
A Trustful Infrastructure for the Internet of Things
based on EPOSMote

Antônio Augusto Fröhlich, Rodrigo Vieira Steiner, and Leonardo Maccari Rufino

Software/Hardware Integration Lab
Federal University of Santa Catarina

PO Box 476, 88040-900 - Florianópolis, SC, Brazil
{guto,rodrigo,leonardo}@lisha.ufsc.br

Abstract—This article describes the design, implementation
and evaluation of a trustful infrastructure for the Internet of
Things (IoT) based on EPOSMote. The infrastructure was built
around EPOS’ second generation of motes, which features an
ARM processor and an IEEE 802.15.4 radio transceiver. It is
presented to end users through a trustful communication protocol
stack compatible with TCP/IP. Trustfulness was tackled at MAC
level by extending C-MAC, EPOS native MAC protocol, with
Advanced Encryption Standard (AES) capabilities that were
subsequently used to encrypt and authenticate packets contain-
ing IP datagrams. Our authentication mechanism encompasses
temporal information to protect the network against replay
attacks. The infrastructure was designed bearing in mind the
severe resource limitation typical of IoT devices. The prototype
implementation was assessed for processing, memory, and energy
consumption and strongly confirmed our assumptions.
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I. INTRODUCTION

The idea of an Internet of Things (IoT) is quickly mate-
rializing through the adoption of RFID as a replacement for
bar code along with the introduction of Near Field Communi-
cation (NFC) devices that are able to interface our daily-life
objects with the Internet. However, the next steps towards a
global network of smart objects will drive us through several
large-scale, interdisciplinary efforts. In particular, security and
privacy are issues that must be consistently addressed before
IoT can make its way into people’s lives.

Things in IoT will interact with each other and with human
beings through a myriad of communication technologies, often
wirelessly, and almost always subject to interference, corrup-
tion, eavesdropping and all kinds of cybernetic attacks. Most of
the encryption and authentication techniques developed for the
original Internet—the Internet of People that we use today—
to handle impersonation, tampering, and replay attacks can in
theory be applied to the IoT. However, the microcontrollers
used in smart objects will seldom be able to put up with their
requirements. Furthermore, IoT will be subject to particular
conditions not so often faced by today’s Internet devices.
Some Things will send messages that will trigger immediate
reactions from the environment. Capturing and reproducing
one such valid message, even if it is encrypted and signed,
could lead complex of systems such as roadways, factories

and even future cities to misbehave. Some Things will harvest
energy from the environment for hours before they can say
something to the world. And when they speak, one will have
to decide whether or not to believe in what they say without
having a chance to further discuss the subject (at least not for
a couple of hours). Conventional solutions such as transaction
authentication and channel masking [1] are of little help in
this context.

In this paper, we describe the design, implementation and
evaluation of a trustful infrastructure for the IoT conceived
with these pitfalls in mind. The infrastructure was built
around EPOS’ second generation of motes, EPOSMoteII,
which features an ARM processor and an IEEE 802.15.4 radio
transceiver [2]. It is presented to end users through a trust-
ful communication protocol stack compatible with TCP/IP,
which per-definition ensures end-to-end reliable and ordered
delivery. Trustfulness is tackled at MAC level by extending
C-MAC [3], EPOS native MAC protocol, with Advanced
Encryption Standard (AES) [4] capabilities that were subse-
quently used to encrypt and authenticate packets containing IP
datagrams. Our authentication mechanism also encompasses
temporal information to protect the network against replay
attacks. AES was chosen because the ARM-based version of
EPOSMoteII features an AES hardware accelerator, without
which the implementation of a cryptographic algorithm would
be impractical.

Section II presents the related works and in Section III
we describe the main components in the EPOSMoteII plat-
form that were used as building blocks for the trustful IoT
infrastructure being proposed here. Section IV describes the
trustful infrastructure in details. In Section V we present an
evaluation of our implementation, followed by our conclusions
in Section VI.

II. RELATED WORK

TinySec [5] defines a link-layer security architecture for
Wireless Sensor Networks (WSNs), providing encryption and
authentication. TinySec supports two different security op-
tions: authenticated encryption (TinySec-AE), and authentica-
tion only (TinySec-Auth). In authenticated encryption mode,
TinySec encrypts the data payload according to the Skipjack
block cipher [6] and authenticates the packet with a Message



Authenticity Code (MAC). The MAC is computed over the
encrypted data and the packet header. In authentication only
mode, TinySec authenticates the entire packet with a MAC,
but the data payload is not encrypted. The inclusion of a MAC
to ensure authenticity and integrity has a cost on radio usage
and, consequently, in energy consumption. This is because the
hash values commonly represent a long sequence of bits—the
length of a MAC determines the security strength of a MAC
function [7]. TinySec achieves low energy consumption by
reducing the MAC size, hence decreasing the level of security
provided. TinySec also does not attempt to protect against
replay attacks, and does not discuss how to establish link-
layer keys. TinySec was implemented in TinyOS and runs on
Mica, Mica2, and Mica2Dot platforms, each one using Atmel
processors. TinySec has 3000 lines of nesC code [8] and the
implementation requires 728 bytes of RAM and 7146 bytes of
program space.

MiniSec [9] is a secure network layer protocol for WSNs
which attempts to solve the known problems of TinySec.
MiniSec accomplishes this by combining three techniques.
First, it employs a block cipher mode of operation that
provides both privacy and authenticity in only one pass over
the message data. Second, MiniSec sends only a few bits
of the Initialization Vector (IV)—a block of bits used by
some operating modes to randomize the encryption, producing
distinct ciphertexts from the same plaintext over time—while
retaining the security of a full-length IV per packet. In order
to protect against replay attacks and reduce the radio’s energy
consumption, it uses synchronized counters, but only sending
the last bits of the counter along with each packet. However
Jinwala et al. showed that such scheme requires costly resyn-
chronization routines to be executed when the counters shared
are desynchronized (packets delivery out-of-order) [10].

III. PROPOSED INFRASTRUCTURE BUILDING BLOCKS

In this Section we describe the main components in the
EPOSMoteII platform that served as building blocks for
the infrastructure being proposed here, including mote itself,
EPOS Configurable Medium Access Control Protocol (C-
MAC), EPOS TCP/IP protocol stack and the AES hardware
accelerator.

A. EPOSMote

The EPOSMote is an open hardware project [2]. The project
main objective is delivering a hardware platform to allow re-
search on energy harvesting, biointegration, and MEMS-based
sensors. The EPOSMoteII platform focus on modularization,
and thus is composed by interchangeable modules for each
function. Figure 1 shows the development kit which is slightly
larger than a R$1 coin.

Figure 2 shows an overview of the EPOSMoteII architec-
ture. Its hardware is designed as a layer architecture composed
by a main module, a sensoring module, and a power module.
The main module is responsible for processing, storage, and
communication. The model used in this research features
a 32-bit ARM7 processor, 128kB of flash, 96kB of RAM,

Figure 1: EPOSMoteII SDK side-by-side with a R$1 coin. On
the left the sensoring module. On the right the main module.

and an IEEE 802.15.4-compliant radio transceiver. We have
developed a startup sensoring module, which contains some
sensors (e.g. temperature and accelerometer), leds, switches,
and a micro USB (that can also be used as power supply).

Figure 2: Architectural overview of EPOSMoteII.

B. C-MAC

C-MAC is a highly configurable MAC protocol for WSNs
realized as a framework of medium access control strate-
gies that can be combined to produce application-specific
protocols [3]. It enables application programmers to config-
ure several communication parameters (e.g. synchronization,
contention, error detection, acknowledgment, packing, etc) to
adjust the protocol to the specific needs of their applications.

Figures 3, 5, and 4 depict C-MAC architecture. Each activity
in theses diagrams is executed by a microcomponent which
can have different implementations. These microcomponents
alongside with the flow control can be combined to produce
application-specific protocols. By using static metaprogram-
ming techniques, microcomponents representing activities that
do not make sense for a certain protocol can be completely
removed. When an activity is removed, its inputs are forwarded
to the activity targeted by its outputs, still maintaining the
original flow semantics.



Figure 3: C-MAC Synchronization Activity Diagram.

Figure 4: C-MAC Transmission Activity Diagram.

Figure 5: C-MAC Reception Activity Diagram.

The microcomponents responsible for trustfulness are out-
lined in Figures 4, and 5. ENCRYPT is responsible for
encrypting the payload. SIGN attaches the time-stamp,
which also goes encrypted, and the message authentication
code to the packet. DECRYPT decrypts the payload. And
AUTHENTICATE verifies if both the time-stamp and authen-
tication code are valid.

The main C-MAC configuration points include:
Physical layer configuration: These are the configuration

points defined by the underlying transceiver (e.g. frequency,
transmit power, date rate).

Synchronization and organization: Provides mechanisms
to send or receive synchronization data to organize the network
and synchronize the nodes duty cycle.

Collision-avoidance mechanism: Defines the contention
mechanisms used to avoid collisions. May be comprised of
a carrier sense algorithm (e.g. CSMA-CA), the exchange of
contention packets (Request to Send and Clear to Send), or a
combination of both.

Acknowledgment mechanism: The exchange of ack pack-
ets to determine if the transmission was successful, including
preamble acknowledgements.

Error handling and security: Determine which mecha-
nisms will be used to ensure the consistency of data (e.g. CRC
check) and the data security.

When configured to mimic preexisting MAC protocols, like
B-MAC for instance, C-MAC delivers comparable perfor-
mance. This is due to the use of static metaprogramming tech-
niques (e.g. templates, inline functions, and inline assembly),
which ensures that configurability does not come at expense of
performance or code size [3]. In this way, C-MAC’s instances
are fully customized at compile-time and yield extremely lean
run-time MACs.

C-MAC high configurability was essential to the research
being presented here, for it enabled us to customize the MAC
protocol to closely match the requirements of upper level
protocols (instead of using a general, non-optimized MAC).
Since TCP provides end-to-end reliability and ordered deliv-
ery, we configured C-MAC in a rather simplistic way, disabling
acknowledgments and complex synchronization mechanisms.
We use CSMA and back-off periods to avoid collisions.

C. TCP/IP

TCP is a key protocol for the trustful IoT platform being
proposed here, for it ensures ordered delivery of packets.
However, ordinary TCP implementations have been tuned
for decades to traditional networks, made up of wired links
and stationary hosts. TCP now performs very well on such
networks. Its acknowledgement and flow control mechanisms
have been optimized to efficiently handle congestion, presum-
ably the unique significant cause for packet losses on such low-
error rate networks. In the presence of higher error rates and
intermittent connectivity typical of IoT wireless links, tradi-
tional TCP implementations would continue to react to packet
losses in the same way, causing a significant degradation of



performance observed by peers as poor throughput and high
latency [11].

EPOS TCP/IP stack was conceived in this context, consider-
ing also the limited resource availability typical of IoT devices
and bearing in mind that many things will operate on batteries.
The current IPv4 implementation uses TCP’s window-based
flow control mechanism to implement a rendezvous protocol
and thus virtually eliminates buffer management on IoT nodes.
Peers announce buffer availability for a single message at a
time by adjusting the window length in acknowledgements
messages accordingly. Several optimizations have also been
conducted to keep IP datagrams in pace with IEEE 802.15.4
127-byte MTU, a challenging goal for the upcoming IPv6
version.

Energy efficiency is sought in EPOS TCP/IP stack by
incorporating the pheromone concept behind the Ant-based
Dynamic Hop Optimization Routing Protocol (ADHOP) [12]
as the IP routing metric. ADHOP is a self-configuring reactive
routing protocol for WSNs that uses ant colony optimization to
discover and maintain routes, specially on mobile sceneries.
ADHOP pheromone concentration and evaporation rates are
dynamically adjusted considering global information collected
and disseminated by ants, such as hop counting and round
trip time to destination, but also local information that encom-
passes resource availability, such as residual battery and buffer
memory. A node forwarding too many packets because it is
on an strategic location will adjust pheromone to favor other
routes as soon as it realizes its resources are being drained too
quickly.

D. AES Accelerator

The Advanced Encryption Standard is a symmetric-key
algorithm considered to be resistant against mathematical
attacks. It consists in a block cipher containing a 128-bit block
size, with key sizes of 128, 192, and 256 bits. As any compu-
tationally secure cryptographic algorithm, AES is extremely
expensive in terms of execution time because it requires many
arithmetic and logic operations to be executed. The need
to perform such operations makes traditional general-purpose
processors inefficient for this scenario.

The use of hardware acceleration for cryptographic algo-
rithms not only enhances the performance of security systems
but also leaves the computing resources available to a more
useful work [13]. Thus, we make use of the hardware-assisted
security mechanism present in EPOSMoteII to encrypt and
decrypt all necessary data. The mechanism uses a key size of
128 bits, and supports three encryption modes: Counter (CTR);
Cipher Block Chaining-Message Authentication Code (CBC-
MAC); and the combination of these two modes Counter with
CBC-MAC (CCM). The last provides both confidentiality and
authentication and therefore was the choice for our infrastruc-
ture.

IV. TRUSTFULNESS FOR THE PROPOSED INFRASTRUCTURE

IoT devices will often communicate through a wirelessly
technology, however a wireless channel is open to everyone

allowing any radio interface configured at the same frequency
band to monitor or participate in communications. This pro-
vides a convenient way for attackers [14].

In order to avoid undesired attacks a secure infrastructure
must provide:

• Confidentiality prevents unauthorized access to informa-
tion. It can be accomplished by encrypting critical parts
of a packet before its transmission, then only the allowed
receivers can access the data, decrypting the packet.

• Authenticity confirms the origin of a message, It can be
accomplished by signing the message.

• Integrity ensures that the message was not modified for
some reason, such as by an attacker or simply unwanted
errors. It can be accomplished with a checksum.

The rest of this Section describes the strategy that was
adopted to enrich EPOSMoteII with a level of trustfulness,
including the incorporation of AES by C-MAC, and counter-
measures to selected security threats.

A. Security Threats Countermeasures

For key management we opted for a centralized key distribu-
tion scheme, as shown in Figure 6. Each sensor shares a unique
key with the base station, and no one else. We assume that
most of communication occurs between a node and the base
station (data request and reply). In this case there is no over-
head besides the encryption/decryption process. Two nodes
can communicate with each other consulting the base station
for authentication. But, since node to node communication is
sporadic, it does not result in large communication overhead.

Figure 6: Network architecture.

To countermeasure replay attacks we introduce a field in our
packet which contains time information. This time information
can be provided by a GPS device. Another alternative is to
use one of many clock synchronization protocols for WSNs
present in the literature [15] [16] [17]. Using time, the network
can protect itself from replay attacks discarding a message
that was eavesdropped by an observer and used later in an
attack. Figure 7 shows our packet format. Each packet includes



our communication protocols headers, the application data, the
current time, and the message authentication code.

Figure 7: Packet format.

V. PROPOSED INFRASTRUCTURE EVALUATION

We gauged the implementation of the trustful IoT infras-
tructure proposed in this paper in respect to three aspects:
memory consumption, encryption/decryption time, and energy
consumption. For all experiments, we used GCC 4.4.4 to
compile the application and the run-time support system (i.e.
EPOS). EPOSMoteII ARM processor clock was set to 24
MHz. Messages were adjusted to carry a payload of 16 bytes
when encryption was activated and 7 (request) and 6 (reply)
bytes otherwise. EPOSMoteII radio transceiver was adjusted
to transmit at 4.5 dBm.

Figure 8 illustrates our test scenario. We used two EPOS-
MoteII. One node acts as a base station for the local IoT,
interfacing its nodes to the ordinary Internet1, while the other
one is a sensor node. The base station broadcasts encrypted
temperature requests every 10 seconds. The sensor node de-
crypts the request, collects the required data, and sends back
a signed and encrypted reply.

Figure 8: Trustful IoT infrastructure evaluation scenario.

In order to obtain the memory footprint of our implemen-
tation, we used the arm-size tool that is part of GNU
Binutils. Results are shown in Table I. The AES mediator
column represents the code needed to interact with the AES
hardware accelerator available on EPOSMoteII in order to
accomplish encryption, decryption, and authentication. App
using AES column presents the code size of the application
using the proposed trusted infrastructure and the App without
AES column the size when using the original, plain text,
TCP/IP stack. It is possible to notice that there is a difference
between the value of App using AES and the sum of App
without AES and AES mediator. This is due to the fact that
not all methods from the AES mediator are used in App using
AES. Mediator methods that are not effectively invoked by the
client program are eliminated during compilation.

We used an oscilloscope to measure the time needed to en-
crypt, decrypt and authenticate messages in our infrastructure.
A General Purpose Input/Output (GPIO) pin in EPOSMoteII

1For a larger scale experiment, the gateway would rather be configured to
provide some sort of NAT service between both realms, thus alleviating the
address limitation of IPv4.

Table I: Memory footprint.

Section AES mediator App using AES App without AES
.text 1336 bytes 47184 bytes 45916 bytes
.data 0 bytes 217 bytes 217 bytes
.bss 10 bytes 5268 bytes 5268 bytes

TOTAL 1346 bytes 52669 bytes 51401 bytes

is connected to the oscilloscope and set to high before the
intended procedure is executed and reset to low right after. We
run the experiments for one minute and calculated the averages
shown in Table II. Obtained values, besides confirming the
efficiency of the implementation in terms of execution time,
also have positive impact in the node’s battery lifetime.

Table II: Encryption/decryption and MAC check processing
time.

Encryption Decryption MAC Check
Time 17 µs 15 µs 12 µs

Figure 9 shows the energy consumed by both applications,
with and without AES, over the time. The small increase
in energy consumption for App using AES arises from the
efficient usage of the hardware accelerator available in EPOS-
MoteII. After 10 minutes executing, the difference is minimal
(53.2 J with AES and 52.6 J without), and after 1 hour, the
applications have consumed 319.5 J and 315.5 J, respectively,
a difference of 1.25%.

Figure 9: Energy consumption.

A. Discussion

Huai proposes to cut down duty cycles and decrease the en-
ergy consumption of executing the AES algorithm by running
both CTR and CBC-MAC in parallel [18]. Similarly to our
scheme, their design employs a hardware accelerator to offload
CPU. It uses an 8-bit data path and a shared key expansion
module with both AES cores, encryption and authentication.
They achieved an encryption time of 71.6 ns for a payload of
17 bytes. Their parallel hardware acceleration provides better



results when compared with the sequential AES hardware ac-
celerator in the FreeScale MC13224V present in EPOSMoteII.
On the other hand, Lee evaluated the performance of AES-
128 CBC on an 8-bit microcontroller [19]. Time and CPU
cycle grew proportionally to payload size, reaching 449 ms to
encrypt and 456 ms to decrypt 16 bytes of data.

VI. CONCLUSIONS

This paper presented a trustful infrastructure for the IoT
developed within the realm of project EPOS. By trustful we
mean reliable and secure. Aspects such as people privacy in re-
spect to traffic pattern analysis and data dependability have not
been considered in this paper. The proposed infrastructure is
implemented around the EPOSMoteII platform and delivered
to end users through a trustful communication protocol stack
compatible with TCP/IP. Trustfulness for the infrastructure
was achieved through a combination of mechanisms. From
TCP/IP, we inherited reliable and ordered end-to-end packet
delivery. C-MAC was enriched with AES-based encryption
and authentication. It now also time-stamps messages to pre-
vent replay attacks. Authentication is performed using a cen-
tralized key distribution scheme in which each sensor shares
a unique key with the local base station. We experimentally
evaluated our proposal in terms of memory consumption,
encryption/authentication time, and energy consumption. The
results confirm that the proposed infrastructure is able to
provide confidentiality, authentication, integrity, and reliability
without introducing excessive overhead to a network of things,
a key step in making the Internet of Things a daily reality.
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