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Abstract—A robust new algorithm for electromagnetic (EM)
optimization of microwave circuits is presented. The algorithm
(TRASM) integrates a trust region methodology with the aggres-
sive space mapping (ASM). The trust region ensures that each
iteration results in improved alignment between the coarse and
fine models needed to execute ASM. The parameter extraction
step is a crucial part of the ASM technique. The nonuniqueness
of this step may result in the divergence of the technique. To
improve the uniqueness of the extraction phase, we developed a
recursive multipoint parameter extraction. This suggested step
exploits all the available EM simulations for improving the
uniqueness of parameter extraction. The new algorithm was
successfully used to design a number of microwave circuits.
Examples include the EM optimization of a double-folded stub
filter and of a high-temperature superconducting (HTS) filter
using Sonnet’s eeemmm. The proposed algorithm was also used to
design two-section, three-section, and seven-section waveguide
transformers exploiting Maxwell Eminence. The design of a
three-section waveguide transformer with rounded corners was
carried out using HP HFSS. We show how the mapping can be
used to carry out Monte Carlo analysis using only coarse model
simulations.

Index Terms—CAD, electromagnetic simulation, Monte Carlo
analysis, microwave filters, optimization methods, space mapping.

I. INTRODUCTION

A NOVEL algorithm for aggressive space mapping (ASM)
optimization [1] is introduced. Space mapping aims at

aligning two different simulation models: a “coarse” model,
typically an empirical circuit simulation, and a “fine” model,
typically a full-wave EM simulation. The technique combines
the accuracy of the fine model with the speed of the coarse
model. Parameter extraction is a crucial part of the technique.
In this step the parameters of the coarse model whose re-
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sponses match the fine model responses are obtained. The
extracted parameters may not be unique, causing the technique
to fail to converge.

Recently, a multipoint parameter extraction concept was
proposed [2] to enhance the uniqueness of the extraction step at
the expense of an increased number of fine model simulations.
The selection of points was arbitrary, not automated, and no
information about the mapping between the two spaces was
taken into account.

Our proposed trust region aggressive space mapping
(TRASM) algorithm automates the selection of fine model
points used for the multipoint parameter extraction process.
In the multipoint parameter extraction, an iterative approach
utilizes all the fine model points simulated since the last
successful iteration. Also, the current approximation to the
mapping between the two spaces is integrated into the
parameter extraction step. The space mapping step at each
iteration is constrained by a suitable trust region [3].

The TRASM algorithm was applied to a number of exam-
ples. The EM solver 1 was used successfully to optimize
the design of a high-temperature superconducting (HTS) filter
and a double-folded stub filter. Maxwell Eminence2 through
Empipe3D3 was used as a fine model to design two-section,
three-section, and seven-section waveguide transformers. HP
HFSS4 was used to carry out the optimization of a three-
section waveguide transformer with rounded corners. The
coarse models for these examples exploited either a coarse grid
EM model or circuit-theoretic/analytical models. The different
types of models used illustrate the flexibility of selection of
coarse and fine models.

The required number of fine model simulations to obtain
the final design, as demonstrated by the examples, is of
the order of the problem dimension. Such designs would
otherwise be obtained by computationally very expensive
direct optimizations of the fine models.

The algorithm also establishes a mapping between the two
spaces, the fine model space and the coarse model space. This
mapping is updated at each iteration of the algorithm. The
final mapping can be used to carry out a space-mapped Monte

1
eeemmm is a trademark of Sonnet Software, Inc., Liverpool, NY 13088 USA.

2Maxwell Eminenceis a trademark of Ansoft Corporation, Pittsburgh, PA
15219 USA.

3OSA90/hope, Empipe, andEmpipe3Dare trademarks of the former Opti-
mization Systems Associates Inc., Dundas, Ont., Canada, L9H 5E7, now HP
EEsof Division, Santa Rosa, CA 95403 USA.

4HP HFSSis a trademark of HP EEsof Division, Santa Rosa, CA 95403
USA.
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Carlo analysis of the fine model exploiting only coarse model
simulations. We demonstrate this approach by performing a
statistical analysis of the three-section waveguide transformer
with rounded corners simulated by HP HFSS.

II. THE AGGRESSIVESPACE MAPPING TECHNIQUE

It is assumed that the circuit under consideration can be
simulated using two models: a fine model and a coarse model.
The fine model is accurate but is computationally intensive.
This model can, for example, be a finite element model. We
refer to the vector of parameters of this model as The
coarse model is a fast model but it is less accurate than the fine
model. This model can be a circuit-theoretic empirical model.
The vector of parameters of this model is referred to as

The first step of the technique is to obtain the optimal design
of the coarse model The technique aims at establishing a
mapping between the two spaces [1]

(1)

such that

(2)

where is the vector of fine model responses, is the
vector of coarse mode responses, and is a suitable norm.
The error function

(3)

is first defined. The final fine-model design is obtained and the
mapping is established if a solution for the system of nonlinear
equations

(4)

is found.
Let be the th iterate in the solution of (4). The next

iterate is found by a quasi-Newton iteration

(5)

where is obtained from

(6)

and is an approximation to the Jacobian of the vector
with respect to at the th iteration. The matrix is

updated at each iteration using Broyden’s update [4].
It is clear from (1)–(3) that the vector functionis obtained

by evaluating This can be achieved through the
process of parameter extraction. This extraction step involves
solving a subsidiary optimization problem. The parameter
extraction step is discussed in more detail in Section III.

III. T HE PARAMETER EXTRACTION STEP

In the parameter extraction step, the parameters of the coarse
model whose response matches the fine model response are
obtained. It can be formulated as

(7)

The extracted parameters may not be unique, causing the
technique to fail to converge.

A multipoint parameter extraction concept was proposed
[2] to enhance the uniqueness of parameter extraction at the
expense of an increased number of fine-model simulations.
This extraction step is given by

(8)

simultaneously for a set of perturbations Thus, the two
models are matched at a number of points. In [2], there
were no guidelines regarding the selection or the number
of points used for the multipoint parameter extraction. Also,
there is one important drawback in the multipoint parameter
extraction procedure suggested in [2]. It was assumed that the
perturbation is identical in both spaces. This is not reliable
since the relation between the perturbations in the two spaces
is determined by the matrix , which is an approximation of
the Jacobian of the coarse-model parameters with respect to
the fine-model parameters, not by the identity matrix. Our new
algorithm automates the selection of fine-model points used
for the multipoint parameter extraction. This new algorithm is
presented in the next section.

IV. THE TRASM NEW ALGORITHM

At the th iteration, the residual vector
defines the difference between the vector of extracted

coarse model parameters and the optimal
coarse model design. The mapping between the two models
is established if this residual vector is driven to zero. It
follows that the value can serve as a measure of the
misalignment between the two spaces in theth iteration. The
step taken in theth iteration is obtained from

(9)

where is an approximation to the Jacobian of the coarse-
model parameters with respect to the fine-model parameters
at the th iteration. The parameter is selected such that the
step obtained satisfies , where is the size of the
trust region. This is done by utilizing the iterative algorithm
suggested in [3]. The point suggested for the next iteration is

Single-point parameter extraction is then
applied at the point to get
The point is accepted and the matrix is updated
using Broyden’s formula [4] if a success criterion related to
the reduction in the norm of the vector is satisfied. In our
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(a)

(b)

(c)

Fig. 1. Illustration of the automated multipoint parameter extraction. (a) The current state at theith iteration. (b) Initial parameter extraction at the suggested
pointXXXi+1

eeem . (c) Parameter extraction fails; an additional pointXXX
1
t is obtained and multipoint parameter extraction is carried out to sharpen the solution.

implementation, this success criterion is given by

(10)

The success criterion (10) ensures that the ratio between the
actual reduction in the norm of the vector and the
predicted reduction is greater than a certain value. Otherwise,
the validity of the extraction process leading to at the
suggested point is suspect. The residual vector is
then used to construct a candidate point from the point
by using (9). This candidate point is then added to the set of
points employed for simultaneous parameter extraction at the
point . A new value for is obtained by solving

(11)

simultaneously for all , where is the set of fine
model points used for multipoint parameter extraction. This
multipoint parameter extraction step differs from (8) in one

important aspect. A perturbation in the fine-model space of
corresponds to a perturbation in the coarse-model space

of This is logical since the matrix represents
the most up-to-date approximation to the mapping between the
two spaces. Thus, the available information about the mapping
between the two spaces is exploited.

The new extracted coarse model parameters either satisfy
the success criterion (10) or they are used to obtain another
candidate point which is then added to the set, and the
whole process is repeated (see Fig. 1). This recursive mul-
tipoint parameter extraction process is expected to improve
the uniqueness of the extraction step. This may lead to the
satisfaction of the success criterion (10) or the step is declared
a failure. Failure is declared in one of two cases: either the
vector of extracted parameters approaches a limiting value
with the success criterion not satisfied, or the number of
fine model simulations since the last successful iteration has
reached In the first case, the extracted coarse model
parameters are trusted and the accuracy of the linearization
used to predict is suspected. Thus, to ensure a successful
step from the current point , the trust region size is shrunk
and a new suggested point is obtained. In the latter
case, sufficient information is available to obtain an estimate
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Fig. 2. The DFS filter [5].

for the Jacobian of the fine-model responses with respect to
the fine-model parameters. This is done by solving the system
of linear equations

...
...

(12)

where is the th candidate point used for multipoint
parameter extraction and is the corresponding error be-
tween the fine-model response and the optimal coarse-model
response. This matrix is then used to obtain a stepin the
parameter space by solving the system of equations

(13)

varying the parameter until If there is no
reduction in the norm of the vector function , the trust
region is shrunk and (13) is resolved. This is repeated until
either the size of the trust region has shrunk significantly and
hence the algorithm terminates or a successful step is taken.
The successful step is then used instead of the step obtained
by (9).

At the end of each iteration, the ratio between the actual
reduction in the norm of the vector and the predicted
reduction using linearization is used to check the accuracy of
the linearization. The criterion

(14)

was used to check how accurate the linearization is. If (14) is
satisfied then we exploit the accuracy of the linearization and
increase the size of the trust region.

In the initialization phase we assign and
, the identity matrix. Also, we assign values to the

two parameters and These two parameters are used to
determine the termination condition of the algorithm.

As there is no iteration prior to the first iteration, we are
not able to compare the norm of with a previous value to
ensure the uniqueness of the step. To ensure the uniqueness of

, the multipoint parameter extraction at the first point is
repeated for an increasing number of points in the setuntil
it approaches a limiting value. This limiting value can then be
trusted and the algorithm proceeds. For any iteration ,
the basic steps taken are as follows.

TABLE I
MATERIAL AND PHYSICAL PARAMETERS FOR THE

COARSE AND FINE ememem MODELS OF THE DFS FILTER

Fig. 3. The optimal coarse model response ( ) and the fine model
response(�) at the starting point for the DFS filter.

TABLE II
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION FOR THEDFS FILTER

TRASM Algorithm

Step 0: Given and Set

Step 1: Obtain by solving (9) with Let

Step 2: If stop else evaluate using
(5) and set

Step 3: Apply multipoint parameter extraction using the
points in the set to obtain

Step 4: If the success criterion (10) is satisfied go to
Step 9.

Step 5: If is equal to one go to Step 8.
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Fig. 4. The optimal coarse model response ( ) and the final fine model
response(�) for the DFS filter.

Fig. 5. The structure of the HTS filter [1], [7].

Comment: denotes the cardinality of the set
Step 6: Compare obtained using fine-model

points with that previously obtained using
fine-model points. If is approaching a

limiting value, shrink the trust region size
and go to Step 1.

Step 7: If is equal to , obtain an approximation for
the Jacobian of the fine-model responses, shrink
the trust region size , evaluate a new step

by solving (13) with for a
suitable value of that results in the reduction
in the norm of the vector and go to Step 2.

Comment: The trust region is shrunk to ensure a successful
step.

Step 8: Obtain a temporary point using
and Add this point to the set and go
to Step 3.

Step 9: Update the matrix to using Broy-
den’s formula [4].

Step 10: If stop.
Step 11: Increase the trust region size if (14) is

satisfied.
Step 12: Let Go to Step 0.

The algorithm terminates if the size of the trust region
has shrunk below a certain threshold or if there is no significant
change in the fine model responses in two consecutive itera-
tions. The algorithm produces two main results. These results
are the final fine-model design and the matrix which
represents the mapping between the two spaces.

In our implementation, proper scaling is applied to the
optimizable parameters to make them of the same order. The

TABLE III
MATERIAL AND PHYSICAL PARAMETERS FOR THEHTS FILTER

Fig. 6. The optimal coarse model response (—) and the fine model response
(�) at the starting point for the HTS filter.

Fig. 7. The variation of two of the extracted coarse model parameters in the
first iteration with the number of points used for parameter extraction where
(1) is obtained using a single fine-model point, (2) is obtained using two
fine-model points, and (3) is obtained using three fine-model points.

initial trust region size is taken as 2% to 10% of the norm
of the vector of scaled parameters.

V. EXAMPLES

Double-Folded Stub Filter

We consider the design of the double-folded stub (DFS)
microstrip structure shown in Fig. 2 [5]. Folding the stubs
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(a) (b)

(c)

Fig. 8. The coarse model response (—) and the fine model response(�) corresponding to the three extracted points in Fig. 7 where (a) is obtained using
a single fine-model point, (b) is obtained using two fine-model points, and (c) is obtained using three fine-model points.

reduces the filter area w.r.t. the conventional double-stub
structure [6]. The filter is characterized by five parameters:

and (see Fig. 2). and are
chosen as optimization variables. and are fixed at 4.8
mil. The design specifications are given by dB in
the passband and dB in the stopband, where the
passband includes frequencies below 9.5 GHz and above 16.5
GHz and the stopband lies in the range [12 GHz, 14 GHz].
The structure is simulated by Sonnet’s through Empipe.
The coarse model is a coarse-grid model with cell size 4.8
mil by 4.8 mil. The fine model is a fine-grid model with
cell size 1.6 mil by 1.6 mil. Other parameters are summarized
in Table I.

Fig. 3 shows the optimal coarse-model response along
with the fine-model response evaluated using the optimal
coarse-model parameters. The time needed to simulate the
structure (coarse model) at a single frequency is only 5
CPU seconds on a Sun SPARCstation 10. This includes the
automatic response interpolation carried out to accommodate
off-grid geometries.

It is clear from Fig. 3 that the fine-model response violates
the design specifications at the starting point. The new ASM
algorithm required only two iterations to reach the final
design. The algorithm’s progress is shown in Table II. The
number of fine-model points needed is five. Linear response
interpolation was enabled to simulate the off-grid fine-model
points. The response of the fine-model at the final design is

shown in Fig. 4. The CPU time needed for the fine model is
approximately 70 s per frequency point.

HTS Filter

We consider optimization of an HTS filter [1], [7]. This
filter is illustrated in Fig. 5. The specifications are

in the passband and in the stopband,
where the stopband includes frequencies below 3.967 GHz
and above 4.099 GHz, and the passband lies in the range
[4.008 GHz, 4.058 GHz]. The design variables for this problem
are and We take mil
and mil. The coarse model exploits the empirical
models of microstrip lines, coupled lines, and open stubs
available in OSA90/hope. The fine model employs a fine-grid

simulation. The material and physical parameters values
used in both OSA90/hope and in are shown in Table III.
The coarse model is first optimized using the OSA90/hope
minimax optimizer. The fine-model response at the optimal
coarse-model design is shown in Fig. 6. The parameter ex-
traction for this problem has several solutions. Fig. 7 shows
how two of the extracted coarse-model parameters changed
with the number of points used for parameter extraction
in the first iteration. The first point (1) is obtained using
normal parameter extraction. These extracted values would
have caused the original ASM technique to diverge. The new
technique automatically generates a candidate point which
is then used together with the original point to carry out a
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(a) (b)

(c) (d)

Fig. 9. The coarse-model response (—) at the extracted point and the fine-model response(�) corresponding to the second, third, fourth, and fifth iterations.

TABLE IV
INITIAL AND FINAL DESIGNS OF THEFINE MODEL FOR THE HTS FILTER

two-point parameter extraction, and the second point (2) is
obtained. To confirm that this point is the required one, a third
candidate point is automatically generated and the extraction
is repeated using the three points to obtain the third extracted
point (3). The second and third extracted points show that the
extracted vector of coarse model parameters is approaching
a limiting value and can thus be trusted. The coarse model
responses corresponding to the three extracted points of Fig. 7
are shown in Fig. 8.

For the remaining iterations, single-point parameter extrac-
tion worked well. The fine-model responses and the coarse-
model responses for the corresponding extracted points are
shown in Fig. 9. The final fine-model design was obtained

Fig. 10. The optimal coarse-model response (—) and the final fine-model
response(�) for the HTS filter.

in five iterations which required eight fine-model simulations.
The final fine-model design is given in Table IV. The fine-
model response at this design is shown in Fig. 10. The
passband ripples are shown in Fig. 11.

In the original space mapping approaches [1], [7], this ex-
ample required significant manual intervention to successfully
complete the parameter extraction phase. Furthermore, without
such intervention the previous approaches would not work.
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TABLE V
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW ASM TECHNIQUE

FOR THE TWO-SECTION WAVEGUIDE TRANSFORMER USING TWO ANALYTICAL MODELS

TABLE VI
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW ASM TECHNIQUE FOR THE

TWO-SECTION WAVEGUIDE TRANSFORMER USING MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL

TABLE VII
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW ASM TECHNIQUE

FOR THE THREE-SECTION WAVEGUIDE TRANSFORMER USING TWO ANALYTICAL MODELS

Fig. 11. The optimal coarse-model response (—) and the final fine-model
response(�) for the HTS filter in the passband.

Fig. 12. A typical two-section waveguide transformer.

Waveguide Transformers

Three designs of two-, three-, and seven-section waveguide
transformers were considered. The two-section waveguide
transformer is shown in Fig. 12. These examples are classical
microwave circuit design problems [8]. Two different sets of
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Fig. 13. The optimal response of the ideal analytical model (—) and the
response of the nonideal analytical model(�) at the starting point for the
two-section waveguide transformer.

Fig. 14. The optimal response of the ideal analytical model (—) and the final
response of the nonideal analytical model(�) for the two-section waveguide
transformer.

Fig. 15. The optimal response of the ideal analytical model (—) and the
response of Maxwell Eminence(�) at the starting point for the two-section
waveguide transformer.

models were used. The first set exploits two empirical models:
an “ideal” analytical model which neglects the junction discon-
tinuity and a more accurate “nonideal” analytical model which
includes the junction discontinuity effects [8]. The second set
uses the ideal analytical model of the first set as the coarse
model while Maxwell Eminence is used as the fine model.

Fig. 16. The optimal response of the ideal analytical model (—) and the final
Maxwell Eminence response(�) for the two-section waveguide transformer.

Fig. 17. The optimal response of the ideal analytical model (—) and the
response of the nonideal analytical model(�) at the starting point for the
three-section waveguide transformer.

The designable parameters for these design problems are the
height and length of each waveguide section.

The two-section transformer is optimized using the two
analytical models. The optimum ideal model response is shown
in Fig. 13 along with the nonideal model response at the same
point. Our algorithm terminated in three iterations, requiring
five fine-model simulations. The final nonideal model design is
given in Table V. The corresponding nonideal model response
is shown in Fig. 14. This example is known to have more than
one minimum for the parameter extraction step [2]. However,
our new algorithm converged successfully. The number of
simulations needed to align the two models is smaller than
that reported in [2]. The same transformer is then optimized
using Maxwell Eminence and the ideal analytical model.
Nine adaptive passes were allowed for Maxwell Eminence
with allowable delta S set to 0.0001. The initial fine-model
response is shown in Fig. 15. The final design was obtained
in three iterations which required five Maxwell Eminence fine-
model simulations. This is one half the number of fine-model
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Fig. 18. The optimal response of the ideal analytical model (—) and the final
response of the nonideal analytical model(�) for the three-section waveguide
transformer.

Fig. 19. The optimal response of the ideal analytical model (—) and the
response of Maxwell Eminence(�) at the starting point for the three-section
waveguide transformer.

TABLE VIII
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW

ASM TECHNIQUE FOR THETHREE-SECTION WAVEGUIDE TRANSFORMER

USING MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL

simulations reported in [2]. The Maxwell Eminence fine-model
design is shown in Table VI and the corresponding fine-model
response is shown in Fig. 16.

The previous steps were repeated for the three-section
waveguide transformer. The initial fine-model response is

Fig. 20. The optimal response of the ideal analytical model (—) and the final
Maxwell Eminence response(�) for the three-section waveguide transformer.

Fig. 21. The optimal ideal analytical model response (—) and the response
of the nonideal analytical model(�) at the starting point for the seven-section
waveguide transformer.

Fig. 22. The optimal response of the ideal analytical model (—) and the final
response of the nonideal analytical model(�) for the seven-section waveguide
transformer.

shown in Fig. 17. Using the two analytical models, the final
design was obtained in four iterations which required six fine-
model simulations. This final design is shown in Table VII.
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TABLE IX
VALUES OF OPTIMIZABLE PARAMETERS AT THE INITIAL

AND FINAL DESIGN FOR THESEVEN-SECTION WAVEGUIDE

TRANSFORMER USING TWO ANALYTICAL MODELS

Fig. 23. The optimal response of the ideal analytical model (—) and the
response of Maxwell Eminence(�) at the starting point for the seven-section
waveguide transformer.

The corresponding fine-model response is indistinguishable
from the optimal coarse-model response as shown in Fig. 18.

The design of the three-section transformer is then repeated
using Maxwell Eminence and the ideal analytical model. We
allowed only five adaptive passes with the same value of
allowable delta S as before. The initial Maxwell Eminence
fine-model response is shown in Fig. 19. The algorithm termi-
nated in two iterations with a total number of nine fine-model
simulations. Most of these fine-model simulations were used
to shrink the trust region around the final design. The final
design is shown in Table VIII. The corresponding Maxwell
Eminence fine-model response is shown in Fig. 20.

The design of a seven-section waveguide transformer was
also considered. The designable parameters for this problem
are the height and length of each waveguide section. Using

Fig. 24. The optimal response of the ideal analytical model (—) and the final
Maxwell Eminence response(�) for the seven-section waveguide transformer.

TABLE X
VALUES OF OPTIMIZABLE PARAMETERS AT THE INITIAL AND FINAL

DESIGN FOR THESEVEN-SECTION WAVEGUIDE TRANSFORMER

USING MAXWELL EMINENCE AND AN IDEAL ANALYTICAL MODEL

the two analytical models, the final design was obtained in
three iterations which required six fine-model simulations. The
initial fine-model response is shown in Fig. 21. The fine-model
response corresponding to the final design is almost identical
to the optimal coarse-model response as shown in Fig. 22.
Table IX shows the final fine model design.

Finally, the design of the seven-section transformer was
carried out using Maxwell Eminence and an ideal analytical
model. We allowed ten refinement passes with allowable delta
S of 0.001. The algorithm terminated in three iterations which
required 11 Maxwell Eminence fine-model simulations. The
initial Maxwell Eminence response is shown in Fig. 23. The
final fine-model response is shown in Fig. 24. Table X shows
the corresponding Maxwell Eminence fine model design.
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Fig. 25. The simulated part of the three-section waveguide transformer with
rounded corners [9].

A Three-Section Waveguide Transformer
with Rounded Corners [9]

In this example, we considered the design of a three-section
transformer with rounded corners. The designable parameters
for this problem are the height and length of each waveguide
section. The specifications are dB for a range
of frequencies extending from 9.5 to 15 GHz. The fine model
of this circuit exploits HP HFSS. The coarse model exploits
an ideal empirical model that does not take into account the
rounding of the corners. One quadrant of the transformer is
shown in Fig. 25. We exploited the geometrical symmetry of
the problem to reduce the required CPU time of HP HFSS.

Each time a new HP HFSS simulation is requested by
the algorithm, a new project is created using the new values
for the length and height of each section. To facilitate this
process, a MATLAB5 program was developed that converts
the values of the designable parameters into the corresponding
HP HFSS drawing commands with the appropriate values. This
approach accelerates the generation of new HP HFSS projects
and eliminates the possibility of wrong dimensions.

The initial response of the fine model at the optimal coarse-
model design is shown in Fig. 26. Clearly, the specifications
are slightly violated at this point. Only one iteration was
needed to reach the final fine-model design. The required
number of HP HFSS simulations is seven. The first three of
these simulations were needed to trust the parameter extraction
at the first point. The other fine-model points were needed to
contract the size of the trust region to the termination size.
The final HP HFSS fine-model design is given in Table XI.
The corresponding fine-model response is shown in Fig. 27.

VI. M ONTE CARLO ANALYSIS USING SPACE MAPPING [5]

The final matrix obtained by the algorithm represents
the best available information about the mapping between the
two spaces. A perturbation of in the fine-model space is
mapped to a perturbation of in the coarse-model space by

(15)

The perturbations in the coarse-model space and fine-model
space are with respect to and , respectively. The

5MATLAB Version 5.0 is a registered trademark of The Math. Works, Inc.,
Natick, MA 01760 USA.

Fig. 26. The optimal response of the ideal analytical model (—) and the
response of HP HFSS(�) at the starting point for the three-section waveguide
transformer with rounded corners.

TABLE XI
VALUES OF OPTIMIZABLE PARAMETERS AT EACH ITERATION OF THE NEW ASM

TECHNIQUE FOR THETHREE-SECTION WAVEGUIDE TRANSFORMER WITH

ROUND CORNERSUSING HP HFSSAND AN IDEAL ANALYTICAL MODEL

Fig. 27. The optimal response of the ideal analytical model (—) and the
final HP HFSS response(�) for the three-section waveguide transformer with
rounded corners.

established mapping can be used to perform a space-mapped
Monte Carlo analysis [5] for the problem under consideration.
The random points generated in the fine-model space are
mapped to the coarse-model space using (15). Coarse-model
simulations are then used instead of the CPU-intensive fine-
model simulations. This statistical analysis should enjoy the
speed of the coarse model and the accuracy of the fine model.
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Fig. 28. Monte Carlo analysis for the three-section waveguide transformer
with rounded corners assuming 1% uniformly distributed parameters.

Fig. 29. Monte Carlo analysis for the three-section waveguide transformer
with rounded corners assuming 2% uniformly distributed parameters.

Fig. 30. Monte Carlo analysis for the three-section waveguide transformer
with rounded corners assuming 5% uniformly distributed parameters.

To demonstrate this approach, we carried out a Monte
Carlo analysis of the three-section waveguide transformer with
rounded corners. The fine-model parameters were assumed
to be uniformly distributed with tolerances of 1, 2, and 5%.
The corresponding responses are shown in Figs. 28–30. The
estimated yields for these tolerances are 39, 4, and 0%.

VII. CONCLUSIONS

A powerful new algorithm implementing the aggressive
space mapping technique is introduced. The new algorithm,

TRASM, automatically improves the uniqueness of the pa-
rameter extraction step, the most critical step in the space
mapping process, and exploits all available fine-model simula-
tions. Also, the proposed algorithm integrates the trust region
concept with the original ASM technique. Through examples
which have proved difficult in the past, we show that the
TRASM algorithm automatically overcomes the nonunique-
ness of the parameter extraction step in a logical way. The
results show that very few EM simulations are needed to
reach the final design. We showed also how the established
mapping between the two spaces can be used to carry out a
space-mapped Monte Carlo analysis of the fine model.
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