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A Trust Region Method Based on Interior Point Techniques

for Nonlinear Programming

Richard H� Byrd� Jean Charles Gilberty Jorge Nocedalz

August ��� ����

Abstract

An algorithm for minimizing a nonlinear function subject to nonlinear inequality

constraints is described� It applies sequential quadratic programming techniques to

a sequence of barrier problems� and uses trust regions to ensure the robustness of

the iteration and to allow the direct use of second order derivatives� This framework

permits primal and primal�dual steps� but the paper focuses on the primal version

of the new algorithm� An analysis of the convergence properties of this method is

presented�

Key words� constrained optimization� interior point method� large�scale optimization� non�
linear programming� primal method� primal�dual method� SQP iteration� barrier method�
trust region method�
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� Introduction

Sequential Quadratic Programming �SQP� methods have proved to be very e�cient for
solving medium�size nonlinear programming problems ��	� ��
� They require few iterations
and function evaluations� but since they need to solve a quadratic subproblem at every
step� the cost of their iteration is potentially high for problems with large numbers of vari�
ables and constraints� On the other hand� interior�point methods have proved to be very
successful in solving large linear programming problems� and it is natural to ask whether
they can be extended to nonlinear problems� Preliminary computational experience with
simple adaptations of primal�dual interior point methods have given encouraging results
on some classes on nonlinear problems �see for example �	�� ��� 	� �
��

In this paper we describe and analyze an algorithm for large�scale nonlinear program�
ming that uses ideas from interior point methods and sequential quadratic programming�
One of its unique features is the use of a trust region framework that allows for the direct
use of second derivatives and the inaccurate solution of subproblems� The algorithm is
well suited for handling equality constraints �see ��
�� but for simplicity of exposition we
will only consider here inequality constrained problems of the form

min
x

f�x�

subject to g�x� � ��
�����

where f � Rn � R and g � Rn � Rm are smooth functions�
Following the strategy of interior point methods �see for example ���� 	�� �
� we

associate with ����� the following barrier problem in the variables x and s

min
x�s

f�x�� �
mX
i��

ln s�i�

subject to g�x� � s � ��

���	�

where � � � and where the vector of slack variables s � �s���� � � � � s�m��� is implicitly
assumed to be positive�

The main goal of this paper is to propose and analyze an algorithm for �nding an
approximate solution to ���	�� for �xed �� that can e�ectively enforce the positivity con�
dition s � � on the slack variables without incurring in a high cost� This algorithm can
be applied repeatedly to problem ���	�� for decreasing values of �� to approximate the
solution of the original problem ������ The key to our approach is to view interior point
methods from the perspective of sequential quadratic programming and formulate the
quadratic subproblem so that the steps are discouraged from violating the bounds s � ��
This framework suggests how to generate steps with primal or primal�dual characteristics�
and is well suited for large problems� Numerical experiments with an implementation of
the new method have been performed by Byrd� Hribar and Nocedal ��
� and show that
this approach holds much promise� We should note that in this paper we do not address
the important issue of how fast to decrease the barrier parameter� which is currently an
active area of research�
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We begin by introducing some notation and by stating the �rst�order optimality con�
ditions for the barrier problem� The Lagrangian of ���	� is

L�x� s� �� � f�x�� �
mX
i��

ln s�i� � ���g�x� � s�� �����

where � � Rm are the Lagrange multipliers� At an optimal solution �x� s� of ���	� we have

rxL�x� s� �� � rf�x� �A�x�� � � �����

rsL�x� s� �� � ��S
��e� � � �� �����

where
A�x� �

�
rg����x�� � � � �rg�m��x�

�
�����

is the matrix of constraint gradients� and where

e �

�
B�

�
���
�

�
CA � S �

�
BB�

s���

� � �

s�m�

�
CCA � �����

To facilitate the derivation of the new algorithm we de�ne

z �

�
x
s

�
� ��z� � f�x�� �

mX
i��

ln s�i�� �����

c�z� � g�x� � s� ����

and rewrite the barrier problem ���	� as

min
z

��z�

subject to c�z� � ��
������

We now apply the sequential quadratic programming method �see for example ��	� ��
� to
this problem� At an iterate z� we generate a displacement

d �

�
dx
ds

�

by solving the quadratic program

min
d

r��z��d� �
�d
�Wd

subject to �A�z��d� c�z� � ��
������

where W is the Hessian of the Lagrangian of the barrier problem ������ with respect to z�
and where �A� is the Jacobian of c and is given by

�A�z���
�
A�x�� I

�
� ����	�

	



Note that ������ is just a restatement of ���	�� and thus from ����������� we have that

W � r�
zzL�x� s� �� �

�
r�

xxL�x� s� �� �
� �S��

�
� ������

To obtain convergence from remote starting points� and to allow for the case when W
is not positive de�nite in the null space of �A�� we introduce a trust region constraint in
������ of the form �����

�
dx

S��ds

������ � �� ������

where the trust region radius � � � is updated at every iteration� The step in the
slack variables is scaled by S�� due to the form �S�� of the portion of the Hessian W
corresponding to the slack variables� Since this submatrix is positive de�nite and diagonal�
it seems to be the best scale at the current point� see also ��
 for a discussion of how this
scaling is bene�cial when using a conjugate gradient iteration to compute the step�

From now on we simplify the notation by writing a vector such as z� which has x and
s�components� as z � �x� s� instead of z � �x�� s���� In this way an expression like that
in ������ is simply written as�����

�
dx

S��ds

������ �
����dx� S��ds���� � ������

The trust region constraint ������ does not prevent the new slack variable values s�ds
from becoming negative unless � is su�ciently small� Since it is not desirable to impede
progress of the iteration by employing small trust regions� we explicitly bound the slack
variables away from zero by imposing the well�known fraction to the boundary rule �	�


s� ds � ��� ��s�

where the parameter � � ��� �� is chosen close to �� This results in the subproblem

min
d

r��z��d� �
�d
�Wd

subject to �A�z��d� c�z� � �����dx� S��ds��� � �
ds � ��s�

������

We will assume for simplicity that the trust region is de�ned using the Euclidean norm�
although our analysis would be essentially the same for any other �xed norm� It is true
that problem ������ could be quite di�cult to solve exactly� but we intend to only compute
approximate solutions using techniques such as a dogleg method or the conjugate gradient
algorithm� Due to the formulation of our subproblem these techniques will tend to avoid
the boundaries of the constraints s � � and will locate an approximate solution with
moderate cost� To see that our subproblem ������ is appropriate� note that if the slack
variables are scaled by S��� the feasible region of the transformed problem has the essential
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characteristics of a trust region� it is bounded and contains a ball centered at z whose
radius is bounded below by a value that depends on � and not on z�

It is well known �	�
 that the constraints in ������ can be incompatible since the steps
d satisfying the linear constraints may not lie within the trust region� Several strategies
have been proposed to make the constraints consistent ��� �� 	�
� and in this paper we
follow the approach of Byrd ��
 and Omojokun �	�
� which we have found suitable for
solving large problems ���
�

The strategy of Byrd and Omojokun consists of �rst taking a normal �or transver�
sal� step v that lies well inside the trust region and that attempts to satisfy the linear
constraints in ������ as well as possible� To compute the normal step v� we choose a
contraction parameter � � 	 � � �say 	 � ���� that determines a tighter version of the
constraints ������� i�e�� a smaller trust region radius 	� and tighter lower bounds �	� �
Then we approximately solve the problem

min
v

k �A�z��v � c�z�k

subject to
���vx� S��vs��� � 	�
vs � �	�s�

������

where here� and for the rest of the paper� k � k denotes the Euclidean �or 
�� norm� The
normal step v determines how well the linear constraints in ������ will be satis�ed� We
now compute the total step d by approximately solving the following modi�cation of ������

min
d

r��z��d� �
�d
�Wd

subject to �A�z��d � �A�z��v���dx� S��ds��� � �
ds � ��s�

������

The constraints for this subproblem are always consistent� for example d � v is feasible�
Lalee� Nocedal and Plantenga ���
 describe direct and iterative methods for approximately
solving ������ when the number of variables is large�

We now need to decide if the trial step d obtained from ������ should be accepted� and
for this purpose we introduce a merit function for the barrier problem ������� �Recall that
our objective at this stage is to solve the barrier problem for a �xed value of the barrier
parameter ��� We follow Byrd and Omojokun and de�ne the merit function to be

��z� �� � ��z� � �kc�z�k� �����

where � � � is a penalty parameter� Since the Euclidean norm in the second term is not
squared� this merit function is non�di�erentiable� It is also exact in the sense that if � is
greater than a certain threshold value� then a Karush�Kuhn�Tucker point of the barrier
problem ���	� is a stationary point of the merit function �� The step d is accepted if it
gives su�cient reduction in the merit function� otherwise it is rejected�

We complete the iteration by updating the trust region radius � according to standard
trust region techniques that will be discussed later on�

We summarize the discussion given so far by presenting a broad outline of the new
algorithm for solving the nonlinear programming problem ������

�



Algorithm Outline

Choose an initial barrier parameter � � � and an initial iterate z � �x� s� and Lagrange
multipliers ��

�� If ����� is solved to the required accuracy� stop�

	� Compute and approximate solution of the barrier problem ������� as follows�

Choose an initial trust region radius � � �� a contraction parameter 	 � ��� ��� and
a penalty parameter � � � for the merit function ������

�a� If the barrier problem ������ is solved to the required accuracy� go to ��

�b� Compute a normal step v � �vx� vs� by approximately solving the normal sub�

problem

min
v

k �A�z��v � c�z�k

subject to
���vx� S��vs��� � 	�
vs � �	�s�

���	��

�c� Compute the total step d � �dx� ds� by approximately solving the tangential

subproblem

min
d

r��z��d� �
�d
�Wd

subject to �A�z��d � �A�z��v���dx� S��ds��� � �
ds � ��s�

���	��

�d� If the step d does not give a su�cient reduction in the merit function ������
decrease � and go to �b�� Otherwise� set x � x � dx� s � s � ds� z � �x� s��
compute new Lagrange multipliers �� and go to �a��

�� Decrease the barrier parameter � and go to ��

Since the inequality constraints are already being handled as equalities� this algorithm
can be easily extended to handle equality constraints� In that case the nonlinear con�
straints in ������ have the form

c�z� �

�
gE�x�

gI�x� � s

�
� ��

The Jacobian matrix �A then takes the form

�A�z���

�
AE�x�

� �
AI�x�

� I

�
�

where AE and AI denote the matrices of constraint gradients corresponding to gE and
gI� see ��
 for a detailed discussion on the treatment of equality constraints in our new
method�
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In x	 we discuss in more detail when to accept or reject a step� and how to update the
trust region� This will allow us to give a complete description of the algorithm� We now
digress to discuss the relationship between our approach and other interior point methods�
This discussion makes use of the well�known fact that Sequential Quadratic Programming�
in at least one formulation� is equivalent to Newton�s method applied to the optimality
conditions of a nonlinear program ���
�

��� KKT systems

The KKT conditions for the equality constrained barrier problem ���	� give rise to the
following system of nonlinear equations in x� s� � �see ������ ������

�
B� rf�x� �A�x��

��S��e� �
g�x� � s

�
CA � �� ���		�

Applying Newton�s method to this system we obtain the iteration�
B� r�

xxL � A�x�
� �S�� I

A�x�� I �

�
CA
�
B� dx

ds
��

�
CA �

�
B� �rf�x�

�S��e
�g�x�� s

�
CA � ���	��

where �� � �� d�� and where we have omitted the argument of r�
xxL�x� s� �� for brevity�

Note that the current values of the multipliers � only enter in ���	�� through r�
xxL� When

the objective function and constraints are linear� we have that r�
xxL � �� and thus the

step does not depend on the current values of these multipliers� for this reason a method
based on ���	�� is referred to as a primal interior point method�

Let us now suppose that the quadratic subproblem ������ is strictly convex� i�e�� that
W is positive de�nite on the null space of �A�z��� Then it is easy to see that the solution
of ������ coincides with the step generated by ���	��� Therefore the SQP approach ������
with W given by ������ is equivalent to a primal interior point iteration on the barrier
subproblem� under the convexity assumption just stated� Several researchers� including
Yamashita �	�
 have noted this relationship�

It is also possible to establish a correspondence between primal�dual interior point
methods and the SQP approach� Let us multiply the second row of ���		� by S to obtain
the system

�
B� rf�x� �A�x��

S�� �e
g�x� � s

�
CA � �� ���	��

This may be viewed as a modi�ed KKT system for the inequality constrained problem
������ since the second row is a relaxation of the complementary slackness condition �which
is obtained when � � ��� In the linear programming case� primal�dual methods are based
on iteratively solving ���	�� in x� s� �� Applying Newton�s method to ���	��� and then
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symmetrizing the coe�cient matrix by multiplying the second block of equations by S���
results in the iteration�

B� r�
xxL � A�x�
� S��� I

A�x�� I �

�
CA
�
B� dx

ds
��

�
CA �

�
B� �rf�x�

�S��e
�g�x�� s

�
CA � ���	��

where we have de�ned
� � diag������ � � � � ��m��� ���	��

Now the current value of � in�uences the step through the matrix � and through r�
xxL�

We refer to ���	�� as the primal�dual iteration�
Consider now the SQP subproblem ������ with the Hessian of the Lagrangian W

replaced by

�W �

�
r�
xxL�x� s� �� �

� S���

�
� ���	��

It is easy to see that if the quadratic program ������ is strictly convex� the step generated
by the SQP approach coincides with the solution of ���	��� Comparing ������ and ���	��
we see that the only di�erence between the primal and primal�dual SQP formulations is
that the matrix �S�� has been replaced by S����

This degree of generality justi�es the investigation of SQP as a framework for designing
interior point methods for nonlinear programming� Several choices for the Hessian matrix
W could be considered� but in this study we focus on the �primal� exact Hessian version
������ because of its simplicity� We note� however� that much of our analysis could be
extended to the primal�dual approach based on ���	�� if appropriate safeguards are applied�

Many authors� among them Panier� Tits� and Herskovits �	�
� Yamashita �	�
� Her�
skovits ���
� Anstreicher and Vial �	
� Jarre and Saunders ���
� El�Bakry� Tapia� Tsuchiya�
and Zhang ���
� Coleman and Li ��
� Dennis� Heinkenschloss and Vicente �
� have proposed
interior point methods for nonlinear programming based on iterations of the form ���	��
or ���	��� In some of these studies r�

xxL is either assumed positive de�nite on the whole
space or a subspace� or is modi�ed to be so� In our approach there is no such requirement�
we can either use the exact Hessian of the Lagrangian with respect to x in ���	�� and
���	��� or any approximation B to it� For example� B could be updated by the BFGS
or SR� quasi�Newton formulae� This generality is possible by the trust region framework
described in the previous section�

Plantenga �		
 describes an algorithm that has some common features with the algo�
rithm presented here� but his approach has also important di�erences� Among these are
the fact that his trust region does not include a scaling� that his iteration produces a�ne
scaling steps near the solution� and that his approach reverts to an active set method when
progress is slow�

We emphasize that the equivalence between SQP and Newton�s method applied to the
KKT system holds only if the subproblem ������ is strictly convex� if this subproblem is
solved exactly� and if the trust region constraint is inactive� Since these conditions will not
hold in most iterations of our algorithm� the approach presented in this paper is distinct
from those based on directly solving the KKT system of the barrier problem� However�
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as the iterates converge to the solution� our algorithm will be very similar to these other
interior point methods� This is because near the solution point� the quadratic subproblem
������ will be convex and the tolerances of the procedure for solving ������ subject to
the trust region constraint� will be set so that� asymptotically� it is solved exactly ��
�
Moreover� as the iterates converge to the solution we expect the trust region constraint to
become inactive� provided a second order correction is incorporated in the algorithm�

In summary the local behavior of our method is similar to that of other interior point
methods� but its global behavior is likely to be markedly di�erent� For this reason the
analysis presented in this paper will focus on the global convergence properties of the new
method�

Notation� Throughout the paper k � k denotes the Euclidean �or 
�� norm� The vector

of slack variables at the k�th iteration is written as sk� and its i�th component is s
�i�
k �

� Algorithm for the Barrier Problem

We now give a detailed description of the algorithm for solving the barrier problem �������
that was loosely described in step 	 of the Algorithm Outline in x��

From now on we will let Bk stand for r�
xxL�xk� sk� �k� or for a symmetric matrix

approximating this Hessian� At an iterate �xk� sk�� the step d generated by the algorithm
will be an approximate solution of the tangential problem ���	��� Due to the de�nitions
������ ����	� and ������ we can write this tangential problem as

min
d

rf�k dx � �e�S��k ds �
�

	
d�xBkdx �

�

	
�d�sS

��
k ds

s�t� A�kdx � ds � A�kvx � vs

k�dx� S
��
k ds�k � �k

ds � ��sk�

�	���

Here� rfk � rf�xk�� and v is the approximate solution to ���	���
Now we focus on the merit function and� in particular� on how much it is expected to

decrease at each iteration� The merit function ����� may be expressed as

��x� s� �� � f�x� � �kg�x� � sk � �
mX
i��

ln s�i�� �	�	�

We can construct a model mk of ���� �� �k� around an iterate �xk� sk� using the quadratic
objective from �	��� and a linear approximation of the constraints in ���	��

mk�d� � fk �rf�k dx �
�

	
d�xBkdx � �kkgk � sk �A�kdx � dsk

� �

�
mX
i��

ln s
�i�
k � e�S��k ds �

�

	
d�sS

��
k ds

�
� �	���

�



We will show in Lemma ��� below that mk is a suitable local model of �� We de�ne the
predicted reduction in the merit function � to be the change in the model mk produced
by a step d�

predk�d� � mk����mk�d�

� �rf�k dx �
�

	
d�xBkdx

� �k
�
kgk � skk � kgk � sk �A�kdx � dsk

�
� �

	
e�S��k ds �

�

	
d�sS

��
k ds



� �	���

We will always choose the weight �k su�ciently large that predk�d� � �� as will be de�
scribed in x	���

The predicted reduction is used as a standard for accepting the step and for updating
the trust region� We choose a parameter  � ��� ��� and if

��xk � dx� sk � ds� �k� � ��xk� sk� �k��  predk�d�� �	���

we accept the step d and possibly increase the trust region radius �k� otherwise we decrease
�k by a constant fraction� e�g� �k � �k�	� and recompute d� Since predk�d� � � this
implies that the merit function decreases at each step� More sophisticated strategies for
updating �k are useful in practice� but this simple rule will be su�cient for our purposes�

Next we consider conditions that determine when approximate solutions to the nor�
mal and tangential subproblems are acceptable� Since these conditions require detailed
justi�cation� we consider these subproblems separately�

��� Computation of the normal step

At each step of the algorithm for the barrier problem we �rst solve the normal subproblem
���	��� which can be written as

min
v

kgk � sk �A�kvx � vsk

s�t� k�vx� S
��
k vs�k � ��k

vs � �	�sk�

�	���

where we have de�ned
��k � 	�k� �	���

We now present two conditions that an approximate solution vk of �	��� must satisfy�
To do this we introduce the change of variables

ux � vx� us � S��k vs� �	���

so that problem �	��� becomes

min
u

kgk � sk �A�kux � Skusk

s�t� k�ux� us�k � ��k

us � �	��

�	��





In the case where the lower bound constraints are inactive it is straightforward to show
���
 that �	�� has a solution in the range of	

Ak

Sk



� �	����

Even when the lower bounds are active� keeping u in the range of �	���� will prevent u
from being unreasonably long� and in the implementation of the new method described
in ��
� u is chosen always in this space� A condition of this type is necessary since� if
u is unnecessarily long� the objective function value could get worse� making the job of
the tangential step more di�cult� For the analysis in this paper it su�ces to impose the
following weaker condition�

Range Space Condition� The approximate solution vk of the normal problem �	���
must be of the form

vk �

	
Ak

S�
k



wk� �	����

for some vector wk � Rm� whenever �	��� has an optimal solution of that form�

The second condition on the normal step requires that the reduction in the objective of
�	��� be comparable to that obtained by minimizing along the steepest descent direction
in u� This direction is the gradient of the objective in problem �	�� at u � �� which is a
multiple of

uck � �

	
Ak

Sk



�gk � sk�� �	��	�

Transforming back to the original variables we obtain the vector

vck � �

	
Ak

S�
k



�gk � sk�� �	����

which we call the scaled steepest descent direction� We refer to the reduction in the
objective of �	��� produced by a step v � �vx� vs� as the normal predicted reduction�

vpredk�v� � kgk � skk � kgk � sk �A�kvx � vsk� �	����

and we require that this reduction satisfy the following condition�

Normal Cauchy Decrease Condition� An approximate solution vk of the normal

problem �	��� must satisfy

vpredk�vk� � �v vpredk��
c
kv

c
k�� �	����

for some constant �v � �� where �ck solves the problem

min
���

kgk � sk � ��A�kv
c
x � vcs�k

s�t� k��vcx� S
��
k vcs�k � ��k

�vcs � �	�sk�

�	����

��



Note that the normal Cauchy decrease condition and the range space condition �	���� are
satis�ed by an optimal solution of �	��� with �v � �� Both conditions are also satis�ed
if the step is chosen by truncated conjugate gradient iterations in the variable u on the
objective of �	�� �see Steihaug �	�
�� and the results are transformed back into the original
variables� Also� since � � � is a feasible solution of �	����� it is clear from �	���� that

vpredk�vk� � �� �	����

In Lemma 	�	 we give a sharper bound on the normal predicted reduction vpredk�vk�
of an approximate solution that satis�es the normal Cauchy decrease condition� First we
will �nd it useful to establish this generalization of the one�dimensional version of a result
by Powell �	�
�

Lemma ���� Consider the one dimensional problem

min
z��

��z� � �
�az

� � bz

s�t� z � t�

where b � � and t � �� Then the optimal value �� satis�es

�� � �
b

	
min

�
t�

b

jaj

�
�

Proof� Consider �rst the case when a � �� Then b
a � � is the unconstrained minimizer

of �� If b
a � t� then the unconstrained minimizer solves the problem and

�� � �

	
b

a



� �

b�

	a
� �	����

On the other hand� if b
a � t� since � is decreasing on ��� ba 
 and at � b�

�� � ��t� �
�

	
at� � bt � �

bt

	
� �	���

In the case a � �� � is concave everywhere so that

�� � ��t� � �bt� �	�	��

Since one of �	����� �	��� or �	�	�� must hold� the result follows� �

Applying this to the normal problem yields the following result�

Lemma ���� Suppose that sk � � and that vk � �vx� vs� is an approximate solution of

�	��� satisfying the normal Cauchy decrease condition �	����� Then

kgk � skk vpredk�vk� � kgk � skk
�
kgk � skk � kgk � sk �A�kvx � vsk

�

�
�v
	

����
	
Ak

Sk



�gk � sk�

���� min

�
BB� ��k� 	��

����
	
Ak

Sk



�gk � sk�

����
k�A�k Sk�k�

�
CCA �

�	�	��

where �v is de�ned in �	�����

��



Proof� Inequality �	�	�� clearly holds when uck � � because �	��	� implies that the right
hand side of the inequality is zero� Therefore� we now assume that uck 	� ��

By the normal Cauchy decrease condition� �	��� and �	��	�� the scalar �c
k is a solution

of

min
���

��

	
k�A�k Sk�u

c
kk

� � �kuckk
�

s�t� j�j �
��k

kuckk

� � �
	�

�ucs�
�i�

for all i such that �ucs�
�i� � ��

�	�		�

Note that the upper bounds of problem �	�		� are satis�ed if

� � min


��k

kuckk
�

	�

kuckk

�
�

Using this and Lemma 	�� we have�

�

	

�
kgk � sk � �c

k�A
�
kv

c
x � vcs�k

� � kgk � skk
�
�

�
��c��

	
k�A�k Sk�u

c
kk

� � �ckuckk
�

� �
kuckk

�

	
min


minf ��k� 	�g

kuckk
�

kuckk
�

k�A�k Sk�u
c
kk

�

�

� �
kuckk

	
min


��k� 	��

kuckk

k�A�k Sk�k�

�
�

Now� since the normal Cauchy decrease condition holds� by �	���� and �	�����

kgk � skk vpredk�vk� � �vkgk � skk
�
kgk � skk � kgk � sk � �c

k�A
�
kv

c
x � vcs�k

�
�

�v
	

�
kgk � skk

� � kgk � sk � �c
k�A

�
kv

c
x � vcs�k

�
�

�
�v
	
kuckkmin


��k� 	��

kuckk

k�A�k Sk�k�

�
�

where we used the inequality 	a�a � b� � a� � b�� Substituting for uck by its value given
by �	��	�� we obtain �	�	��� �

��� Approximate solution of the tangential problem

Consider now the tangential subproblem �	���� Writing d � vk � h� where vk is the
approximate solution of the normal subproblem� we can write the equality constraints in
�	��� as

A�khx � hs � ��

�	



It follows from this equation that� if the normal step satis�es �	����� then the vector
�hx� S

��
k hs� is orthogonal to �vx� S

��
k vs�� We can therefore write the trust region constraint

as
k�hx� S

��
k hs�k � ��k� �	�	��

where

��k �
�
��

k � k�vx� S
��
k vs�k

�
� �

� �

If orthogonality does not hold we can still write the trust region constraint as �	�	��� where
now

��k � �k � k�vx� S
��
k vs�k�

This ensures that d is within the trust region of �	���� although it restricts h more than
necessary in some cases� Note from �	��� that either choice of ��k implies that

�k � ��k � ��� 	��k� �	�	��

This and the condition k�dx� S
��
k ds�k � �k are the only requirements we place on ��k�

Substituting d � vk � h in �	��� and omitting constant terms involving vk in the
objective function� we obtain the following problem in h � �hx� hs��

min
h

�rfk �Bkvx�
�hx �

�

	
h�xBkhx

� �

	
e�S��k hs � v�s S

��
k hs �

�

	
h�sS

��
k hs



s�t� A�khx � hs � �

k�hx� S
��
k hs�k � ��k

S��k �vs � hs� � ���

�	�	��

We now describe a decrease condition that an approximate solution of �	�	�� must
satisfy� For this purpose we de�ne the tangential predicted reduction produced by a step
h � �hx� hs� as the change in the objective function of �	�	���

hpredk�h� � ��rfk �Bkvx�
�hx �

�

	
h�xBkhx

� �

	
e�S��k hs � v�s S

��
k hs �

�

	
h�sS

��
k hs



�

�	�	��

Next� we let Zk �
�
Z�x Z�s

��
denote a null space basis matrix for the equality constraints

in problem �	�	��� i�e�� Zk is an �n�m�
 n full rank matrix satisfying�
A�k I

�
Zk � A�kZx � Zs � �� �	�	��

A simple choice of Zk is to de�ne Zk � �I �Ak�
�� but many other choices are possible�

and some may have advantages in di�erent contexts� In this paper we will allow Zk to be
any null space basis matrix satisfying

kZkk � �
Z

and �min�Zk� � ���
Z

� for all k� �	�	��

��



where �
Z
is a positive constant and �min�Zk� denotes the smallest singular value of Zk� If

fAkg is bounded this condition is satis�ed by Zk � �I �Ak�
� and by many other choices

of Zk�
Any feasible vector for �	�	�� may be expressed as h � Zkp for some p � Rn� Thus�

writing h � �hx� hs� � �Zxp� Zsp�� the tangential subproblem �	�	�� becomes

min
p

�rfk �Bkvx�
�Zxp� ��S��k e� S��k vs�

�Zsp

�
�

	
p��Z�xBkZx � �Z�s S

��
k Zs�p

s�t� k�Zxp� S
��
k Zsp�k � ��k

S��k �vs � Zsp� � ���

�	�	�

Again� this has the form of a trust region subproblem for unconstrained optimization� with
bounds at some distance from zero �in the scaled variables� and by analogy with standard
practice� we will require that the step hk � Zkpk give as much reduction in the objective of
�	�	� as a steepest descent step� The steepest descent direction for the objective function
of �	�	� at p � � is given by

pck � �Z�x �rfk �Bkvx� � �Z�s �S
��
k e� S��k vs�� �	����

We are now ready to state the condition we impose on the tangential step�

Tangential Cauchy Decrease Condition� The approximate solution hk of the tangen�

tial problem �	�	�� must satisfy

hpredk�hk� � �h hpredk��
c
kZkp

c
k�� �	����

for some constant �h � �� where �ck solves the problem

min
���

� hpredk��Zkp
c
k�

s�t� k��Zxp
c
k� S

��
k Zsp

c
k�k � ��k

vs � �Zsp
c
k � ��sk�

�	��	�

Here Zk is a null space basis matrix satisfying �	�	�� and ��k satis�es �	�	���

The tangential Cauchy decrease condition is clearly satis�ed by the optimal solution of
�	�	�� It is also satis�ed if the step is chosen by truncated conjugate gradient iterations
in the variable p on the objective of �	�	� �see Steihaug �	�
�� Note also that since � � �
is a feasible solution to �	��	��

hpredk�hk� � �� �	����

The following result establishes a lower bound on the tangential predicted reduction
hpredk�hk� for a step satisfying the tangential Cauchy decrease condition�

��



Lemma ���� Suppose that sk � � and that hk � �hx� hs� satis�es the tangential Cauchy

decrease condition �	����� Then

hpredk�hk� �
�h
	
kpckk min

�
min� ��k� ��� 	���

kZ�xZx � Z�s S
��
k Zsk���

�
kpckk

kZ�xBkZx � �Z�s S
��
k Zsk

�
� �	����

where pck is given by �	���� and �h is used in �	�����

Proof� Note that the problem �	��	� may be expressed as

min
���

� hpredk��Zkp
c
k� �

�

	
�pck�

��Z�xBkZx � �Z�s S
��
k Zs�p

c
k �

� � kpckk
� �

s�t� j�j �
��k

k�Zxpck� S
��
k Zspck�k

� � �
� � �S��

k vs�
�i�

�S��
k Zspck�

�i�
for all i such that �S��

k Zsp
c
k�

�i� � ��

�	����

Since the normal problem ensures that �S��
k vs�

�i� � �	� � it follows from the de�nition
of the Euclidean norm that the upper bounds on � in the last group of �	���� are greater
than or equal to

��� 	��

k�Zxp
c
k� S

��
k Zsp

c
k�k

�

Applying Lemma 	�� to problem �	���� we then have

�hpredk��
c
kZkp

c
k�

� �
�

	
kpckk

�min


minf ��k� �� � 	��g

k�Zxpck� S
��
k Zspck�k

�
kpckk

�

j�pck�
��Z�xBkZx � �Z�s S

��
k Zs�pckj

�
�

The result �	���� then follows from norm inequalities and �	���� � �

��� Detailed description of the algorithm

Now that we have speci�ed how the normal and tangential subproblems are to be solved�
we can give a precise description of our algorithm for solving the barrier problem ���	��

Algorithm I� Choose the initial iterate z� � �x�� s�� ��� with s� � �� the initial trust
region radius �� � �� four constants 	� � �� and � in ��� �� and a positive constant ����
Set k � ��

�� Compute the normal step vk � �vx� vs� by solving approximately �	���� in such a way
that vk satis�es the range space condition �	���� and the normal Cauchy decrease
condition �	�����

	� Compute the tangent step hk � �hx� hs� by solving approximately �	�	��� in such a
way that hk satis�es the tangential Cauchy decrease condition �	����� and the total
step dk � �dx� ds� � vk � hk satis�es k�dx� S

��
k ds�k � �k�

��



�� Update the penalty parameter of the merit function �	�	� as follows� Let ��k be the
smallest value of �k� such that

predk�dk� � ��k vpredk�vk�� �	����

If ��k � �k��� set �k � �k��� otherwise set �k � max���k� ��� �k����

�� If
��xk � dx� sk � ds� �k� � ��xk� sk� �k��  predk�dk�

decrease �k by a constant factor and go to ��

�� Set xk�� � xk � dx� sk�� � max�sk � ds��gk���� compute a new multiplier �k���
update Bk� choose a new value �k�� � �k� increase k by � and go to ��

Steps � and � need some clari�cation� Writing dx � hx�vx and ds � hs�vs� the total
predicted reduction �	��� becomes

predk�dk� �

�rf�k vx �
�

	
v�xBkvx � �rfk �Bkvx�

�hx �
�

	
h�xBkhx

� �k
�
kgk � skk � kgk � sk �A�kdx � dsk

�
� �

	
e�S��k vs �

�

	
v�s S

��
k vs



� �

	
e�S��k hs � v�s S

��
k hs �

�

	
h�sS

��
k hs



�

Recalling the de�nitions �	���� and �	�	�� of the normal and tangential predicted reduc�
tions� we obtain

predk�dk� � �k vpredk�vk� � hpredk�hk� � �k� �	����

where

�k � �rf�k vx �
�

	
v�xBkvx � �

	
e�S��k vs �

�

	
v�s S

��
k vs



� �	����

We have noted in �	���� and �	���� that vpredk�vk� and hpredk�hk� are both nonnegative�
but �k� which gives the change in the objective of �	��� due to the normal step vk� can
be of any sign� Condition �	���� in step � compensates for the possible negativity of this
term by choosing a su�ciently large value of �k� so that predk�dk� is at least a fraction �
of �k vpredk�vk�� More precisely� from �	���� we see that if vpredk�vk� � �� �	���� holds
when

�k �
��k

��� �� vpredk�vk�
�

On the other hand� if vpredk�vk� � �� then by �	�	�� and sk � �� it must be the case that
gk � sk � �� In that case v � � is a solution to �	��� and by the range space condition
vk is in the range of �A�k S�k�

�� Since sk � � the squared objective of �	��� is a positive
de�nite quadratic on that subspace� so v � � is the unique minimizer in that space� This
uniqueness implies that vk � �� In that case �k � � and �	���� is satis�ed for any value
of �k�

��



In step � we do not always set sk�� � sk � ds� because when g
�i�
k�� � �� the i�th

constraint is feasible and we have more freedom in choosing the corresponding slack� s
�i�
k���

In this case our rule ensures that the new slack is not unnecessarily small� Furthermore�
it is always the case that ��xk � dx� sk��� �k� � ��xk � dx� sk � ds� �k�� so that this update
rule for sk�� does not increase the value of the merit function obtained after acceptance
of the trust region radius�

Finally note that we have left the strategy for computing the Lagrange multipliers and
Bk unspeci�ed� The treatment in this paper allows Bk to be any bounded approxima�
tion to r�

xxL�xk� sk� �k�� and allows �k to be any multiplier estimate consistent with this
boundedness� The important question of what choices of Bk and �k are most e�ective is
not addressed here� and we refer the reader to ��
 for some possibilities�

� Well�posedness of Algorithm I

The purpose of this section is to show that� if an iterate �xk� sk� is not a stationary point
of the barrier problem� then the trust region radius cannot shrink to zero and prevent
the algorithm from moving away from that point� We begin by showing that mk is an
accurate local model of the merit function �� To analyze this accuracy we de�ne the actual
reduction in the merit function � from �xk� sk� to �xk � dx� sk � ds� as

aredk�d� � ��xk� sk� �k�� ��xk � dx� sk � ds� �k�� �����

Step � of Algorithm I thus states that a step d is acceptable if

aredk�d� �  predk�d�� ���	�

Lemma ���� Suppose that rf and A are Lipschitz continuous on an open convex set

X containing all the iterates fxkg generated by Algorithm I� and assume that fBkg is

bounded� Then there is a positive constant �L such that for any iterate �xk� sk� and any

step �dx� ds� such that the segment �xk� xk � dx
 is in X and ds � ��sk�

jpredk�d�� aredk�d�j � �L
�
�� � �k�kdxk

� � kS��
k dsk

�
�
�

Proof� Using the Lipschitz continuity of A� we have for some positive constant ������kg�xk � dx� � sk � dsk � kgk � sk �A�kdx � dsk
���

� kg�xk � dx�� gk �A�kdxk

� sup
���xk�xk�dx	

kA�	��Akk kdxk

� ��kdxk
��

Similarly� for any scalars � and �� satisfying � � � and �� � ��������ln�� � ���� ln� �
��

�

���� � sup
t�������� 	

������t �
��

�

���� � �

� � ��

	
��

�


�

�
�

�� �

	
��

�


�

� �����

Using these two inequalities� the de�nitions ������ �	��� of aredk�d� and predk�d�� the
Lipschitz continuity of rf � and the boundedness of fBkg� we have

��



jpredk�d� � aredk�d�j

�

�����f�xk � dx�� fk �rf�k dx �
�

	
d�xBkdx

� �k
�
kg�xk � dx� � sk � dsk � kgk � sk �A�kdx � dsk

�

� �
mX
i��

�
�ln�sk � ds�

�i� � ln s
�i�
k �

d
�i�
s

s
�i�
k

�
�

	

�
d
�i�
s

s
�i�
k

��
�
A
�����

� ����� � �k�kdxk
� � �

	
�

�� �
�

�

	



kS��k dsk

��

for some positive constant ���� �

In the next proposition� we show that Algorithm I determines an acceptable step with
a �nite number of reductions of �k� i�e�� that there can be no in�nite cycling between
steps � and � of Algorithm I� For this it is important that we ensure that� by decreasing
the trust region radius� we are able to make the displacement in s arbitrarily small�

Proposition ���� Suppose that sk � � and that �xk� sk� is not a stationary point of the

barrier problem ���	�� Then there exists ��
k � �� such that if �k � �����

k�� the inequality

���	� holds�

Proof� We proceed by contradiction� supposing that there is a subsequence �indexed
by i� the iteration counter k is �xed here� of trust region radii �k�i converging to zero� and
corresponding steps dk�i � vk�i�hk�i and penalty parameters �k�i� such that aredk�i�dk�i� �
 predk�i�dk�i� for all i�

The inequality aredk�i�dk�i� �  predk�i�dk�i� and the assumption  � ��� �� imply that

jpredk�i�dk�i�� aredk�i�dk�i�j � ��� � predk�i�dk�i�� This together with the limits dk�ix � ��

dk�is � �� and Lemma ��� gives

predk�i�dk�i� � �� � �k�i�o�kd
k�i
x k� � o�kdk�is k�� �����

We will show that this equation leads to a contradiction� which will prove the proposition�
For the rest of the proof ���� �

�
�� � � � � denote positive constants �independent of i but not

of k�� and to simplify the notation� we omit the arguments in vpredk�i�vk�i�� hpredk�i�hk�i��
and predk�i�dk�i��

Consider �rst the case when gk�sk � �� From �	���� and �	����� we see that vpredk�i �

�� Also� since gk � sk � �� �	��� has a solution �v � �� in the range space of �A�k S�
k�
��

so that the range space condition �	���� implies that vk�i is of the form �	����� for some
vector wk�i� Therefore � � vpredk�i � k�A�kAk �S�

k�wk�ik� which implies that wk�i � � and
vk�i � �� because the matrix inside the parenthesis is nonsingular� Given that vpredk�i
and vk�i both vanish� we have from �	����� �	���� and �	���� that predk�i � hpredk�i � ��
Hence� inequality �	���� holds independently of the value of �k�i� implying that f�k�igi��
is bounded� Therefore� ����� gives

predk�i � o�kdk�ix k� � o�kdk�is k�� �����

��



On the other hand� from �	���� and vk�i � � we see that pck � �Z�
xrfk � �Z�

s S
��
k e� This

vector is nonzero� otherwise the KKT conditions of the barrier problem ���	� and the
de�nition �	�	�� of Zk� would imply that �xk� sk� is a stationary point of the problem�
Then� for ��k�i su�ciently small� inequality �	����� the trust region in �	�	��� and the fact
that hk�i � dk�i give

predk�i � hpredk�i � ��� ��k�i � ���k�d
k�i
x � S��

k dk�is �k � ����kd
k�i
x k� kd

k�i
s k��

This contradicts ������
Consider now the case when gk � sk 	� �� Since the matrix �A�

k Sk� has full rank� and
by ��k�i � �� we deduce from �	�	�� that for i large

vpredk�i � ��
 ��k�i� �����

Then� from step � of the algorithm� ������ and the fact that kdk�ix k � kd
k�i
s k � �����

�� ��k�i�
we obtain

predk�i � ��k�i vpredk�i

� ��k�i�
�


��k�i

� ��k�i�
�

�

�
�

�
kdk�ix k� kd

k�i
s k

�
�

Since� �k�i � ��� � � this contradicts ������ concluding the proof� �

� Global Analysis of Algorithm I

We now analyze the global behavior of Algorithm I when applied to the barrier problem
���	� for a �xed value of �� To establish the main result of this section we make the
following assumptions about the problem and the iterates generated by the algorithm�

Assumptions ���� �a� The functions f and g are di�erentiable on an open convex set
X containing all the iterates xk� and rf � g� and A are Lipschitz continuous on X� �b�
The sequence ffkg is bounded below and the sequences frfkg� fgkg� fAkg and fBkg are
bounded�

Note that we have not assumed that the matrices of constraint gradients Ak have full
rank because we want to explore how the algorithm behaves in the presence of dependent
constraint gradients� Our most restrictive assumption is �b�� which could be violated if
the iterates are unbounded� The practical value of our analysis� as we will show� is that
the situations under which Algorithm I can fail represent problem characteristics that are
of interest to a user and that can be characterized in simple mathematical terms� As we
proceed with the analysis� we will point out how it makes speci�c demands on some of
the more subtle aspects of Algorithm I whose role may not be apparent to the reader at
this point� Therefore the analysis that follows provides a justi�cation for the design of our
algorithm�

�



We adopt the notation �� � max��� ��� for a scalar �� while for a vector� u� is de�ned
component�wise by �u���i� � �u�i���� We also make use of the measure of infeasibility
x �� kg�x��k� which vanishes if and only if x is feasible for the original problem ������
Note that kg����k� is di�erentiable and has for gradient

rkg�x��k� � 	A�x�g�x���

We make use of the following de�nitions� here A�i� denotes the i�th column of A�

De�nitions ���� A sequence fxkg is asymptotically feasible if g�xk�
� � �� We say that

the sequence f�gk� Ak�g has a limit point � g�  A� failing the linear independence constraint

quali�cation� if the set f  A�i� �  g�i� � �g is rank de�cient�

Note that the concept of constraint quali�cation usually applies to a point x� but that
we extend it to characterize limit points of the sequence f�gk� Ak�g� and thus our de�nition
is not standard� The main result we will establish for Algorithm I is the following�

Theorem ���� Suppose that Algorithm I is applied to the barrier problem ���	� and that

Assumptions ��� hold� Then�

�� the sequence of slack variables fskg is bounded�

	� Ak�gk � sk� � � and Sk�gk � sk� � ��
Furthermore� one of the following three situations occurs�

�i� The sequence fxkg is not asymptotically feasible� In this case� the iterates approach

stationarity of the measure of infeasibility x �� kg�x��k� meaning that Akg
�
k � ��

and the penalty parameters �k tend to in�nity�

�ii� The sequence fxkg is asymptotically feasible� but the sequence f�gk� Ak�g has a limit

point � g�  A� failing the linear independence constraint quali�cation� In this situation

also� the penalty parameters �k tend to in�nity�

�iii� The sequence fxkg is asymptotically feasible and all limit points of the sequence

f�gk� Ak�g satisfy the linear independence constraint quali�cation� In this situation�

fskg is bounded away from zero� the penalty parameter �k is constant and gk is

negative for all large indices k� and stationarity of problem ���	� is obtained� i�e��

rfk �Ak�k � �� where the multipliers are de�ned by �k � �S��k e�

This theorem isolates two situations where the KKT conditions may not be satis�ed in
the limit� both of which are of interest� Outcome �i� is a case where� in the limit� there is
no direction improving feasibility to �rst order� This indicates that �nding a feasible point
is a problem that a local method cannot always solve without a good starting point� In
considering outcome �ii� we must keep in mind that in some cases the solution to problem
���	� is a point where the linear independence constraint quali�cation fails� and which is
not a KKT point� Thus outcome �ii� may be just as relevant to the problem as satisfying
the KKT conditions�

The rest of the section is devoted to the proof of this theorem� which will be presented
in a sequence of lemmas addressing in order all the statements in the theorem� It is

	�



convenient to work with the following multiple of the merit function �

���x� s� �� �
�

�
��x� s� �� �

�

�

�
f�x�� �

mX
i��

ln s�i�
�
� kg�x� � sk �s � ���

Since step � of Algorithm I requires that � be reduced su�ciently at every new iterate�
we have that

���xk� sk� �k��� � ���xk��� sk��� �k����
 predk��

�k��
�

and therefore

���xk� sk� �k� � ���xk��� sk��� �k��� �

	
�

�k
�

�

�k��


�
fk � �

mX
i��

ln s
�i�
k

�
�

 predk��
�k��

� �����

This indicates that the sequence f���xk� sk� �k�g is not necessarily monotone when �k is
updated� To deal with this di�culty� we �rst establish that� under mild assumptions� the
slack variables are bounded above�

Lemma ���� Assume that ffkg is bounded below and that fgkg is bounded� Then the

sequence fskg is bounded� which implies that f��xk� sk� �k�g is bounded below�

Proof� Let � be an upper bound for �fk and for kgkk� Since

mX
i��

ln s
�i�
k � m ln kskk� � m ln kskk� ���	�

equation ������ the fact that the sequence f�kg is monotone non�decreasing� and the non�
negativity of predk give

���xk� sk� �k� � ���x�� s�� ��� �

	
�

��
�

�

�k



�� � �m max

��j�k
ln ksjk�� �����

On the other hand� from the de�nition of �� and ���	� we have that for any k�

���xk� sk� �k� � �
�

�k
�� � �m lnkskk� � kskk � kgkk� �����

Now� consider the indices lj such that ksljk � maxk�lj kskk� Then combining �����������
for k given by any such lj we obtain

�
�

�lj
�� � �m ln ksljk� � ksljk � kgljk �

���x�� s�� ��� �

�
�

��
�

�

�lj

�
�� � �m ln ksljk��

and thus

ksljk �
���x�� s�� ��� � � �

�

��
�� � �m ln ksljk�� �����

	�



Since the ratio �ln ksk��ksk tends to � when ksk � �� relation ����� implies that fsljg
must be bounded� By de�nition of the indices lj we conclude that the whole sequence
fskg is bounded� �

Given that the slack variables are bounded above and that fk is bounded below� it is
clear that we may rede�ne the objective function f � by adding a constant to it � so that

fk � �
mX
i��

ln s
�i�
k � �

at all iterates� and that this change does not a�ect the problem or the algorithm in any
way� This positivity� the fact that �k is nondecreasing and ����� imply that

���xk� sk� �k� � ���xk��� sk��� �k����
 predk��

�k��
�����

for all k�
We can now show that our rule in step � of Algorithm I for determining the new slack

variables� sk�� � max�sk�ds��gk���� is such that the step between two successive iterates
is still controlled by the trust radius �k�

Lemma ���� Assume that ffkg is bounded below� that fgkg is bounded� and that g is

Lipschitz continuous on an open set X containing all the iterates xk� Then there exists a

positive constant �� such that for all k � ��

k�xk��� sk���� �xk� sk�k � ���k�

Proof� Clearly� k�xk��� sk���� �xk� sk�k � kxk��� xkk� ksk��� skk and kxk��� xkk �
kdxk � kdk � �k�

Consider now the step in s� Let ��s � � be the bound on fskg given by Lemma ����

For the components i of s such that s
�i�
k�� � s

�i�
k � d

�i�
s � one has

js
�i�
k�� � s

�i�
k j � kdsk � ��skS

��
k dsk � ��s�k�

For the other components�

s
�i�
k � s

�i�
k�� � �d�i�s � kdsk � ��s�k

and s
�i�
k�� � �g

�i�
k�� so that� using the fact that gk � sk � � �when k � ��� one has

s
�i�
k�� � s

�i�
k � �g

�i�
k�� � g

�i�
k � �g

�i�
k � s

�i�
k � � kgk�� � gkk � ��kdxk � ���k�

where �� � � denotes the Lipschitz constant of g� �

With the above two lemmas� we can begin to address convergence in the next result�
It deals with the function �x� s� � Rn 
Rm

� �� kg�x� � sk�� which is another measure of

		



infeasibility for the original problem ������ Note that if the slack variables are scaled by
S��k � the gradient of this function with respect to the scaled variables is

	

	
A�x�
S



�g�x� � s��

We now show that the iterates generated by the algorithm approach stationarity for this
infeasibility function kg�x� � sk��

Lemma ���� Assume that the sequences fgkg� fAkg� and fBkg are bounded� that ffkg is

bounded below� and that g� A� and rf are Lipschitz continuous on an open convex set X
containing all the iterates xk� Then

lim
k	�

	
Ak

Sk



�gk � sk� � ��

Proof� By the assumptions on A and g� we have that the function

��x� s� �

����
	
A�x�
S



�g�x� � s�

����
is Lipschitz continuous on the open set X 
Rm

� containing all the iterates �xk� sk�� i�e��
there is a constant ��L � � such that

j��x� s�� ��xl� sl�j � ��Lk�x� s� � �xl� sl�k� �����

for any two points �x� s� and �xl� sl� in X 
Rm
� �

Now consider an arbitrary iterate �xl� sl� such that �l � ��xl� sl� 	� �� We �rst want
to show that in a neighborhood of this iterate all su�ciently small steps are accepted by
Algorithm I� To do this de�ne the ball

Bl � f�x� s� � k�x� s�� �xl� sl�k � �l��	�
�
L�g�

By ������ for any �x� s� � Bl we have that

��x� s� �
�

	
�l�

which implies that g�x� � s 	� �� We also know that the normal step satis�es �	�	��� and
have shown in Lemma ��� that fskg is bounded� Using this� �	���� and the boundedness
assumptions on fAkg and fgk � skg� we see that there is a constant ��� �independent of k
and l�� such that for any such iterate �xl� sl� and any iterate �xk� sk� � Bl

predk � ��k vpredk � �k�
�
��l min

�
	�� ��k� �l

�
� �����

Therefore� if �k is su�ciently small we have

predk � �k�
�
��l ��k�

	�



Using this together with Lemma ���� and recalling the trust region constraint and the fact
that ��k � 	�k� we obtain

j aredk�predk j

predk
�

�L
�
�� � �k�kdxk

� � kS��
k dsk

�
�

�k�
�
��l

��k

�
�L�� � �k��

�
k

�k�
�
��l	�k

�

By making �k su�ciently small we can ensure that the last term is less than or equal to
�� � and therefore for all xk � Bl and all such �k�

aredk �  predk� ����

implying �by ���	�� acceptance of the step in Algorithm I�
Next we want to show that the rest of the iterates fxkgk�l cannot remain in Bl� We

proceed by contradiction and assume that for all k � l� xk � Bl and therefore ���� holds
for su�ciently small �k� this implies that there exists �� � � such that �k � �� for all
k � l� This� together with ����� and ����� gives

��k�� � ��k �


�k
predk �

��k � ����lmin
�
	�� 	��� �l

�
�

where ��k � ���xk� sk� �k�� Since the last term in the right hand side is constant� this
relation implies that ��k � ��� contradicting the conclusion of Lemma ��� that f��kg is
bounded below� Therefore the sequence of iterates must leave Bl for some k � l�

Now let �xk��� sk��� be the �rst iterate after �xl� sl� that is not contained in Bl� We
must consider two possibilities� First� if there exists some j � �l� k
 such that ��j �
min �	�� �l�� then we have from ����� and ����� that

��k�� � ��j��

� ��j �


�j
predj

� ��j � ����lmin �	�� �l�

� ��l � ����lmin �	�� �l� � ������

The other possibility is that for all j � �l� k
� ��j � min �	�� �l�� In that case it follows from
����� and ����� that

��k�� � ��l �
kX
j�l



�j
predj

� ��l �
kX
j�l

����l	�j� ������

Then� using Lemma ��� and the fact that �xk��� sk��� has left the ball Bl� whose radius is
�l��	�

�
L� give

kX
j�l

�j �
�

��
k�xk��� sk���� �xl� sl�k �

�l
	��L��

�

	�



Substituting in ������ we obtain

��k�� � ��l � ���	�
�
l ��	�

�
L���� ����	�

To conclude the proof note that since f��kg is decreasing and bounded below� we have
that ��l � ��� for some in�mum value ���� Since l was chosen arbitrarily� the fact that
either ������ or ����	� must hold at �xl� sl� implies that �l � �� �

This result shows that Ak�gk�sk�� � and Sk�gk�sk�� �� This is of course satis�ed
when gk � sk � �� that is when feasibility is attained asymptotically� However it can also
occur when gk�sk 	� � and the matrices Ak and Sk approach rank de�ciency� a possibility
we now investigate�

The procedure for updating the slack variables in step � of Algorithm I becomes im�
portant now� It ensures that

gk � sk � g�k � � ������

holds at every iteration� Lemma ��� �rst uses this relation to show that the gradient Akg
�
k

of the measure of infeasibility x �� �
�kg�x�

�k� converges to zero� Then Lemma ��� shows
that the case g�k 	� � implies that the penalty parameters tend to in�nity�

Lemma ��	� Under the conditions of Lemma ���� Akg
�
k � �� Moreover� if the sequence

of iterates is not asymptotically feasible� i�e�� if g�k 	� �� then the penalty parameters �k
tend to in�nity�

Proof� Let �A� �g� and �s be limit points of the sequences fAkg� fgkg� and fskg� Since these
sequences are bounded� we only have to show that �A�g� � ��

If �g�i� � �� the conditions �s � � and �S��g��s� � � �from Lemma ���� imply that �s�i� � ��
If �g�i� � �� then from ������� �s�i� 	� �� which together with the equation �S��g��s� � � implies
that �s�i� � ��g�i�� This shows that �g � �s � �g�� Using the equation �A��g � �s� � � �from
Lemma ����� we obtain that �A�g� � �� which proves the �rst part of the lemma�

If g�k 	� �� ������ implies that there is an index i such that �gk � sk�
�i� 	� �� Since

Sk�gk � sk�� �� there is a subsequence of indices k such that s
�i�
k � � and ln s

�i�
k � ���

Since ffkg is bounded below� this is incompatible with the decrease of ��xk� sk� �� for a
�xed value of the penalty parameter � � �� Therefore �k is increased in�nitely often� and
because this is always at least by a constant factor� f�kg is unbounded� �

This completes our discussion of the case when the sequence fxkg is not asymptotically
feasible �item �i� of Theorem �����

To continue the analysis we consider from now on only the case when feasibility is
approached asymptotically� We will divide the analysis in two cases depending on whether
the matrices �A�

k Sk� lose rank or not� We use the notation �min�M� to denote the smallest
singular value of a matrix M � and recall that in De�nitions ��	 we describe our notion of
linear independence constraint quali�cation�

	�



Lemma ��
� Suppose that the sequences fgkg and fAkg are bounded� that ffkg is bounded

below� and that gk � sk � �� Then� either there is some bound �� � � such that

�min��A
�
k Sk�� � ��

for all k� or the sequence f�gk� Ak�g has a limit point � g�  A� failing the linear independence

constraint quali�cation� In the latter case� the penalty parameter �k goes to in�nity�

Proof� If lim inf �min��A
�
k Sk�� � �� there is a subsequence of iterates for which the

smallest singular value of �A�k Sk� converges to �� Thus� since the sequence f�Ak� gk� sk�g
is bounded �by the assumptions�� it has a limit point �  A�  g�  s� such that the matrix �  A�  S�
is rank de�cient� Now  S is diagonal� so that the set I � fi �  s�i� � �g cannot be empty and
the columns of  A with index in I must be linearly dependent� Since we assume gk�sk � ��
we have that  g�i� � � if and only if i � I� and it follows that the set f  A�i� �  g�i� � �g is
rank de�cient�

Since for i � I� a subsequence of fs
�i�
k g tends to zero� a subsequence of f� ln s

�i�
k g

goes to in�nity� Because fskg is bounded and ffkg is bounded below� this is incompatible
with the decrease of ��xk� sk� ��� which would occur if �k were eventually constant� By
the update rule for the penalty parameter� if �k is changed in�nitely often then f�kg is
unbounded� �

For the rest of this section we will focus on the case where �min��A
�
k Sk�� � �� � � for

all k� which implies that gk � sk � �� First we will use this condition to bound the length
of the normal step v � �vx� vs� by a constant multiple of vpredk �Lemma ���� then we can
use this relation to show that the sequence of penalty parameters �k is bounded �Lemma
������ Finally we will be able to show that the stationarity conditions for problem ���	�
are asymptotically satis�ed �Lemma ������

Lemma ���� Suppose that Assumptions ��� hold and that for some �� � ��

�min��A
�
k Sk�� � �� � �� ������

for all k� Then� there are positive constants �� and �
 such that if kgk � skk � �������vx� S��k vs�
��� � �
 vpredk � ������

Proof� Recall that� by Lemma 	�	� the normal step must satisfy

kgk � skk vpredk �
�v
	

����
	
Ak

Sk



�gk � sk�

���� min

�
BB�	�� ��k�

����
	
Ak

Sk



�gk � sk�

����
k�A�k Sk�k�

�
CCA �

We may assume that gk�sk 	� �� for otherwise vpredk � �� vk � � �by the same argument
as in the proof of Proposition ��	�� and ������ is trivially satis�ed�

	�



Using ������ and letting  �� � supk k�A
�
k Sk�k� this implies

vpredk �
�v��

	
min

	
	�� ��k�

��kgk � skk

 ���



� ������

Let us now assume that kgk � skk is strictly smaller than the constant 	�  ������� Then the
minimum in ������ cannot occur at 	� � and ������ becomes

vpredk �
�v��

	
min

	
��k�

��kgk � skk

 ���



� ������

We now consider two cases�

Case �� Suppose kgk � skk �
�
� ��

��k� Then� using �� �  �� and the trust region constraint�

vpredk �
�v��

	
min

�
��

���

	 ���

�
��k �

�v��



� ���
k�vx� S

��
k vs�k�

From this inequality� ������ follows immediately�

Case �� Suppose

kgk � skk �
�

	
�� ��k� ������

Consider an arbitrary vector  v � Rn�m in the range of �A�k S�
k�
� that gives a lower

objective in the normal subproblem �	��� than v � �� We claim such a vector satis�es the
constraints of �	��� if kgk � skk is su�ciently small� Since  v � �A�k S�

k�
�w for some vector

w � Rm�

kgk � skk
� � kgk � sk � �A�k Sk�

	
Ak

Sk



wk�

or
k�A�kAk � S�

k�wk
� � �	�gk � sk�

��A�kAk � S�
k�w�

Using the Cauchy�Schwarz inequality� this implies that

k�A�kAk � S�
k�wk � 	kgk � skk

and by ������� it follows that

���� vx� S��k  vs�
��� �

����
	
Ak

Sk



w

���� � 	

��
kgk � skk� �����

Together� ������ and ����� imply  v is within the trust region� In addition� for each slack
variable s�i�� ����� implies

�S��k  vs�
�i� � �

���� vx� S��k  vs�
��� � �

	

��
kgk � skk � �	�� ���	��

provided that kgk � skk � �	� ����	� Thus  v is feasible for �	����
Now consider the problem �	��� and its transformed equivalent �	��� Since �A�k Sk� is

of full rank there is a solution  u to the equation gk � sk �A�kux � Skus � �� of minimum

	�



Euclidean norm� which is known to lie in the range of �A�k Sk�
�� Thus  v � � ux� Sk us�

lies in the range of �A�k S�
k�
�� and gives a value of zero for the objective of �	���� By the

above argument� if kgk � skk is su�ciently small�  v is feasible for problem �	���� and is
therefore a solution to �	���� Since  v is a solution to �	��� lying in the range of �A�k S�

k�
��

the range space condition �	���� implies that the normal step vk must also lie in the range
of �A�k S�

k�
�� This implies that� since vpredk�vk� � �� vk satis�es ������ so that

����vx� S��k vs�
��� � 	

��
kgk � skk� ���	��

Now recall that by ������ and �������

vpredk �
�v��

	
min

	
	

��
�
��

 ���



kgk � skk�

which together with ���	�� implies �������
�

We should note that if the Lagrange multipliers �k are de�ned as the least squares
solution to �

rfk �Ak�
Sk�� �e

�
� ��

then the boundedness of frfkg� fAkg� fskg� and ������ imply that the sequence f�kg
is bounded� The boundedness assumption on Bk is now easy to enforce in this case�
particularly if Bk is de�ned as r�

xxL�xk� sk� �k��
With the bound ������ on the normal step� in the case where gk�sk � �� we can show

that the parameter �k eventually becomes �xed�

Lemma ����� Suppose that Assumptions ��� are satis�ed� and that ������ holds for k
su�ciently large� Then� the sequence of penalty parameters f�kg is bounded� In addition�

there exists an index k� and positive scalars  � and ��� such that for all k � k��

�k �  �

and

predk�dk� � �� hpredk � ���		�

Proof� In step � of Algorithm I� �k is chosen to be su�ciently large such that

predk�dk� � ��k vpredk� ���	��

where� as in �	������	����

predk�dk� � �k vpredk �hpredk

�rf�k vx �
�

	
v�xBkvx � �

	
e�S��k vs �

�

	
v�s S

��
k vs



�

���	��

	�



We consider the terms in the second line of the above equation� By Assumptions ����
frfkg� fAkg� and fBkg are all bounded� Note also that fvpredkg is bounded� since by
�	����� vpredk � kgk � skk� and this quantity is bounded as a consequence of Assumption
��� and Lemma ���� Therefore� using ������� there is a constant ��� � � such that

�rf�k vx �
�

	
v�xBkvx � �

	
e�S��k vs �

�

	
v�s S

��
k vs



� � ��� vpredk �

Hence from ���	�� the predicted decrease satis�es

predk�dk� � �k vpredk�hpredk��
�
� vpredk � ���	��

Since vpredk and hpredk are nonnegative� we deduce from this inequality that condition
���	�� is satis�ed if �k � ������ � ��� Therefore� if �k becomes larger than ������ � ��� it
will never be increased� This� together with the fact that whenever Algorithm I increases
�k it does so by a constant factor� implies that after some iterate� k� say� �k will remain
unchanged at some value  ��

Now consider ���	�� when k � k� and �k �  �� If hpredk � �	� � � ���� vpredk then
predk�dk� �

�
� hpredk� Otherwise� hpredk � �	� � � ���� vpredk and it must be the case

that  � � ��� � �� in which case� by ���	���

predk�dk� �
� �

	���� �  ��
hpredk �

So ���		� holds in either case� �

Lemma ����� Suppose that Assumptions ��� hold and that the singular values of the

matrices �A�
k Sk� are bounded away from zero� Then�

�i� fskg is bounded away from zero and gk is negative for all large k�
�ii� rfk � �AkS

��
k e� ��

Proof� By Lemma ���� gk � sk � �� and thus ������ eventually holds at all iterates� So�
by Lemma ����� we have that �k �  � for all k � k�� Since Algorithm I decreases the merit
function at every iteration we have

��xk� sk�  �� � ��xk� � sk� �  ��� for k � k��

Thus

��
mX
i��

ln s
�i�
k � ��xk� � sk� �  ��� fk �  �kgk � skk�

Since we assume that ffkg is bounded below and because fskg is bounded �Lemma �����
this implies that there is a vector  s � � such that

sk �  s� for k � ��

Thus� because gk � sk � �� we have that gk � � for large k� proving �i��

	



Next� recall that� by Lemma 	��� �hx� hs� satis�es

hpredk �
�h
	
kpckk min

�
min� ��k� ��� 	���

kZ�xZx � Z�s S
��
k Zsk���

�
kpckk

kZ�xBkZx � �Z�s S
��
k Zsk

�
� ���	��

where
pck � �Z�x �rfk �Bkvx� � �Z�s �S

��
k e� S��k vs��

and where the null space basis matrix Zk � �Z�x Z�s �
� is assumed to have singular values

that are both bounded above and bounded away from zero� Since we have shown that
all components of sk are bounded away from zero� it follows that fZ�xZx � Z�s S

��
k Zsg is

bounded� In addition since fBkg is bounded� fZ�xBkZx��Z�s S
��
k Zsg is bounded� Hence�

inequality ���	�� becomes

hpredk � ��� kp
c
kkmin

�
�� ��k� kp

c
kk
�
� ���	��

for some positive constant ����
To show that rfk � �AkS

��
k e tends to zero� we relate this quantity to pck� Note that

the matrix �I �Ak�
� is a null space basis �see �	�	���� and that using the equivalence of

null space bases we get

rfk � �AkS
��
k e � �I �Ak�

�
rf�xk�

��S��k e

�

� �I �Ak�Zk�Z
�
kZk�

��Z�k

�
rf�xk�

��S��k e

�
� ���	��

for the chosen null space basis Zk� By the boundedness of Ak and of the singular values
of Zk it follows from ���	�� that for some constant ���

kpckk � ��� �kqkk � kvkk�

for all k� where qk � rfk � �AkS
��
k e�

We use a similar argument to that used in the proof of Lemma ���� To obtain a
contradiction� suppose that � � �

� lim supk	� kqkk is nonzero� Since vk � �� we can �nd
an iterate �xl� sl� with arbitrarily large l such that kqlk � �� and such that kvkk � � for
all k � l� Let  �L be the Lipschitz constant for q�x� s� � rf�x� � �A�x�S��e� Then any
iterate �xk� sk�� with k � l� in the ball B � f�x� s� � k�x� s�� �xl� sl�k � �� �Lg� satis�es

kpckk � ��� �kqlk � kql � qkk � kvkk� � ������ � � � �� � �����

By Lemma ���� and ���	��� we have with ��
 � ���
�
� �
�
�

predk � �� hpredk � ��
 �min
�
�� ��k� �

�
� �
�
� ���	�

Therefore� for any iterate �xk� sk� in B� with k � l� if ��k is su�ciently small we have

predk � ��
� ��k�

��



Then by Lemma ����

j aredk�predk j

predk
�

�L�� �  ����
k

��
�
��k

� ��  ������

for �k su�ciently small� implying acceptance of the step�
Next we show that the rest of the iterates f�xk� sk�gk�l cannot remain in B� To prove

this by contradiction we assume that for all k � l� �xk� sk� � B and therefore ������ holds
for su�ciently small �k� This implies that there exists �� � � such that ��k � �� for all
k � l� This� together with ���	� and step � of Algorithm I� gives

�k�� � �k �  predk � �k � ��
�min
�
����� ����

�
�

Since the second term in the right hand side is constant� this relation implies that �k �
��� which gives a contradiction because Lemma ��� shows that f�kg is bounded below�
Therefore the sequence of iterates must leave B for some k � l�

Now let �xk��� sk��� be the �rst iterate after �xl� sl� that is not contained in B� We must
consider two possibilities� First� if there exists some j � �l� k
 such that ��j � min ��� ������
then we have from ���	� that

�k�� � �j��

� �j � predj

� �j � ��
�min
�
�� ����

�
� �l � ��
�min

�
�� ����

�
� ������

The other possibility is that for all j � �k� l
� ��j � min ��� ������ In that case� it follows
from ���	� and �	�	�� that

�k�� � �l � 
kX

j�l

predj

� �l � ��
���� 	�
kX

j�l

�j

� �l � ��
�
�
���� 	���� ����	�

The last inequality follows from the fact that �xk��� sk��� has left the ball B� whose radius
is �� �L� so that� as at the end of Lemma ����

Pk
j�l�j � ����� for some constant ����

Since the sequence f�kg is decreasing and bounded below� it converges� This is in
contradiction with the fact that l may be chosen arbitrarily large in ������ or ����	�� and
the fact that � 	� �� Therefore qk � �� �

Now we have established all points of our main convergence result� Theorem ���� which
we restate and whose proof we now summarize�

Theorem ����� Suppose that Algorithm I is applied to the barrier problem ���	� and that

Assumptions ��� hold� Then�

��



�� the sequence of slack variables fskg is bounded�

	� Ak�gk � sk�� � and Sk�gk � sk�� ��
Furthermore� one of the following three situations occurs�

�i� The sequence fxkg is not asymptotically feasible� In this situation� the iterates

approach stationarity of the measure of infeasibility x �� kg�x��k� meaning that

Akg
�
k � �� and the penalty parameters �k tend to in�nity�

�ii� The sequence fxkg is asymptotically feasible� but the sequence f�gk� Ak�g has a limit

point � g�  A� failing the linear independence constraint quali�cation� In this situation

also� the penalty parameters �k tend to in�nity�

�iii� The sequence fxkg is asymptotically feasible and all limit points of the sequence

f�gk� Ak�g satisfy the linear independence constraint quali�cation� In this situation�

fskg is bounded away from zero� the penalty parameter �k is constant and gk is

negative for all large indices k� and stationarity of problem ���	� is obtained� i�e��

rfk �Ak�k � �� where the multipliers are de�ned by �k � �S��k e�

Proof� Conclusion ��� was established in Lemma ���� and conclusion �	� in Lemma ����
In the case that fxkg is not asymptotically feasible �g�k 	� ��� it was shown in Lemma ���
that situation �i� occurs� If g�k � �� it was shown in Lemma ���� Lemma ����� and
Lemma ���� that either �ii� or �iii� must hold� �

� Overall Algorithm

In this section we consider the overall algorithm� in which Algorithm I is run for decreasing
values of the barrier parameter �� We are not concerned here with conditions assuring
a good rate of convergence� but consider only the global convergence properties of this
algorithm�

Algorithm II� Choose an initial value �� � � for the barrier parameter� a reduction
factor a � ��� ��� and a sequence of stopping tolerances f�lgl�� that tends to zero� Choose
an initial iterate �x�� s�� and set l � � and k� � ��

�� Apply Algorithm I from the point �xkl��
� skl��

� until it �nds a point �xkl
� skl

� satis�
fying

kgkl
� skl

k � �l� �����

krfkl
�Akl

�kl
k � �l� ���	�

where �kl
� �lS

��
kl

e�

	� Choose �l�� � ��� a�l��

�� Increase l by �� and go to step ��

All the iterates generated by this algorithm form a single sequence f�xk� sk�gk��� The
index kl�� �l � �� labels the starting point of the lth outer iteration� which ends at the
point �xkl

� skl
��

�	



Theorem ���� Suppose that f�xk� sk�g is generated by Algorithm II and that� for each

barrier problem� Assumptions ��� hold� Then� one of the following two possible outcomes

can occur�

�A� For some parameter �l� either inequality ����� is never satis�ed� in which case the

stationarity condition for minimizing x �� kg�x��k is satis�ed in the limit� i�e��

A�xk�g�xk�
� � �� or else gk� sk � � but inequality ���	� is never satis�ed� in which

case the sequence f�gk� Ak�g has a limit point � g�  A� failing the linear independence

constraint quali�cation�

�B� At each outer iteration l of Algorithm II� the inner algorithm succeeds in �nding a pair

�xkl
� skl

� satisfying ���������	�� All limit points �x of fxkl
g are feasible� Furthermore�

if any limit point �x of fxkl
g satis�es the linear independence constraint quali�cation�

then the �rst order optimality conditions of the problem

min
x

f�x�

s�t� g�x� � �

hold at �x� there exists �� � Rm such that

r �f � �A�� � �� �g � �� �� � �� �g��� � ��

Proof� Suppose that� for some value of �l� Algorithm II fails to �nd a point satisfying �����
and ���	�� This implies that Algorithm I generates an in�nite sequence for problem ���	�
with � � �l� but that outcome �iii� of Theorem ���	 does not occur� Since Assumptions ���
hold this implies that� for that value of �� either outcome �i� or �ii� of Theorem ���	 occurs�
which leads to conclusion �A��

The only other possibility is that Algorithm II satis�es ���������	� for all l � �� Let L
be a subsequence of indices l� such that xkl

� �x when l�� in L� Since � � g�kl
� gkl

�skl

and gkl
� skl

� �� one has �g � g��x� � � ��x is feasible� and skl
� �s � ��g when l � �

in L�
Now suppose that the linear independence constraint quali�cation holds at �x and

consider the set of indices
I � fi � �g�i� � �g�

For i 	� I� �g�i� � � and �s�i� � �� so that �
�i�
kl

� �l�s
�i�
kl
� � when l � � in L� From this

and rfkl
�Akl

�kl
� �� we deduce that

rfkl
�
X
i�I

�
�i�
kl
rg

�i�
kl
� �� �����

By the constraint quali�cation hypothesis� the vectors fr�g�i� � i � Ig are linearly inde�
pendent� so that� by ������ the positive sequence f�kl

gl�L converges to some value �� � ��
Now� it remains to take the limit in rfkl

� Akl
�kl

when l �� in L and to observe that

�g��� � �� Therefore conclusion �B� holds� �

��



� Final Remarks

In this paper we have presented and analyzed a trust region method for solving the barrier
problem ���	�� This is an optimization problem with nonlinear equality constraints� plus
the implicit constraint s � �� Our strategy has been to use a well�developed algorithm
for equality constrained optimization and enforce the constraint s � � by means of the
trust region and the barrier term� Another bene�t of using a trust region is the ability
of the method to deal with inde�niteness of the Hessian and near rank de�ciency of the
constraints�

The algorithmic framework given in x� can be used to implement primal or primal�
dual interior point methods� In this paper we have focused on primal methods because
they are easier to analyze and we have devoted much attention to their global convergence
properties because the analysis provides important clues on how to design the algorithms�
Computational experience with the primal interior point method is given in ���� �
� those
papers also provide computational results with primal�dual methods�

Another question to be dealt with is how to ensure that a good rate of convergence is
obtained� This requires� among other things� a careful strategy for updating the barrier
parameter � and deciding how accurately to solve the barrier subproblems ��
� We should
also mention that since our merit function is non�di�erentiable� getting fast convergence
may necessitate use of a second�order correction or a watch�dog strategy to avoid the
Maratos e�ect� Our computational experience ���� �
 indicates that use of a second�order
correction can be an e�cient strategy for this purpose�
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