A TRUNCATED RQ-ITERATION FOR LARGE SCALE
EIGENVALUE CALCULATIONS*

D. C. SORENSEN!T AND C. YANG!

Abstract. We introduce a new Krylov subspace iteration for large scale eigenvalue problems
that is able to accelerate the convergence through an inexact (iterative) solution to a shift-invert
equation. The method also takes full advantage of exact solutions when when they can be obtained
with sparse direct method. We call this new iteration the Truncated RQ iteration (TRQ). It is based
upon a recursion that develops in the leading k& columns of the implicitly shifted RQ iteration for
dense matrices. Inverse-iteration-like convergence to a partial Schur decomposition occurs in the
leading %k columns of the updated basis vectors and Hessenberg matrices. The TRQ iteration is
competitive with the Rational Krylov Method of Ruhe when the shift-invert equations can be solved
directly and with the Jacobi-Davidson Method of Sleijpen and Van der Vorst when these equations
are solved inexactly with a preconditioned iterative method. The TRQ iteration is related to both
of these but is derived directly from the RQ iteration and thus inherits the convergence properties
of that method. Existing RQ deflation strategies may be employed directly in the TRQ iteration.

Key words. Krylov methods, Arnoldi method, Lanczos method, eigenvalues, deflation, precon-
ditioning, restarting

AMS subject classifications. Primary 65F15, Secondary 65G05

1. Introduction. Recently, there have been a number of research developments
in the numerical solution of large scale eigenvalue problems [21], [11], [17], [6], [19],
[16], [13], [1], [5]. The state of the art has advanced considerably and general purpose
numerical software is emerging for the nonsymmetric problem [8], [4], [12], [3], [18],
[10]. The development of this new general purpose software for the nonsymmetric
problem is a welcomed advance. However, the methods in these packages are not able
to effectively utilize a preconditioned iterative solver to implement a shift and invert
spectral transformation to accelerate convergence. They all require highly accurate
solutions to the shift-invert equations and the cost of producing such accuracy with an
iterative method is generally prohibitive. In this paper, we introduce a new iteration
for large scale problems that is in the same spirit as the Implicitly Restarted Arnoldi
Method used in ARPACK [21], [12]. However, this new method is very amenable
to acceleration of convergence with inexact (iterative) solutions to the shift-invert
equations. Moreover, the algorithm introduced here can take full advantage of exact
solutions when they can be obtained with a sparse direct method.

We call this new iteration the Truncated RQ iteration (TRQ). It is based upon a
recursion that develops in the leading k& columns of the implicitly shifted RQ iteration
for dense matrices. This iteration is analogous to the well known QR iteration, but it
implicitly factors the shifted Hessenberg matrix into an RQ factorization (triangular
times orthogonal) and then multiplies the factors in reverse order rather than using
a QR factorization for this iteration. The main advantage in the large scale setting
is that inverse-iteration-like convergence occurs in the leading column of the updated
basis matrix. Thus, eigenvalues rapidly converge in the leading principal submatrix of

*This work was supported in part by NSF cooperative agreement CCR-9120008, and by ARPA
contract number DAALO03-91-C-0047 (administered by the U.S. Army Research Office).

tDepartment of Computational and Applied Mathematics, Rice University, Houston, TX 77005-
1892, (sorensen@caam.rice.edu).

{Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005-
1892, (chao@caam.rice.edu).

2 D. C. SORENSEN AND C. YANG

the iterated Hessenberg matrix. A partial Schur form rapidly emerges in the leading
portion of the factorization. The leading principal submatrix of the iterated Hes-
senberg matrix becomes upper triangular with the desired eigenvalues appearing as
diagonal elements.

A k-step TRQ iteration is derived by developing a set of equations that define
the & + 1-st column of the updated set of basis vectors and the updated projected
Hessenberg matrix that would occur if a full RQ iteration were carried out. The
resulting equations have a great deal in common with the update equation that defines
the Rational Krylov Method of Ruhe [16], and also with the projected correction
equation that defines the Jacobi-Davidson Method of Sleijpen and Van der Vorst. [19].
The TRQ iteration is comparable to and quite competitive with the Rational Krylov
Method when it is possible to factor and solve the shift-invert equations directly.
With restarting, it is possible to define an inexact TRQ iteration that compares very
favorably with the Jacobi-Davidson Method. The TRQ iterations developed here are
derived directly from the RQ iteration and may take advantage of all that is known
about deflation strategies in the dense case. Moreover, the convergence behavior
follows directly from the convergence properties of the RQ iteration.

In Section 2, we derive the TRQ equations that will define the TRQ iteration
and investigate the existence and uniqueness of the solution to these equations. We
also introduce the formal specification of the TR iteration. In Section 3 we turn
to some implementation issues that arise when a sparse direct solution to the shift-
invert equation is possible. We show that the Arnoldi relation existing in the leading
k columns may be used to greatly reduce the amount of computation required to
solve the TRQ equations. In Section 3 we also discuss the selection of shifts to be
used in the TRQ iteration when factorizations are only allowed intermittently. Also,
deflation schemes are introduced. In Section 4 we give several numerical examples
to illustrate the convergence behavior of the TRQ iteration. We demonstrate that
the convergence is cubic on symmetric problems and quadratic on nonsymmetric
problems when a factorization i1s done at each step. We also show that the more
practical alternative of factoring intermittently is quite competitive with the Rational
Krylov Method employing the same type of shift strategy. A comparison is made with
Implicitly Restarted Arnoldi (IRA) in the case that only one factorization is allowed,
and we observe that IRA is more efficient than TRQ in this case.

In Section 5, we develop the inexact TRQ iteration with restarting. Restarting is
required to maintain an Arnoldi factorization and hence a Krylov relationship amongst
the columns of the k-step factorization. As convergence takes place, standard defla-
tion techniques are employed to lock converged Schur vectors and orthogonalization
against these converged vectors takes place naturally through the Arnoldi process. In
some sense, this process is closely related to inverse iteration with Wielandt defla-
tion [23, pp. 596], [17, pp. 117]. We illustrate an apparent numerical advantage of
placing the inverse iteration within the context of the TRQ iteration and show some
explicit comparisons with deflated inverse iteration indicating clear superiority of the
TRQ scheme. Of course, the purpose of introducing possibly inexact solutions to
the shift-invert equations is to provide for the use of preconditioned iterative solution
techniques on these equations. We show numerical experiments indicating very favor-
able comparison with the Jacobi-Davidson Method using the same iterative method
for solving the update equations in both schemes. Moreover, we give some prelimi-
nary evidence that a shifted form of a standard preconditioner for the original matrix
is a satisfactory preconditioner for the update equations. Constructing a modified

TRUNCATED RQ-ITERATION 3

preconditioner for the projected update equations (as required in Jacobi-Davidson)
does not seem to be necessary with inexact TRQ.

Throughout this paper, capital and lower case Latin letters denote matrices and
vectors respectively, while lower case Greek letters denote scalars. The j-th canonical
basis vector is denoted by e;. The Euclidean norm is used exclusively and is denoted
by || -|| . The transpose of a matrix A is denoted by A7 and conjugate transpose by
AH Upper Hessenberg matrices will appear frequently and are usually denoted by
the letter H. The subdiagonal elements of such Hessenberg matrices play a special
role in our algorithms. The j-th subdiagonal element (i.e. the (j + 1, j)-st element)
of an upper Hessenberg matrix / will be denoted by ;. The conjugate of a complex
number « is denoted by a.

2. Truncating the RQ Iteration . The implicitly shifted QR iteration is gen-
erally the method of choice for the computation of all the eigenvalues and eigenvectors
of a square matrix A. Practical implementation of the algorithm begins with a com-
plete reduction of A to upper Hessenberg form:

AV =VH

with VHV = I and H upper Hessenberg. The QR iteration is then applied to H to
produce a sequence of orthogonal similarity transformations

HUTY (QUHH gLl vt y@)gl)

with HO = H, V(Y = V and QU) implicitly constructed and applied through a
“bulge chase” process that is mathematically equivalent to obtaining @V) through
the QR-factorization QU RUY) = H) — wil, j=1,2,--- where {y;} is a set of shifts
selected as the algorithm proceeds. We use vl(j) to denote the i-th column of V),
and p(‘z) to denote the (i, 4)-th entry of RU). 1t is straightforward to show that H()

i
remains upper Hessenberg throughout and that

v§j+1)p(1j1) =(A- pjl)vgj) and (A —p;)70

Hence, the last column 1s an inverse iteration sequence and the first column is a
power method or polynomial iteration. The Implicitly Restarted Arnoldi Method
provides a means to truncate this QR iteration and take advantage of the shifted-

power-method-like convergence properties of the leading & columns of the iterated
(3+1)

basis V) without computing the full QR factorizations. The relations between v,

2(‘7) fori=1,2,--- k on successive iterations are preserved in this truncated IRA
iteration as if the full QR iteration had been carried out. Appropriate shift selection
will force desired eigenvalues and corresponding eigenvectors to emerge in the leading
portion of the factorization as the iteration proceeds.

Some advantages of the IRA approach are: (i) the number of basis vectors stored
is pre-determined and fixed so that orthogonality of the Arnoldi basis vectors may
be enforced numerically, and (ii) the iteration proceeds without having to compute a
matrix factorization. In many situations this iteration is successful but it can be slow
to converge or fail when the desired portion of the spectrum does not have a favorable
distribution with respect to the entire spectrum of A. It would be very desirable to
devise a scheme that could take advantage of the inverse iteration properties of the
QR iteration instead of the power iteration properties.

and v

4 D. C. SORENSEN AND C. YANG

Algorithm 1: Implicitly Shifted R@Q-iteration

Input: (A, V, H) with AV = VH, VBV = I and H is upper
Hessenberg.
Output: (V, H) such that AV = VH, V#V = [and H is upper triangular.

1. for j = 1,2,3, ... until convergence,
1.1. Select a shift g < p;;
1.2. Factor H — ul = RQ,;
1.3. H— QHQY : V « VQ¥Y;

2. end;

Fiac. 2.1. Implicitly Shifted RQ-iteration.

An alternative to the Implicitly Shifted QR iteration is the Implicitly Shifted RQ
iteration. Again, the iteration begins with a reduction to Hessenberg form and then
the iteration demonstrated in Figure 2.1 is applied.

It is easily shown that

(A — D)o = o) pl).

Thus, the sequence v in the first column is an inverse iteration sequence and one
would expect very rapid convergence of leading columns of V) to Schur vectors of
A.

In the large scale setting it is generally impossible to carry out the full iteration
involving n x n orthogonal similarity transformations. It would be desirable to truncate
this update procedure after k steps to maintain and update only the leading portion
of the factorizations occurring in this sequence. This truncation is obtained from a
set of defining equations that emerge during the partial completion of an RQ step. To
derive these relations, partition V = (V4, V) where Vi denotes the leading & columns

of V and let
Hy, M
= (Brerer H)

be partitioned conformably so that

(2.1) AWV, V) = (Vie, V) (ﬁi’“eg z\g)

Now, for a given shift p, partially factor H — I to obtain
Hy—pl, M I, 0
H—ul = N -
8 (Brere] R)(O Q
where H — uI = RQ. Then

(22) (4= D V) = (3 v i)

51«6165 R

TRUNCATED RQ-ITERATION 5

If Givens transformations were being used, for example, then to complete the RQ
factorization in (2.2), one would continue applying Givens rotations from the right
using each rotation to annihilate a subdiagonal element. However, at this point of
the factorization, there is a set of equations that uniquely determines the first column
vy of the matrix VQH . If these equations can be formulated and solved, then the
leading portion of this iteration may be obtained using just the leading k& + 1 columns
(Vi, Vel) and the leading k columns of the Hessenberg matrix H. The remaining
n —k — 1 columns of V and of H need never be formed or factored. To formulate the
defining relations, equate the leading k¥ + 1 columns on both sides of equation (2.2)
to obtain

<A—unu@um=<wﬂ0(ﬂé;f@ Z)

where v = Vel, vy = VQHel, h = Mel, and a = e{Rel. From this relationship, it
follows that vy must satisfy

(2.3) (A—plhvy = Vih 4+ ve,

with Vv, = 0 and ||v4|| = 1 since the columns of (V, v4) must be orthonormal.
These conditions may be expressed succinctly through the TRQ equations

(24) (A S () =05) =1

In addition to these TR equations, we note that the first £ columns on both sides
of (2.2) are in a k-step Arnoldi relationship

(2.5) (A — pl)Vie = Vie(Hy — pili) + frel

with fk = vﬁk.

The algorithm we shall develop depends upon the determination of vy, h, and «
directly from equation (2.4) rather than from the RQ factorization procedure. The
fact that the RQ factorization exists assures that a solution to (2.4) exists even when
the bordered matrix in (2.4) is singular.

The following lemmas characterize how singularity can occur in these equations.
Moreover, we prove that the solution to (2.4) is unique even when the bordered matrix
is singular. Tn the next section we show that the singular case in (2.4) is benign and
easily dealt with numerically.

LEMMA 2.1. Assume A — pl is nonsingular (i.e., that p is not an eigenvalue of
A) and that equations (2.4) and (2.5) hold as a result of the partial RQ-factorization
described by (2.2). Then the bordered matriz

_ [A—pul Vi

is nonsingular if and only if V(A — pI)=1Vy is nonsingular. Moreover, if VH (A —
pl)~1Vy is singular and z is any nonzero vector such that VE(A — pl)~™1Viz = 0,
then w = —(A - pul)= Vi z is nonzero, and vy = H%IT’ h= _H%IT’ and o = 0 satisfy
the TRQ) equations.

6 D. C. SORENSEN AND C. YANG

Proof. Since the RQ-factorization RQ = H — pl always exists, it follows that
(2.4) must hold in any case. The assumption that A — u7 is nonsingular provides the
block factorization

@ B= (VkH(AiuI)_l |) (e —VkH(A‘jkﬂ[)_lvk)

Clearly, B is nonsingular if and only if V;# (A — uI)~1Vj, is nonsingular.
To establish the second part of the lemma, we show that the equation

e (5 v S) (2) = Coma Sanne)

has a nonzero solution (w#, 2#)# with o = 0 if and only if and only if V;# (A—pul)=1Vj
is singular.

To prove this, suppose first that & = 0 and (w is a nonzero solution to
(2.8). Then V(A — pul)='V, must be singular because A — pul is assumed to be
nonsingular. On the other hand, if we assume V;# (A — uI)~1Vj, is singular and z is a
nonzero vector such that V(A — ul)=1Vjz = 0, then putting w = —(A — pul) " Viz
will provide a nonzero solution to (2.8) with & = 0. Moreover, w must be nonzero
since z is nonzero and (A — pul)~!Vj has linearly independent columns. Therefore,
vy = ﬂ%ﬂ’ h = _H%H’ and o = 0 will satisfy the TRQ equations. O

Lemma 2.1 indicates that the solution to (2.4) will be unique if and only if V, (A—
plI)~1V is either nonsingular or has a one dimensional null space. The following
lemma establishes this fact and hence the uniqueness of the solution to the TRQ
equations (2.4).

LEMMA 2.2. Assume A — pl is nonsingular and that equations (2.4) and (2.5)
hold. If G = VE(A — ul)=1Vj, is singular, then the null space of GH is span{ey}.

Proof. Let y = VH(A — ul)~1 fi. and define H,, = Hy — pul,. Then

H’ZH)H

GH, =V (A - u 'V H,
= V(A= D)7 (A= pu)Vi — fre]
(2.9) = I — yef

If G is singular, and =z is any nonzero vector such that 0 = z G, then (2.9) implies
0=2fGH, =" — (z7y)e].

Since x # 0 this equation implies 2y # 0 which in turn implies that z/(zfy) = e4.
Hence egG = 0 and the null space of G is span{e;}. This concludes the proof.
0

Finally, the following lemma indicates that exact singularity of B rarely occurs.

LEMMA 2.3. Assume A — pl is nonsingular and that equations (2.4) and (2.5)
hold. Then a =0 in (2.4) and V;E(A — uI)=1V}, is singular if and only if the shift p
is an eigenvalue of H in equation (2.1).

Proof. Tt is sufficient to show V;H (A — pI)~1Vj is singular if and only if the shift
p is an eigenvalue of H in equation (2.1). To this end, note that V7 (A — ul)~'V4 is
singular if and only if V(A — pI)=*Vj2 = 0 for some z # 0. Since (Vj, V) is unitary,
any such z must satisfy

Viz = (A= pl)Vg = (A= pul)(Vi,V) (2)

TRUNCATED RQ-ITERATION 7

for some nonzero vector g (i.e. (A — pul)~'Vjz must be in the range of V). This

implies
_ . Hy — ply, M 0
Viz = (Vi, V) (ﬁkeleg H—ﬂfn—k) (g)

=ViMg+ V(H — pln_k)g.

Since (Vi, V) is unitary, it follows that
(2.10) (H — pln_1)g =0

and since g 1s nonzero this implies the singularity of (f] — pln_g).

Now, suppose that there is a nonzero g that satisfies (2.10). Observe that Mg # 0
since this would imply A — pl is singular. Hence, the argument just given may be
reversed to produce a nonzero z such that V/ZfI(A—uI)_1 Viz = 0 and lemma is proved.
O

The TRQ equations may be used to develop a truncated k-step version of the Im-
plicitly Shifted RQ iteration. If a k-step Arnoldi factorization (2.5) has been obtained
then a k-step TRQ iteration may be implemented as shown in Algorithm 2 (Figure
2.2)

Algorithm 2: (TRQ) Truncated RQ-iteration

Input: (A, Vi, Hy, fi) with AV, = Vi Hy, + fkeg, VkHVk = I, H; upper
Hessenberg.
Output: (Vj, Hy) such that AV, = Vi, Hi, VkHVk = [and Hy is upper triangular.

1. Put Bx = || fx|| and put v = fi/Bs;

2. for j =1,2,3,... until convergence,
2.1. Select a shift p « p;;

A—pl Vg vy \ [va . .
2.2. Solve (yi 0) (3) = (0) with [|lvy|] = 1;

Hy—ply h\ _ [Ry r Qe q Y.
2.3. RQFactor(ﬁkeg a)_< 0 p)(aeg v)

2.4. Vi + ViQH 4+ vyqf;
2.5. O O'engek; V= U0+ UL
2.6. Hy — Qriy + puly;

3. end;

Fic. 2.2. The Truncated RQ-iteration.

The key idea here is to determine the k + 1-st column v; of the updated matrix
V' and the k& + 1-st column of H that would have been produced in the RQ iteration
by solving the linear system (2.4). Then, the iteration is completed through the nor-
mal RQ iteration. As eigenvalues converge, the standard deflation rules of the RQ
iteration may be applied. Orthogonality of the basis vectors is explicitly maintained
through accurate solution of the defining equation. Moreover, even if the accuracy of
this solution is relaxed, orthogonality may be enforced explicitly through the orthog-
onalization scheme developed in [7]. We shall refer to this as the DGKS procedure.

8 D. C. SORENSEN AND C. YANG

Potentially, the linear solve indicated at Step 2.2 of Algorithm 2 could be provided
by a straightforward block elimination scheme. However, considerable refinements to
this scheme are possible due to the existing k-step Arnoldi relationship (2.5). This
will be discussed in the next section.

3. Implementation Issues. In this section, we address some practicalities as-
sociated with efficient implementation of the TRQ iteration.

3.1. Solving the TRQ Equations. The Truncated RQ iteration described in
the previous section will only be effective in the large scale setting if there is an
efficient means for solving the TRQ equations. Recall that A, Hg, Vi and fix = v
are in a k-step Arnoldi relation (3.1) so that

(3.1) (A — p)Vi = Vi (Hy — plg) + fref .

Rescaling the right hand side of the system (2.4) leads to

A— /J[Vk w _ fk

42 (") (0)=(8)
If we put d = (A — pl)~1fy and y = VkHd, then block Gaussian elimination leads to
solving the equations

(a) V(A —) Wiz =,

(b) (A—phHw = fi — Vyz.
If A— T is nonsingular, these two equations together with equation (3.1) may be used
to derive a solution to equation (3.2) with just a single linear solve. Tt is not necessary
to solve a blocked system of k equations as the straightforward application of block
Gaussian elimination described in the previous section would indicate. Moreover, this
efficient solution scheme does not depend on determining the singularity of the TRQ
equations (2.4) in any way. The underlying theory is developed with the following
lemma.

LEMMA 3.1. Assume A — pl is nonsingular and define G = VHE(A — pul)='V,

and H, = (Hy — ply). There is a vector s such that either

(3.3) (I — H,G)s £ 0 or efGs#0.
For any such s, put
w= (I —ViViE) (A - pul)™ Wys.
Then w # 0 and a solution vy, h, o to (2.4) is given by
vy =w/loll, h= (- HuG)s/llull, @ =—rel Gs/|lull

Proof. If el GGs = 0 for all vectors s, then the matrix H,G is singular and there
must be a nonzero vector s such that (I — H,G)s # 0. Therefore, there is a k-
dimensional vector s that satisfies either 0 = el Gs # 0 or (I, — H,(G)s # 0.

For any such s, put w = (I — Va V;H)(A — pI)~*Vgs. Observe that

(A= plyw = (A — pI)(I = Vi Vi) (A = p) ™ Vs
=Vis — (A— p)ViGs
= Vis — [ViH, + frel]Gs
(3.4) = Vi (It — H,G)s — fif.

TRUNCATED RQ-ITERATION 9

The conditions on s assure that the right hand side of (3.4) is nonzero. Tt follows that
w # 0 and that

(A—pulvy = Vieh 4+ v

where vy = w/||w||, h = (I — H,G)s/||w]| , and o = —F6/]|w]|. a

Remark 1 Our original motivation for developing Lemma 3.1 was to handle the case
when g is an eigenvalue of Hy. A particular choice of s for this case is to put s = ¢
where qHHM =0, and ¢”¢ = 1. Then

¢" (I — HuG)s = ¢M's = ¢"g = 1.

The conditions of Lemma 3.1 are clearly satisfied with this choice of s. However, we
do not use this choice in practice.

Remark 2 The most general form of selecting a right hand side for constructing w
is to take

w= (I = ViV (A= pu)™ Vit + fin)

where s =t — H,epn is chosen to satisfy the conditions of Lemma 3.1. To see this,
observe that

Vit + fun = Vies + [Vl + fref Jexn
=Vis+ (A — pl)Viern.

Hence,
(= Vi Vi) (A = nD) " Vit + fum) = (1 = Vi Vi)(A = uD) ™ Vs,

Thus, there is no mathematical reason to include the term fi7n, but the additional
freedom may eventually have some numerical consequences that are not apparent at
the moment. Note that when the shift i is an eigenvalue of Hy then the combination
of t = 0,5 = 1 is prohibited because the corresponding vector s does not satisfy
either of the conditions 3.3 required for constructing the solution in Lemma 3.1.
The parameters ¢t and 7 here are obviously related to the corresponding parameters
appearing in the RKS method. It is interesting to note that the choice t =0,p =1 1s
also prohibited in RKS when p is an eigenvalue of Hy.

Remark 3 An alternative to forming h as described in Lemma 3.1 is to form w
as described above and normalize to get vy = w/||w||. Then, construct 2 and «
using the DGKS procedure to orthogonalize the vector (A — ul)vy against Vi and fj
respectively. Thus

B V(A= oy = VT Avy, o e JE (A= pl)os /|1 fell

Lemma 3.1 justifies Algorithm 3 to solve the TRQ equations. Once again, we remark
that the DGKS procedure may be used at Steps 2,3,4 of Algorithm 3 to assure that
both Vv, =0 and (A—pul)vy = Vih+va to working accuracy. For relatively small

10 D. C. SORENSEN AND C. YANG

Algorithm 3: Direct Solution of the TRQ Equations

Input: (A, Vk,Hk,fk,/,L) with AV, = Vi, Hy + fkeg, VkHVk =1 and Vkak =0.
Output: (vy, h, @) such that (A — pl)vy = Vih+ fre, Vv =0 and |jvg || = 1.

Choose t and n and solve (A — pulw = Vit + fin;
Y — VkHw;

w—w — Vi,

vy s ace S (A= alyos JIll b VI Ay

I I A

Fi1G. 3.1. Direct Solution of the TRQ Equations.

values of &, the main computational effort is the solution of the equation (A4 —plw =
Vil 4+ frn. As mentioned in Remark 2, there may be advantageous choices of ¢ and 7
to overcome inaccuracies due to ill-conditioning when p 1s very nearly an eigenvalue
of A. We used t = e, and 5 = 0 in all of the experiments reported in Section 4.
This choice seemed to perform consistently well as compared to many of the obvious
choices such as taking ¢ to be an eigenvector of Hy. Finally, it is clear that incremental
re-scaling may be introduced as in inverse iteration to avoid overflow and that the
scalar 6 appearing in the proof of Lemma 3.1 need not be computed explicitly.

The formulation just developed is appropriate when a sparse direct factorization
of A— ul is feasible. When this is not the case we must resort to an iterative scheme.
For an iterative scheme, there may be an advantage to solving the projected equation

(I = VaVEYA = uD) (T = ViV = fi
and putting

w
Uy —

[l

where w = (I — V;V;H)w. This is mathematically equivalent to solving the TRQ
equations. The advantage here is that the matrix

(I = Vi Vi) (A = p) (1 = Vi Vi)

1s most likely to be much better conditioned than A — i when p is near an eigenvalue
of A. A projected equation of this form plays a key role in the Jacobi-Davidson
Method recently developed in [19], [20], [9]. Tt also provides a means for allowing
inaccurate solutions and preconditioning as we shall discuss later in Section 5.

3.2. Selection of Shifts. Another important issue to be addressed in the TRQ
iteration is the selection of shifts. Various options are available. They lead to different
convergence behavior. We discuss only a few simple options below. The tradeoffs and
comparison to other algorithms will also be discussed in Section 4.

The simplest strategy is to use a fixed shift ¢ throughout the TRQ iteration. This
shift is referred to as the target shift in the following discussion. In this case, a single
matrix factorization of A — uI may be used repeatedly to get inverse power method
type of convergence. However, if the ratio

|Aj — pl
3.5 o= — '
(3:5) po—

TRUNCATED RQ-ITERATION 11

is close to 1, the approximation to A; converges extremely slow. In Section 5, we
compare this approach with the shifted and inverted IRA. It is observed that the
shifted and inverted TRA is often more efficient in obtaining a few eigenvalues near a
prescribed shift.

At the other extreme, we could adjust the shift at each iteration to enhance the
rate of convergence. Eigenvalues of Hy are natural candidates for the shift. They
provide the best approximations to eigenvalues of A from the subspace spanned by
the columns of Vi, and are referred to as the Ritz values. Before each TRQ update
we compute the Ritz values, and choose the one closest to the target shift as the next
shift. A converged Ritz value should not be selected as a shift.

This choice of shift usually leads to quadratic or cubic convergence rate. However,
this rapid convergence is obtained at the cost of factoring a matrix at each iteration.
It is observed from our experiments that Ritz values tend to jump around during the
early stage of the TRQ iteration. Thus, the target shift is used during the first few
iterations until Ritz values start to settle down.

A compromise between the first and the second choice is to use a fixed shift until
an eigenvalue has converged. Another possibility is to use each shift for (at most)
a fixed number of iterations. In either case, the best Ritz value that has not yet
converged may be selected as the next shift. Rapid convergence is generally obtained
with this strategy. The cost for matrix factorization is reduced in comparison with the
second approach. It will be shown in Section 5 that this scheme is very competitive
with the Rational Krylov method of Ruhe [15], [14], [16].

Finally, the leading k-columns of the Implicitly Shifted R(Q iteration may be
obtained by selecting the same set of shifts as the full dense algorithm if desired. For
example, if the elements of the matrix ' are denoted by 7;;, we could use 11 as the
shift. This corresponds to the Rayleigh quotient shift in the RQ algorithm. Another
alternative is the Wilkinson shift. This is defined to be the eigenvalue of the leading

2 x 2 matrix
Y11 Y12
721 722

that is the nearest to v11. These strategies may be used when no target shift is given
in advance, or when the TRQ iteration is used in conjunction with a deflation scheme
to compute the full spectrum of A.

Once the shift is chosen, an RQ update as described in Steps 2.3 through 2.6
of Algorithm 2 is taken. Clearly, it can be done explicitly, but there may be some
advantage to an implicit application. An implicit shift application is straightforward

since
Hk — /J[k h _ Hk h Ik 0
Brek a)T\ el a) o 1)

where & = «a + p. Thus the standard bulge-chase implementation of an RQ sweep
corresponding to the shift ¢ may be applied to the matrix

Hy h
ﬁkeg & ’

Finally, when the matrix A is real nonsymmetric, we would like to perform the
TRQ iteration in real arithmetic. However, there seems to be no simple analog to the
double shifting strategy used in the QR algorithm. Applying double shifts implicitly

12 D. C. SORENSEN AND C. YANG

in the TRQ iteration is possible. However, the corresponding TRQ equation involves
A= (A — pI)(A — pI), and more work is required to solve this equation. Tt is still
questionable whether a truncated double implicit shifting strategy should be used in
practice. Therefore, shall not present the details here. A double shift algorithm that

involves solving Aw = v may be found in [22].

3.3. Deflation. As discussed earlier, in each TRQ iteration the TRQ equation
(2.4) is solved so that a truncated Hessenberg reduction of the form

(3.6) A(Vi,v4) = (Vi 0) (éf:g ")
is maintained. As the TRQ iteration proceeds, the leading subdiagonal elements
of Hj become small. Usually, they will become small in order (from top down)
but occasionally this convergence happens further down the subdiagonal. When the
magnitude of a subdiagonal element 3; falls below some numerical threshold, it is set
to zero and the matrix Hy is split to give

Hi M
Hy = U .
* (0 Hij)

The first j columns of Vj form a basis for an invariant subspace of A, and j eigenvalues
of A may be extracted from ;. The deflation technique used in the QR algorithm
can be applied here to obtain subsequent eigenvalues. We rewrite (3.6) as

Hj —/J[j M h1
(3.71) (A= uD)(Vj, Viej,v¥) = (Vj, Vi, v) 0 Hp—j— pli—j ha |,
0 ﬁkeg_j o

where
. hy
Vi = (V;,Vi—;) and h = b ,
2

have been partitioned conformably with V; representing the leading j columns of Vj,
and hy representing the first j components of A.
An upper triangular matrix R and an orthogonal matrix @ of the form

~ [Ry r A @2 g
R_< 02 p), Q—<Ueg_j 'y)

are constructed such that

(Ho_j—plo_j ho) — RO.

o eg_ j o

Multiplying (3.7) from the right by QH = (I A H) yields

(A_F‘I)(Vj’vl:——ja@+):(Vjavk—jav) 0 Ry r)

TRUNCATED RQ-ITERATION 13

where V;’_] = Vk_ij +uggt, vy = &Vk_jek_j + yvug, M= MQY 4 hyg,
and ﬁl = 0Mep_; + 7h1. Note that the V; and H; are not modified during the
deflation.

The next cycle of TRQ iteration starts with the selection of a new shift. The role
of lffk_j,f/j and ¥4 are replaced by f[;’_j = Q2Rs + ply_;, Vf and U4 respectively.
If the subdiagonal elements of Hy converge to zero in order (from top to bottom,) a

partial Schur form
AVy = Vi R;,

is obtained. Of course, when a subdiagonal 3; approaches zero out of order, then the
splitting described in equation (split) above will still yield a partial Schur form since
the Schur form of H;Q); = Q; R; can be used to make an explicit transformation.

4. Numerical Examples. In this section, we evaluate the cost and performance
of the Truncated RQ (TRQ) iteration. We first show an example indicating that the
convergence rate of TRQ is exactly the same as that of the RQ iteration when the
TRQ equations (2.4) are solved exactly. Comparisons will be made with the shifted
and inverted TRA, the Rational Krylov Subspace (RKS) method and the recently
proposed Jacobi-Davidson QR (JDQR) method [9]. We show that if the the shift
is fixed, TRQ does not provide much advantage over the shifted and inverted TRA.
However, if the shifts are allowed to change during the iteration, TRQ often performs
better than TRA in terms of number of iterations, and is competitive with the RKS
and the JDQR algorithms. Numerical examples will be presented to demonstrate
the performance of the algorithm. All numerical experiments are performed using

MATLAB 4.2 on a SUN-SPARC 2.

4.1. Convergence Rate of TRQ. The rate of convergence of TRQ follows from
that of the full RQ iteration. For certain choices of shifts, it is cubic for symmetric
eigenvalue problems and quadratic for nonsymmetric problems. In fact, if the Arnoldi
iteration with the starting vector vy is used to produce the Hessenberg reduction
required by Algorithm 1 as an input, the first £ eigenvalues appearing on the diagonal
of the output triangular matrix will be exactly the same as the those computed by
TRQ with the same starting vector.

In the following, we present an example that verifies the fast convergence of TRQ.
We choose to work with a standard 5-point discrete Laplacian defined on [0, 1] x [0, 1]
with zero Dirichlet boundary conditions. For simplicity, the 100 by 100 symmetric
matrix is scaled by h?, where h = 1/101 is the mesh size of the discretization. We
are interested in 4 eigenvalues with the smallest magnitude. The size of the Arnoldi
factorization used in the TRQ iteration is set to be b (k = 5.) In each TRQ iteration,
eigenvalues of the 5 x 5 tridiagonal matrix Hs defined in Step 2.6 of Algorithm 2
are computed. The one nearest to zero that has not yet converged is chosen as the
next shift 4. Table 4.1 lists the subdiagonal element §; (j = 1,2,3,4) of Hs at each
iteration. Once |3;|/(|H; ;| + |Hj+1 j+1]) drops below a prescribed tolerance of 10715,
we set [; to zero. Clearly, the first eigenvalue converges cubically, and the second
one shows cubic convergence rate after the first one has converged. At the end of the
12-th iteration, all four eigenvalues

A1 = 0.16203
Az = 0.39851
Az = 0.39851

14

D. C. SORENSEN AND C. YANG

iteration 7 51 57 o B4
1 0.18638 | 2.31 x 1072 2.18 x 10 1.91 x 10° 1.58 x 10°
2 0.16204 | 2.33x 10~7 | 6.23 x 10~" 1.84 x 10° 2.18 x 10Y
3 0.16203 | 1.11 x 10721 | 2.10 x 10~1 1.36 x 10° 1.84 x 10°
4 0.44417 0 7.92x1072 | 1.27x 1071 1.55 x 10°
5 0.39857 0 1.36 x 107° | 3.83x 1072 | 7.24x 107!
6 0.39851 0 4.08x 10717 | 1.36x 10~! | 9.47 x 102
7 0.40410 0 0 1.34%x 1072 | 3.14x 1072
8 0.39851 0 0 3.84x 1078 | 4.24 x 1072
9 0.39851 0 0 858 x 1021 | 5.71 x 1072
10 0.63614 0 0 0 2.15 x 1073
11 0.63499 0 0 0 1.52 x 10~10
12 0.63499 0 0 0 1.88 x 10728
TABLE 4.1

Convergence history of the 4 computed eigenvalues of a 2-D Laplacian.

A4 = 0.63499

are found. The convergence criterion here was a tolerance of 10715 in the test for
declaring a subdiagonal element to be zero. The computed direct residuals for all
converged eigenpairs were on the order of 1071°. The multiplicity of the eigenvalue

0.39851 1s detected.

4.2. Comparison with IRA. It is mentioned in Section 3.2 that a simple way
of selecting a shift in Step 2.1 of Algorithm 2 is to use a fixed shift throughout the TRQ
iteration. Besides its simplicity, this strategy may also reduce the computational cost
when factoring A — ul is expensive. However, as one may expect, the convergence
rate of each desired eigenvalue is typically linear in this case. When the ratio o
defined in (3.5) is close to 1, slow convergence is usually observed. In the following,
we compare this variant of the TRQ algorithm with the shifted and inverted IRA since
both algorithms factor the matrix A — pI only once. It is shown in Table 4.2 that
TRQ requires slightly less work and storage per iteration. However, our numerical
experiments often show that the shifted and inverted IRA converges faster than TRQ
with the same shift. An example is presented below to demonstrate this phenomenon.
The problem involves the 2-dimensional Laplacian used in the previous section. Four
smallest eigenvalues are sought. We placed the target shift at zero, and ran TRQ with
k =5 (TRQ(5)). The results are compared with TRA with & = 4, p = 1 (IRA(1))
and TRA with £ = 4, p = 4 (TRA(4).) The value of p indicates the number of shifts
used in the TRA iteration [21]. Since the ratio p = |A1|/|A2] is close to 1, we expect
TRQ to converge slowly. In Table 4.3, we list the converged eigenvalues and the
number of linear systems solved before each eigenvalue has converged. One way to
accelerate the TRQ iteration is to increase the size of the Arnoldi factorization. The
motivation is to take advantage of large gaps that may exist in the unwanted portion
of the spectrum. However, the gain is usually not significant unless such gaps are
large enough. In Table 4.4, we compare the total number of linear solves used in
finding the four desired eigenvalues of the 2-dimensional Laplacian with different &
values. We observe that as k increases, the number of linear solves required in TRQ
does not always decrease. Clearly, one does not want to use a k that is too large for
this will increase the computational cost.

TRUNCATED RQ-ITERATION 15

| [TRQ | IRA |

initialization cost | MATVEC (k times): variable | SOLVE (k + p times): variable
GEMV: O(nk?) GEMV: O(n(k + p)?)
Factorization: variable Factorization: variable

cost per iteration | SOLVE: variable SOLVE (p times): variable
Shift selection O(k?) GEMV: O(n(k + p)?)
RQ update: O(nk? + k?) Shift selection:O((k + p)?)

QR update: O((k + p)?)
storage O(n(k+ 1)+ (k+1)?) On(k+p+1)+ (k+p+1)7%)
TABLE 4.2

Comparison of computational work and storage between TRQ and IRA. We assume that &
eigenvalues closest to the shift o are of interest. An Arnoldi factorization of length k is maintained
in TRQ, and p(> 1) shifts are applied in each IRA iteration (i.e., an Arnoldi factorization of length
k + p is maintained.) We use MATVEC to denote the matrix vector multiplication used in TRQ,
and use SOLVE to indicate the cost of solving a linear system in both TRQ and IRA. The operation
GEMYV refers to dense matrix vector multiplications needed in carrying out Arnoldi factorization.
The RQ or QR update refers to the bulge chase process used in both algorithms.

| eigenvalue [TRQ(5) [IRA(1) | TRA(4) |

0.16203 36 11 6

0.39851 79 16 7

0.39851 161 26 8

0.63499 186 40 11
TABLE 4.3

Comparison of IRA and TRQ on a 2-D Laplacian.

4.3. Comparison with RKS. The convergence rate of TRQ may be improved
if shifts are chosen to be the best eigenvalue approximations from the subspace
spanned by columns of Vj,. However, this scheme requires factoring a matrix A — p; 1
at each iteration. To reduce the overall cost of TRQ), the third shift selection strategy
discussed in Section 3.2 may be used, i.e., a shift is used repeatedly until either a
Ritz value has converged or a fixed number of iterations has occurred. Then a new
shift is selected. This strategy is also employed in the Rational Krylov Method (RKS)
introduced by Ruhe [15], [14], [16]. In this section, we show by numerical example
that TRQ is competitive with RKS.

The basic recursion involved in RKS [15] may be characterized by the equation

AViy1Hy = Vi1 G,

where Viq1 is n by k4 1, lffk and G’k are k + 1 by k, and V,fl_lka = Ipy1. We
denote the j-th column of V41, Hy and G’k+1 by v;, h; and g; respectively. They
are produced by a sequence of Arnoldi-like steps shown in Figure 4.1.

The choice of t; is arbitrary, but ¢; = e; is recommended. The subspace spanned
by the columns of Vi do not form a Krylov subspace, and approximate eigenvalues
may be obtained by solving the generalized eigenvalue problem

(4.1) Grs = pHys,

where Gy and Hy are the submatrices consisting of the first & rows of G’k and lffk
respectively. The convergence of each Ritz value can be monitored by the estimate

16 D. C. SORENSEN AND C. YANG

| k | no. of linear solves |

5 186
10 132
15 132

TABLE 4.4

Comparison of TRQ(%) with different values of k.

(RKS) Rational Krylov Subspace ITteration

Input: (A, v;) such that ||v,]| = 1. i i
Output: (Vk+1, Hk, Gk) such that AVk+1Hk = Vk+1Gk, V,ﬁ_lka = I,
and Hyy1 is upper Hessenberg.

1. Choose t; = e1; R

2. Vi & (v1); Ho=(); Go=();

3. for j=1,2,3,... k.
3.1. Choose a shift ji;;
3.2. wip ¢ (A—)~ H(Vity);
3.3. hj — Vijj; I‘ifj — (I‘}j_l, hj);
8.4, gj hjpj +155 G (G-, gj);
8.5. wjp1 < wiy1 — Vihy; B = [[wjll;

7 Hy N\, A Gi .

i (Yoo ()
8.7, vit1 < wig1/B; Vigr < (Vj, viga);
3.8. Choose a vector t;41;

4. end

Fi1Gc. 4.1. Rational Krylov Subspace Iteration.

derived in [15]. Deflation must be done properly [16] to avoid missing multiple eigen-
values. The cost of RKS per iteration is listed in Table 4.5.

It is mentioned in [16] that a large basis is needed when the eigenvalue problem is
ill-conditioned. Thus reorthogonalization becomes expensive. Purging and restarting
have been proposed in [16]. However, these schemes are still experimental and not
well understood. In contrast, the size of V} is fixed during the TRQ iteration, and the
update is done by an orthogonal transformation. The convergence can be monitored
by checking the magnitude of subdiagonal elements of Hg. Deflation is built into the
TRQ iteration, and eigenvalues with multiplicity greater than one cause no difficulty.
At convergence, a partial Schur form is constructed automatically without further
reordering.

In the following, we compare TRQ and RKS on a 340 x 340 Tolosa matrix [2]. The
Tolosa matrix is a model problem that has the important features of matrices that
arise in the stability analysis of an airplane in flight. The full spectrum of this matrix
is plotted in Figure 4.2. Eigenvalues with largest imaginary parts are of interest. We
use the RKS code developed by Ruhe [16] for comparison. The same random starting
vector is used in both RKS and TRQ. In the RKS code, Ritz values are computed

TRUNCATED RQ-ITERATION 17

| Operation | Cost
Factorization (intermittently) | variable
SOLVE variable
GEMV O(nk?)
Ritz approximation O(k?)
Purging & restart O(nkkq + k*)
storage O(n(k+ 1)+ 2(k + 1)%)

TABLE 4.5
The cost of the RKS iteration. The value of %k is usually much larger than the number of
desired eigenvalues kg. Again, SOLVE refers to solving a linear system in Step 3.2 of the algorithm.
The operation GEMYV refers to dense matrix vector multiplications needed in carrying out the RKS
factorization. Ritz approximation refers to solving the generalized eigenvalue problem Hys = uGys.

from (4.1) at each iteration. A Ritz value is flagged as converged when the Ritz
estimate falls below tol = 1071%. The initial shift is placed at g = —150 + 410i. The
same shift is used for at most m iterations. A new shift is selected after the current
shift has been used for m iterations, or after convergence of a Ritz value. The same
shift selection strategy 1s used in TRQ for comparison. In Table 4.6, we list the first
five computed eigenvalues, and the number of iterations taken before each eigenvalue
has converged. We choose m = 5 and m = 10 in RKS. The size of the Arnoldi
factorization used in TRQ is set to be 6 (k = 6.) We tried m = 1 (optimal shift
selection), m = 5 and m = 10 in TRQ. At the bottom of the table, we accumulated
the total number of factorizations used in each run. For m = 5, the convergence
history of RKS and TRQ are plotted in Figure 4.3 and Figure 4.4 respectively. In
these figures, we plot the residual norm of each approximate eigenvalue against the
number of flops (floating point operations). The vertical dotted line marks the end
of each iteration, the dash-dot line marks the end of a matrix factorization. It 1s

The spectrum of a 340x340 Tolosa matrix
500 T T T T T T T

400 q

300 q

200 q

imaginary axis
o
T

-100F

W mfmﬂiv

-200F q

-300F q

-400f 1

500 L L L L L . .
-400 —300 -200 -100 0 100 200 300 400
real axis

Fi1G. 4.2. The spectrum of a 340 x 340 Tolosa matrix.

observed from Table 4.6 that it takes more than 10 iterations for both RKS and TRQ
to locate the first eigenvalue. Once the first one emerges, both algorithms converge at
a rate of two iterations per eigenvalue. Notice that horizontal axes in Figure 4.3 and

18 D. C. SORENSEN AND C. YANG

eigenvalue RKS RKS | TRQ(6) | TRQ(6) | TRQ(6) | TRA(10)
m=5|m=10 m=1 m=25 m =10
—132.34430.1¢ 12 14 11 14 15 14
—127.94425.2¢ 15 16 13 16 17 51
—123.54420.2¢ 17 18 15 17 18 64
—119.34415.2¢ 19 20 17 19 20 125
—115.14410.2¢ 31 22 19 21 22 201
| factorizations | 9 | 6 | 19 | 7 | 6 | 1 |
TABLE 4.6

Comparison of IRA and TRQ on a Tolosa matrix.

4.4 are labeled with different scales. For this problem, RKS builds a larger subspace
than TRQ in order to capture all desired eigenpairs. Thus more orthogonalizations are
performed in RKS. This explains the larger number flops required by RKS. Residual
norms of all Ritz pairs are plotted in Figure 4.3. Only five of them have converged
to the desired tolerance of 10719, Clearly, TRQ is competitive with RKS in terms of
both the number of factorizations and the number of iterations, and both algorithms

compare favorably with TRA with p = 10 (IRA(10).)

10°

= = = I
o, ° S, S,

residual norm

N
o

10

F1G. 4.3. The convergence history of RKS.

4.4. Comparison with JDQR. If factoring A — pl is inexpensive, we may
consider using an optimal shift described in Section 3.2 in each TRQ iteration. In
this case, the performance of TRQ 1s comparable with that of the Jacobi-Davidson
method.

Given an initial approximation vy of a desired eigenvector, the Jacobi-Davidson
method [19] finds, at each step, a correction vector zi that is orthogonal to the previous
approximate eigenvector u;. A new subspace is created by adjoining this vector to the
previous subspace and taking the span. The next approximate eigenpairs are drawn
from projection onto the new subspace. The correction vector zj is obtained from the

TRUNCATED RQ-ITERATION 19

residual norm

F1G. 4.4. The convergence history of TRQ.

equation
(4.2) (I - ukukH)(A — 0 1)1 — ukukH)zk = —r; and z; L uy,

where rp = Aug — Ogug, and g is the current approximation to the eigenvalue of
interest. It can be shown [19] that if (4.2) is solved exactly, the Jacobi-Davidson
method becomes the accelerated inverse iteration, i.e., it builds an orthonormal basis
of the subspace

S(A, vo, {6;}) = span{vg, v1, va, .08 },

where v; = (A — 6;1)7 v;_1. Ritz approximations are extracted from this subspace.
It is shown in [16] that this method is equivalent to RKS with an optimal shift
selected in each iteration. The subspace S(A,vo, {g;}) is not a Krylov subspace.
The Hessenberg relationship (3.1) is not preserved in the Jacobi-Davidson iteration.
To obtain several eigenvalues and eigenvectors, some standard deflation schemes [17]
are needed. To avoid building a large dimensional subspace &, restarting is also
necessary. The implementation of the Jacobi Davidson QR (JDQR) algorithm is
explained in detail in [9]. We compare the performance of TRQ and JDQR on a
standard eigenvalue problem arising from the stability analysis of the Brusselator
wave model (BWM) [2]. Eigenvalues with largest real parts are of interest. They
help to determine the existence of stable periodic solutions to the Brusselator wave
equation as some parameter varies. The size of the matrix we choose 1s 200 x 200.
The 32 rightmost eigenvalues are plotted in Figure 4.5. We place the target shift at
o = 1.0, and use TRQ and JDQR to find 4 eigenvalues closest to . In Table 4.7, we
list the first four computed eigenvalues and number of factorizations used to obtain
each one of them. In the runs using TRQ, we tried £ =5 and & = 8. In JDQR, the
maximum dimension of subspace from which approximate eigenpairs are drawn is 8.
Restart begins at the 6th column (jmin = 5.) It is denoted by JDQR(5,8) in Table
4.7.

It is observed from Table 4.7 that TR(Q) takes fewer iterations to find all four
eigenvalues of interest. However, as pointed out in [9], the correction equation may

20 D. C. SORENSEN AND C. YANG

The rightmost 32 eigenvalues of the BWM matrix
5 T T T T T T

+ 4+
+ +
ar + q
. +
3r + i
+
2+ * 1
Q0 1F B
x
<
2
s Of + + ++ +++ + H4 B
k=)
<
E_1L J
oL . J
+
3 + -
* +
4L + J
+
+ o+
_5 L L
-60 =50 -40 -30 -20 -10 0 10

real axis

Fic. 4.5. The 32 rightmost eigenvalues of a 200 x 200 BWM matrix.

| eigenvalue | TRQ(5) | TRQ(8) | JDQR(5,8) |
1.820 x 10~° + 2.140¢ 8 6 14
1.820 x 10~° — 2.140¢ 11 8 17
—0.6747 + 2.529% 14 12 19
—0.6747 — 2.529: 16 14 21
TABLE 4.7

Comparison of TRQ and JDQR on the BWM problem.

be solved by one step of GMRES iteration in the first j,.;, steps of JDQR, iterations.
This is equivalent to building the initial Jacobi Davidson search space [9] by running
a jmin-step Arnoldi iteration. For the BWM problem, this technique reduces the total
number of exact solves in JDQR(5,8) to 16.

5. Inexact TRQ and Restarting. Rapid convergence of the TRQ algorithm
is observed in Section 4 when the TRQ equation

(5.1) (I = ViViEYA = puD)(I = ViV vy = va, with VHoy =0, |lvg]l =1

1s solved exactly in each iteration. In this section, we explore the possibility of relax-
ing the solution accuracy of (5.1) while maintaining the rapid convergence of TRQ
iteration. This is extremely important for many applications in which the factoriza-
tion of A — ul is too costly, and an approximate solution of (A — ul)xz = b can be
provided by an iterative solver.

Recall that one of the important characteristics of the TRQ algorithm is the
inverse iteration relation between the first column of Vk‘l' and the first column of V%,
ie.,

(A — pulvt =vy.

If an optimal shift is chosen at each iteration, the convergence of v; to an eigenvector
of A is often quadratic or cubic. We will show in the following that if the projected

TRUNCATED RQ-ITERATION 21

equation 1s solved approximately, an inexact inverse iteration is maintained between
vf’ and vy. Superlinear convergence can still be achieved if optimal shifts are used.

Suppose @, is an approximate solution to (5.1). Since I — V; V; is a projection,
we may replace ¢4 with (I —Vy V)3, in (5.1). Thus, we explicitly orthogonalize the
approximate solution v against all columns of Vj; through

oy — (I = ViV,

and normalize it so that ||#1|| = 1. The unknowns h and « present in (2.4) are then
computed directly as if ¢4 were an exact solution to (5.1), i.e.,

heVHEA-puhi, =VHEA,, &« o (A—pul)oy.
These lead to the equation

Hy — ply
Brelk

O D

(5.2 (A = D) (Vi 74) = (Vi) () e,

where zeg_l_1 1s an error term with

O o
N

2= (A—pl)og — (Vi,v) (
By construction, z satisfies
VHE: =0, o2 =0.

Ry,

r .
0) and an orthogonal @) =

We may now compute an upper triangular R= (

(QkT qu) such that

(o=

Hk—/,tfk 77, —DBA
(Bre; d)_RQ’

and multiply (5.2) from the right by Q to get
. . R _
(A= DORQE + 540 i+ 125) = (Vo) (7) 4 2(a,0)

The first column of Vk‘l' =V QkH + 04 qM is related to the first column of V} through
the equation

(5.3) (A — pl)vt = privy + 24,

where v = V,:'el and J is the first element of the vector ¢. Since the orthogonal
matrix Q is constructed from accumulation of a sequence of Givens rotations used in
the RQ factorization, ¢ is a product of (k—1) sines. Its magnitude is bounded by 1 and
it 1s likely to be quite small due to the accumulated product of sines. Thus the error
term present in the inexact inverse iteration (5.3) is at worst of the same magnitude
as the error introduced in solving (5.1) and is very likely to be much smaller. In
fact if the first subdiagonal element 3, is small (indicating the (1,1) element of Hy, is

22 D. C. SORENSEN AND C. YANG

Algorithm 4: (RTRQ) Truncated RQ-iteration with restart

Input: (A, Vi, Hg, fi) with AV, = Vi Hy, + fkeg, VkHVk = I, H; upper
Hessenberg.
Output: (Vj, Hy) such that AV, = V Hy, VkHVk = [and Hj, is upper triangular.

1. Put B = || /x|l and put v = fi/Bk;
2. for j = 1,2, 3, ... until convergence,
2.1. Select a shift p p;;
2.2. Solve (I — Vi VEY(A — uI)(I — Vi, VH)w = v approximately;
2.3. w+ (I — ViVE)w, vy < w/|lwl;
2.4. h VHAvy, o vH(A— phvy ;

Hy—ply h\ _ [Ry r Qe g \.
2.5. RQFactor(51;65 a)_< 0 p)(aeg 5)

2.6. v VkaHel + v_|_qH61;
2.7. Restart: (Hy,Vi,v,0;) < Arnoldi(A4,vq);
3. end;

Fi1Gc. 5.1. Restarted TRQ iteration.

| eigenvalue | RTRQ(5) | JDQR(5,8) |

5.5024 3 15

5.5024 6 23

1.5940 11 25

1.5940 17 35
TABLE 5.1

Comparison of RTRQ and JDQR on the CK656 problem.

nearly an eigenvalue of A) then |§] is very likely to be smaller than |5;| which may
be verified by considering the effect of the final Givens rotation to occur in the RQ
step. Therefore, the error committed by accepting the inexact solution to the linear
system (5.1) is damped by the RQ step to obtain a more accurate inverse-iteration
relation between the vectors v} and v; than might be expected.

We would like to continue the TRQ update as described in Steps 2.4-2.6 of Al-
gorithm 2. However, because of the error incurred in (5.2), the updated orthonormal
basis V" = Vi@ + 94¢™ no longer spans a Krylov subspace. However, the first
column of Vk'l' is approximately what we would have obtained if the TRQ equation is
solved exactly. Thus one may recover a truncated Hessenberg reduction by running
a k-step Arnoldi process with vf’ as the starting vector. We refer to this step as a
restart. The restarted TRQ (RTRQ) iteration is summarized in Algorithm 4.

If a Krylov subspace type of method (such as conjugate gradient or GMRES)
1s used to solve the TRQ equation in step 2.2 of the above algorithm, it maybe of
advantage to work with the operator B = (I — Vi, V;H)(A — pul)(I — Vi, V) directly
since B may be better conditioned in the subspace V,-. Of course, the matrix B need
not be formed explicitly, only the matrix vector multiplication Bv is required.

TRUNCATED RQ-ITERATION 23

[
o
&

residual norm
i
O‘
5

=

o
S
5

R

-
O‘

H
O‘
5

=]
o

10 15
flops

FiG. 5.2. Convergence history of RTRQ and JDQR for the CK656 matrix

5.1. Comparison with JDQR. In the following, we present a numerical ex-
ample of using the inexact TRQ iteration with restart (RTRQ) to compute the eigen-
values of the CK656 matrix described in [2]. Eigenvalues of this matrix all have
multiplicity two. We look for 4 eigenvalues near the target shift & = 5.0, and set
k =5 in RTRQ (RTRQ(5).) The computational result is compared with JDQR with
Jmin = B, Jmar = 8 (JDQR(5,8).) The same random starting vector is used in both
tests. The TRQ equation and the projected correction equation in JDQR are solve
by GMRES with no preconditioning or restart. The maximum GMRES steps allowed
in each linear solve is set to be 10. The GMRES residual tolerance is set to be 1076,
The optimal shift selection strategy is used in both tests, i.e., the Ritz value that is
the nearest to the target shift but has not converged is used as the next shift. No
tracking [9] is used in JDQR. In Table 5.1, we list the four eigenvalues of interest and
the number of iterations taken by RTRQ and JDQR before each eigenvalue has con-
verged. We observe that for this example, RTRQ takes fewer iterations than JDQR
to capture eigenvalues of interest. In particular, RTRQ is able to capture the first
eigenvalue much quicker than JDQR. However, RTR(Q costs more per iteration than
JDQR because the projection in the TRQ equation always involves k vectors, and &
matrix vector multiplications must be performed in each iteration to reconstruct an
Arnoldi factorization. Thus, the overall performance should be compared in terms of
total number of matrix vector multiplications or flops used in both methods. This 1s
illustrated in Figure 5.2. We plot the residual of each approximate eigenpair against
the number of flops. The residuals of the approximate eigenpairs are monitored one at
a time. When the residual curve corresponding to the approximation to the eigenpair
(Aj, zj) drops below 1077, we start to monitor and record the residual for the next
approximate eigenpair (A;jy1, zj41). We should point out that the comparison made
here is still preliminary. Several techniques are available to improve the performance
of JDQR [9], and many of these may be used in RTRQ as well.

5.2. The Effect of Preconditioning. Solving the TRQ equation is the most
expensive part of the TRQ iteration. When an iterative method is used, a good pre-
conditioner may accelerate the convergence and reduce the overall cost. The improved

24 D. C. SORENSEN AND C. YANG

| eigenvalue | diagonal | ILU(0) | tridiagonal |
1.820 x 107> + 2.140¢ 80 21 7
1.820 x 107> — 2.140¢ > 100 38 12
—0.6747 + 2.5291 > 100 52 19
—0.6747 — 2.529: > 100 66 23
TABLE 5.2

Comparison of RTRQ with and without preconditioner

accuracy in the solution to the TRQ equation often brings about a reduction in the
total number of TRQ iterations.
One may precondition the projected system

(I = Vi VYA = u)(I = ViViDw = v,

directly to obtain an approximate solution to the TRQ equation. However, it may
not be easy to find a good preconditioner M for the projected matrix (I —VjV,I')(A—
pl)(I — Vi, VI). Instead, one usually has a preconditioner for the matrix A. As
pointed out in [9], this preconditioner may need to be projected into VkJ‘ in order to
accelerate the convergence of the Jacobi Davidson iteration. The projected shifted
preconditioner is sometimes not a good preconditioner for the projected shifted ma-
trix A. This extra projection does not seem to be necessary in the TR(Q iteration
since the TRQ equations may be solved using the scheme discussed in Section 3. This
scheme solves a linear system (A — pl)w = v. Thus a preconditioner of A may be
easily applied. In the following we present an example that demonstrates the effect

0

20t
40F -,
60|
8ot -,
100, ™
120f ™,

140}
160F .,

180} .,

200 L iy L
0 50 100 150 200
nz =796

Fi1G. 5.3. The structure of a 200 x 200 BWM matrix

of preconditioning on the restarted TRQ iteration. Four eigenvalues of the the BWM
matrix used in Section 4 are computed, and the size of the Arnoldi factorization in
the TRQ iteration is set to be 5 (kK = 5.) The target shift is placed at 1.0. The TRQ
equation is solved using a preconditioned GMRES with no restart. The maximum
number of GMRES iterations allowed in each solve is set to be 10. The GMRES resid-
ual tolerance is set to be 1079, The structure of the BWM matrix is shown in Figure
5.3. We used the diagonal part, the tridiagonal part and the incomplete LU factors

TRUNCATED RQ-ITERATION 25

10 T T T T
-+ no
-—-- diagonal
— tridiagonal
- — ILU(0)
E J
=]
i t~
IS} el
3 ~.
3 ~
n -
<
10712 1 1 1 1 1
0 1 2 3 4 5 6
flops 7

FiG. 5.4. Convergence history of Preconditioned TRQ for the BWM matrix

(ILU(0)) of the matrix A as the preconditioner. The number of iterations used to
obtain the four eigenvalues near 1.0 are listed in Table 5.2. Without a preconditioner
no eigenvalue is found in 100 iterations. The convergence history of RTRQ with var-
ious preconditioners is shown in Figure 5.4. The residual norm of each approximate
eigenpair is plotted against the number flops subsequentially. The solid curve cor-
responds to RTRQ with tridiagonal preconditioning. The dashed curve corresponds
to RTRQ with ILU(0) preconditioning. The dash-dot curve corresponds to RTRQ
with diagonal preconditioning. The dotted curve is associated with RTRQ with no
preconditioning. When the residual curve drops below the dotted line indicating the
acceptable residual tolerance 10™7, we start to monitor and record the residual of the
next approximate eigenpair. It is observed that a good preconditioner improves the
convergence of RTRQ dramatically.

5.3. Comparison with Accelerated Inverse Iteration with Wielandt De-
flation. The inexact TRQ iteration with restart does not completely mimic the ex-
act TRQ. In particular, the truncated Hessenberg reduction is enforced through an
Arnoldi iteration rather than an implicit RQ update. The method behaves more
like a single vector iteration with deflation than an RQ iteration in which the rapid
convergence of one eigenvalue is often accompanied with the convergence of other
eigenvalues at a slower pace.

In this section, we compare restarted TRQ with the accelerated inverse iteration
combined with a deflation scheme that is very close to the Wielandt deflation (IN-
VWD) [17, pp. 117] for computing a few eigenvalues of A. We show that the exact
TRQ performs better than the exact INVWD and the inexact TRQ appears to be
more reliable than the inexact INVWD.

The inverse iteration can be viewed as a shifted and inverted power iteration. It
requires solving

(A—phHw = v,

where v is the previous approximation to an eigenvector and w is the current ap-
proximation. The acceleration 1s achieved by choosing, at each iteration, a shift u

26 D. C. SORENSEN AND C. YANG

(INVWD) A Schur-Wielandt Deflated Inverse Tteration

Input: (A, p, v, U) such that (¢, v) is the current approximation to
the desired eigenpair, and columns of U contain the converged
Schur vectors.
Output: A new approximate eigenpair (¢4, v4) that may be used in the
next cycle of an inverse iteration.

1. Solve (A — plNw = v;

2. v (I —UUHYw; v+ v/||v][;
3. [Av; a = v w;

4. 1 = (a); V=(v); [« [f—ve
5. f« (I -UUMf,

6. for j=1,2,...k

6.1. 35 = ||£ll; vj+r < F/Bj+1;
6.2. Vigr = (Vj, vj1); Hj (;ET)?
ER]
6.3. z ¢+ Avjyq; 2 (I = UUH)z;
6.4. h « Vsz; H;y1= (Hj, h);
6.5. f 2z —Vjih;
7. end;

8. Compute an desired Ritz pair (p4,v4) from Hy and Vj to be used in the
next cycle of an inverse iteration.

Fi1Gc. 5.5. Schur- Wielandt Deflated Inverse Iteration

that is the best approximation to the desired eigenvalue. Once an eigenpair (A, u) has
been found, the next pair may be obtained by applying shifted power iteration to the
deflated operator A; = (A — pl)™! — ug’, where ¢ = (A — pul)~Hw. This deflation
scheme is an variant of the explicit Wielandt deflation [23, pp. 596], [17, pp. 117].
The deflated operator A; = (I — uu?)(A — pul)~! does not preserve right eigenvec-
tors of A in general, unless A is normal. However, it does preserve Schur vectors of
A. Thus, to generalize this deflation scheme for a converged invariant subspace, one
should replace v with a matrix of Schur vectors U that spans the converged invariant
subspace and satisfies U/ = I. This is a more stable variant of a technique referred
to as the Schur-Wielandt deflation in [17, pp. 122]. Tt leads to the algorithm INVWD
(Figure 5.5) which we adopt here for comparison to RTRQ.

In the following, we first present an example that demonstrates the advantage of
using TRQ over using inverse iteration with Schur-Wielandt-like deflation. Then we
compare the performance of the inexact TRQ with restart to the inverse iteration in
which the linear system is solved approximately.

In the first example, we choose A to be the 2-dimensional discrete Laplacian
used before. Six eigenvalues of the smallest magnitude are computed. The size the
Arnoldi factorization maintained in the TRQ iteration is 7 (k = 7.) The same size is
chosen for the deflated Arnoldi iteration used in INVWD to help determine the shift.
The same random starting vector is used in both TRQ and INVWD. In INVWD, a
Ritz pair (u;, z;) is considered to be converged if the direct residual norm ||r;|| =

TRUNCATED RQ-ITERATION 27

| eigenvalue | TRQ | INVWD |

0.16203 3 3

0.39851 6 7

0.39851 7 13

0.63499 10 17

0.77129 12 20

0.77129 13 24
TABLE 5.3

Comparison of TRQ and INVWD on a 2-D Laplacian.

||Azj — pijz;|| falls below tol = 10712, In TRQ, the convergence criterion is a tolerance
of machine epsilon in the test for declaring a subdiagonal element to zero. Table

*x X *- % X

residual norm
=
o
T

0 5 10 15 20 25
iteration number

Fi1G. 5.6. Traces of the residual in TRQ and INVWD

5.3 shows the number of iterations taken before each eigenvalue has converged. In
Figure 5.6, the convergence history of the residual for each computed eigenpair is
shown. The height of each circle and star corresponds to the residual of the eigenpair
computed by TRQ and INVWD respectively. The TRQ residuals corresponding to
the approximations to the same eigenpair are connected by a solid line. The INVWD
residuals are connected by a dash dot line. The circles below the dotted line correspond
to the residuals of converged eigenpairs computed by TRQ. It is easily observed that
the global convergence of TRQ is better than INVWD. In INVWD, every residual
curve starts from the top (||r|| & 1071,) whereas in TRQ, the convergence of the
second and fifth eigenpairs are followed by the immediate convergence of the third
and the sixth pairs. The residual for the fifth eigenpair starts from roughly 107'%, and
drops below 1071* in one iteration. We should also mention that the convergence of
INVWD is sensitive to the starting vector and the size of the subspace used to obtained
the shift. Eigenvalues may not necessarily converge in order. For example, large
eigenvalues may appear early when we look for the ones with the smallest magnitude.

In the next example, we compare the performance of the inexact TRQ with that
of the inexact INVWD. We consider computing eigenvalues of the DW1024 matrix

28 D. C. SORENSEN AND C. YANG

that arises from dielectric waveguide problems in integrated circuit applications [2].
Four eigenvalues near 1.0 are of interest. In both methods, linear systems are solved
by GMRES with no restart. The maximum number of GMRES iterations allowed is
set to be 10. The GMRES residual tolerance is set to be 1078, The size of the Arnoldi
factorization maintained in the inexact TRQ iteration is set to be 5 (k = 5.) The
same size 1s set for the deflated Arnoldi iteration used in INVWD to determine the
shift. The traces of the residual for each computed eigenpair are shown in Figure 5.7.
Residual norms are plotted against the number flops. The solid curve corresponds to
the residual norm of the inexact TRQ. The dotted curve corresponds to the residual
of the inexact INVWD. We observe that the inexact INVWD converges much slower
than the inexact TRQ.

residual norm

Fi1Gc. 5.7. Traces of the residual in inexact TRQ and INVWD

6. Conclusions. This development of the Truncated RQ iteration has led to a
promising way to take advantage of situations where shift-invert equations can be
solved directly and also when they can only be solved inexactly through iterative
means. We have demonstrated with several numerical experiments that this scheme
provides a promising and competitive alternative to Rational Krylov Methods and
the Jacobi Davidson Method in the two respective cases. The scheme is relatively
simple and very efficient in terms of required numerical computation compared to
these and other related methods. Finally, the convergence properties and deflation
schemes are easily understood through the close connection with the RQ iteration for
dense matrices.

Future research will focus upon analyzing the filtering properties obtained from
embedding the shift-invert equations in the TRQ iteration. Equation (5.3) indicates
a damping of the error introduced by inexact solution when the RQ iteration is car-
ried out. The numerical properties and implications of this phenomenon are not yet
understood.

We chose the GMRES method to solve the TRQ equation iteratively in the in-
exact TRQ method because of its simplicity and reliability. Certainly, other iterative
solvers such as QMR, BICGSTAB could have been used. It would be interesting to
compare the performance of these iterative solvers in the TRQ context. More re-

TRUNCATED RQ-ITERATION 29

search 1s required with respect to preconditioners and how they should be utilized
within the TRQ equations. Exhaustive computational experimentation and com-
parisons are needed to determine whether the TRQ equations should be solved in
bordered form, projected form, or by utilizing Lemma 3.1. These are issues both for
direct and iterative solutions of the TR equations. The extension of these ideas to
the generalized eigenvalue problem will also be important. Eventually, we expect to
produce numerical software based upon this scheme to complement the IRA schemes

already available in ARPACK.

Acknowledgement. We would like to thank R. B. Lehoucq and G. L. G. Sleijpen
for reading the manuscript in detail and providing us with numerous corrections and
suggestions. In particular, suggestions from Drs. Sleijpen and Lehoucq improved
Sections 3.1 and 5.3 respectively. We would also like to thank the anonymous referees
for careful reading and helpful comments.

REFERENCES

[1] J. Baglama, D. Calvetti, and L. Reichel. Iterative methods for the computation of a few
eigenvalues of a large symmetric matrix. BIT, 36(3):400-421, 1996.

[2] Z.Bai, R. Barrett, D. Day, J. Demmel, and J. Dongarra. Test matrix collection (non-hermitian
eigenvalue problems). Research report, Department of Mathematics, University of Ken-
tucky, 1995.

[3] Z. Bai and G. W. Stewart. SRRIT— A FORTRAN subroutine to calculate the dominant
invariant subspace of a nonsymmetric matrix. Technical Report 2908, Department of
Computer Science, University of Maryland, 1992. To appear in ACM Transactions on
Mathematical Software.

T. Braconnier. The Arnoldi—Tchebycheff algorithm for solving large nonsymmetric eigenprob-
lems. Technical Report TR/PA/93/25, CERFACS, Toulouse, France, 1993.

[6] D. Calvetti, L. Reichel, and D. C. Sorensen. An implicitly restarted Lanczos method for large
symmetric eigenvalue problems. ETNA, 2:1-21, March 1994.

. Chatelin. Figenvalues of Matrices. Wiley, 1993.

Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthogonalization and stable algo-
rithms for updating the Gram—Schmidt QR factorization. Mathematics of Computation,
30:772-795, 1976.

. S. Duff and J. A. Scott. Computing selected eigenvalues of sparse unsymmetric matrices
using subspace iteration. ACM Transactions on Mathematical Software, 19(2):137-159,
June 1993.

[9] D. R. Fokkema, G. L. G. Sleijpen, and H.A. Van der Vorst. A Jacobi-Davidson style QR and
QZ algorithm for partial reduction of matrix pencils. Technical Report 941, University
Utrecht, Department of Mathematics, 1996. To appear in SIAM Journal on Scientific
Computing.

=
—=

)
—

[10] R. W. Freund and N. M. Nachtigal. QMRPACK: A package of QMR algorithms. ACM
Transactions on Mathematical Software, 22(1):46—77, March 1996.
[11] R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an implicitly restarted Arnoldi

iteration. STAM Journal on Matriz Analysis and Applications, 17(4), 1996.

[12] R. B. Lehoucq, D. C. Sorensen, P. Vu, and C. Yang. ARPACK: An implementation of the
Implicitly Re-started Arnoldi Iteration that computes some of the eigenvalues and eigen-
vectors of a large sparse matriz, 1995. Available from ftp.caam.rice.edu under the directory
pub/software/ ARPACK.

[13] R. B. Morgan. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems.

Mathematics of Computation, 65(215), 1995.
[14] A. Ruhe. The rational Krylov algorithm for nonsymmetric eigenvalue problems, IIT: Complex
shifts for real matrices. BIT, 34:165—-176, 1994.
A. Ruhe. Rational Krylov algorithms for nonsymmetric eigenvalue problems, II: Matrix pairs.
Linear Algebra and Its Applications, 197,198:283-295, 1994.

A. Ruhe. Rational Krylov, a practical algorithm for large sparse nonsymmetric matrix pen-
cils. Technical Report UCB/CSD-95-871 (revised), Computer Science Division(EECS),
University of California Berkeley, CA 94720, 1995.

[17] Y. Saad. Numerical Methods for Large Figenvalue Problems. Halsted Press, 1992.

15]

(16]

30 D. C. SORENSEN AND C. YANG

[18] J. A. Scott. An Arnoldi code for computing selected eigenvalues of sparse real unsymmetric
matrices. ACM Transactions on Mathematical Software, 21:432—-475, 1995.

[19] G. L. G. Sleijpen and H.A. Van der Vorst. A Jacobi-Davidson iteration method for linear
eigenvalue problems. STAM Journal on Matriz Analysis and Applications, 17(2):401-425,
April 1996.

[20] G.L.G. Sleijpen, J.G.L. Booten, D.R. Fokkema, and H.A. Van der Vorst. Jacobi-Davidson type
methods for generalized eigenproblems and polynomial eigenproblems. BIT, 36(3):595-633,
1996.

[21] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi method. STAM
Journal on Matriz Analysis and Applications, 13(1):357-385, January 1992.

[22] D.C. Sorensen and C. Yang. A truncated RQ-iteration for large scale eigenvalue calculations.
Technical Report TR96-06, Department of Computational & Applied Mathematics, Rice
Univeristy, Houston, TX 77005, 1996.

[23] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, Oxford, UK,
1965.

