
0018-9162/03/$17.00 © 2003 IEEE July 2003 55

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

A Trusted
Open Platform

C omputers are entrusted with more per-
sonal and valuable data every day, and
local and remote users need mechanisms
to safeguard this data against misuse. A
variety of access-control mechanisms

address this problem.1 For example, most com-
mercial systems require users to provide a pass-
word to log on. Users and administrators can con-
figure the system to restrict access to resources,
such as files containing sensitive data.

However, such mechanisms have limited effec-
tiveness in a mass-market setting because the ker-
nel’s integrity cannot be ensured. One of the main
reasons is that the commercial need for an open soft-
ware and hardware architecture leads to operating
systems that contain a large collection of peripheral
devices and device drivers containing millions of
lines of code. A single programming error or inten-
tional back door in this large and diverse code base
can give rise to an attack that renders the access-
control system ineffective. Viruses and Trojan horses
exploit such errors on large numbers of machines
on the Internet.

Furthermore, most home and corporate desktop
computers today are rather loosely administered.
Even a functioning access-control system will be
ineffective if it is not correctly configured.

These problems expose open-system users to con-
crete vulnerabilities:

• A corporate document prepared with a trust-
worthy program is also accessible to a virus or

a game with a vulnerability or back door.
• A user’s home finance transactions and data

are vulnerable to Trojan horses that “snoop”
actions and passwords.

• A bank cannot distinguish a legitimate trans-
action initiated by a person from an illegitimate
or sabotaged transaction instigated by a sub-
verted application.

One solution to these problems is to provide
stricter control over platform hardware and soft-
ware by using a closed system. Set-top boxes, game
machines, and smart cards take this approach. If it
is difficult or impossible to make a change to the
operating system or run an unknown or unautho-
rized application, it is easier to ensure data and
transaction integrity. However, closed systems are
far less flexible than open systems and are unlikely
to replace the personal computer.

NEXT-GENERATION SECURE
COMPUTING BASE

Microsoft’s next-generation secure computing
base aims to provide robust access control while
retaining the openness of personal computers.
Unlike closed systems, an NGSCB platform can run
any software, but it provides mechanisms that allow
operating systems and applications to protect them-
selves against other software running on the same
machine. For example, it can make home finance
data inaccessible to programs that the user has not
specifically authorized.

Microsoft’s next-generation secure computing base extends personal
computers to offer mechanisms that let high-assurance software
protect itself from the operating systems, device drivers, BIOS, and
other software running on the same machine.

Paul
England
Butler
Lampson
John
Manferdelli
Marcus
Peinado
Bryan
Willman
Microsoft
Corporation

56 Computer

To enable this mode of operation, NGSCB
platforms implement

• isolation among operating systems and
among processes. OS isolation is related to
virtual machine monitors. However, some
key NGSCB innovations make it more
robust than traditional VMMs by enabling
a small machine monitor to isolate itself
and other high-assurance components
from the basic input/output system (BIOS),
device drivers, and bus master devices.

• hardware and software security primitives
that allow software modules to keep
secrets and authenticate themselves to local
and remote entities. These primitives main-
tain the trustworthiness of OS access pro-
tections without preventing the platform
from booting other operating systems.

We refer to a security regimen that allows any
software to run but requires it to be identified in
access-control decisions as authenticated operation,
and we call a hardware-software platform that
supports authenticated operation a trusted open
system.

A variety of commercial requirements and secu-
rity goals guided the NGSCB system design. The
main commercial requirement was for an open
architecture that allows arbitrary hardware periph-
erals to be added to the platform and arbitrary
software to execute without involving a central
authority. Furthermore, the system had to operate
in the legacy environment of personal computers.
While we introduced changes to core platform
components, most of the PC architecture remained
unmodified. The system had to be compatible with
the majority of existing peripherals. Finally, the
hardware changes had to be such that they would
not have a significant impact on PC production
costs.

Our main security goal was assurance. Assurance
is not any particular security function. It refers to
the degree of confidence the owner of a system can
have in its correct behavior—especially in the pres-
ence of attacks. A further goal was to enable
authenticated operation.

The hardware platforms are not required to pro-
vide protection against hardware tampering.
Protection against tampering costs money, and it is
clear that most security attacks facing users are
launched by malicious software, or are remotely
launched and exploit bugs in otherwise benign soft-
ware. However, we anticipate platforms will be

deployed that are also robust against hardware
attacks, especially in high-security corporate and
government settings.

AUTHENTICATED OPERATION
Traditional access-control systems protect data

against unauthorized access through an authentica-
tion mechanism such as a password, biometric data,
or smart card. Each access request triggers a system
component, the guard, that is part of the trusted
computing base. The guard grants or denies access,
and can audit access requests according to the user,
the request, and the system’s access-control policy.1

Authenticated operation bases access-control
decisions in part on the identity of the program
making a request. For example, a user can restrict
access to files containing financial data to only cer-
tain authorized programs.

It is straightforward to extend most existing
user-based access-control systems to code-based
access models.2 For example, a resource can have
an access-control list that grants access only to a
list of programs rather than to users who run these
programs. We expect that most systems built to
support authenticated operation will base access-
control decisions on both program and user
resource requests.

Definition of code ID
Code-based access control requires a method of

establishing a program’s identity. If the operating
system can guarantee file-system integrity, it can
simply assume that the program “is who it says it
is.” However, in distributed systems or platforms
that let mutually distrustful operating systems run,
establishing a cryptographic identity for programs
is necessary.

The simplest example is a cryptographic digest
or “hash” of the program executable code. Within
this model the platform or operating system makes
no assumptions about the security of applications
stored on disk or on the network: If the application
is modified, its cryptographic hash—and hence its
identity and the services to which it is entitled—
will change. Similar code ID mechanisms have been
used elsewhere.3-5

Use of code ID
Sealed storage and attestation are two mecha-

nisms that rely on code IDs.
Sealed storage. Sealed storage is a cryptographi-

cally implemented access-control mechanism in
which the sealer of a secret states which programs
(given by their code IDs) can unseal (read) the

NGSCB platforms
isolate operating

systems and
processes and

implement
hardware and

software security
primitives.

secret. Sealed storage provides confidentiality and
integrity for persistently stored data. In principle,
sealed-storage primitives can be implemented at
any system layer. For example, the hardware could
implement sealed storage as a service to operating
systems or an operating system could implement
it as a service to applications.

Figure 1 illustrates the Seal and Unseal primi-
tives. Programs can call Seal and name their own
code ID (the common case) or any other program’s
code ID as the entity allowed to access the data.
If called by a program that has the sealed code
ID, Unseal returns the sealed secret and the sealer’s
code ID. If the requesting program has a differ-
ent code ID, Unseal returns an error.

Seal is designed as a local secret-storage mecha-
nism: Sealed secrets are not accessible to other
machines. The Seal and Unseal primitives have con-
siderable implementation flexibility.6 In general, the
implementation layer—for example, the hardware
or operating system—requires access to a crypto-
graphic key K.

In a sample implementation, Seal creates a data
structure containing the secret string provided by
the program that called Seal, the code ID of the pro-
gram to which the sealed data should be revealed,
and the code ID of the program that called Seal so
that the unsealer can identify the data source. Seal
uses an authenticated encryption primitive7 to
encrypt this data structure and to protect its
integrity. It can combine a cipher and a message
authentication code to implement authenticated
encryption.

Unseal takes the output of an earlier Seal opera-
tion. Unseal internally decrypts and verifies the
integrity of its input. The integrity check fails if the
input has been tampered with or if it did not orig-
inate in a Seal operation on this machine. In these
cases, Unseal rejects the request.

If the integrity check succeeds, Unseal verifies
that the code ID of the entity requesting Unseal is
the code authorized when the data was sealed. If
the code is authorized, Unseal discloses the secret
string and the sealer’s ID to the caller. If the code is
not authorized, Unseal returns an error.

Unseal returns the caller’s ID because any pro-
gram can call Seal, and, in some cases, security
depends on knowledge that the sealed data came
from a known source. For example, in the common

case of unsealed information being used as a cryp-
tographic key, the unsealer needs to know that an
adversary did not provide the key.

Attestation. Sealed storage is a restricted form of
symmetric encryption that lets software programs
keep long-lived secrets in persistent storage.
Attestation is a variant of public-key encryption
that lets programs authenticate their code ID to
remote parties.8

A platform must have a certified public/private-
key pair for attestation. Consider the signing vari-
ant that we call Quote. The Quote operation
concatenates an input string from the program
wishing to authenticate itself with the program’s
code ID, signs the resulting data structure with the
platform’s privacy quoting key, and returns the
result to the caller. The requesting program can
send this signed data structure to a remote party,
typically along with platform certificates that sup-
port use of the platform-quoting key.

The recipient can verify the signature and hence
the sender’s code ID. If the recipient is satisfied with
the sender’s ID, it can engage in the requested
transaction or data transfer. Of course, Quote and
the rest of the transaction must form part of a cryp-
tographic protocol that provides freshness and
other guarantees.

Kernel boot and authenticated operation
Given that the identity of a piece of code is its

cryptographic digest, an operating system can
measure and record an application program’s
code ID at process creation. However, hardware
must perform these functions for an operating
system.

System hardware and microcode are responsible
for measuring and recording a booting kernel’s
digest and for starting execution in an architec-
turally defined operating state. The platform needs
a secure place to store the cryptographic keys nec-
essary to implement sealed storage and attestation.
We anticipate that a common implementation will
be a cheap cryptographic processor, which we call
a security coprocessor. The SCP is attached to or is
part of the platform chipset.

The hardware provides authenticated operation
services to the kernels that it hosts—for example,
allowing a kernel to keep secrets and authenticate
itself. In turn, the kernel will use these secrets to pro-

July 2003 57

Program
3

Program
2

Program
1

Seal (S2, N2)Seal (S1, N1)

Unseal (blob)Seal (S2, N2)Seal (S1, N1)

Unseal

Program
1

Seal (S2, N2)Seal (S1, N1)

Seal
Figure 1. Seal and
Unseal primitives.
Seal allows a piece
of software to
protect a secret S
and to name the
programs N that can
access the secret.
If a program calls
Unseal on previously
sealed data. The
secret is revealed
only if the
requester’s identity
is as specified in the
sealed data block.
Red lines indicate
failed Unseal
requests, and green
lines indicate
successful
Unseal requests.

58 Computer

vide similar services to the applications that it
hosts.

IMPLEMENTING AUTHENTICATED
OPERATION

Most existing access-control models pro-
vide specific solutions to specific usability and
manageability problems. Authenticated oper-
ation brings with it both familiar and un-
familiar problems.

Upgrade
If a kernel is identified by its digest, then a

single bit change results in an unrelated code
ID, and any secrets sealed to the original ker-

nel—or to applications that it hosted—are no longer
accessible. To enable upgrade and other forms of
data sharing, a kernel must provide controlled dis-
closure of secrets to other kernels.

A kernel can implement any form of upgrade pol-
icy. For example, the administrator could type in
the upgraded kernel’s code ID, and the running ker-
nel could then reseal secrets to the new code ID.

Another example uses public-key cryptography
to group operating systems based on cryptographic
certification. Suppose kernel n has a public key
embedded in it. Kernel n + 1 is accompanied by a
statement naming the digest of kernel n + 1 with a
signature verifiable against the public key embed-
ded in kernel n.

If kernel n receives an upgrade request that
includes a properly formed signed upgrade state-
ment, the kernel will reseal all secrets—or a root
secret that protects all other secrets—to the kernel
digest named in the upgrade statement. When the
user boots the new kernel, it will be able to access
all old secrets.

Applications can handle their own upgrade using
similar techniques, or the kernel can provide ser-
vices to assist application upgrade.

Generic program code identity
Programs often base their execution behavior on

external input. An interpreter is an extreme exam-
ple of this. The interpreter’s code identity is not par-
ticularly meaningful; in this case, code identity is
best defined as “interpreter A, running script B.”
To reflect this, we can define a generic program’s
code ID as the hash of the concatenation of the pro-
gram and its input data.

Other examples include a program that allows
itself to be debugged if so instructed by data passed
in by this means and a generic secure “chat” pro-
gram that talks to a chat server identified by a pub-

lic key in the input data. In these examples, a debug-
gable program will have a different code ID from
that of a nondebuggable program, and a chat pro-
gram used for corporate chat can be distinguished
from the same program used for personal purposes.

Backup and migration
Platform sealed storage also provides strong data

binding to the machine, but users commonly share
data between machines.

Rather than burden the hardware with inflexible
mechanisms for data sharing and migration, OS
kernels and applications can implement their own
policies for exporting data. Implementing a family
of secure and flexible sharing mechanisms using the
authenticated operation primitives is straightfor-
ward.

NGSCB SYSTEM OVERVIEW
NGSCB implements authenticated operation in

the context of a complete system.

Machine partitioning
One approach to satisfying security requirements

is to add security features, such as sealed storage and
attestation, to legacy software systems. We believe,
however, that this strategy is unlikely to succeed.

Mainstream mass-market operating systems are
huge, containing tens of millions of lines of code,
and they are optimized for functionality and per-
formance. The diverse and ever-growing collection
of PC peripherals and the corresponding device dri-
vers are also often large and optimized for func-
tionality and performance. The resulting collection
of code that must be trusted to maintain security is
large, decentralized, heterogeneous, and frequently
changing—seemingly at odds with the basic design
principles for secure systems.

Conceptually, machine partitioning accommo-
dates these conflicting requirements by letting two
or more operating systems run side by side on the
same hardware, separated by a machine monitor.9

One of these could be a traditional mass-market
operating system in charge of managing most
devices and running arbitrary legacy applications.
One or more other systems could be dedicated to
providing high-assurance execution environments.
Possible implementations of the latter include ded-
icated high-assurance operating systems, regular
operating systems that are effectively sandboxed by
the machine monitor, or stand-alone applications.

Figure 2 shows an NGSCB configuration using
the dedicated high-assurance operating system
approach. The left half of the figure represents soft-

To accommodate
conflicting

requirements,
machine

partitioning lets
two or more

operating systems
run on the

same hardware.

ware running on today’s mass-market computers—
an operating system, device drivers, and applica-
tions. The right half of the figure represents a small
high-assurance OS kernel, which we call a nexus,
and applications or agents running on it. Both sys-
tems coexist on a single computer. A machine mon-
itor isolates the two systems to prevent them from
interfering with each other.

The NGSCB hardware platform will let any soft-
ware boot and run. However, the authenticated
operation primitives enable each operating system
to execute free of subversion or surveillance risk
from other operating systems. Similarly, successful
operating systems and nexuses can host any appli-
cation but will provide authenticated operation
primitives that protect hosted applications from
other applications or operating systems.

Trusted paths
Many platforms will likely also offer a limited

form of secure local user input and output. Such
facilities will allow limited screen output mediated
by the machine monitor without requiring the mon-
itor to contain a complete graphics driver. Similarly,
we expect secure keyboard and mouse input.

Initialization
NGSCB platforms allow a lightweight boot of a

machine monitor from within an already running
operating system. This decouples the nexus boot
process from the platform boot process, which
often involves BIOS and optional ROM firmware
from many sources.

The security coprocessor required for authenti-
cated operation is involved in the boot process so
that it can measure or be reliably informed of the
running monitor’s identity. It also implements the
sealed-storage and attestation primitives in inter-
nal firmware. Upcoming versions of the Trusted
Computing Platform Alliance’s Trusted Platform
Module10 can serve as a security coprocessor.

The coprocessor provides other services related
and unrelated to authenticated operation. For
example, it provides a random number generator
and one or more hardware-based monotonic
counters.

PRIVACY
Authenticated operation provides building

blocks for much stronger protection of personal
and private data on personal computers.

For example, if a stock trading program uses
sealed storage to store the authentication token that
authorizes stock trades, viruses and other unknown

applications cannot access the data and use it or
send it to a remote recipient. Similarly, even if the
machine security is ill-configured—for example,
the file system is improperly shared—the sealed
data is meaningless if it is copied to a remote
machine. Finally, a local application infected with
a Trojan horse will have a different code ID and
will not be able to unseal and hence misuse the pri-
vate data.

In short, it is very difficult for unknown or
untrustworthy code to misuse personal data pro-
tected by these mechanisms.

Randomizing operations
Unique cryptographic keys are a prerequisite to

implementing authenticated operation. If platform-
sealing keys are not unique, other machines can
read the sealed data; if platform-quoting keys are
not unique, others can impersonate the machine in
network interactions.

However, if platform keys are improperly used or
authenticated operation primitives are poorly imple-
mented, the keys themselves present a different kind
of privacy hazard—for example, servers could track
the machine’s activity as the user surfs the Web.

To ameliorate such concerns, the NGSCB system
provides several software and hardware mecha-
nisms. For example, sealed storage is designed to
reveal no platform-identifying information: Seal,
at both the hardware and software layers, adds ran-
domness to each sealed data object so that mali-
cious software calling Seal repeatedly on the same
data is returned a different value each time.

In addition, all new hardware and software ser-
vices in the NGSCB system are opt-in and under
the user’s control. Hence, users can choose not to
use any of the authenticated operation security ser-
vices, or they can choose to use the sealed storage
primitives, but not to use the attestation functions.

Identity service providers
The platform attestation operations themselves

do not reveal platform information. However, in

July 2003 59

Application Agent

Drivers

Nexus
Main operating system

Machine monitor

Kernel mode

User mode

Trusted modeNormal mode

AgentApplication

Figure 2. NGSCB sys-
tem overview. The
monitor partitions a
machine between
(left) an unmodified
legacy operating
system and (right)
a smaller security-
critical system
manager called a
nexus. The nexus
hosts applications
called agents that
run in an isolated
address space and
have access to
authenticated
operation
primitives. The
nexus and its
hosted agents may
also have access
to secure user
input and output.

60 Computer

conjunction with the platform public key, the
Quote operation is designed to provide strong
platform authentication. Hence, operating
systems must carefully control disclosure of
the platform public key and use of the attes-
tation functions.

At the hardware layer, the platform public-
key and attestation function are access-con-
trolled: The user must specifically authorize
software before it can perform operations
that reveal platform information. At the soft-
ware layer, the nexus lets users restrict the
parties to which it will reveal attestation
information, or even whether the informa-
tion is available at all.

Given the clear benefits of attestation, and the
hazards of unrestricted platform ID disclosures,
Microsoft encourages the formation of third-party
identity service providers to act as trusted interme-
diaries between service providers and their cus-
tomers. Users can configure their platforms to
permit attestation to one or a few identity service
providers. They can then request secondary attes-
tation tokens, which vouch for a trusted platform
without revealing its identity. Users can obtain an
unlimited number of these pseudonyms for every-
day Web transactions.

Microsoft also encourages using zero knowledge
mechanisms that will allow the SCP to authenti-
cate running software without revealing machine
identifying data.

APPLICATIONS
The NGSCB system provides a strong security

foundation for a broad set of applications. Several
examples illustrate the benefits of authenticated
operation.

Soft smart cards
Smart cards typically implement cryptographic

protocols and keep private keys secure. To protect
against loss or theft, the cards often require a host
device to provide a short password or personal iden-
tification number (PIN) before they will operate.

An NGSCB-hosted smart-card application could
use attestation to obtain authorization keys and
sealed storage to keep keys secure. The smart-card
application could then implement the crypto-
graphic protocol as macrocode.

An NGSCB-hosted application could also use
secure I/O to safeguard the PIN and give users reli-
able descriptions of the transaction they are autho-
rizing. Existing smart-card deployments typically
do not provide this protection.

Network logon
Users often log on to networks and services using

an account name and password. Clients and servers
use cryptographic protocols to prevent password
snooping and man-in-the-middle attacks on the
network, but the password is often vulnerable to
client-side Trojan horses and key sniffers.

Using a soft smart card could strengthen network
logon by preventing untrustworthy code from
obtaining a user’s authentication key. If the smart-
card application uses secure input to authorize use
of the keys, it is also more difficult for a local virus
to automate logon against a user’s wishes.

If the service wants to retain the account/pass-
word authentication on the server, the server could
use an attested logon application that obtains pass-
words from users with secure input to strengthen
network logon. Attestation allows servers to reject
logon attempts from unknown software that has
somehow obtained logon credentials.

Transaction authorization
Web services typically authenticate users by

account name and password. Once a user has
logged in, the service presumes that the software
providing the password and requesting subsequent
transactions is acting in the authenticated user’s
best interests. With the advent of widespread
viruses and Trojan horses, however, this assump-
tion may not always be correct.

To strengthen transaction authorization, a trans-
action-authorization application could use NGSCB’s
secure output to indicate to the user exactly the
transaction being requested. For example, a vendor
sends the user an HTML page description of the
transaction, which an agent renders using secure
output.

The agent could also use secure input to obtain
local authorization of the displayed transaction.
The application could use attestation to convey the
transaction request and vouch for the trustworthi-
ness of the client issuing the request.

Rights-managed data
The world is moving away from centrally located

and administered data repositories and toward a
heterogeneous collection of locally administered
peers. In this model, users and servers have little
assurance that documents, e-mail, or media con-
tent sent to others will remain secure.

Attestation allows peers to authenticate the plat-
form and software to which they are revealing data.
If senders can authenticate the receiver, they can
attach rights restrictions to their data with a higher

To ensure
document integrity,

an application
can use digital

signature
technologies to

reveal tampering
with a signed

document.

degree of assurance that the recipient will honor
the rights.

Document signing
E-mail and other electronic documents are

replacing paper, but the ease of modifying elec-
tronic documents places them at a disadvantage to
physical media.

If an application must ensure document integrity,
it can use digital signature technologies to reveal
any tampering that occurs after a document is
signed. However, the open nature of client com-
puters makes it easy for malicious software to com-
promise signing keys or tamper with the document
being signed.

To help solve this problem, a system can use
sealed storage to secure signing keys, use secure
output to reliably display the document that the
user is signing, and use secure input to authorize
the document signature. Applications might also
use attestation to obtain or certify the signing keys.

THREAT MODELS
The techniques we have described for improving

the robustness of computers—especially with
respect to data confidentiality and integrity—have
strengths and limitations in the context of broadly
deployed distributed systems.

In principle, individual machines should be
unconditionally robust against software attack.
More precisely, on computers with uncompromised
hardware and correctly configured software, no
action performed by external software should vio-
late the access-control policy. Such protection
would preserve data confidentiality even in the
presence of Internet viruses, Trojan horses, worms,
and so on.

In practice, achieving unconditional robustness
against software attacks will depend critically on
the ability to build hardware and software that are
free from security-relevant bugs. NGSCB imple-
ments measures to reduce the number of hazards
in a commercially viable system. For example,
architectural decisions allow us to exclude the main
operating system, most device drivers, and the BIOS
from the trusted computing base.

On the other hand, there exists a whole range of
physical attacks on the hardware that can succeed,
given sufficient sophistication and computing
power from the adversary. Hence, we expect that
some fraction of machines will be compromised.

In the worst case, the adversary can gain knowl-
edge of all data a compromised machine was guard-
ing (sealed storage) as well as the attestation private

key. The latter allows the adversary to imper-
sonate a legitimate system in communica-
tions with remote computers. If the
compromised information is used broadly
(for example, the attestation private key is
posted on the Internet), it is possible to detect
the compromise and revoke the attestation
key. Otherwise, detecting the break requires
some out-of-band mechanism, such as hard-
ware inspections on a corporate network by
a security officer.

NGSCB holds the promise of protecting
the confidentiality and integrity of data
stored on computers that are under the phys-
ical control of the data’s owner. In practical
terms, consumers will enjoy increased PC security
and privacy protections for activities such as online
banking, online shopping, and storing arbitrary
personal information.

Similar benefits apply in corporate settings. In
addition, well-managed corporate networks are
distributed systems that are under the corporation’s
physical control. In such settings, data can be
distributed to a controlled set of corporate
machines with reasonable assurance that data
integrity and confidentiality will not be com-
promised.

NGSCB system applications that distribute con-
fidential data to machines in potentially hostile
physical environments must take into account the
potential compromise of some machines and the
exposure of confidential data. The consequences
for the application depend on many application-
specific factors. For example, in the case of broadly
distributed, copy-protected entertainment content,
the distributor must assume that some fraction of
the recipients operate compromised machines and
can therefore circumvent the copy protection sys-
tem and redistribute the data. The commercial
impact of this depends among other things on the
redistribution channel’s efficiency.11

T he complexity, heterogeneity, and rate of
change of the code base in today’s open sys-
tems are contrary to the basic tenets of secure

system design. The NGSCB system aims to provide
security and openness while meeting the demands
of commercially successful mass-market operating
systems.

Microsoft is working with a broad coalition of
hardware partners to enable NGSCB. Core hard-
ware components—such as CPUs, chipsets, trans-
action process monitors, and video and input

July 2003 61

Unconditional
robustness against
software attacks
will depend on
hardware and
software that
are free from

security-relevant
bugs.

62 Computer

support—are in different stages of development.
Microsoft’s Trusted Platforms team is developing
the corresponding software components. ■

References
1. B. Lampson, “Protection,” Proc. 5th Princeton Symp.

Information Sciences and Systems, Princeton Univ.,
Mar. 1971; reprinted in ACM Operating Systems
Review, Jan. 1974, pp. 18-24.

2. J. McLean, “Security Models,” Encyclopedia of Soft-
ware Engineering, 3rd ed., J. Marciniak, ed., Wiley
Press, 1994.

3. E. Meijer and J. Gough, “Technical Overview of
the Common Language Runtime,” tech. report,
Microsoft, 2001; http://research.microsoft.com/
~emeijer/Papers/CLR.pdf.

4. P. Johns, “Signing and Marking ActiveX Controls,”
Developer Network News, 15 Oct. 1996; available
at msdn.microsoft.com/.

5. D.S. Wallach et al., “Extensible Security Architec-
tures for Java,” tech. report 546-97, Dept. of Com-
puter Science, Princeton Univ., Apr. 1997.

6. P. England and M. Peinado, “Authenticated Opera-
tion of Open Computing Devices,” Proc. 7th Aus-
tralasian Conf. Information Security and Privacy
(ACISP), Springer-Verlag, 2002, pp. 346-361.

7. M. Bellare and C. Namprempre, “Authenticated
Encryption: Relations among Notions and Analysis
of the Generic Composition Paradigm,” Advances in
Cryptology—Asiacrypt 00, Springer-Verlag, 2000,
pp. 531-545.

8. B. Lampson et al., “Authentication in Distributed
Systems: Theory and Practice,” ACM Trans. Com-
puter Systems, Nov. 1992, pp. 265-310.

9. R. Goldberg, “Survey of Virtual Machine Research,”
Computer, June 1974, pp. 34-45.

10. Trusted Computing Platform Alliance, TCPA Main
Specification Version 1.1, 2001.

11. P. Biddle et al., “The Darknet and the Future of Con-
tent Protection,” to be published in Proc. 2002 ACM
Workshop on Digital Rights Management, Springer-
Verlag, 2003.

Paul England is a software architect in Microsoft’s
Security Business Unit. He received a PhD in
physics from Imperial College, London. Contact
him at pengland@microsoft.com.

Butler Lampson is a Distinguished Engineer at
Microsoft Research, where he works on systems
architecture, security, and advanced user interfaces.
He received the ACM’s Turing Award in 1992 and
the IEEE’s von Neumann Medal in 2001. Contact
him at blampson@microsoft.com.

John Manferdelli is the general manager of the
Windows Trusted Platform and Infrastructure
product unit at Microsoft. He received a PhD in
mathematics from the University of California,
Berkeley. Contact him at jmanfer@microsoft.com.

Marcus Peinado is an architect in Microsoft’s
Trusted Platform Technologies group. He received
a PhD in computer science from Boston Univer-
sity. Contact him at marcuspe@microsoft.com.

Bryan Willman is a software architect in the Win-
dows Kernel group at Microsoft. Contact him at
bryanwi@microsoft.com.

Computer is always looking for
interesting editorial content. In
addition to our theme articles, we
have other feature sections such as
Perspectives, Computing Practices,
and Research Features as well as
numerous columns to which you
can contribute. Check out our
author guidelines at
http://computer.org/computer/
author.htm
for more information about how to
contribute to your magazine.

Computer
Wants
You

Computer
Wants
You

