eigenvalue of
interest� It can be shown ��	� that if ����� is solved exactly� the Jacobi�Davidson
method becomes the accelerated inverse iteration� i�e�� it builds an orthonormal basis
of the subspace

S�A� v�� f�jg� � spanfv�� v�� v�� ���vkg�

where vj � �A � �jI���vj��� Ritz approximations are extracted from this subspace�
It is shown in ���� that this method is equivalent to RKS with an optimal shift
selected in each iteration� The subspace S�A� v�� f�jg� is not a Krylov subspace�
The Hessenberg relationship �
��� is not preserved in the Jacobi�Davidson iteration�
To obtain several eigenvalues and eigenvectors� some standard de�ation schemes ����
are needed� To avoid building a large dimensional subspace S� restarting is also
necessary� The implementation of the Jacobi Davidson QR �JDQR� algorithm is
explained in detail in �	�� We compare the performance of TRQ and JDQR on a
standard eigenvalue problem arising from the stability analysis of the Brusselator
wave model �BWM� ���� Eigenvalues with largest real parts are of interest� They
help to determine the existence of stable periodic solutions to the Brusselator wave
equation as some parameter varies� The size of the matrix we choose is ��� � ����
The 
� rightmost eigenvalues are plotted in Figure ���� We place the target shift at
	 � ���� and use TRQ and JDQR to �nd � eigenvalues closest to 	� In Table ���� we
list the �rst four computed eigenvalues and number of factorizations used to obtain
each one of them� In the runs using TRQ� we tried k � � and k � 
� In JDQR� the
maximum dimension of subspace from which approximate eigenpairs are drawn is 
�
Restart begins at the �th column �jmin � ��� It is denoted by JDQR���
� in Table
����

It is observed from Table ��� that TRQ takes fewer iterations to �nd all four
eigenvalues of interest� However� as pointed out in �	�� the correction equation may
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eigenvalue TRQ��� TRQ�
� JDQR���
�

��
��� ���� � �����i 
 � ��
��
��� ���� � �����i �� 
 ��
������� � ����	i �� �� �	
�������� ����	i �� �� ��

Table ��	

Comparison of TRQ and JDQR on the BWM problem�

be solved by one step of GMRES iteration in the �rst jmin steps of JDQR iterations�
This is equivalent to building the initial Jacobi Davidson search space �	� by running
a jmin�step Arnoldi iteration� For the BWM problem� this technique reduces the total
number of exact solves in JDQR���
� to ���


� Inexact TRQ and Restarting� Rapid convergence of the TRQ algorithm
is observed in Section � when the TRQ equation

�I � VkV
H
k ��A � �I��I � VkV

H
k �v� � v�� with V H

k v� � �� kv�k � ������

is solved exactly in each iteration� In this section� we explore the possibility of relax�
ing the solution accuracy of ����� while maintaining the rapid convergence of TRQ
iteration� This is extremely important for many applications in which the factoriza�
tion of A � �I is too costly� and an approximate solution of �A � �I�x � b can be
provided by an iterative solver�

Recall that one of the important characteristics of the TRQ algorithm is the
inverse iteration relation between the �rst column of V �

k and the �rst column of Vk�
i�e��

�A � �I�v�� � v��

If an optimal shift is chosen at each iteration� the convergence of v� to an eigenvector
of A is often quadratic or cubic� We will show in the following that if the projected

+ + 
+ + 

+ 
+ + 

* + + + + + + + -H-+ 
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equation is solved approximately� an inexact inverse iteration is maintained between
v�� and v�� Superlinear convergence can still be achieved if optimal shifts are used�

Suppose �v� is an approximate solution to ������ Since I � VkV
H
k is a projection�

we may replace �v� with �I �VkV
H
k ��v� in ������ Thus� we explicitly orthogonalize the

approximate solution �v� against all columns of Vk through

�v� � �I � VkV
H
k ��v��

and normalize it so that k�v�k � �� The unknowns h and � present in ����� are then
computed directly as if �v� were an exact solution to ������ i�e��

�h� V H
k �A� �I��v� � V H

k A�v�� ��� vH �A� �I��v��

These lead to the equation

�A � �I��Vk� �v�� � �Vk� v�

�
Hk � �Ik �h
�ke

T
k ��

�
� zeTk��������

where zeTk�� is an error term with

z � �A � �I��v� � �Vk� v�

�
�h
��

�
�

By construction� z satis�es

V H
k z � �� vHz � ��

We may now compute an upper triangular �R �

�
Rk r
� �

�
and an orthogonal �Q ��

Qk q
	eTk 


�
such that

�
Hk � �Ik �h
�ke

T
k ��

�
� �R �Q�

and multiply ����� from the right by �QH to get

�A� �I��VkQ
H
k � �v�q

H � vk�	 � �v��
� � �Vk� v�

�
Rk r
� �

�
� z�qH � �
��

The �rst column of V �
k � VkQ

H
k � �v�q

H is related to the �rst column of Vk through
the equation

�A � �I�v�� � ���v� � z�����
�

where v�� � V �
k e� and � is the �rst element of the vector q� Since the orthogonal

matrix �Q is constructed from accumulation of a sequence of Givens rotations used in
the RQ factorization� � is a product of �k��� sines� Its magnitude is bounded by � and
it is likely to be quite small due to the accumulated product of sines� Thus the error
term present in the inexact inverse iteration ���
� is at worst of the same magnitude
as the error introduced in solving ����� and is very likely to be much smaller� In
fact if the �rst subdiagonal element �� is small �indicating the ����� element of Hk is
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Algorithm 	� �RTRQ� Truncated RQ�iteration with restart

Input� �A� Vk�Hk� fk� with AVk � VkHk � fke
T
k � V

H
k Vk � I� Hk upper

Hessenberg�
Output� �Vk�Hk� such that AVk � V Hk� V

H
k Vk � I and Hk is upper triangular�

�� Put �k � kfkk and put v � fk��k�
�� for j � �� �� 
� ��� until convergence�

���� Select a shift �� �j�
���� Solve �I � VkV

H
k ��A � �I��I � VkV

H
k �w � v approximately�

���� w� �I � VkV
H
k �w� v� � w�kwk�

���� h� V H
k Av�� �� vH �A� �I�v� �

���� RQ Factor

�
Hk � �Ik h
�ke

T
k �

�
�

�
Rk r
� �

��
Qk q
	eTk 


�
�

���� v� � VkQ
H
k e� � v�q

He��
���� Restart� �Hk�Vk�v��k� � Arnoldi�A�v���

�� end�

Fig� ���� Restarted TRQ iteration�

eigenvalue RTRQ��� JDQR���
�

������ 
 ��
������ � �

���	�� �� ��
���	�� �� 
�

Table ���

Comparison of RTRQ and JDQR on the CK�	� problem�

nearly an eigenvalue of A� then j�j is very likely to be smaller than j��j which may
be veri�ed by considering the e�ect of the �nal Givens rotation to occur in the RQ
step� Therefore� the error committed by accepting the inexact solution to the linear
system ����� is damped by the RQ step to obtain a more accurate inverse�iteration
relation between the vectors v�� and v� than might be expected�

We would like to continue the TRQ update as described in Steps ������� of Al�
gorithm �� However� because of the error incurred in ������ the updated orthonormal
basis V �

k � VkQ
H � �v�q

H no longer spans a Krylov subspace� However� the �rst
column of V �

k is approximately what we would have obtained if the TRQ equation is
solved exactly� Thus one may recover a truncated Hessenberg reduction by running
a k�step Arnoldi process with v�� as the starting vector� We refer to this step as a
restart� The restarted TRQ �RTRQ� iteration is summarized in Algorithm ��

If a Krylov subspace type of method �such as conjugate gradient or GMRES�
is used to solve the TRQ equation in step ��� of the above algorithm� it maybe of
advantage to work with the operator B � �I � VkV

H
k ��A � �I��I � VkV

H
k � directly

since B may be better conditioned in the subspace V �
k � Of course� the matrix B need

not be formed explicitly� only the matrix vector multiplication Bv is required�

I I I I 
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Fig� ���� Convergence history of RTRQ and JDQR for the CK�	� matrix


��� Comparison with JDQR� In the following� we present a numerical ex�
ample of using the inexact TRQ iteration with restart �RTRQ� to compute the eigen�
values of the CK��� matrix described in ���� Eigenvalues of this matrix all have
multiplicity two� We look for � eigenvalues near the target shift 	 � ���� and set
k � � in RTRQ �RTRQ����� The computational result is compared with JDQR with
jmin � �� jmax � 
 �JDQR���
��� The same random starting vector is used in both
tests� The TRQ equation and the projected correction equation in JDQR are solve
by GMRES with no preconditioning or restart� The maximumGMRES steps allowed
in each linear solve is set to be ��� The GMRES residual tolerance is set to be ���
�
The optimal shift selection strategy is used in both tests� i�e�� the Ritz value that is
the nearest to the target shift but has not converged is used as the next shift� No
tracking �	� is used in JDQR� In Table ���� we list the four eigenvalues of interest and
the number of iterations taken by RTRQ and JDQR before each eigenvalue has con�
verged� We observe that for this example� RTRQ takes fewer iterations than JDQR
to capture eigenvalues of interest� In particular� RTRQ is able to capture the �rst
eigenvalue much quicker than JDQR� However� RTRQ costs more per iteration than
JDQR because the projection in the TRQ equation always involves k vectors� and k
matrix vector multiplications must be performed in each iteration to reconstruct an
Arnoldi factorization� Thus� the overall performance should be compared in terms of
total number of matrix vector multiplications or �ops used in both methods� This is
illustrated in Figure ���� We plot the residual of each approximate eigenpair against
the number of �ops� The residuals of the approximate eigenpairs are monitored one at
a time� When the residual curve corresponding to the approximation to the eigenpair
�
j � zj� drops below ��

��� we start to monitor and record the residual for the next
approximate eigenpair �
j��� zj���� We should point out that the comparison made
here is still preliminary� Several techniques are available to improve the performance
of JDQR �	�� and many of these may be used in RTRQ as well�


��� The E�ect of Preconditioning� Solving the TRQ equation is the most
expensive part of the TRQ iteration� When an iterative method is used� a good pre�
conditioner may accelerate the convergence and reduce the overall cost� The improved
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eigenvalue diagonal ILU��� tridiagonal

��
��� ���� � �����i 
� �� �
��
��� ���� � �����i � ��� 

 ��
������� � ����	i � ��� �� �	
�������� ����	i � ��� �� �


Table ���

Comparison of RTRQ with and without preconditioner

accuracy in the solution to the TRQ equation often brings about a reduction in the
total number of TRQ iterations�

One may precondition the projected system

�I � VkV
T
k ��A� �I��I � VkV

T
k �w � v�

directly to obtain an approximate solution to the TRQ equation� However� it may
not be easy to �nd a good preconditioner M for the projected matrix �I�VkV

T
k ��A�

�I��I � VkV
T
k �� Instead� one usually has a preconditioner for the matrix A� As

pointed out in �	�� this preconditioner may need to be projected into V �
k in order to

accelerate the convergence of the Jacobi Davidson iteration� The projected shifted
preconditioner is sometimes not a good preconditioner for the projected shifted ma�
trix A� This extra projection does not seem to be necessary in the TRQ iteration
since the TRQ equations may be solved using the scheme discussed in Section 
� This
scheme solves a linear system �A � �I�w � v� Thus a preconditioner of A may be
easily applied� In the following we present an example that demonstrates the e�ect
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Fig� ���� The structure of a 
��� 
�� BWM matrix

of preconditioning on the restarted TRQ iteration� Four eigenvalues of the the BWM
matrix used in Section � are computed� and the size of the Arnoldi factorization in
the TRQ iteration is set to be � �k � ��� The target shift is placed at ���� The TRQ
equation is solved using a preconditioned GMRES with no restart� The maximum
number of GMRES iterations allowed in each solve is set to be ��� The GMRES resid�
ual tolerance is set to be ���
� The structure of the BWM matrix is shown in Figure
��
� We used the diagonal part� the tridiagonal part and the incomplete LU factors

I I I I I 
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Fig� ���� Convergence history of Preconditioned TRQ for the BWM matrix

�ILU���� of the matrix A as the preconditioner� The number of iterations used to
obtain the four eigenvalues near ��� are listed in Table ���� Without a preconditioner
no eigenvalue is found in ��� iterations� The convergence history of RTRQ with var�
ious preconditioners is shown in Figure ���� The residual norm of each approximate
eigenpair is plotted against the number �ops subsequentially� The solid curve cor�
responds to RTRQ with tridiagonal preconditioning� The dashed curve corresponds
to RTRQ with ILU��� preconditioning� The dash�dot curve corresponds to RTRQ
with diagonal preconditioning� The dotted curve is associated with RTRQ with no
preconditioning� When the residual curve drops below the dotted line indicating the
acceptable residual tolerance ����� we start to monitor and record the residual of the
next approximate eigenpair� It is observed that a good preconditioner improves the
convergence of RTRQ dramatically�


��� Comparison with Accelerated Inverse Iteration with Wielandt De�

�ation� The inexact TRQ iteration with restart does not completely mimic the ex�
act TRQ� In particular� the truncated Hessenberg reduction is enforced through an
Arnoldi iteration rather than an implicit RQ update� The method behaves more
like a single vector iteration with de�ation than an RQ iteration in which the rapid
convergence of one eigenvalue is often accompanied with the convergence of other
eigenvalues at a slower pace�

In this section� we compare restarted TRQ with the accelerated inverse iteration
combined with a de�ation scheme that is very close to the Wielandt de�ation �IN�
VWD� ���� pp� ���� for computing a few eigenvalues of A� We show that the exact
TRQ performs better than the exact INVWD and the inexact TRQ appears to be
more reliable than the inexact INVWD�

The inverse iteration can be viewed as a shifted and inverted power iteration� It
requires solving

�A � �I�w � v�

where v is the previous approximation to an eigenvector and w is the current ap�
proximation� The acceleration is achieved by choosing� at each iteration� a shift �
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�INVWD� A Schur�Wielandt De�ated Inverse Iteration

Input� �A� �� v� U � such that ��� v� is the current approximation to
the desired eigenpair� and columns of U contain the converged
Schur vectors�

Output� A new approximate eigenpair ���� v�� that may be used in the
next cycle of an inverse iteration�

�� Solve �A � �I�w � v�
�� v � �I � UUH �w� v � v�kvk�
�� f � Av� � � vHw�
�� H� � ���� V � �v�� f � f � v��
�� f � �I � UUH�f �
�� for j � �� �� ���� k

���� �j � kfk� vj�� � f��j���

���� Vj�� � �Vj � vj���� Hj �

�
Hj

�je
T
j

�
�

���� z � Avj��� z � �I � UUH�z�
���� h� V H

j z� Hj�� � �Hj� h��
���� f � z � Vj��h�

�� end�
	� Compute an desired Ritz pair ����v�� from Hk and Vk to be used in the
next cycle of an inverse iteration�

Fig� ���� Schur�Wielandt De�ated Inverse Iteration

that is the best approximation to the desired eigenvalue� Once an eigenpair �
� u� has
been found� the next pair may be obtained by applying shifted power iteration to the
de�ated operator A� � �A � �I��� � uqH � where q � �A � �I��Hu� This de�ation
scheme is an variant of the explicit Wielandt de�ation ��
� pp� �	��� ���� pp� �����
The de�ated operator A� � �I � uuH��A � �I��� does not preserve right eigenvec�
tors of A in general� unless A is normal� However� it does preserve Schur vectors of
A� Thus� to generalize this de�ation scheme for a converged invariant subspace� one
should replace u with a matrix of Schur vectors U that spans the converged invariant
subspace and satis�es UHU � I� This is a more stable variant of a technique referred
to as the Schur�Wielandt de�ation in ���� pp� ����� It leads to the algorithm INVWD
�Figure ���� which we adopt here for comparison to RTRQ�

In the following� we �rst present an example that demonstrates the advantage of
using TRQ over using inverse iteration with Schur�Wielandt�like de�ation� Then we
compare the performance of the inexact TRQ with restart to the inverse iteration in
which the linear system is solved approximately�

In the �rst example� we choose A to be the ��dimensional discrete Laplacian
used before� Six eigenvalues of the smallest magnitude are computed� The size the
Arnoldi factorization maintained in the TRQ iteration is � �k � ��� The same size is
chosen for the de�ated Arnoldi iteration used in INVWD to help determine the shift�
The same random starting vector is used in both TRQ and INVWD� In INVWD� a
Ritz pair ��j � zj� is considered to be converged if the direct residual norm krjk �
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eigenvalue TRQ INVWD

������
 
 

��
	
�� � �
��
	
�� � �

���
�		 �� ��
������	 �� ��
������	 �
 ��

Table ���

Comparison of TRQ and INVWD on a 
�D Laplacian�

kAzj��jzjk falls below tol � ������ In TRQ� the convergence criterion is a tolerance
of machine epsilon in the test for declaring a subdiagonal element to zero� Table
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Fig� ���� Traces of the residual in TRQ and INVWD

��
 shows the number of iterations taken before each eigenvalue has converged� In
Figure ���� the convergence history of the residual for each computed eigenpair is
shown� The height of each circle and star corresponds to the residual of the eigenpair
computed by TRQ and INVWD respectively� The TRQ residuals corresponding to
the approximations to the same eigenpair are connected by a solid line� The INVWD
residuals are connected by a dash dot line� The circles below the dotted line correspond
to the residuals of converged eigenpairs computed by TRQ� It is easily observed that
the global convergence of TRQ is better than INVWD� In INVWD� every residual
curve starts from the top �krk 	 ������ whereas in TRQ� the convergence of the
second and �fth eigenpairs are followed by the immediate convergence of the third
and the sixth pairs� The residual for the �fth eigenpair starts from roughly ������ and
drops below ����
 in one iteration� We should also mention that the convergence of
INVWD is sensitive to the starting vector and the size of the subspace used to obtained
the shift� Eigenvalues may not necessarily converge in order� For example� large
eigenvalues may appear early when we look for the ones with the smallest magnitude�

In the next example� we compare the performance of the inexact TRQ with that
of the inexact INVWD� We consider computing eigenvalues of the DW���� matrix

I 

0 

r~ 
I 

I 

I 

* 

I l 

~ 
I 

I 

\\ .... --~- ....................................... ~ 
0 



�
 D� C� SORENSEN AND C� YANG

that arises from dielectric waveguide problems in integrated circuit applications ����
Four eigenvalues near ��� are of interest� In both methods� linear systems are solved
by GMRES with no restart� The maximum number of GMRES iterations allowed is
set to be ��� The GMRES residual tolerance is set to be ����� The size of the Arnoldi
factorization maintained in the inexact TRQ iteration is set to be � �k � ��� The
same size is set for the de�ated Arnoldi iteration used in INVWD to determine the
shift� The traces of the residual for each computed eigenpair are shown in Figure ����
Residual norms are plotted against the number �ops� The solid curve corresponds to
the residual norm of the inexact TRQ� The dotted curve corresponds to the residual
of the inexact INVWD� We observe that the inexact INVWD converges much slower
than the inexact TRQ�

RTRQ 
INVWD
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Fig� ��	� Traces of the residual in inexact TRQ and INVWD

�� Conclusions� This development of the Truncated RQ iteration has led to a
promising way to take advantage of situations where shift�invert equations can be
solved directly and also when they can only be solved inexactly through iterative
means� We have demonstrated with several numerical experiments that this scheme
provides a promising and competitive alternative to Rational Krylov Methods and
the Jacobi Davidson Method in the two respective cases� The scheme is relatively
simple and very e�cient in terms of required numerical computation compared to
these and other related methods� Finally� the convergence properties and de�ation
schemes are easily understood through the close connection with the RQ iteration for
dense matrices�

Future research will focus upon analyzing the �ltering properties obtained from
embedding the shift�invert equations in the TRQ iteration� Equation ���
� indicates
a damping of the error introduced by inexact solution when the RQ iteration is car�
ried out� The numerical properties and implications of this phenomenon are not yet
understood�

We chose the GMRES method to solve the TRQ equation iteratively in the in�
exact TRQ method because of its simplicity and reliability� Certainly� other iterative
solvers such as QMR� BICGSTAB could have been used� It would be interesting to
compare the performance of these iterative solvers in the TRQ context� More re�
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search is required with respect to preconditioners and how they should be utilized
within the TRQ equations� Exhaustive computational experimentation and com�
parisons are needed to determine whether the TRQ equations should be solved in
bordered form� projected form� or by utilizing Lemma 
��� These are issues both for
direct and iterative solutions of the TRQ equations� The extension of these ideas to
the generalized eigenvalue problem will also be important� Eventually� we expect to
produce numerical software based upon this scheme to complement the IRA schemes
already available in ARPACK�
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