
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002 155

A TSK-Type Recurrent Fuzzy Network for Dynamic
Systems Processing by Neural Network and

Genetic Algorithms
Chia-Feng Juang, Member, IEEE

Abstract—In this paper, a TSK-type recurrent fuzzy network
(TRFN) structure is proposed. The proposal calls for a design of
TRFN by either neural network or genetic algorithms depending
on the learning environment. Set forth first is a recurrent fuzzy
network which develops from a series of recurrent fuzzy if–then
rules with TSK-type consequent parts. The recurrent property
comes from feeding the internal variables, derived from fuzzy
firing strengths, back to both the network input and output
layers. In this configuration, each internal variable is responsible
for memorizing the temporal history of its corresponding fuzzy
rule. The internal variable is also combined with external input
variables in each rule’s consequence, which shows an increase in
network learning ability. TRFN design under different learning
environments is next advanced. For problems where super-
vised training data is directly available, TRFN with supervised
learning (TRFN-S) is proposed, and neural network (NN) learning
approach is adopted for TRFN-S design. An online learning
algorithm with concurrent structure and parameter learning is
proposed. With flexibility of partition in the precondition part,
and outcome of TSK-type, TRFN-S has the admirable property
of small network size and high learning accuracy. As to the
problems where gradient information for NN learning is costly
to obtain or unavailable, like reinforcement learning, TRFN with
Genetic learning (TRFN-G) is put forward. The precondition
parts of TRFN-G are also partitioned in a flexible way, and all
free parameters are designed concurrently by genetic algorithm.
Owing to the well-designed network structure of TRFN, TRFN-G,
like TRFN-S, also is characterized by a high learning accuracy
property. To demonstrate the superior properties of TRFN,
TRFN-S is applied to dynamic system identification and TRFN-G
to dynamic system control. By comparing the results to other types
of recurrent networks and design configurations, the efficiency of
TRFN is verified.

Index Terms—Control, identification, recurrent neural network,
reinforcement learning.

I. INTRODUCTION

PROBLEMS in dealing with dynamic systems are encoun-
tered in many areas, such as control, communication, and

pattern recognition. In the control area, we usually face the
problem of dynamic system identification and control. Since
for a dynamic system, the output is a function of past output or
past input or both, identification and control of this system is
not as straightforward as a static system. For nonlinear system

Manuscript received March 20, 2001; revised June 22, 2001 and August 14,
2001. This work was supported by the National Science Council, Republic of
China, under Grant number NSC 89-2218-E-235-001.

The author is with the Department of Electrical Engineering, National Chung
Hsing University, Taichung, 402 Taiwan, R.O.C.

Publisher Item Identifier S 1063-6706(02)02970-3.

processing, the most commonly used model is the neural or
neural fuzzy network. If a feedforward network is adopted
for this task, then we should know the number of delayed
input and output in advance, and feed these delayed input and
output as a taped line to the network input [1]. The problem
of this approach is that the exact order of the dynamic system
is usually unknown. Besides, the usage of the long tapped
delay input will increase the input dimension and will result
in a large network size. To deal with this problem, interest
in using recurrent networks for processing dynamic systems
has been steadily growing in recent years, and a number of
recurrent models have been proposed [2]–[9]. Some of them are
Elman [2] and Jordan’s [3] networks, which are feedforward
multilayer perceptron networks with an extra set of context
nodes for copying the delayed states of the hidden or output
nodes back to the network input; and the fully recurrent neural
network [4], where all nodes are fully connected. Other more
different types are the memory neuron network [7], where
each neuron has associated with it a memory neuron whose
single scalar output summarizes the history of past activation of
that unit; the high-order neural network [8], where high-order
recurrent connections between each neuron are included; and
the recurrent radial basis function network [9], where the past
output values of a radial basis function network are fed back
to both the network input and output nodes. By inspecting
the structure of the above networks, we may find that their
recurrent properties are achieved by involving internal memory
in the form of feedback connections to existing networks, such
as feedforward multilayer perceptron networks and radial basis
function network. In feedforward network structure, the perfor-
mance of a neural fuzzy network has been shown to be better
than a neural network, and several neural fuzzy networks have
been proposed [10]–[16]. Based on this observation, design of a
recurrent network from a feedforward fuzzy network structure
should be a better choice.

For fuzzy networks, several types of them have been proposed
depending on the types of fuzzy if-then rules and fuzzy rea-
soning employed. Two usually types are the Mamdani-type and
TSK-type fuzzy networks. For a Mamdani-type fuzzy network,
the minimum fuzzy implication is used in fuzzy reasoning and
each rule is of the following form:

Rule i IF is And And is

Then is

1063-6706/02$17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

where is the input variable, is the output variable, and
are fuzzy sets. For TSK-type fuzzy network, the consequence
of each rule is a function input linguistic variable. The general
adopted function is a linear combination of input variables plus
a constant term, and each rule is of the following form:

Rule i IF is And And is

Then

The final network output is a weighted average of each rule’s
output. Some results on the research direction of designing a re-
current network from a fuzzy network have been proposed. One
category focusses on the combination of the fuzzy finite-state
machine with recurrent neural networks [17]–[19]. For example,
in [18], the fuzzy finite machine is encoded into a recurrent
network, and in [19], a neural fuzzy network is implemented
as a fuzzy finite machine. Another category focusses on em-
bedding the recurrent structure into a feedforward fuzzy net-
work [20]–[22]. In [20], the concept of recurrent fuzzy network
is proposed. In [21], a recurrent neuron-fuzzy network is pro-
posed. The structure of the network is similar to the recurrent
radial basis function network mentioned above. In [22], the au-
thors provide for a recurrent self-organizing neural fuzzy in-
ference network (RSONFIN) with online supervised learning
ability. The rules in RSONFIN are of ordinary Mamdani-type
fuzzy rule. In [14], [15], where several static mapping prob-
lems are performed, it has been shown that if a feedforward
TSK-type fuzzy network is used, the performance in network
size and learning accuracy is superior to those of Mamdani-type
fuzzy network. It seems to be more efficient, based on these re-
sults, to include the TSK-type fuzzy rules into the design of re-
current fuzzy network. With this motivation, a TSK-type recur-
rent fuzzy network, the TRFN-S, is proposed for a supervised
learning environment with available gradient information. To
design TRFN-S under this learning environment, since the gra-
dient information is available, the neural network learning ap-
proach is adopted.

For the aforementioned network, all design work is based
upon supervised learning. In dynamic system identification,
where the precise input–output pattern is available, these
network design algorithms may handle the situation. However,
for other problems, such as dynamic system control, where
precise control input–output training patterns are unavailable
or expensive to collect, a new learning algorithm or design
configuration is required. As to time-delayed plant control, one
generally adopted controller design approach is the generalized
predictive control (GPC) [24]. GPC is presented based as
originally upon a linear model, so it is not suitable for nonlinear
plant control. To cope with this problem, some nonlinear con-
troller model designs based on GPC are proposed [25]–[27].
Most of these belong to fuzzy model based predictive control.
In this model, a fuzzy controller with the consequence of linear
GPC form is designed. Parameter design algorithm in linear
GPC is applied to this model. The drawback of this model is
that we should know in advance the order of input and output
terms of the linear GPC model in the fuzzy consequence. Other
controller design approaches for dynamic systems based upon

supervised learning are the direct inverse, direct and indirect
adaptive control [1]. For direct inverse control, the control
configuration fails when the inverse of the controlled plant is
nonexistent. This is true for most dynamic plants. For direct
adaptive control, we should know the form of the controlled
plant. For an unknown plant, this approach cannot be applied.
For indirect adaptive control, the controlled plant should first
be identified and then a controller is designed based on this
identification network. Controller design based upon this
configuration is complex, and a good control performance
is achieved only if a high precision identification model is
obtained. Although some fuzzy neural networks have been
proposed and applied to dynamic system control, there are still
disadvantages in these network structures and the controller
design configurations are mainly based on the above mentioned
methods. In [21], a recurrent neuro-fuzzy model is put forward
as a way to built prediction model for nonlinear process, and
based on this model a predictive controller is designed by GPC.
For this recurrent neural fuzzy model, the recurrent property is
achieved by modifying the consequence of each fuzzy rule to
be a linear model in AutoRegressive with eXogenous (ARX)
inputs form. The disadvantage of this model is that we need
to know the order of both control input and network output
to participate in the ARX model. For the proposed TRFN in
this paper, we solve this problem by feeding back the firing
strength of each rule. This way, only the current control input
and system state are fed to network input, and the past values
can be memorized by feedback structure. In [23], a recurrent
fuzzy neural network (RFNN) is proposed. In RFNN, the
recurrent property is achieved by feeding the output of each
membership function back to itself, so each membership value
is only influenced by its previous value. In contrast to this local
feedback structure, in TRFN, a global feedback structure is
adopted. The outputs of all rule nodes, the firing strengths, are
fed back and summed, so each rule’s firing strength depends
not only on its previous value but also on others. We will
show by simulation that with the global feedback structure,
TRFN can achieve better performance than the local feedback
structure in RFNN. In [23], RFNN is applied to dynamic plant
control, and the controller is designed by direct and indirect
adaptive control methods mentioned above. In [22], RSONFIN
constructed by Mamdani type fuzzy if–then rules is also applied
to plant control based on direct inverse control which works
only when the inverse of the plant exists.

In contrast to the above supervised learning-based controller
design, several controller design configurations have been put
forth [28]–[34]. Among them, one efficient way is design by
genetic algorithms (GAs). GAs don’t require or use derivative
information, the most appropriate applications are problems
where gradient information is unavailable or costly to obtain.
Reinforcement learning is one example of such a domain. In
reinforcement learning, agents learn from signals that provide
some measure of performance and which may be delivered
after a sequence of decisions have been made. In GAs, the only
feedback used by the algorithm is information about the relative
performance of different individuals and may be applied to
reinforcement problems where the evaluative signals contain
relative performance information [31], [32]. Several results

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 157

from designing recurrent neural network with GAs have been
proposed. In [35], GA is used for training a fully connected
recurrent neural network. In [36], there is an evolutionary algo-
rithm that acquires both the structure and weights for recurrent
neural networks. The scheme for [37] has a 2-D GA, and in
[38] there is a cellular GA with learning ability for training
recurrent neural network. Basically, these papers focus on the
development of new GAs for the design of existing recurrent
network structures. Besides the GA itself, another factor that
may influence a GA-based recurrent network performance
is the structure of the designed recurrent network. Although
both the aforementioned newly proposed recurrent neural and
neural fuzzy network structure do achieve a better performance
than old ones under supervised learning, it is not necessarily
true with GA. In this paper, in contrast to TRFN-S, the TRFN
design with GA (TRFN-G) is proposed and applied to dynamic
system control. For TRFN-G, the spatial and temporal fuzzy
rules that constitute the TRFN are designed concurrently. In
contrast to the simple GA with roulette wheel selection [54]
and traditional tournament selection [45], a different approach,
the tournament selection combined with elitist reproduction
and crossover strategy is adopted for TRFN-G design. Besides,
the spatial input is partitioned according to flexible methods,
as compared to the grid-type partition methods encountered in
earlier GA-based fuzzy rules design approaches [44]–[47]. This
way, TRFN-G can achieve a good performance with only a few
rule numbers, and we only need to assign the number of fuzzy
rules in TRFN-G before proceeding to GA. In contrast to the
fixed network structure in TRFG-G during design, some works
on structure optimization using GA are proposed. In [48], GA
is applied to determine the rule number in a fuzzy network.
In [34], GA is applied to select the significant input variables
to participate in the consequence of TSK-type fuzzy rules.
These works are applied to feedforward fuzzy network design.
For recurrent fuzzy networks, we may adopt these algorithms.
However, to perform structure optimization, different GAs
should be used owing to different network structures. With
fixed structure in TRFN-G and compared recurrent networks,
we can design each by the same GA and demonstrate the struc-
ture superiority of TRFN-G. We will show by simulations that
the TRFN structure not only achieves a good performance for
TRFN-S, but also does for TRFN-G. Comparisons of TRFN-G
to its recurrent neural network counterpart, designed by the
same GA, and to other dynamic system control configurations,
will verify this.

The proposed TRFN is constructed from a series of fuzzy
if-then rules, with the consequence of each rule being of
TSK-type fuzzy reasoning. Inputs to the network precondition
part include external variables and internal variables derived
from the fuzzy firing strengths, and the consequence is a
linear combination of them. A design of TRFN by neural
networks under supervised learning, identified as “TRFN-S,”
and a design by genetic algorithm, identified as “TRFN-G,”
are proposed in this paper. TRFN-S is applied to dynamic
system identification and TRFN-G to dynamic system control.
Advantages of TRFN for these two kinds of problems will
verify the advantages of TRFN for dealing with dynamic
systems processing.

This paper is organized as follows. Section II describes the
structure of the TSK-type recurrent fuzzy network. Section III
sets forth the supervised learning algorithm including structure
and parameter learning for online generation of the recurrent
fuzzy rules based on neural network learning algorithms. In Sec-
tion IV, design of TRFN by GA for learning environments where
gradient information is unavailable or costly to obtain is pro-
posed. In Section V, TRFN is used for solving dynamic system
processing problems, where TRFN-S and TRFN-G are applied
to dynamic system identification and control, respectively. Fi-
nally, conclusions are drawn in Section VI.

II. STRUCTURE OF THETSK-TYPE RECURRENTFUZZY

NETWORK (TRFN)

In this section, structure of the TRFN (as shown in Fig. 1)
is introduced. A network with two external inputs and a single
output is considered here for convenience. This six-layered net-
work realizes a recurrent fuzzy network of the following form:

Rule IF is and is and is

THEN is

and is and

is

Rule IF is and is and

is

THEN is

and is and

is

where and are fuzzy sets, and are the consequent pa-
rameters for inference outputand , respectively. The conse-
quent part for the external outputis of TSK-type and is a linear
combination of the external input variablesand internal vari-
ables , plus a constant.

In Fig. 1, a network constructed by the above two rules is
shown. There are two external input variablesand single
output . Accordingly, TRFN has two nodes in layer 1 and
one node in layer 5, respectively. Nodes in layer 1 are input
nodes. Nodes in layer 2 are called input term nodes and act
as membership functions to express the input fuzzy linguistic
variables. Two types of membership functions are used in
this layer. For the external variable, a local membership
function, the Gaussian membership function is adopted. For
the internal variable , a global membership function, the
sigmoid function is adopted. Each internal variable has a single
corresponding fuzzy set. Each node in layer 3 is called a rule
node. The number of rule nodes in this layer is equal to the
number of fuzzy sets corresponding to each external linguistic
input variable. Nodes in layer 4 are called consequent nodes.
Each rule node has a corresponding consequent node which
performs a weighted linear combination of the input variables

and plus a constant. Nodes in layer 5 are called context
nodes and perform defuzzification operation. The number of
internal variables in this layer is equal to the rule nodes. In
layer 6, the node is called a defuzzification node.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

158 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

Fig. 1. Structure of the TRFN.

To give a clear understanding of the mathematical function
of each node, we will describe function of TRFN layer by layer.
For notation convenience, the net input to theth node in layer

is denoted by and the output value by .
Layer 1: No function is performed in this layer. The node

only transmits input values to layer 2.
Layer 2: As described above, two types of membership func-

tions are used in this layer. For external input, the following
Gaussian membership function is used:

and (1)

where and are, respectively, the center and the width
of the Gaussian membership function of theth term of the th
input variable . For internal variable , the following sigmoid
membership function is used:

and (2)

Links in layer 2 are all set to unity.
Layer 3: The output of each node in this layer is determined

by fuzzy AND operation. Here, the product operation is utilized
to determine the firing strength of each rule. The function of
each rule is

(3)

where is the number of external inputs. The link weights are
all set to unity.

Layer 4: Nodes in this layer perform a linear summation.
The mathematical function of each nodeis

(4)

where is the number of external input variables, and
, are the parameters to be tuned. Links from this

layer to layer 6 are all equal to unity.
Layer 5: The context node functions as a defuzzifier for the

fuzzy rules with inference output. The link weights represent
the singleton values in the consequent part of the internal rules.
The simple weighted sum [49] is calculated in each node

(5)

As in Fig. 1, the delayed value of is fed back to layer 1 and
acts as an input variable to the precondition part of a rule. Each
rule has a corresponding internal variableand is used to decide
the influence degree of temporal history to the current rule.

Layer 6: The node in this layer computes the output signal
of the TRFN. The output node together with links connected to
it act as a defuzzifier. The mathematical function is

(6)

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 159

III. TRFN WITH SUPERVISEDLEARNING (TRFN-S)

In this section, we present a two-phase learning scheme for
TRFN. The task of constructing the TRFN is divided into two
subtasks: structure learning and parameter learning. The objec-
tive of the structure learning is to decide the number of fuzzy
rules, initial location of membership functions, and initial con-
sequent parameters. On the contrary, the objective of parameter
learning is to tune the free parameters of the constructed net-
work to an optimal extent. Details of the two learning algorithms
are described as follows.

A. Structure Learning

Since there are no rules initially in TRFN, the first task in
structure learning is to decide when to generate a new rule. Clus-
tering on the external input, which represents the spatial infor-
mation, is used as the criterion. The idea of clustering approach
in [15] is adopted. Geometrically, a rule corresponds to a cluster
in the input space. The spatial firing strength can be regarded
as the degree the incoming pattern belongs to the corresponding
cluster. An input data with higher firing strength means its spa-
tial location is nearer the cluster center than those with smaller
strengths. Based on this concept, the spatial firing strength

(7)

is used as the criterion to decide if a new fuzzy rule should be
generated. For the first incoming data , a new fuzzy rule is
generated, with the center and width of Gaussian membership
function assigned as

and for (8)

where is the number of external input variables, and is
a prespecified value that determines the initial width of the first
cluster. For succeeding incoming data , find

(9)

where is the number of existing rules at time. If
, then a new rule is generated, where is a

pre-specified threshold that decays during the learning process.
In this paper, is used, where is
a constant value that controls the decay speed. For a more com-
plex learning problem, a larger rule number is required, and so
a higher initial threshold should be set in advance. Once
a new rule is generated, the next step is to assign initial centers
and widths of the corresponding membership functions. Since
our goal is to minimize an objective function and the centers and
widths are all adjustable later in the parameter learning phase, it
makes little sense to spend much time on the assignment of the

centers and widths for finding a perfect cluster. Hence, we can
simply set

and

(10)

for , according to the first-nearest-neighbor
heuristic [11], where decides the overlap degree between
two clusters. Both of the parameters and decide the
number of rules to be generated. In applying TRFN-S to
different problems, we may specify one parameter with the
same value, and alter the other one to find a best network
structure. For example, in this paper, the parameter is
set to 0.01 for different examples, and the best structure of
TRFN-S is decided by . With the same value of , a higher
value of means a higher overlapping degree, and so fewer
rules are generated. The number of fuzzy sets in each external
input dimension is equal to the number of fuzzy rules. To
further reduce the number of fuzzy sets in each dimension,
we may perform the similarity measure checking between two
neighboring fuzzy sets as in [15] and eliminate the redundant
ones. Since a recurrent structure is used, the external input
dimension contains current system state only, so the input
dimension is usually small. Furthermore, the inclusion of
the TSK-type consequence can significantly reduce the rule
number. Owing to these two reasons, chances that two fuzzy
sets are highly overlapped are small, and the fuzzy similarity
measure process is omitted for design simplification.

Once a new rule is newly generated during the presentation of
data, generation of the corresponding consequent

node in layer 4 and context node in layer 5 follows. The initial
constant value connected to layer 4 is set to , and the
other parameters are assigned as small random signals in

initially. For the newly generated context node, its
fan-in comes from all the existing rule nodes in layer 3. The ini-
tial link weights are set as random values in to make
the initial values of internal variables locate in the sensitive
region of membership function . This way, a quick param-
eter learning can be reached at the beginning. The output,,
of the new context node is fed back as input in the precondition
part of the newly generated rule. With this setting, each rule has
its own memory elements for memorizing the temporal firing
strength history. Via repeating the above process for every in-
coming training data, a new recurrent rule is generated, one after
another, and a whole TRFN is constructed finally.

B. Parameter Learning

The objective of parameter learning is to optimally adjust
the free parameters of the network structure for each incoming
data, whether the rules are newly generated or are existent
originally. The learning process is performed concurrently
with the structure learning phase. With the concurrent learning
approach, learning may be performed online. If the parameter
learning is performed after the structure learning phase, then
we have to collect the whole training data in advance for

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

network structure design. And only after the network structure
is completely designed can we apply the parameter learning
phase to the same training data. Owning to this reason, this
approach can only be performed offline. For TRFN-S, owing
to this online learning property, it may be used for normal
operation any time as learning proceeds without any assignment
of fuzzy rules in advance.

Considering the single output case for clarity, our goal is to
minimize the error function

(11)

where is the desired output and is the actual
output. Suppose there areexternal values . The parameter

in layer 4 is updated by

for and (12)

where

(13)

For the other free parameters, includingin layer 5, and in
layer 2, owing to the recurrent property, the real time recurrent
learning algorithm [50] is used. We will show the update rule of

only. Updated rules of and can be derived the same way
and are omitted. For each , it is updated by

(14)

and

(15)

where

(16)

and

(17)

There are two learning constants,and , during learning.
Learning constant is used for tuning parameters and ,

while for parameter . Except for parameter , all parame-
ters either have good initial values during structure learning [
and in (10)] or are tuned directly from the error function [
in (10)]. To increase the learning speed of temporal memory,
we may set .

IV. TRFN DESIGN BY GENETIC ALGORITHM (TRFN-G)

For problems where supervised training data is unavailable or
expensive to obtain, such as dynamic system control, TRFN-G
instead of TRFN-S is applied. The TRFN-G is proposed for
solving problems where gradient information is costly to ob-
tain when explicit credit assignment is available or to reinforce-
ment type learning problems, where only sparse training infor-
mation is required. The sparse training information in reinforce-
ment learning is obtained from evaluation of the system perfor-
mance. In GA, the only feedback that is required is a relative
performance measure for each individual. Credit assignment for
each individual’s action may made implicitly. Since GAs can
work without explicit credit assignment to individual actions,
they may be regarded as a kind of reinforcement learning when
only implicit information is available. In [31], approaches that
apply GAs for solving reinforcement type problems are called
genetic reinforcement learning.

Details of TRFN-G design are introduced in this section. The
adopted GA consists of three main operators: reproduction,
crossover, and mutation. Before going into the three operations,
we should assign the number of rules in TRFN-G in advance.
When the number of rules is assigned then the whole network
structure is known. Suppose there arerules in TRFN-G, then
the numbers of local membership functions on each external
input variable , the internal variable , and the global mem-
bership functions are all equal to. As to the choice of the rule
number, it’s a little heuristic and depends on the complexity of
the problems to be solved. For TRFN-G, owing to its network
superiority, it can achieve a good performance with only a
small rule number. After the rule number is determined, coding
of the TRFN into a chromosome is next performed. A floating
point coding scheme is adopted, meaning that each gene in a
chromosome is represented as a floating point number. All free
parameters of TRFN, including and in layer 2, in layer
4, and in layer 5, are coded into a chromosome. To see the
coding order of these parameters into the chromosome, we will
take a TRFN with external input variables and one output as
an example. Suppose there arerules in the TRFN, then the
following coded order of each dynamic fuzzy rule is obtained:

Rule i

The chromosome representing the whole network is achieved
by concatenating the above coding form of rule 1 to ruleone
after another. The space partition of the external input has a
character of flexibility in contrast to the grid-type partition. With
the flexible partition, no prepartition of each input dimension is
required, and the total number of rules can be reduced. With
the structure of TRFN introduced in Section II, we only need to
assign the total number of fuzzy rules to TRFN-G design, and
then a whole network can be constructed.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 161

Fig. 2. Flow of the adopted GA.

Let’s now see how the GA operates. With the aforemen-
tioned genotype, a population with individuals is formed by
random generation. During each generation, every individual in
the population is applied to problem solving, and a fitness value
is obtained according to its performance. For the reproduction
process, the population is first sorted according to the fitness
value of each individual. Based on the elitist strategy, the
top-half of the best-performing individuals in the population,
the elites, will advance to the next generation directly. The
remaining half will be generated by performing crossover op-
erations on individuals on the top half of the parent generation.
Elitist strategy may increase the speed of domination of a
population by a super individual, and thus improves the local
search at the expense of a global perspective, but on balance it
appears to improve GA performance [51], [52]. To overcome
the disadvantage that population diversity might be lost fast by
elitist strategy, in [53], a relative-based mutated reproduction
method is proposed and may be incorporated into TRFN-G to
further improve the performance.

After the reproduction process, TRFN-G enters the crossover
process. In order to select the individuals for crossover, tour-
nament selection instead of a simple GA roulette wheel selec-
tion [54] is performed. Also, to speed up the learning speed,
tournament selection is performed only on the top-half of the
best-performing individuals instead of the whole population. In
our tournament selection, two individuals in the top-half of the
population are selected at random, and their fitness values are
compared. The individual with the highest fitness value is se-
lected as one parent. The other parent is selected in the same
way. Performing crossover on the selected parents creates the
offspring. Here, two-point crossover is performed. After the op-
eration, the top-half worst performing individuals in the pop-
ulation will be replaced by the newly produced offspring. For

the mutation operation, it is an operator whereby the allele of
a gene is altered randomly. With mutation, new genetic mate-
rials can be introduced into the population. Mutation should be
used sparingly because it is a random search operator; other-
wise, with high mutation rates, the algorithm will become little
more than a random search. To clarify the adopted GA, flow of
the algorithm is shown in Fig. 2.

In the following section, TRFN-G will be applied to dynamic
control. Comparisons with recurrent neural networks designed
by the same GA are made. Besides, comparisons with other
control configurations, like direct inverse, indirect adaptive, and
fuzzy models based on predictive control, are also performed.

V. SIMULATIONS

In this section, the TRFN is applied to two kinds of dynamic
system problems, the dynamic system identification and the dy-
namic system control. For dynamic system identification where
we can easily collect the precise input–output training data,
TRFN-S is applied, while for the dynamic control problem,
where the supervised input–output training data is either costly
to obtain or only the reinforcement signal is available, the
TRFN-G is applied.

A. Dynamic System Identification

The systems to be identified are dynamic systems whose out-
puts are functions of past inputs and past outputs as well. For this
dynamic system identification, since a recurrent network, the
TRFN-S, is used, only the current state of the system and con-
trol signal are fed as input to the network. The adopted identifi-
cation configuration is a serial-parallel model shown in Fig. 3.
The model is used in the following two identification problems.
If a feedforward network is used, then we should know the order

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

162 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

of the system, and feed all the related states to the input as in [1].

Example 1: The plant to be identified in this example is
guided by the following difference equation:

(18)

where

(19)

Here, the current output of the plant depends on three previous
outputs and two previous inputs. In [1], a feedforward neural
network with five input nodes for feeding the appropriate past
values of and is used. In [7], identification of the same
plant using a recurrent neural network, the memory neural net-
work, is put forward. Also in [20], a recurrent fuzzy system,
and in [22], a recurrent neural fuzzy network, the RSONFIN,
are applied to the same task. Here the TRFN-S is used. As in
Fig. 3, owning to the recurrent property of TRFN-S, only the
current state and control input are fed as the input.
The other past values of and are not used since
their influence on the output are memorized by the feedback
structure. If a feedforward network structure is used, then we
should know the order of system in advance and feed the appro-
priate past values of and to the network. In training
the TRFN-S, we use only ten epoches and there are 900 time
steps in each epoch. Similar to the inputs used in [7], the input
is an uniform sequence over for about half of the
900 time steps and a sinusoid given by for the
remaining time. There is no repetition on these 900 training
data, i.e., we have different training sets for each epoch. The
learning rates , and

, where denotes the th
epoch, are chosen. After training, three recurrent fuzzy rules, in
contrast to the thirty fuzzy rules in [20], are generated, and a
root-mean-square error (RMSE) of 0.0265 is achieved. To see
the identified result, the following input as used in [7] is adopted
for test

Fig. 4 shows the outputs of the plant (denoted as a solid curve)
and the TRFN-S (denoted as a dotted curve) for the test input.
In Fig. 4, owing to the dynamic property of the identified plant,
there is an oscillation after transient time 250. To show the
effectiveness and efficiency of the recurrent part in TRFN-S,
a feedforward TSK type fuzzy network is applied to the same
problem. In the feedforward network, the five plant input vari-
ables , and are fed
as input. For fair comparison, the precondition part of the feed-
forward network is identified by the same way as TRFN-S. Form
the results in Table I, we can see that performances of TRFN-S
surpass the feedforward network. In this paper, the computation

Fig. 3. Series-parallel identification model with the TRFN-S. whereE(k) is
used for training the network parameter.

time is measured on a personal computer with Intel pentium
III-600 CPU inside. Besides the comparison with feedforward
fuzzy network, other types of recurrent networks are also com-
pared. Performance of the TRFN-S is compared with memory
neural network and recurrent neural fuzzy networks including
RSONIN and RFNN. For memory neural network, the result
proposed in [7] is adopted. For RSONFIN, there are four rules
with four output clusters after training, and the learning rates are
set as the same as TRFN-S. In [23], RFNN is applied to the same
problem, and the same network size and training approach are
simulated in the paper. Detailed comparisons of the modeling
accuracy and computation time of these networks are listed in
Table I for both training and test data. From the comparisons,
we see that TRFN-S can achieve the highest modeling accuracy
with fewer network parameters and CPU time than the compared
networks.

Example 2: Consider next the following dynamic plant with
longer input delays:

(20)

This plant is the same as that used in [27]. The current output
of the plant depends on two previous outputs and four previous
inputs. As in example 1, the identification model shown in Fig. 3
is used, where only two external input values are fed to the input
of TRFN-S. The training data and time steps are the same as
those used in example 1. In applying the TRFN-S to this plant,
the learning rates ,
and , where denotes the th
epoch, are chosen. After training, three recurrent fuzzy rules are
generated. These designed three rules are

Rule IF is and is

and is

THEN is

and is

and is and

is

Rule IF is and is

and is

THEN is

and is

and is and

is

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 163

Fig. 4. Identification results of the TRFN-S in Example 1, where the dotted curve denotes the output of the TRFN-S and the solid curve denotes the actualoutput.

TABLE I
COMPARISONS OF THETRFN-S WITH TSK-TYPE FEEDFORWARDNEURAL

FUZZY NETWORK AND OTHER EXISTING RECURRENTNETWORKS FOR

DYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE 1

Rule IF is and is

and is

THEN is

and

is and is and

is

With the learned three rules, a RMSE of 0.0067 for the training
data is achieved. For clarity, the network structure constructed
by the above three rules is shown in Fig. 5. To test the identi-
fied result, the test signal used in Example 1 is adopted. Fig. 6
shows the outputs of the plant (denoted as a solid curve) and
the TRFN-S (denoted as a dotted curve) for the test input. For
performance comparison, Elman’s Recurrent Neural Network
(ERNN), whose feedback connections also comes from feeding
the hidden states back to the input nodes as TRFN does, is sim-
ulated. The number of hidden nodes in ERNN is five, and there

are 30 free parameters in total. With the same training time step
and data, the resulting RMSE of ERNN for the training and
test data are shown in Table II. Besides ERNN, RSONFIN is
applied to the same problem by using the same training time
step and data. The learning constant of RSONFIN is the same
as TRFN-S. There are six rules and three output clusters in
RSONFIN after training, resulting in a total number of 36 pa-
rameters. The resulting RMSE of RSONFIN for training and
test data are shown in Table II. From the compared data listed
in Table II, we see that the TRFN-S shows much better per-
formance in identification accuracy than the compared two net-
works. For the computation time, we see that ERNN requires
less computation time than TRFN-S when the same training
time step is performed. However, from Table II, for ERNN to
achieve the same training accuracy as TRFN-S does, a longer
computation time and more network parameters are required.

B. Dynamic System Control

For the dynamic system control problem, since the precise
controller input-output training data is either costly to obtain or
unavailable, the GA is adopted for controller design. Although
we may use some specific ways for training the controller by
supervised learning, like the direct inverse and indirect adaptive
control mentioned above, these methods may be applied only
for some special plants. Problems with these two methods are
described in Section I. Based on GA, the TRFN-G controller
design is proposed. The control configuration and input–output
variables of TRFN-G are shown in Fig. 7, and are applied to
the following two dynamic system control problems. In the fol-
lowing two examples, to show the advantage of TRFN-G, its
counterpart recurrent neural network, the ERNN, is compared

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

164 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

Fig. 5. Structure of the constructed TRFN-S in Example 2.

Fig. 6. Outputs of the dynamic plant (solid curve) and model TRFN-S (dotted curve) in Example 2.

with the same controller design configuration. As TRFN, the
ERNN has feedback connections coming from the hidden node

output. A recurrent fuzzy neural network, the RFNN, designed
by the same GA is also compared. Besides the network struc-

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 165

TABLE II
COMPARISONS OF THETRFN-S WITH OTHER EXISTING RECURRENT

NETWORKS FORDYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE 2

Fig. 7. Dynamic system control configuration with TRFN-G controller.

ture performance comparison, comparisons with other control
configurations, including the direct inverse and indirect adap-
tive control, and fuzzy model-based predictive control, are also
made in the following examples.

Example 3: The controlled plant is the same as that used in
[1] and is given by

(21)

The plant is slightly different from that used in [7] and [22] in
that there is no scaling operation to the output. In designing the
TRFN-G, the desired output is given by the following 250
pieces of data:

There are four rules in TRFN-G, resulting in 48 free parame-
ters in total. In applying the GA, 50 chromosomes are randomly
generated in a population, i.e., , initially. Each chro-
mosome contains 48 genes. The probability of mutation,, is
0.01. The fitness value of each chromosome is defined as

Fitness-value (22)

The evolution is processed for 1500 generations and is repeated
for 50 runs. The averaged best-so-far fitness value over 50 runs
for each generation is shown in Fig. 8. The best and averaged
RMSE error for the 50 runs after 1500 generations of training
and the computation time for each run are listed in Table III. To

test the performance of the designed controller, another refer-
ence input is given by

The best and averaged control performance for the test signal
over the 50 runs is also listed in Table III. To demonstrate the
control result, one control performance of TRFN-G is shown in
Fig. 9 for both training and test control reference output. The
corresponding designed four fuzzy rules are

Rule IF is and is

and is

THEN is

and

is and is and

is and is

Rule IF is and is

and is

THEN is

and

is and is

and is and

is

Rule IF is and is

and is

THEN is

and is

and is and is

and is

Rule IF is and is

and is

THEN is

and

is and is and

is and is

The input states and are divided by 4.2 be-
fore entering the above controller. To show the effectiveness
and efficiency of the recurrent part in TRFN-G, a feedforward
TSK-type fuzzy network designed by the same GA is compared.
For the feedforward network, all plant input variables including

and are fed as network input. To have
about the same network parameters as TRFN-G, the number of
fuzzy rule is set to 5, resulting in a total number of 50 free param-
eters. The averaged best-so-far fitness values over 50 runs for
each generation are shown in Fig. 8. The learned accuracy and
computation time are listed in Table III for comparison. Effec-
tiveness and efficiency of the recurrent part in TRFN-G are ver-
ified from Table III. Besides the above comparison with a feed-
forward fuzzy network, a recurrent neural network, the ERNN,
and a recurrent fuzzy network, the RFNN, designed by the same
GA are simulated. The input and output of ERNN and RFNN
are the same as those of TRFN-G. For ERNN, the number of

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

Fig. 8. The averaged best-so-far fitness values on each generation for TRFN-G (denoted as “?”), TRFN with traditional operation (denoted as “}”), ERNN
(denoted as “+”), feedforward TSK-type fuzzy network (denoted as “�”), and RFNN (denoted as “�”) in Example 3.

(a)

(b)

Fig. 9. The tracking performance by TRFN-G controller in Example 3 for (a) training and (b) test reference output, where the reference output is denoted as a
solid curve and the actual output by a dotted curve.

hidden nodes is 6, resulting in a total number of 54 free param-
eters. For RFNN, the number of rules is 7, resulting in a total

number of 49 free parameters. The averaged best-so-far fitness
values of ERNN and RFNN over 50 runs for each generation

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 167

TABLE III
THE COMPUTATION TIME FOR EACH GA RUN AND CONTROLLED RMSEBY

DIFFERENTTYPES OFNETWORKS ANDDESIGN METHODS INEXAMPLE 3

are shown in Fig. 8. The training and test results for the best
and averaged rms errors over 50 runs are also listed in Table III.
For RFNN, owning to its local feedback structure, a poor per-
formance occurs near time step 110 where a sharp change at the
desired control trajectory occurs. From these results, we see that
an obviously better control result is achieved for TRFN-G than
those achieved by ERNN and RFNN when the same GA design
approach is applied. As to the computation time, from Table III,
we see that ERNN requires less computation time (360 s) than
TRFN-G for a run with 1200 generations. However, from Fig. 8,
for TRFN-G to achieve the same accuracy as ERNN dose, only
about 170 generations (96 s) are required.

In TRFN-G, the elitist crossover operation is used. In this op-
eration, the parents for crossover are selected from the top-half
best-performing individuals, the elitist. To see the performance
of this operation, we compare it with the traditional operation
where the parents for crossover are selected from the whole
population instead of the elitist. The averaged best-so-far fit-
ness values over 50 runs for each generation by the traditional
operation are shown in Fig. 8. From the fitness value compar-
isons in Fig. 8, we see that the adopted elitist crossover operation
achieves a better performance.

To see the performance of other control configurations for
the same task, the direct inverse control by RSONFIN con-
troller proposed in [22] is compared. There are five rules and
output clusters generated after the training of RSONFIN; the
total number of free parameters is 50. Since the training data is
different from that of TRFN-G, only the RMSE of the above test
signal is shown in Table III. In [7], an indirect adaptive control
configuration using memory neural network controller is pro-
posed. It has been shown in [22] that RSONFIN with direct in-
verse control can achieve a better control performance than this
method, so comparison with it is omitted. From the results in
Table III, we see that TRFN-G can achieve the highest control
accuracy in comparison with the other two approaches.

Example 4: In this example, we will see the regulation per-
formance of TRFN-G for a dynamic plant with longer input de-
lays. The controlled plant used in this example is the same as in
example 2. To govern a plant with long input delays like this,
the usually adopted design approach is the predictive control
method. Many linear controller designs for time delayed plants
by model-predicted control have been proposed [55]. For the
current control plant, owing to its nonlinear behavior, it has been
shown in [27] that a linear predictive controller can not achieve a
good performance. For this reason, in [27], a fuzzy model based
predictive control approach is proposed. In this method, the con-
troller is a RNFN as proposed in [21], and the consequence pa-

rameters in the fuzzy model is designed by GPC. However, as
in linear predictive controller design, for this model we should
know the order of input and output stated to participate in the
consequence.

The proposed TRFN-G is applied to this time-delayed plant.
The control configuration in Fig. 7 is adopted. The number of
recurrent fuzzy rules in TRFN-G is set to three; thus there are
33 free parameters. For the GA, there are 50 chromosomes in
the population, and each chromosome contains 33 genes. The
probability of mutation, , is set to 0.05. During training, the
desired output, , is set as follows:

if or
if or

(23)

and is shown in Fig. 10. in solid line. These 200 pieces of data
are used for training. The fitness value is first defined by

Fitness-value

The evolution is proceeded for 1200 generations and is repeated
for 50 runs. The training results for the best and averaged rms
errors over 50 runs are listed in Table IV, and the best control
result is shown in Fig. 10. Although a small rms error can be
achieved, from the result in Fig. 10, we see that there’s a large
steady state error on set point 10. To minimize the steady state
error, a weight is incorporated into the fitness value. The
new fitness value is defined by

Fitness-value

where

for
otherwise

A higher weight value is assigned after 5 time steps
when the target output changes from one set point to another.
This way we can minimize the regulation error after every five
time steps when the regulation point changes from one to an-
other. The evolution is proceeded for 1200 generations and is
repeated for 50 runs. The averaged best-so-far fitness value over
50 runs for each generation is shown in Fig. 11. The controlled
rms error by this method is listed in Table IV. To demonstrate
the control result, one control result of the TRFN-G constituted
by the following three recurrent fuzzy rules:

Rule IF is and is

and is

THEN is

and is

and is and

is

Rule IF is and is

and is

THEN is

and is

and is and

is

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

Fig. 10. The regulation performance by TRFN-G controller in Example 4 for TRFN-G designed by fitness function based on control accuracy withoutW (��),
with W (� �), and based on time steps until failure(� � �), where the reference output is denoted as a solid curve.

Fig. 11. The averaged best-so-far fitness values on each generation for TRFN-G (denoted as “?”), TRFN designed by traditional GA with tournament selection
(denoted as “}”) and ERNN (denoted as “+”) in Example 4.

Rule IF is and is

and is

THEN is

and is

and is and

is

is shown in Fig. 10. From Fig. 10, we see that the regulation
error is minimized at the cost of a higher overshoot. The states

and are divided by 20 before entering the above
controller. For comparison, ERNN designed by the same con-
figuration in Fig. 7 is simulated. The number of hidden nodes
in ERNN is 5, resulting in a total number of 40 free parame-
ters. The best-so-far fitness values over 50 runs for each gener-
ation are shown in Fig. 10. The controlled rms error is shown
in Table IV, too. From this result, we see that a better control
result is achieved for TRFN-G than that of ERNN for the same
GA design approach. In [27], a fuzzy model based predictive
control approach is applied to the same regulation task. The

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 169

TABLE IV
THE COMPUTATION TIME FOR EACH GA RUN AND CONTROLLED RMSEBY

DIFFERENTTYPES OFNETWORKS ANDDESIGN METHODS INEXAMPLE 4

network controller is an RNFN and the parameters are design
by GPC method. The controlled rms error by this method is
listed in Table IV. From these two comparisons, the good perfor-
mance of TRFN-G is verified. In example 3, the adopted elitist
crossover operation is compared to the operation where the par-
ents for crossover are selected from the whole population. In
this example, the adopted GA is compared to the traditional GA
with tournament selection [45]. In the traditional method, tour-
nament selection is performed on the whole population and the
selected individual will either advance to the next generation
or act as one parent for crossover depending on the crossover
probability, which is set to 0.5 in this paper. The averaged fit-
ness value for each generation by traditional GA is shown in
Fig. 11. From Fig. 11, we find that the adopted elitist operation
achieves a better result.

In the above simulations, we use the precise control accuracy
as the fitness value during the learning process of GAs. Next,
we consider TRFN-G design when only a sparse evaluation in-
formation is used. Here, a control is considered to be successful
if the controlled output meets the constraint. The constraint is
set as that for each reassigned set point in Fig. 11, starting from
the current state and after ten times, the controlled output error
should be within ; otherwise, a failure occurs. With this
performance evaluation, supervised learning cannot be applied.
In reinforcement learning, the controller is designed by using
the failure and success information. In TRFN-G, for each failure
control, since the number of time steps until failure reveals a
kind of relative importance, it is used as the fitness value of each
individual. With this fitness assignment, a successful controller
may be designed by TRFN-G and one successful control result
is shown in Fig. 10.

VI. CONCLUSION

A TRFN is proposed in this paper. The TRFN expands the
powerful ability of the TSK-type feedforward fuzzy network
to deal with temporal problems. The proposal calls for design
of TRFN under either neural network or genetic learning al-
gorithms. For supervised learning, the TRFN-S designed by
neural network is put forward. TRFN-S can automatically con-
struct itself by performing online supervised structure and pa-
rameter learning concurrently. For problems where supervised
training data is costly to obtain or unavailable, TRFN-G has
been advanced. Owing to the supervisory network structure of
TRFN, TRFN-G can achieve a high design accuracy with small
network size. From simulations to dynamic system processing
by neural network and genetic learning algorithms, TRFN has
shown itself supervisory to its recurrent neural network counter-

part. Also, in dynamic system identification, TRFN-S is com-
pared with other types of recurrent neural or neural fuzzy net-
works; and in dynamic system control, TRFN-G is compared
with different types of control configurations. For both prob-
lems, TRFN has shown better results than what are compared.
As characterized by this supervisory property, TRFN will be ap-
plied to solve more dynamic problems in future work.

REFERENCES

[1] K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,”IEEE Trans. Neural Networks,
vol. 1, pp. 4–27, 1990.

[2] J. L. Elman, “Finding structure in time,”Cognit. Sci., vol. 14, pp.
179–211, 1990.

[3] M. I. Jordan, “Attractor dynamics and parallelism in a connectionist se-
quential machine,” inProc. 8th Annual Conf. Cognitive Science Society,
Amherst, MA, 1986, pp. 531–546.

[4] B. A. Pearlmutter, “Learning state space trajectories in recurrent neural
networks,” inProc. Int. Joint Conf. Neural Networks, vol. 2, Washingon,
DC, 1989, pp. 365–372.

[5] C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C.
Lee, “Learning and extracting finite state automata with second-order
recurrent neural network,”Neural Comput., vol. 4, pp. 395–405, May
1992.

[6] S. Santini, A. D. Bimbo, and R. Jain, “Block-structured recurrent neural
networks,”Neural Networks, vol. 8, no. 1, pp. 135–147, 1995.

[7] P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neural net-
works for identification and control of dynamic systems,”IEEE Trans.
Neural Networks, vol. 5, pp. 306–319, Apr. 1994.

[8] E. Kosmatopoulos, M. Polycarpou, M. Christodoulou, and P. Ioannou,
“High-order neural networks for identification of dynamic systems,”
IEEE Trans. Neural Networks, vol. 6, pp. 422–431, Apr. 1995.

[9] S. A. Billings and C. F. Fung, “Recurrent radial basis function networks
for adaptive noise cancellation,”Neural Networks, vol. 8, pp. 273–290,
Apr. 1995.

[10] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-
plications to modeling and control,”IEEE Trans. Syst., Man, Cybern.,
vol. SMC-15, pp. 116–132, Jan. 1985.

[11] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control
and and decision system,”IEEE Trans. Comput., vol. 40, pp. 1320–1336,
Dec. 1991.

[12] L. X. Wang,Adaptive Fuzzy Systems and Control. Upper Saddle River,
NJ: Prentice-Hall, 1994, ch. 3.

[13] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualita-
tive modeling,”IEEE Trans. Fuzzy Syst., vol. 1, pp. 7–31, Feb. 1993.

[14] J. S. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cybern., vol. 23, pp. 665–685, May 1993.

[15] C. F. Juang and C. T. Lin, “An online self-constructing neural fuzzy
inference network and its applications,”IEEE Trans. Fuzzy Syst., vol.
6, pp. 12–32, Feb. 1998.

[16] C. T. Lin, C. F. Juang, and J. C. Huang, “Temperature control of rapid
thermal processing system using adaptive fuzzy network,”Fuzzy Sets
Syst., vol. 103, pp. 49–65, 1999.

[17] J. Grantner and M. Patyra, “Synthesis and analysis of fuzzy logic finite
state machine models,”Proc. IEEE Int. Conf. Fuzzy Systems, vol. 1, pp.
205–210, June 1994.

[18] C. Omlin, K. Thornber, and C. Gilies, “Representation of fuzzy finite-
state automata in continuous recurrent neural networks,” inProc. IEEE
Int. Conf. Neural Networks, vol. 2, June 1996, pp. 1023–1027.

[19] F. Unal and E. Khan, “A fuzzy finite state machine implementation based
on a neural fuzzy system,” inProc. IEEE Int. Conf. Fuzzy Systems, vol.
3, Orlando, FL, June 1994, pp. 1749–1754.

[20] V. Gorrini and H. Bersini, “Recurrent fuzzy systems,”Proc. IEEE Int.
Conf. Fuzzy Systems, vol. 1, pp. 193–198, June 1994.

[21] J. Zhang and A. J. Morris, “Recurrent neuro-fuzzy networks for non-
linear process modeling,”IEEE Trans. Neural Networks, vol. 10, no. 2,
pp. 313–326, Mar. 1999.

[22] C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy in-
ference network,”IEEE Trans. Neural Networks, vol. 10, pp. 828–845,
July 1999.

[23] C. H. Lee and C. C. Teng, “Identification and control of dynamic systems
using recurrent fuzzy neural networks,”IEEE Trans. Fuzzy Syst., vol. 8,
pp. 349–366, Aug 2000.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

170 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

[24] D. W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive con-
trol part I, the basic algorithm,”Automatica, vol. 23, no. 2, pp. 137–148,
1988.

[25] J. H. Kim, J. Y. Jeon, J. M. Yang, and H. K. Chae, “Generalized predic-
tive control using fuzzy neural network model,” inProc. IEEE Int. Conf.
Neural Networks, 1994, pp. 2596–2598.

[26] A. Cipriano and M. Ramos, “Fuzzy model based control for a mineral
flotation plant,” inProc. IEEE Int. Conf. Industrical Electronics, Con-
trol, Instrumentation, 1994, pp. 1375–1380.

[27] J. H. Kim, D. T. College, A. Gun, and G. Do, “Fuzzy model based predic-
tive control,” inProc. IEEE Int. Conf. Fuzzy Systems, vol. 1, Anchorage,
AK, May 1998, pp. 405–409.

[28] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,”IEEE Trans.
Syst., Man, Cyber., vol. SMC-13, pp. 834–846, 1983.

[29] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic con-
trollers through reinforcements,”IEEE Trans. Neural Networks, vol. 3,
pp. 724–740, Sept. 1992.

[30] C. T. Lin and C. S. G. Lee, “Reinforcement structure/parameter learning
for neural-network-based fuzzy logic control systems,”IEEE Trans.
Fuzzy Syst., vol. 2, pp. 46–63, Feb. 1994.

[31] D. Whitely, S. Dominic, R. Das, and C. W. Anderson, “Genetic rein-
forcement learning for neurocontrol problems,”Machine Learning, vol.
13, pp. 259–284, 1993.

[32] D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning
through symbiotic evolution,”Machine Learning, vol. 22, pp. 11–32,
1996.

[33] W. A. Farag, V. H. Quintana, and G. L. Torres, “A genetic-based neuro-
fuzzy approach for modeling and control of dynamic systems,”IEEE
Trans. Fuzzy Syst., vol. 9, pp. 756–767, Oct. 1998.

[34] C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning
through symbiotic evolution for fuzzy controller design,”IEEE Trans.
Syst. Man, Cybern., B, vol. 30, pp. 290–302, Apr. 2000.

[35] V. Petridis, S. Kazarlis, and A. Papaikonomou, “A genetic algorithm
for training recurrent neural networks,” inProc. Int. Joint. Conf. Neural
Networks, 1993, pp. 2706–2709.

[36] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary al-
gorithm that constructs recurrent neural networks,”IEEE Trans. Neural
Networks, vol. 5, pp. 54–65, Jan. 1994.

[37] Y. Sato and S. Nagaya, “Evolutionary algorithms that generate recurrent
neural networks for learning chaos dynamics,” inProc. IEEE Int. Conf.
Evolutionary Computation, 1996, pp. 144–149.

[38] K. W. C. Ku, M. W. Mark, and W. C. Siu, “Addining learning to cellular
genetic algorithms for training recurrent neural networks,”IEEE Trans.
Neural Networks, vol. 10, pp. 239–252, Mar. 1999.

[39] B. A. Pearlmutter, “Gradient calculations for dynamic recurrent
neural networks: A survey,”IEEE Trans. Neural Networks, vol. 6, pp.
1212–1228, Oct.. 1995.

[40] J. Torreele, “Temporal processing with recurrent networks: An evolu-
tionary approach,” inProc. 4th Int. Conf. Genetic Algorithms, 1991, pp.
555–561.

[41] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary al-
gorithm that constructs recurrent neural networks,”IEEE Trans. Neural
Networks, vol. 5, pp. 54–65, Feb. 1994.

[42] Y. Sato and S. Nagaya, “Evolutionary algorithms that generate recurent
neural networks for learning chaos dynamics,” inProc. IEEE Int. Conf.
Evolutionary Comp., 1996, pp. 144–149.

[43] K. W. C. Ku, M. W. Mak, and W. C. Siu, “Adding learning to cellular
genetic algorithms for training recurrent neural networks,”IEEE Trans.
Neural Networks, vol. 10, pp. 239–252, Apr.. 1999.

[44] C. L. Karr, “Design of an adaptive fuzzy logic controller using a ge-
netic algorithm,” inProc. 4th Int. Conf. Genetic Algorithms, 1991, pp.
450–457.

[45] A. Homaifar and E. McCormick, “Simultaneous design of membership
functions and rule sets for fuzzy controllers using genetic algorithms,”
IEEE Trans. Fuzzy Syst., vol. 3, pp. 129–139, Apr. 1995.

[46] P. Thrift, “Fuzzy logic synthesis with genetic algorithms,” inProc. 4th
Int. Conf. Genetic Algorithms, 1991, pp. 509–513.

[47] M. H. Lim, S. Rahardja, and B. H. Gwee, “A GA paradigm for learning
fuzzy rules,”Fuzzy Sets Syst., vol. 82, pp. 177–186, 1996.

[48] M. A. Lee and H. Takagi, “Integrating design stages of fuzzy systems
using genetic algorithms,” inProc. IEEE Int. Conf. Fuzzy Systems, vol.
1, San Francisco, CA, Apr. 1993, pp. 612–617.

[49] J. S. R. Jang and C. T. Sun, “Functional equivalence between radial basis
function networks and fuzzy inference system,”IEEE Trans. Neural
Networks, vol. 4, pp. 156–159, Feb. 1993.

[50] R. J. Williams and D. Zipser, “A learning algorithm for continually
running recurrent neural networks,”Neural Comput., vol. 1, no. 2, pp.
270–280, 1989.

[51] D. Thierens and D. Goldberg, “Elitist recombination: An integrated se-
lection recombination GA,” inProc. IEEE Int. Conf. Evolutionary Com-
putation, vol. 1, 1994, pp. 508–512.

[52] P. Larranaga, M. Poza, Y. Yurramenddi, R. H. Murga, and C. M. H. Kui-
jpers, “Structure learning of Bayesian networks by genetic algorithms:
A performance analysis of control parameters,”IEEE Trans. Patt. Anal.
Mach. Intell., vol. 18, pp. 912–926, Sept. 1996.

[53] C. F. Juang, “Construction of dynamic fuzzy if-then rules through ge-
netic reinforcement learning for temporal problems solving,” inProc.
Joint 9th IFSA World Congress 20th NAFIPS Int. Conf., Vancouver, BC,
Canada, July 2001, pp. 2341–2346.

[54] D. E. Goldberg,Genetic Algorithms in Search Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989, ch. 3.

[55] E. F. Camacho and C. Bordons,Model Predictive Control in the Process
Industry. New York: Springer-Verlag, 1995.

Chia-Feng Juang (M’99) received the B.S. and
Ph.D. degrees in control engineering from the
National Chiao-Tung University, Hsinchu, Taiwan,
R.O.C., in 1993 and 1997, respectively.

In 1999, he joined Chung Chou Institute of
Technology, as an Assistant Professor. In 2001,
he joined the National Chung Hsing University,
Taichung, Taiwan, R.O.C., where he is currently an
Assistant Professor of Electrical Engineering. His
current research interests are neural fuzzy systems,
intelligent control, evolutionary computation, and

speech signal processing.
Dr. Juang is a member of the IEEE Signal Processing Society and the IEEE

Robotics and Automation Society.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

