IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

155

A TSK-Type Recurrent Fuzzy Network for Dynamic
Systems Processing by Neural Network and
Genetic Algorithms

Chia-Feng JuandVember, IEEE

Abstract—n this paper, a TSK-type recurrent fuzzy network
(TRFN) structure is proposed. The proposal calls for a design of
TRFN by either neural network or genetic algorithms depending
on the learning environment. Set forth first is a recurrent fuzzy
network which develops from a series of recurrent fuzzy if-then
rules with TSK-type consequent parts. The recurrent property
comes from feeding the internal variables, derived from fuzzy
firing strengths, back to both the network input and output
layers. In this configuration, each internal variable is responsible
for memorizing the temporal history of its corresponding fuzzy
rule. The internal variable is also combined with external input

processing, the most commonly used model is the neural or
neural fuzzy network. If a feedforward network is adopted
for this task, then we should know the number of delayed
input and output in advance, and feed these delayed input and
output as a taped line to the network input [1]. The problem
of this approach is that the exact order of the dynamic system
is usually unknown. Besides, the usage of the long tapped
delay input will increase the input dimension and will result
in a large network size. To deal with this problem, interest

variables in each rule’s consequence, which shows an increase inin using recurrent networks for processing dynamic systems

network learning ability. TRFN design under different learning

has been steadily growing in recent years, and a number of

environments is next advanced. For problems where super- recurrent models have been proposed [2]-[9]. Some of them are

vised training data is directly available, TRFN with supervised
learning (TRFN-S) is proposed, and neural network (NN) learning
approach is adopted for TRFN-S design. An online learning
algorithm with concurrent structure and parameter learning is
proposed. With flexibility of partition in the precondition part,
and outcome of TSK-type, TRFN-S has the admirable property
of small network size and high learning accuracy. As to the
problems where gradient information for NN learning is costly
to obtain or unavailable, like reinforcement learning, TRFN with
Genetic learning (TRFN-G) is put forward. The precondition
parts of TRFN-G are also partitioned in a flexible way, and all
free parameters are designed concurrently by genetic algorithm.
Owing to the well-designed network structure of TRFN, TRFN-G,
like TRFN-S, also is characterized by a high learning accuracy
property. To demonstrate the superior properties of TRFN,
TRFN-S is applied to dynamic system identification and TRFN-G
to dynamic system control. By comparing the results to other types
of recurrent networks and design configurations, the efficiency of
TRFN is verified.

Index Terms—Control, identification, recurrent neural network,
reinforcement learning.

I. INTRODUCTION

Elman [2] and Jordan’s [3] networks, which are feedforward
multilayer perceptron networks with an extra set of context
nodes for copying the delayed states of the hidden or output
nodes back to the network input; and the fully recurrent neural
network [4], where all nodes are fully connected. Other more
different types are the memory neuron network [7], where
each neuron has associated with it a memory neuron whose
single scalar output summarizes the history of past activation of
that unit; the high-order neural network [8], where high-order
recurrent connections between each neuron are included; and
the recurrent radial basis function network [9], where the past
output values of a radial basis function network are fed back
to both the network input and output nodes. By inspecting
the structure of the above networks, we may find that their
recurrent properties are achieved by involving internal memory
in the form of feedback connections to existing networks, such
as feedforward multilayer perceptron networks and radial basis
function network. In feedforward network structure, the perfor-
mance of a neural fuzzy network has been shown to be better
than a neural network, and several neural fuzzy networks have
been proposed [10]-[16]. Based on this observation, design of a

P ROBLEMS in dealing with dynamic systems are encouliacrrent network from a feedforward fuzzy network structure

tered in many areas, such as control, communication,
pattern recognition.

uld be a better choice.

. In the control area, we usually face thep f,,,y networks, several types of them have been proposed
problem of dynamic system identification and control. Sinc

&epending on the types of fuzzy if-then rules and fuzzy rea-

for a dynamic system, the output is a function of past output _%ning employed. Two usually types are the Mamdani-type and

past input or both, identification and control of this system "FSK-type fuzzy networks. For a Mamdani-type fuzzy network
not as straightforward as a static system. For nonlinear SYSt8m minimum fuzzy implication is used in fuzzy reasoning and

each rule is of the following form:

Manuscript received March 20, 2001, revised June 22, 2001 and August 14,
2001. This work was supported by the National Science Council, Republic of

China, under Grant number NSC 89-2218-E-235-001.

The author is with the Department of Electrical Engineering, National Chungyle i: IF a:l(t) is A;; And --- And z,, (t) is A,

Hsing University, Taichung, 402 Taiwan, R.O.C.
Publisher Item Identifier S 1063-6706(02)02970-3.

Theny(t+1)is B;

1063-6706/02$17.00 © 2002 IEEE

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

156 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

wherez is the input variabley is the output variabled andB supervised learning are the direct inverse, direct and indirect
are fuzzy sets. For TSK-type fuzzy network, the consequenagaptive control [1]. For direct inverse control, the control
of each rule is a function input linguistic variable. The generabnfiguration fails when the inverse of the controlled plant is
adopted function is a linear combination of input variables plusnexistent. This is true for most dynamic plants. For direct

a constant term, and each rule is of the following form: adaptive control, we should know the form of the controlled
plant. For an unknown plant, this approach cannot be applied.
Rule i IF z1(t) is A;1 And --- And z,,(¢) is Ain For indirect adaptive control, the controlled plant should first

identification network. Controller design based upon this
configuration is complex, and a good control performance
The final network output is a weighted average of each ruld$ achieved only if a high precision identification model is
output. Some results on the research direction of designing a®étained. Although some fuzzy neural networks have been
current network from a fuzzy network have been proposed. OB&posed and applied to dynamic system control, there are still
category focusses on the combination of the fuzzy finite-steésadvantages in these network structures and the controller
machine with recurrent neural networks [17]-[19]. For exampléesign configurations are mainly based on the above mentioned
in [18], the fuzzy finite machine is encoded into a recurrerif€thods. In [21], a recurrent neuro-fuzzy model is put forward
network, and in [19], a neural fuzzy network is implemente@ds & way to built prediction model for nonlinear process, and
as a fuzzy finite machine. Another category focusses on efRsed on this model a predictive controller is designed by GPC.
bedding the recurrent structure into a feedforward fuzzy ndtor this recurrent neural fuzzy model, the recurrent property is
work [20]-[22]. In [20], the concept of recurrent fuzzy networl&chieved by modifying the consequence of each fuzzy rule to
is proposed. In [21], a recurrent neuron-fuzzy network is pr&€ a linear model in AutoRegressive with eXogenous (ARX)
posed. The structure of the network is similar to the recurreifiputs form. The disadvantage of this model is that we need
radial basis function network mentioned above. In [22], the atf know the order of both control input and network output
thors provide for a recurrent self-organizing neural fuzzy if0 participate in the ARX model. For the proposed TRFN in
ference network (RSONFIN) with online supervised learnindis paper, we solve this problem by feeding back the firing
ability. The rules in RSONFIN are of ordinary Mamdani-typ&trength of each rule. This way, only the current control input
fuzzy rule. In [14], [15], where several static mapping proband system state are fed to network input, and the past values
lems are performed, it has been shown that if a feedforwa¢@n be memorized by feedback structure. In [23], a recurrent
TSK-type fuzzy network is used, the performance in netwoikzzy neural network (RFNN) is proposed. In RFNN, the
size and learning accuracy is superior to those of Mamdani-tyfgeurrent property is achieved by feeding the output of each
fuzzy network. It seems to be more efficient, based on these F@@mbership function back to itself, so each membership value
sults, to include the TSK-type fuzzy rules into the design of rés only influenced by its previous value. In contrast to this local
current fuzzy network. With this motivation, a TSK-type recurfeedback structure, in TRFN, a global feedback structure is
rent fuzzy network’ the TRFN-S' is proposed for a Superviséﬁiopted. The OUtpUtS of all rule nodes, the flrlng strengths, are
learning environment with available gradient information. Téed back and summed, so each rule’s firing strength depends
design TRFN-S under this learning environment, since the gf#et only on its previous value but also on others. We will
dient information is available, the neural network learning aghow by simulation that with the global feedback structure,
proach is adopted. TRFN can achieve better performance than the local feedback
For the aforementioned network, all design work is basé&dructure in RENN. In [23], RENN is applied to dynamic plant
upon supervised learning. In dynamic system identificatiof@ntrol, and the controller is designed by direct and indirect
where the precise input—output pattern is available, theg@aptive control methods mentioned above. In [22], RSONFIN
network design algorithms may handle the situation. Howevégnstructed by Mamdani type fuzzy if-then rules is also applied
for other prob|ems' such as dynamic system control, whdfe plant control based on direct inverse control which works
precise control input—output training patterns are unavailaifi8ly when the inverse of the plant exists.
or expensive to collect, a new learning algorithm or design In contrast to the above supervised learning-based controller
configuration is required. As to time-delayed plant control, ordesign, several controller design configurations have been put
generally adopted controller design approach is the generalifetth [28]-[34]. Among them, one efficient way is design by
predictive control (GPC) [24]. GPC is presented based genetic algorithms (GAs). GAs don't require or use derivative
originally upon a linear model, so it is not suitable for nonlineanformation, the most appropriate applications are problems
plant control. To cope with this problem, some nonlinear comvhere gradient information is unavailable or costly to obtain.
troller model designs based on GPC are proposed [25]-[2Reinforcement learning is one example of such a domain. In
Most of these belong to fuzzy model based predictive controkinforcement learning, agents learn from signals that provide
In this model, a fuzzy controller with the consequence of lineapme measure of performance and which may be delivered
GPC form is designed. Parameter design algorithm in lineafter a sequence of decisions have been made. In GAs, the only
GPC is applied to this model. The drawback of this model feedback used by the algorithm is information about the relative
that we should know in advance the order of input and outpperformance of different individuals and may be applied to
terms of the linear GPC model in the fuzzy consequence. Otliemforcement problems where the evaluative signals contain
controller design approaches for dynamic systems based upelative performance information [31], [32]. Several results

Theny(t + 1) = c; + Zaijxj(t)- be identified and then a controller is designed based on this

J

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 157

from designing recurrent neural network with GAs have beenThis paper is organized as follows. Section Il describes the
proposed. In [35], GA is used for training a fully connectedtructure of the TSK-type recurrent fuzzy network. Section llI
recurrent neural network. In [36], there is an evolutionary algsets forth the supervised learning algorithm including structure
rithm that acquires both the structure and weights for recurrearid parameter learning for online generation of the recurrent
neural networks. The scheme for [37] has a 2-D GA, and fazzy rules based on neural network learning algorithms. In Sec-
[38] there is a cellular GA with learning ability for trainingtion IV, design of TRFN by GA for learning environments where
recurrent neural network. Basically, these papers focus on tiradient information is unavailable or costly to obtain is pro-
development of new GAs for the design of existing recurreppsed. In Section V, TRFN is used for solving dynamic system
network structures. Besides the GA itself, another factor thatocessing problems, where TRFN-S and TRFN-G are applied
may influence a GA-based recurrent network performante dynamic system identification and control, respectively. Fi-
is the structure of the designed recurrent network. Althougtally, conclusions are drawn in Section VI.
both the aforementioned newly proposed recurrent neural and
neural fuzzy network structur_e do achie:-ve a bgtter performange Il. STRUCTURE OF THETSK-TYPE RECURRENT FUZZY
than olld ones und_er super\(lsed learning, it is not necessarily NETWORK (TRFN)
true with GA. In this paper, in contrast to TRFN-S, the TRFN
design W|th GA (TRFN_G) iS proposed and app“ed to dynamic In th|S SeCtion, structure Of the TREN (aS ShOWI’I in F|g 1)
system control. For TRFN-G, the spatial and temporal fuzi's;,introduced. A network with two external inputs and a single
rules that constitute the TRFN are designed concurrently. Q4tputis considered here for convenience. This six-layered net-
contrast to the simple GA with roulette wheel selection [54/}/0rk realizes a recurrent fuzzy network of the following form:
and traditional tournament selection [45], a different approach,
the tournament selection combined with elitist reproduction Rule1: IF x; (¢) is A;; andxza(t) is A andhy () is G
and crossover strgtegy is adopted for TRFN-G d¢5|gn. Besides, THEN y(t + 1) iS aio + ayyz1(t) + aroas(t)
the spatial input is partitioned according to flexible methods,
as compared to the grid-type partition methods encountered in
earlier GA-based fuzzy rules design approaches [44]-[47]. This ha(t+ 1) iswoy.
way, TRFN-G can achieve a good performance with only afew Rule2: IF x;(t) is A»; andxa(t) is Az» and
rule numbers, and we only need to assign the number of fuzzy ha(t) is G
rules in TRFN-G before proceeding to GA. In contrast to the .
fixed network structure in TRFG-G during design, some works THEN y(t +1) is az0 + anw1(t) + anea(t)
on structure optimization using GA are proposed. In [48], GA + azsho(t) andhy (t + 1) is wi2 and
is applied to determine the rule number in a fuzzy network. ho(t 4+ 1) IS was
In [34], GA is applied to select the significant input variables
to participate in the consequence of TSK-type fuzzy ruleghhereA andG are fuzzy setsw anda are the consequent pa-
These works are applied to feedforward fuzzy network desigmameters for inference outplitandy, respectively. The conse-
For recurrent fuzzy networks, we may adopt these algorithntgient part for the external outpyts of TSK-type and is a linear
However, to perform structure optimization, different GAgombination of the external input variablesaind internal vari-
should be used owing to different network structures. Withblesh, plus a constant.
fixed structure in TRFN-G and compared recurrent networks, In Fig. 1, a network constructed by the above two rules is
we can design each by the same GA and demonstrate the stalhown. There are two external input variablesand single
ture superiority of TRFN-G. We will show by simulations thabutput . Accordingly, TRFN has two nodes in layer 1 and
the TRFN structure not only achieves a good performance fome node in layer 5, respectively. Nodes in layer 1 are input
TRFEN-S, but also does for TRFN-G. Comparisons of TRFN-@odes. Nodes in layer 2 are called input term nodes and act
to its recurrent neural network counterpart, designed by the membership functions to express the input fuzzy linguistic
same GA, and to other dynamic system control configurationgriables. Two types of membership functions are used in
will verify this. this layer. For the external variable, a local membership
The proposed TRFN is constructed from a series of fuzfynction, the Gaussian membership function is adopted. For
if-then rules, with the consequence of each rule being tfe internal variableh, a global membership function, the
TSK-type fuzzy reasoning. Inputs to the network preconditisigmoid function is adopted. Each internal variable has a single
part include external variables and internal variables derivedrresponding fuzzy set. Each node in layer 3 is called a rule
from the fuzzy firing strengths, and the consequence isnade. The number of rule nodes in this layer is equal to the
linear combination of them. A design of TRFN by neurahumber of fuzzy sets corresponding to each external linguistic
networks under supervised learning, identified as “TRFN-Sifiput variable. Nodes in layer 4 are called consequent nodes.
and a design by genetic algorithm, identified as “TRFN-GEach rule node has a corresponding consequent node which
are proposed in this paper. TRFN-S is applied to dynanmperforms a weighted linear combination of the input variables
system identification and TRFN-G to dynamic system contrat. and & plus a constant. Nodes in layer 5 are called context
Advantages of TRFN for these two kinds of problems wilhodes and perform defuzzification operation. The number of
verify the advantages of TRFN for dealing with dynamiinternal variableg: in this layer is equal to the rule nodes. In
systems processing. layer 6, the node is called a defuzzification node.

+ ai3hi(t) andhi(t + 1) iswy; and
)

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

158 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

Layer 6

Layer 5 Layer 4

Layer 3

Layer 2

Layer 1

Fig. 1. Structure of the TRFN.

To give a clear understanding of the mathematical functiovheren is the number of external inputs. The link weights are
of each node, we will describe function of TRFN layer by layeall set to unity.
For notation convenience, the net input to ttienode in layer Layer 4: Nodes in this layer perform a linear summation.
k is denoted b)ugk) and the output value b@f") The mathematical function of each nodis

Layer 1: No function is performed in this layer. The node
only transmits input values to layer 2. ntl n

Layer 2: As described above, two types of membership func- 0¥ = Z aiju](»4) = ajo + Z aijT; + aing1h; (4)
tions are used in this layer. For external inpyf the following j=0
Gaussian membership function is used:

2) 2 wheren is the number of external input variables, ang j =
(“j - mii) @ _ A1) 0,...,n + 1, are the parameters to be tuned. Links from this

and wi” =077 (1) |aver to layer 6 are all equal to unit
yer to layer 6 are all equal to unity.

Layer 5: The context node functions as a defuzzifier for the
wherem;; andg;; are, respectively, the center and the widtfuzzy rules with inference outpuit The link weights represent
of the Gaussian membership function of étieterm of thejth the singleton values in the consequent part of the internal rules.
input variabler; . For internal variablé,, the following sigmoid The simple weighted sum [49] is calculated in each node
membership function is used:

1
1+ exp {—u?)}

Links in layer 2 are all set to unity.

Layer 3: The output of each node in this layer is determineds in Fig. 1, the delayed value &f; is fed back to layer 1 and
by fuzzy AND operation. Here, the product operation is utilizedcts as an input variable to the precondition part of a rule. Each
to determine the firing strength of each rule. The function atile has a corresponding internal variablend is used to decide

=1

2 _
0;” =exp =y
i

@ _ O NIPNG)) "
07 = and v~ =0;". (2) h; = OZ() _ Z O§3)wij (5)
=1

each rule is the influence degree of temporal history to the current rule.
. n+1) 1 Layer 6: The node in this layer computes the output signal
05) = H O§) = B of the TRFN. The output node together with links connected to
i=1 I+ exp {_Oi } it act as a defuzzifier. The mathematical function is
n (O(l) _ mJ)Q (3) A(4)
g 7] r
“expq — Z = 3) y=00© = M (6)
—1 Tij r (3)
J 2=10;

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 159

lll. TRFEN WITH SUPERVISEDLEARNING (TRFN-S) centers and widths for finding a perfect cluster. Hence, we can

In this section, we present a two-phase learning scheme ?('ﬁnply set

TRFN. The task of constructing the TRFN is divided into two o

) .) M1y = i(t), and o4y
subtasks: structure learning and parameter learning. The objec- " 5
tive of the structure learning is to decide the number of fuzzy =3- Z (] _QmU) (10)
rules, initial location of membership functions, and initial con- =1 O
sequent parameters. On the contrary, the objective of parameter)])
learning is to tune the free parameters of the constructed i@ ¢ = 1,...,n, according to the first-nearest-neighbor

work to an optimal extent. Details of the two learning algorithm@euristic [11], whergs > 0 decides the overlap degree between
are described as follows. two clusters. Both of the parametefs, and 3 decide the

number of rules to be generated. In applying TRFN-S to
different problems, we may specify one parameter with the
] o)) ~same value, and alter the other one to find a best network
Since there are no rules initially in TRFN, the first task i ,cture. For example, in this paper, the paramétgf0) is
structure learning is to decide when to generate anew rule. Cldg; 1o 0.01 for different examples, and the best structure of
tering on the external input, which represents the spatial infofr NS is decided bys. With the same value of},, a higher
mation, is used as the criterion. The idea of clustering approagh) e of 3 means a higher overlapping degree, and so fewer
in [15] is adopted. Geometrically, arule corresponds to a clusigfies are generated. The number of fuzzy sets in each external
in the input space. The spatial firing strength can be regardgd ;t gimension is equal to the number of fuzzy rules. To

as the degree the incoming pattern belongs to the correspondiigher reduce the number of fuzzy sets in each dimension,

cluster. Aninput data with higher firing strength means its spas, o may perform the similarity measure checking between two

tial location is nearer the cluster center than those with Sma"‘?éighboring fuzzy sets as in [15] and eliminate the redundant
strengths. Based on this concept, the spatial firing strength a5 Since a recurrent structure is used, the external input

N dimension contains current system state only, so the input
Fi(z) = HO’(VQ) dimension is usually small. Furtherr.n.ore, the inclusion of
the TSK-type consequence can significantly reduce the rule
n number. Owing to these two reasons, chances that two fuzzy
= expl — Z (z; — mij)QO'fj €0,1 (7) sets are highly ov_erlapped are smgll, a_nd th_e fu_zzy similarity
measure process is omitted for design simplification.
Once a new rule is newly generated during the presentation of

is used as the criterion to decide if a new fuzzy rule should &(t), ¥(£))) data, generation of the corresponding consequent
generated. For the first incoming daté0), a new fuzzy rule is node in layer 4 and context node in layer 5 follows. The initial

generated, with the center and width of Gaussian membersfgfistant value, connected to layer 4 is set i), and the
function assigned as otherq;; parameters are assigned as small random signals in

[—0.05,0.05] initially. For the newly generated context node, its
fan-in comes from all the existing rule nodes in layer 3. The ini-
tial link weightsw are set as random values[inl, 1] to make
the initial values of internal variablds locate in the sensitive

wheren |s_t_he number of externgl Input _/a_rl_able_s, ands is . region of membership functiof. This way, a quick param-
a prespecified value that determines the initial width of the f|rstt . o

S .) eter learning can be reached at the beginning. The output,
cluster. For succeeding incoming datét), find

of the new context node is fed back as input in the precondition
; part of the newly generated rule. With this setting, each rule has
1= arglj?ﬁf(t) F'(x) ©) its own memory elements for memorizing the temporal firing
strength history. Via repeating the above process for every in-
wherer(¢) is the number of existing rules at tintelf //, < Comingtraining data, a new recurrentrule is generated, one after
Fiu(t), then a new rule is generated, whéfg(#) € (0,1) isa another, and a whole TRFN is constructed finally.
pre-specified threshold that decays during the learning process.)
In this paperFia(t) = Fiu(t— 1)(1—t/C) is used, where'is B Parameter Learning
a constant value that controls the decay speed. For a more conmFhe objective of parameter learning is to optimally adjust
plex learning problem, a larger rule number is required, and 8w free parameters of the network structure for each incoming
a higher initial threshold;,,(0) should be set in advance. Oncealata, whether the rules are newly generated or are existent
a new rule is generated, the next step is to assign initial centeriginally. The learning process is performed concurrently
and widths of the corresponding membership functions. Sinadth the structure learning phase. With the concurrent learning
our goal is to minimize an objective function and the centers aagproach, learning may be performed online. If the parameter
widths are all adjustable later in the parameter learning phaséde#irning is performed after the structure learning phase, then
makes little sense to spend much time on the assignment of thee have to collect the whole training data in advance for

A. Structure Learning

k=1

=1

mi; :a:z(()) and 014 = Oinit, fori:l,...,n (8)

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

160 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

network structure design. And only after the network structumehile 7, for parameterv. Except for parameten, all parame-

is completely designed can we apply the parameter learnitggs either have good initial values during structure learning [

phase to the same training data. Owning to this reason, thisdo in (10)] or are tuned directly from the error functiom [

approach can only be performed offline. For TRFN-S, owinigp (10)]. To increase the learning speed of temporal memgry

to this online learning property, it may be used for normale may set;, > 7.

operation any time as learning proceeds without any assignment

of fuzzy rules in advance. IV. TRFN DESIGN BY GENETIC ALGORITHM (TRFEN-G)
Considering the single output case for clarity,

Lon _ our goal is 10 Fr problems where supervised training data is unavailable or
minimize the error function

expensive to obtain, such as dynamic system control, TRFN-G
1 4) instead of TRFN-S is applied. The TRFN-G is proposed for
Ei+1)=5¢+1) -y (t+1)) (11) solving problems where gradient information is costly to ob-

tain when explicit credit assignment is available or to reinforce-
wherey(t + 1) is the desired output anglt + 1) is the actual ment type learning problems, where only sparse training infor-
output. Suppose there aneexternal values:;. The parameter mation is required. The sparse training information in reinforce-
a;; in layer 4 is updated by ment learning is obtained from evaluation of the system perfor-
mance. In GA, the only feedback that is required is a relative

aij(t+1) = ai;(t) — nw7 performance measure for each individual. Credit assignment for
da;;(t) each individual’'s action may made implicitly. Since GAs can
fore=1,...,7(t), and j=0,....,n+1 (12) work without explicit credit assignment to individual actions,
they may be regarded as a kind of reinforcement learning when
where only implicit information is available. In [31], approaches that
OE(t+1) 0B, @ apply.GAs. for solving reinfqrcement type problems are called
Tyt + 1) — it + 1»%' (13) genetic reinforcement learning.
dai;(t) > k=1 O Details of TRFN-G design are introduced in this section. The

adopted GA consists of three main operators: reproduction,

l':orth; other free [r)]arameters, includingn Isyer 5(’? andoin o hesover, and mutation. Before going into the three operations,
ayer 2, owing to the recurrent property, the real ime recurrepp, | assign the number of rules in TRFN-G in advance.

learning algorithm [50] is used. We will show the update rule §jnen the number of rules is assigned then the whole network
m only. Updated rules ok ando can be derived the same waygircture is known. Suppose there ameiles in TRFN-G, then
and are omitted. For each,,,, it is updated by the numbers of local membership functions on each external
OE(t+ 1) input variablez, the internal variablé, and the global mem-

Mypg(t+ 1) =mpe(t) — (14) bership functions are all equal to As to the choice of the rule

Ompq (1) number, it's a little heuristic and depends on the complexity of

and OF 1 the problems to be solved. For TRFN-G, owing to its network
ﬂ superiority, it can achieve a good performance with only a
Oy (1) small rule number. After the rule number is determined, coding

d O§,4) —y(t+1) of the TRFN into a chromosome is next performed. A floating

=Wlt+1) -yt +1) W point coding scheme is adopted, meaning that each gene in a
@) . ’“21(5) k N chromosome is represented as a floating point number. All free
) 90y () + Z 0® . . 90; (t)z o® (15) parameters of TRFN, including. ande in layer 2,q in layer
O, — T O, — 4, andw in layer 5, are coded into a chromosome. To see the

coding order of these parameters into the chromosome, we will
where take a TRFN withn external input variables and one output as
90 90 () —m an example. Suppose there areules in the TRFN, then the
P =222 _pry 0;)5) Spr.o=t” P10 (16) following coded order of each dynamic fuzzy rule is obtained:

Omp, ' Omy, o ’ .
and Rule i: |mi1|ai1|---|min|ain|ai0|---
80(5) 5 5 - |Ging1 | wrs | wasl - - - Jwies .
(1) = O(1) (1 Yol)(t)) {Z whe
rq =1 The chromosome representing the whole network is achieved
a0 by concatenating the above coding form of rule 1 to rutene
[4 4 q . .
| (t-—1F -1+ Fi(t-1) after another. The space partition of the external input has a

character of flexibility in contrast to the grid-type partition. With
y 0(5)(t _ 1. 2arz,,(t — 1) — myy (17) the flexible partition, no prepartition of each input dimension is
4 02, ’ required, and the total number of rules can be reduced. With
the structure of TRFN introduced in Section II, we only need to
There are two learning constantsand n,,, during learning. assign the total number of fuzzy rules to TRFN-G design, and
Learning constany is used for tuning parametesism ando, then a whole network can be constructed.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 161

Old New
rank - Population Population
1 | individual ? individual 1

2 | individual ? individual 2
I :> Reproduction |:>
1l

Fitness E> N2} individual ? individual v

value ranking IN/2+1 individual ? TOSSOVET individual Nze
selestion) = \ &Mutation) =

[] []
L[] []
N\ . ‘
[] []
N [individual ? individual N
Generation K Generation K+1

Fig. 2. Flow of the adopted GA.

Let's now see how the GA operates. With the aforemethe mutation operation, it is an operator whereby the allele of
tioned genotype, a population wifts individuals is formed by a gene is altered randomly. With mutation, new genetic mate-
random generation. During each generation, every individualiiials can be introduced into the population. Mutation should be
the population is applied to problem solving, and a fitness valused sparingly because it is a random search operator; other-
is obtained according to its performance. For the reproductianse, with high mutation rates, the algorithm will become little
process, the population is first sorted according to the fithessre than a random search. To clarify the adopted GA, flow of
value of each individual. Based on the elitist strategy, thbe algorithm is shown in Fig. 2.
top-half of the best-performing individuals in the population, In the following section, TRFN-G will be applied to dynamic
the elites, will advance to the next generation directly. Thepntrol. Comparisons with recurrent neural networks designed
remaining half will be generated by performing crossover ojpy the same GA are made. Besides, comparisons with other
erations on individuals on the top half of the parent generatiatontrol configurations, like direct inverse, indirect adaptive, and
Elitist strategy may increase the speed of domination offazzy models based on predictive control, are also performed.
population by a super individual, and thus improves the local
search at the expense of a global perspective, but on balance it V. SIMULATIONS
appears to improve GA performance [51], [52]. To overcome

the disadvantage that population diversity might be lost fast bx

elitist strategy, in [53], a relative-based mutated reproductié stt_am problems, the dynamic sy_stem |denF|f|cat_|(_)n a_nd the dy-
method is proposed and may be incorporated into TRFN-G Rgmic system control. For dynamic system identification where
further improve the performance we can easily collect the precise input—output training data,

After the reproduction process, TRFN-G enters the crossm)—éﬁ':'\"ﬁ1 IS appllgd, O\I/v_hlletfor tthet(:yr?a_mlcdcct)nt_rol .?;Oblemjd
process. In order to select the individuals for crossover, tof1€re the supervised input-output training data IS either costly

nament selection instead of a simple GA roulette wheel seléﬁ— obtain or only the reinforcement signal is available, the

tion [54] is performed. Also, to speed up the learning spee BFN'G is applied.

tournament selection is performed only on the top-half of the . o

best-performing individuals instead of the whole population. fi- Dynamic System Identification

our tournament selection, two individuals in the top-half of the The systems to be identified are dynamic systems whose out-
population are selected at random, and their fithess values pugs are functions of past inputs and past outputs as well. For this
compared. The individual with the highest fitness value is sdynamic system identification, since a recurrent network, the
lected as one parent. The other parent is selected in the sarRE&N-S, is used, only the current state of the system and con-
way. Performing crossover on the selected parents createsttbésignal are fed as input to the network. The adopted identifi-
offspring. Here, two-point crossover is performed. After the oation configuration is a serial-parallel model shown in Fig. 3.
eration, the top-half worst performing individuals in the popTfhe model is used in the following two identification problems.
ulation will be replaced by the newly produced offspring. Fdf a feedforward network is used, then we should know the order

In this section, the TRFN is applied to two kinds of dynamic

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

162 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

of the system, and feed all the related states to the input asin [2 yp(k+1)
— Plant
Example 1: The plant to be identified in this example is -1 Ek
K ;
guided by the following difference equation: '_1_()_, \ +()'—’
-1 k+1
up(k+1) = F (k) 0 = 1), 5,05 = 2), u(k), u(l — 1)) LDypao TREN-S YD
(18) \

where

T12223%5(23 — 1) + T4 (19) Fig. 3. Series-parallel identification model with the TRFN-S. whEld) is
14+ a:% + a:% used for training the network parameter.

f($1,$2,$3,$4,$5) =

Here, the current output of the plant depends on three previous

outputs and two previous inputs. In [1], a feedforward neurdn€ iS measured on a personal computer with Intel pentium
network with five input nodes for feeding the appropriate pag{—GOO CPU inside. Besides the comparison with feedforward
values ofy, andw is used. In [7), identification of the samefuzzy network, other types of recurrent networks are also com-

plant using a recurrent neural network, the memory neural nBgred. Performance of the TRFEN-S is compared with memory
work, is put forward. Also in [20], a recurrent fuzzy SyStemneural network and recurrent neural fuzzy networks including
and in [22], a recurrent neural fuzzy network, the RSONFII\ESONIN and RENN. For memory neural network, the result
are applied to the same task. Here the TRFN-S is used. AfpPosed in [7] is adopted. For RSONFIN, there are four rules

Fig. 3, owning to the recurrent property of TRFN-S, only thwith four output clusters after training, and the learning rates are
current statey, (k) and control inputs(k) are fed as the input. setasthe same as TRFN-S. In[23], RFNN is applied to the same

The other past values of,(k) andu(k) are not used since p.roblem, apd the same netwprk size anq training approach.are
their influence on the output are memorized by the feedbaginulated in the paper. Detailed comparisons of the modeling
structure. If a feedforward network structure is used, then V#&curacy and computation time of these networks are listed in
should know the order of system in advance and feed the applgP!e ! for both training and test data. From the comparisons,
priate past values af, (k) andu(k) to the network. In training we see that TRFN-S can achieve the highest modeling accuracy

the TRFN-S, we use only ten epoches and there are 900 tiith fewer network parameters and CPU time than the compared

steps in each epoch. Similar to the inputs used in [7], the ingtRWorks. . . _ _

is anéid uniform sequence over-2, 2] for about half of the Example 2: Consider next the following dynamic plant with
900 time steps and a sinusoid givenb§5sin(rk/45) for the 10Nger input delays:

remaining time. There is no repetition on these 900 trainir@g(k +1) = 0.72y, (k) + 0.025y, (k — Du(k — 1)

data,_i.e., we have different training sets for each epoch. The F0.00u2(k — 2) +0.2u(k — 3). (20)
learning rates) = 0.4,7,, = 27, = 0.6, F},(0) = 0.01, and _ . _

Fiu(m) = Fu(m — 1)(1 — m/15), wherem denotes thenth This plant is the same as that used in [27]. The current output
epoch, are chosen. After training, three recurrent fuzzy rules 3hthe plant depends on two previous outputs and four previous
contrast to the thirty fuzzy rules in [20], are generated, andi2Puts. Asinexample 1, the identification model shown in Fig. 3
root-mean-square error (RMSE) of 0.0265 is achieved. To s&d!Sed, where only two external input values are fed to the input
the identified result, the following input as used in [7] is adopte®f TRFN-S. The training data and time steps are the same as

for test those used in example 1. In applying the TRFN-S to this plant,
) _ _ the learning rateg = 0.4,7, = 25,3 = 0.3, F;,(0) = 0.01,

u(k) = sin(xk/25), k<250 andF,(m) = Fin(m—1)(1—m/15), wherem denotes thenth
=1.0, 250 <k < 500 epoch, are chosen. After training, three recurrent fuzzy rules are
=—1.0, 500<k <750 generated. These designed three rules are
= 0.3sin(nk/25) 4+ 0.1sin(nwk/32) Rulel: IF u(k) is 1:(0.0214,0.2942) andy, (k) is

+0.6sin(7k/10), 750 < k < 1000. 1(—0.0574,0.0015) andh, (k) is G,
Fig. 4 shows the outputs of the plant (denoted as a solid curve) THEN y(k + 1) is — 0.0234 — 0.0431u(k)
and the TRFN-S (denoted as a dotted curve) for the test input. + 0.0724y,,(k) — 0.0433h, (k) anchy (k + 1) is
In Fig. 4, owing to the dynamic property of the identified plant, 0.2243 andhy(k + 1) is — 0.8393 and

there is an oscillation after transient time 250. To show the ha(k + 1) is 0.6966
effectiveness and efficiency of the recurrent part in TRFN-S, 3 ST ’ .

a feedforward TSK type fuzzy network is applied to the same Rule2: IF u(k) is 1(—0.9688,0.4813) andy,(k) is
problem. In the feedforward network, the five plant input vari- 1(0.0311,0.5031) andhz (k) is G,

abl¢8yp(k|2, yf}(/f — 1) up(k - 23],1»(/6), angy(k - 1) afrehfetfi* . THEN y(k + 1) is 0.0095 -+ 0.0003u(k)

as input. For fair comparison, the precondition part of the feed- B . .
forward network is identified by the same way as TRFN-S. Form +1.000y,,(k) 0'0190@2(]{) andhy (k +1)is
the results in Table I, we can see that performances of TRFN-S —0.7092 andhy(k + 1) is — 0.3565 and
surpass the feedforward network. In this paper, the computation ha(k+1)is — 0.6972.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK

output

163

0.5

100

200

300

400

500 600 700 800 900 1000
time

Fig. 4. Identification results of the TRFN-S in Example 1, where the dotted curve denotes the output of the TRFN-S and the solid curve denotesutipeiactual

TABLE |

COMPARISONS OF THETRFN-S WITH TSK-TYPE FEEDFORWARDNEURAL
Fuzzy NETWORK AND OTHER EXISTING RECURRENTNETWORKS FOR
DYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE 1

Example Example 1
feedforward
Network structure_(Tmemory neurl newal izzy| RSONFIN| RFNN | TRFN-S
netwo

Network parameter 81 48 36 112 33
RMS error (train) 0.1521 0.0203 | 0.0248 0.0114 | 0.0084
RMS error (test) 0.2742 0.0521 | 0.0780 [0.0575 | 0.0346
training time steps 90000 9000 9000 9000 9000
CPU time (second) 2.19 3.50 395 4.51 1.86

Rule3 : IF w(k) is 1(0.7269,1.173) andy, (k) is
1#(—0.0510,1.0418) andhs(k) is G,
THEN y(k 4 1) is 0.0087 + 0.000 078u(k)

+ 1.000y, (k) — 0.016611h3(k) and
hi(k+1)is0.6953 andhz(k + 1) is 0.4623 and
hs(k +1)is 0.2416.

are 30 free parameters in total. With the same training time step
and data, the resulting RMSE of ERNN for the training and
test data are shown in Table Il. Besides ERNN, RSONFIN is
applied to the same problem by using the same training time
step and data. The learning constant of RSONFIN is the same
as TRFN-S. There are six rules and three output clusters in
RSONFIN after training, resulting in a total number of 36 pa-
rameters. The resulting RMSE of RSONFIN for training and
test data are shown in Table Il. From the compared data listed
in Table I, we see that the TRFN-S shows much better per-
formance in identification accuracy than the compared two net-
works. For the computation time, we see that ERNN requires
less computation time than TRFN-S when the same training
time step is performed. However, from Table I, for ERNN to
achieve the same training accuracy as TRFN-S does, a longer
computation time and more network parameters are required.

B. Dynamic System Control

For the dynamic system control problem, since the precise
controller input-output training data is either costly to obtain or
unavailable, the GA is adopted for controller design. Although

With the learned three rules, a RMSE of 0.0067 for the traininge may use some specific ways for training the controller by
data is achieved. For clarity, the network structure constructedpervised learning, like the direct inverse and indirect adaptive
by the above three rules is shown in Fig. 5. To test the identientrol mentioned above, these methods may be applied only
fied result, the test signal used in Example 1 is adopted. Figfd@ some special plants. Problems with these two methods are
shows the outputs of the plant (denoted as a solid curve) atebcribed in Section I. Based on GA, the TRFN-G controller
the TRFN-S (denoted as a dotted curve) for the test input. Fdesign is proposed. The control configuration and input—output
performance comparison, Elman’s Recurrent Neural Netwovkriables of TRFN-G are shown in Fig. 7, and are applied to
(ERNN), whose feedback connections also comes from feedithg following two dynamic system control problems. In the fol-
the hidden states back to the input nodes as TRFN does, is siowing two examples, to show the advantage of TRFN-G, its
ulated. The number of hidden nodes in ERNN is five, and theceunterpart recurrent neural network, the ERNN, is compared

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

164 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

y&k+1)

al =(-0.0234- 0.0431,0.0724,- 0.0433)
42=(0.0095,0.0003,1.0000,- 0.0195)

I~

[;

1 T 1] 1 T T 1 1 ¥
e —
0.8 [’ -
0.6 i n ” q m 7]
0.4 a 4
L b2r E
2
3 |
| |
02} u
0.4} v E h
0.6} \ 1
_0 8 1 1 1 1 1 1 1 1 1
o 100 200 300 400 500 600 700 800 900 1000
time

Fig. 6. Outputs of the dynamic plant (solid curve) and model TRFN-S (dotted curve) in Example 2.

with the same controller design configuration. As TRFN, theutput. A recurrent fuzzy neural network, the RFNN, designed
ERNN has feedback connections coming from the hidden nobg the same GA is also compared. Besides the network struc-

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK

TABLE I
COMPARISONS OF THETRFN-S WTH OTHER EXISTING RECURRENT
NETWORKS FORDYNAMIC SYSTEM IDENTIFICATION IN EXAMPLE 2

Example Example 2
Network structure ERNN ERNN | RSONFIN| TRFN-S
Network parameter] 54 54 49 33
RMS error (train) 0.036 0.0067 0.03 0.0067
RMS error (test) 0.078 0.058 0.06 0.0313
training time steps 9000 333000 9000 9000
CPU time (second) 0.83 6.26 3.2 1.98
Fi 1 *
itness-value
GA <: assignment [* O
yr(k+1) [\/I ‘
TRFN-G | u(k) | Dynamic yp(k+1)
___.| Controller Plant
yp(k)
]

Fig. 7. Dynamic system control configuration with TRFN-G controller.

ture performance comparison, comparisons with other control
configurations, including the direct inverse and indirect adap-
tive control, and fuzzy model-based predictive control, are also

made in the following examples.

Example 3: The controlled plant is the same as that used in

[1] and is given by

. - yp(k)yp(k - 1)(yp(k) +2.5)
D = T) 2k 1)

w(k). (21)

The plant is slightly different from that used in [7] and [22] in
that there is no scaling operation to the output. In designing the
TRFN-G, the desired output. is given by the following 250

pieces of data:
yr(k+1) = 0.6y, (k) + 0.2y, (k — 1) + 0.6 sin(27k /45),
1<k <110,
= 0.6y,(k) + 0.2y,.(k — 1) + 0.2sin(27k/25)
+0.4sin(7k/32), 110 < k < 250.

165

test the performance of the designed controller, another refer-

ence inputr(k) is given by

y(k+1) = 0.69,-(k) + 0.2y,.(k — 1) + 0.2sin(27k/25)
+0.4sin(7k/32), 250 < k < 500.

The best and averaged control performance for the test signal

over the 50 runs is also listed in Table Ill. To demonstrate the

control result, one control performance of TRFN-G is shown in

Fig. 9 for both training and test control reference output. The
corresponding designed four fuzzy rules are

Rule1: IF y,.(k + 1) is 12(0.620,0.510) andy,,(k) is
1(—0.850,0.427) andhy (k) is G,
THEN (k) is 4.445 54 + 5.327 54y,.(k + 1)
+ 3.96415(k) — 6.39046h, (k) and
hi(k +1)is 2.703 andhy(k + 1) is 2.923 and
hs(k+1)is2.138 andhs(k + 1) is — 2.876.
Rule2: IF y,.(k + 1) is 11(0.630,0.551) andy, (k) is
1(—0.090,0.354) andha (k) is G,
THEN u(k) is — 1.494 50 + 3.07569y,.(k + 1)
— 0.597 69y, (k) — 1.749 46h2(k) and
hi(k+1)is —2.899 andhs(k + 1) is
—1.540 andhg(k + 1) is — 0.523 and
ha(k + 1) is 2.991.
Rule3: IF y,.(k + 1) is u(—0.28,0.265) andy, (k) is
1(—0.890,0.521) andhs (k) is G,
THEN u(k) is — 1.529 50 + 3.857 54y,.(k + 1)
— 2.167 85y, (k) — 1.428h3(k) andhy (k + 1) is
—2.978 andha(k + 1) is 1.416 andhs(k + 1) is
—0.584 andha(k 4+ 1) is — 1.936.
Rule4: IF y.(k + 1) is 1£(0.840,0.715) andy, (k) is
1(—0.570,0.435) andhy (k) is G,
THEN w(k) is 2.1226 + 5.5085y,.(k + 1)
+ 0.6268y, (k) 4 4.9883h, (k) and
hi(k+1)is2.602 andha(k + 1) is —2.921 and
hg(k + 1) is2.989 andhy(k + 1) is 2.855.
The input stateg;,.(k + 1) andy,(k) are divided by 4.2 be-
fore entering the above controller. To show the effectiveness

and efficiency of the recurrent part in TRFN-G, a feedforward
TSK-type fuzzy network designed by the same GA is compared.

There are four rules in TRFN-G, resulting in 48 free param&or the feedforward network, all plant input variables including
ters in total. In applying the GA, 50 chromosomes are randonik), u,(k) andy,(k — 1) are fed as network input. To have

generated in a population, i.é?;, = 50, initially. Each chro-
mosome contains 48 genes. The probability of mutatiog, is
0.01. The fitness value of each chromosome is defined as

1
22)

Fitness-value= .
pet (Ur(k+1) — yp(k +1))2

about the same network parameters as TRFN-G, the number of
fuzzyruleis setto 5, resulting in a total number of 50 free param-
eters. The averaged best-so-far fitness values over 50 runs for
each generation are shown in Fig. 8. The learned accuracy and
computation time are listed in Table Il for comparison. Effec-
tiveness and efficiency of the recurrent part in TRFN-G are ver-

The evolution is processed for 1500 generations and is repedfedl from Table Ill. Besides the above comparison with a feed-
for 50 runs. The averaged best-so-far fithess value over 50 rdasvard fuzzy network, a recurrent neural network, the ERNN,
for each generation is shown in Fig. 8. The best and averagedl a recurrent fuzzy network, the RFNN, designed by the same
RMSE error for the 50 runs after 1500 generations of trainifgA are simulated. The input and output of ERNN and RFNN
and the computation time for each run are listed in Table Ill. Tare the same as those of TRFN-G. For ERNN, the number of

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

0.5 T T

045 .

04 1

035} ’ 7

Fitness value
o
o N o
N o [}
1 1 T
1 I l

o

S

[¢]
T
!

0.05 -]

o] 500 1000 1500
Generation

Fig. 8. The averaged best-so-far fitness values on each generation for TRFN-G (denot®&d BRFN with traditional operation (denoted a$"), ERNN
(denoted as-+"), feedforward TSK-type fuzzy network (denoted as), and RFNN (denoted asx”) in Example 3.

output

1 i 1
0 50 100 150 200 250
time step

(@)

output

1 1 1 1 1 1 1 1
_30 20 40 60 80 100 120 140 160 180 200

time step

(b)

Fig. 9. The tracking performance by TRFN-G controller in Example 3 for (a) training and (b) test reference output, where the reference outpdtas denote
solid curve and the actual output by a dotted curve.

hidden nodes is 6, resulting in a total number of 54 free paramimber of 49 free parameters. The averaged best-so-far fitness
eters. For RFNN, the number of rules is 7, resulting in a totahlues of ERNN and RFNN over 50 runs for each generation

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK 167

TABLE Il rameters in the fuzzy model is designed by GPC. However, as
THE COMPUTATION TIME FOR EACH GA RUN AND CONTROLLEDRMSEBY i |inear predictive controller design, for this model we should
DIFFERENT TYPES OFNETWORKS AND DESIGN METHODS IN EXAMPLE 3
know the order of input and output stated to participate in the

Example Example 3 consequence.

Control RSONFIN+direct The proposed TRFN-G is applied to this time-delayed plant.
configuration. | inverse control fﬁ%%ﬁ&m ERNNIGA | RENNHGA TRENG The control configuration in Fig. 7 is adopted. The number of
Network parameler 30 50 54 49 48 recurrent fuzzy rules in TRFEN-G is set to three; thus there are

Condifon - Mean| Best | Men | Best | Mem | Best | Men) Bst 33 free parameters. For the GA, there are 50 chromosomes in
RMSemor(iait) |~ — | 04172 0.1371 {02747 | 0.1185 | 05340] 00841 | 0.317| 00631 the population, and each chromosome contains 33 genes. The
RMSemor(es) | 01661 | 043241 01561 | 0.1694 [0.1069 | 03911 [00850 |0.0910 | 0053 probability of mutation P, is set to 0.05. During training, the
CUtimesoomd)] ~ — 8 31 0 5 desired outputy,.(k + 1), is set as follows:

10, if k < 500r100 < k < 150,

Yr k + = 4 = . |4 .
are shown in Fig. 8. The training and test results for the best () { 15, i 50 <k <100 0r150 <k < 200
and averaged rms errors over 50 runs are also listed in Table lII. (23)

For RFNN, owning to its local feedback structure, a poor peLy, js shown in Fig. 10. in solid line. These 200 pieces of data

formance occurs near time step 110 where a sharp change a&#%eused for training. The fitness value is first defined by
desired control trajectory occurs. From these results, we see that 1

an obviously better control result is achieved for TRFN-G than Fitness-value= -)
those achieved by ERNN and RFNN when the same GA design e (U (BE+1) —yp(k+1))2

approach is applied. As to the computation time, from Table e evolution is proceeded for 1200 generations and is repeated
we see that ERNN requires less computation time (360 s) th@h 50 runs. The training results for the best and averaged rms
TRFN-G for a run with 1200 generations. However, from Fig. &rors over 50 runs are listed in Table 1V, and the best control
for TREN-G to achieve the same accuracy as ERNN dose, ophgyit is shown in Fig. 10. Although a small rms error can be
about 170 generations (96 s) are required. achieved, from the result in Fig. 10, we see that there’s a large
In TREN-G, the elitist crossover operation is used. In this o@teady state error on set point 10. To minimize the steady state

eration, the parents for crossover are selected from the top-helor, a weight¥ (%) is incorporated into the fitness value. The
best-performing individuals, the elitist. To see the performanggy fitness value is defined by

of this operation, we compare it with the traditional operation 1

where the parents for crossover are selected from the wholeFitness-value= —5;5

population instead of the elitist. The averaged best-so-far fit- et W(E)(ye(k + 1) — yp(k +1))2
ness values over 50 runs for each generation by the traditionddere

operation are shown in Fig. 8. From the fitness value compar- 5 for5+50n <k<50(n+1), n=0123
isons in Fig. 8, we see that the adopted elitist crossover operatl¥nk) = { 1 otherwise ’ T

achieves a better performance. ,) . . .
To see the performance of other control configurations féy higher weight valugV” = 5 is assigned after 5 time steps

the same task, the direct inverse control by RSONFIN cofen the target output changes from one set point to another.
troller proposed in [22] is compared. There are five rules arid!iS Way we can minimize the regulation error after every five
output clusters generated after the training of RSONFIN; tfighe steps when the regulation point changes from one to an-
total number of free parameters is 50. Since the training dat?f§€"- The evolution is proceeded for 1200 generations and is
different from that of TRFN-G, only the RMSE of the above tedepeated for 50 runs. Thg avgraged be.st-s.o-far fitness value over
signal is shown in Table IIl. In [7], an indirect adaptive contropO "uns for each generation is shown in Fig. 11. The controlled
configuration using memory neural network controller is prdMS €rror by this method is listed in Table IV. To demonstrate
posed. It has been shown in [22] that RSONFIN with direct irthe control re_sult, one control result of the TRFN-G constituted
verse control can achieve a better control performance than thsthe following three recurrent fuzzy rules:
method, so comparison with it is omitted. From the results in Rule1: IF y,.(k + 1) is 1:(0.570, 0.286) andy, (k) is
Table Il we see tha}t TRF_N—G can achieve the highest control 11(0.610,0.441) andhy (k) is G,
accuracy in comparison with the other two approaches. i

Example 4: In this example, we will see the regulation per- THEN u(k)is —9.9231 + 10.5692y,(k + 1)
formance of TRFN-G for a dynamic plant with longer input de- + 7.3846y, (k) + 0.8615h, (k) andhy (k + 1) is
lays. The controlled plant used in this example is the same as in —1.103 andhy(k + 1) is — 0.034 and
example 2. To govern a plant with long input delays like this, ha(k +1)is — 1.717
the usually adopted design approach is the predictive control 3 S .
method. Many linear controller designs for time delayed plantsRul€2: IF y..(k + 1) is 12(0.530, 0.409) andy,,(k) is
by model-predicted control have been proposed [55]. For the 1(0.370,0.333) andhq (k) is G,
CErrent'c?g;r]olhplantlZ owing todi'ts ponlinearltlaehavior, it hah§ been THEN w(k) is 17.4333 + 12.1077y,.(k + 1)
shownin that a linear predictive controller can not achieve a .
good performance. For this reason, in [27], a fuzzy model based — 2.8108y,(k) + 10j8h2(k) andhy(k +1) is
predictive control approach is proposed. In this method, the con- 0.876 andhz(k + 1) is — 0.873 and
troller is a RNFN as proposed in [21], and the consequence pa- hs(k+1)is — 2.257.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

18 T ¥ T T T T T T T

12 -

-
»
i

T e PR

- e S
=
|

Output

~ ==
=Y
~.

(1]
e ST sep—— E—
1

1 1 1 1 1 1 1 1 1
20 40 60 80 100 120 140 160 180 200
time step

Fig. 10. The regulation performance by TRFN-G controller in Example 4 for TRFN-G designed by fitness function based on control accura&y (vithept
with W (—), and based on time steps until failure- -), where the reference output is denoted as a solid curve.

3.5 T T T ¥ T

2.5 .

&

Fitness value
N

i

P

k)

g
?,

}

o
4]
T

0.5

1 i 1 i 1
o] 200 400 800 800 1000 1200
Generation

]

Fig. 11. The averaged best-so-far fitness values on each generation for TRFN-G (denet@dTdRFN designed by traditional GA with tournament selection
(denoted as<$") and ERNN (denoted as+") in Example 4.

Rule3: IF y,.(k + 1) is u(—0.060,0.742) andy, (k) is y-(k+1) andy, (k) are divided by 20 before entering the above
£4(0.100,0.157) andhs (k) is G, controller. For comparison, ERNN designed by the same con-
figuration in Fig. 7 is simulated. The number of hidden nodes

THENu(k) is —11.631 + 28.4615y, (k +1)) in ERNN is 5, resulting in a total number of 40 free parame-
+19.9538y,, (k) + 28.0308hs3(k) andhi(k 4+ 1)is ters. The best-so-far fitness values over 50 runs for each gener-
2.381 andhy(k 4+ 1)is — 0.796 and ation are shown in Fig. 10. The controlled rms error is shown

in Table IV, too. From this result, we see that a better control
result is achieved for TRFN-G than that of ERNN for the same
is shown in Fig. 10. From Fig. 10, we see that the regulatid®A design approach. In [27], a fuzzy model based predictive
error is minimized at the cost of a higher overshoot. The statesntrol approach is applied to the same regulation task. The

ha(k +1) is2.02,

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

JUANG: A TSK-TYPE RECURRENT FUZZY NETWORK

TABLE IV
THE COMPUTATION TIME FOR EACH GA RUN AND CONTROLLED RMSE BY
DIFFERENT TYPES OFNETWORKS AND DESIGN METHODS IN EXAMPLE 4

169

part. Also, in dynamic system identification, TRFN-S is com-
pared with other types of recurrent neural or neural fuzzy net-

works; and in dynamic system control, TRFN-G is compared

Example Example 4
o | OPVOIC | Evor T
Network parameter 40 33 33
Condition _ Mean | Best | Mean | Best | Mean | Best
RMS error 1.5805 1.5046 | 1.4394] 1.1861 | 1.0878 1 1.2353 | 1.1374
CPU time (second) —_ 190 304 305

(1]

network controller is an RNFN and the parameters are desigrb]
by GPC method. The controlled rms error by this method is
listed in Table IV. From these two comparisons, the good perfor-[3]
mance of TRFN-G is verified. In example 3, the adopted elitist
crossover operation is compared to the operation where the pafy,
ents for crossover are selected from the whole population. In
this example, the adopted GA is compared to the traditional GA
with tournament selection [45]. In the traditional method, tour- [!
nament selection is performed on the whole population and the
selected individual will either advance to the next generation
or act as one parent for crossover depending on the crossovéfl
probability, which is set to 0.5 in this paper. The averaged fit- [7
ness value for each generation by traditional GA is shown in
Fig. 11. From Fig. 11, we find that the adopted elitist operation
achieves a better result. [
In the above simulations, we use the precise control accuracy
as the fitness value during the learning process of GAs. Next[9]
we consider TRFN-G design when only a sparse evaluation in-
formation is used. Here, a control is considered to be successfyl
if the controlled output meets the constraint. The constraint is
set as that for each reassigned set point in Fig. 11, starting from
the current state and after ten times, the controlled output errét!]
should be within+0.2; otherwise, a failure occurs. With this
performance evaluation, supervised learning cannot be appliefd?2]
In reinforcement learning, the controller is designed by usingm
the failure and success information. In TRFN-G, for each failur
control, since the number of time steps until failure reveals qu14]
kind of relative importance, it is used as the fitness value of each
individual. With this fitness assignment, a successful controllef?]
may be designed by TRFN-G and one successful control result
is shown in Fig. 10. [16]

VI. CONCLUSION [17]

A TRFN is proposed in this paper. The TRFN expands the
powerful ability of the TSK-type feedforward fuzzy network [18]
to deal with temporal problems. The proposal calls for design
of TRFN under either neural network or genetic learning aly;q
gorithms. For supervised learning, the TRFN-S designed by
neural network is put forward. TRFN-S can automatically con-

_ X i ! [20]
struct itself by performing online supervised structure and pa*
rameter learning concurrently. For problems where supervisedi]
training data is costly to obtain or unavailable, TRFN-G has
been advanced. Owing to the supervisory network structure Cﬂﬁz]
TRFN, TRFN-G can achieve a high design accuracy with smal
network size. From simulations to dynamic system processin
by neural network and genetic learning algorithms, TRFN ha
shown itself supervisory to its recurrent neural network counter-

3]

with different types of control configurations. For both prob-
lems, TRFN has shown better results than what are compared.
As characterized by this supervisory property, TRFN will be ap-
plied to solve more dynamic problems in future work.

REFERENCES

K. S. Narendra and K. Parthasarathy, “ldentification and control of dy-
namical systems using neural networl&EE Trans. Neural Networks

vol. 1, pp. 4-27, 1990.

J. L. Elman, “Finding structure in time,Cognit. Sci. vol. 14, pp.
179-211, 1990.

M. I. Jordan, “Attractor dynamics and parallelism in a connectionist se-
guential machine,” ifProc. 8th Annual Conf. Cognitive Science Sogiety
Amherst, MA, 1986, pp. 531-546.

B. A. Pearlmutter, “Learning state space trajectories in recurrent neural
networks,” inProc. Int. Joint Conf. Neural Networkeol. 2, Washingon,

DC, 1989, pp. 365-372.

C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C.
Lee, “Learning and extracting finite state automata with second-order
recurrent neural networkNeural Comput.vol. 4, pp. 395-405, May
1992.

S. Santini, A. D. Bimbo, and R. Jain, “Block-structured recurrent neural
networks,”Neural Networksvol. 8, no. 1, pp. 135-147, 1995.

P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neural net-
works for identification and control of dynamic system&EEE Trans.
Neural Networksvol. 5, pp. 306—-319, Apr. 1994.

] E. Kosmatopoulos, M. Polycarpou, M. Christodoulou, and P. loannou,

“High-order neural networks for identification of dynamic systems,”
IEEE Trans. Neural Networksol. 6, pp. 422—-431, Apr. 1995.

S. A. Billings and C. F. Fung, “Recurrent radial basis function networks
for adaptive noise cancellationNeural Networksvol. 8, pp. 273-290,
Apr. 1995.

T. Takagi and M. Sugeno, “Fuzzy identification of systems and its ap-
plications to modeling and control|EEE Trans. Syst., Man, Cybern.
vol. SMC-15, pp. 116-132, Jan. 1985.

C.T.Linand C. S. G. Lee, “Neural-network-based fuzzy logic control
and and decision systemEEE Trans. Compugvol. 40, pp. 1320-1336,
Dec. 1991.

L. X. Wang,Adaptive Fuzzy Systems and ControUpper Saddle River,
NJ: Prentice-Hall, 1994, ch. 3.

M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualita-
tive modeling,”IEEE Trans. Fuzzy Syswol. 1, pp. 7-31, Feb. 1993.

J. S. Jang, “ANFIS: Adaptive-network-based fuzzy inference system,”
IEEE Trans. Syst., Man, Cyberwol. 23, pp. 665-685, May 1993.

C. F. Juang and C. T. Lin, “An online self-constructing neural fuzzy
inference network and its applicationsEEE Trans. Fuzzy Syswol.

6, pp. 12-32, Feb. 1998.

C. T. Lin, C. F. Juang, and J. C. Huang, “Temperature control of rapid
thermal processing system using adaptive fuzzy netwdtlizzy Sets
Syst, vol. 103, pp. 49-65, 1999.

J. Grantner and M. Patyra, “Synthesis and analysis of fuzzy logic finite
state machine modelsProc. IEEE Int. Conf. Fuzzy Systemsl. 1, pp.
205-210, June 1994.

C. Omlin, K. Thornber, and C. Gilies, “Representation of fuzzy finite-
state automata in continuous recurrent neural networktac. IEEE

Int. Conf. Neural Networkssol. 2, June 1996, pp. 1023-1027.

F. Unaland E. Khan, “A fuzzy finite state machine implementation based
on a neural fuzzy system,” iAroc. IEEE Int. Conf. Fuzzy Systemsl.

3, Orlando, FL, June 1994, pp. 1749-1754.

V. Gorrini and H. Bersini, “Recurrent fuzzy system&foc. |IEEE Int.
Conf. Fuzzy Systemeol. 1, pp. 193-198, June 1994.

J. Zhang and A. J. Morris, “Recurrent neuro-fuzzy networks for non-
linear process modelinglEEE Trans. Neural Networksol. 10, no. 2,

pp. 313-326, Mar. 1999.

C. F. Juang and C. T. Lin, “A recurrent self-organizing neural fuzzy in-
ference network,TEEE Trans. Neural Networksol. 10, pp. 828-845,
July 1999.

C.H.LeeandC. C. Teng, “Identification and control of dynamic systems
using recurrent fuzzy neural network$£EE Trans. Fuzzy Systol. 8,

pp. 349-366, Aug 2000.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

170

[24] D.W. Clarke, C. Mohtadi, and P. S. Tuffs, “Generalized predictive con-[43]

(25]

(26]

(27]

(28]

(29]

(30]

[31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

trol part |, the basic algorithm Automaticavol. 23, no. 2, pp. 137-148,
1988.

J. H. Kim, J. Y. Jeon, J. M. Yang, and H. K. Chae, “Generalized predic-[44]

tive control using fuzzy neural network model,”Rtoc. IEEE Int. Conf.
Neural Networks1994, pp. 2596-2598.

A. Cipriano and M. Ramos, “Fuzzy model based control for a mineral[45]

flotation plant,” inProc. IEEE Int. Conf. Industrical Electronics, Con-
trol, Instrumentation1994, pp. 1375-1380.

J.H.Kim, D.T. College, A. Gun, and G. Do, “Fuzzy model based predic- [46]

tive control,” inProc. IEEE Int. Conf. Fuzzy Systemsl. 1, Anchorage,
AK, May 1998, pp. 405-409.

A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control probleniSEE Trans.
Syst., Man, Cybervol. SMC-13, pp. 834-846, 1983.

H. R. Berenji and P. Khedkar, “Learning and tuning fuzzy logic con-
trollers through reinforcementslEEE Trans. Neural Networksol. 3,

pp. 724-740, Sept. 1992.

C.T.Linand C. S. G. Lee, “Reinforcement structure/parameter learning
for neural-network-based fuzzy logic control systemi&EE Trans.
Fuzzy Systvol. 2, pp. 46-63, Feb. 1994.

D. Whitely, S. Dominic, R. Das, and C. W. Anderson, “Genetic rein-
forcement learning for neurocontrol problemsiachine Learningvol.

13, pp. 259-284, 1993.

D. E. Moriarty and R. Miikkulainen, “Efficient reinforcement learning
through symbiotic evolution,Machine Learningvol. 22, pp. 11-32,
1996.

W. A. Farag, V. H. Quintana, and G. L. Torres, “A genetic-based neuro-
fuzzy approach for modeling and control of dynamic systenSEE
Trans. Fuzzy Systvol. 9, pp. 756-767, Oct. 1998.

C. F. Juang, J. Y. Lin, and C. T. Lin, “Genetic reinforcement learning
through symbiotic evolution for fuzzy controller desighZEE Trans.
Syst. Man, Cybern.,,Rol. 30, pp. 290-302, Apr. 2000.

V. Petridis, S. Kazarlis, and A. Papaikonomou, “A genetic algorithm [54]

for training recurrent neural networks,” Rroc. Int. Joint. Conf. Neural
Networks 1993, pp. 2706-2709.

P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary al-
gorithm that constructs recurrent neural network&EE Trans. Neural
Networks vol. 5, pp. 54-65, Jan. 1994.

Y. Sato and S. Nagaya, “Evolutionary algorithms that generate recurrent

neural networks for learning chaos dynamics,Pic. IEEE Int. Conf.
Evolutionary Computationl996, pp. 144-149.

K. W. C. Ku, M. W. Mark, and W. C. Siu, “Addining learning to cellular
genetic algorithms for training recurrent neural networkSEE Trans.
Neural Networksvol. 10, pp. 239-252, Mar. 1999.

B. A. Pearlmutter, “Gradient calculations for dynamic recurren
neural networks: A surveyEEE Trans. Neural Networksol. 6, pp.
1212-1228, Oct.. 1995.

J. Torreele, “Temporal processing with recurrent networks: An evolt
tionary approach,” ifProc. 4th Int. Conf. Genetic Algorithm$991, pp.
555-561.

P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
gorithm that constructs recurrent neural networkSEE Trans. Neural
Networks vol. 5, pp. 54-65, Feb. 1994.

(47]

(48]

(49]

[50]

[51]

(52]

(53]

[55]

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 10, NO. 2, APRIL 2002

K. W. C. Ku, M. W. Mak, and W. C. Siu, “Adding learning to cellular
genetic algorithms for training recurrent neural networkSEE Trans.
Neural Networksvol. 10, pp. 239-252, Apr.. 1999.

C. L. Karr, “Design of an adaptive fuzzy logic controller using a ge-
netic algorithm,” inProc. 4th Int. Conf. Genetic Algorithm&991, pp.
450-457.

A. Homaifar and E. McCormick, “Simultaneous design of membership
functions and rule sets for fuzzy controllers using genetic algorithms,”
|EEE Trans. Fuzzy Syswol. 3, pp. 129-139, Apr. 1995.

P. Thrift, “Fuzzy logic synthesis with genetic algorithms,”Rnoc. 4th

Int. Conf. Genetic Algorithms991, pp. 509-513.

M. H. Lim, S. Rahardja, and B. H. Gwee, “A GA paradigm for learning
fuzzy rules,”Fuzzy Sets Systiol. 82, pp. 177-186, 1996.

M. A. Lee and H. Takagi, “Integrating design stages of fuzzy systems
using genetic algorithms,” iRroc. IEEE Int. Conf. Fuzzy Systemsl.

1, San Francisco, CA, Apr. 1993, pp. 612-617.

J. S.R.Jang and C. T. Sun, “Functional equivalence between radial basis
function networks and fuzzy inference systentEEE Trans. Neural
Networks vol. 4, pp. 156159, Feb. 1993.

R. J. Williams and D. Zipser, “A learning algorithm for continually
running recurrent neural networkd\leural Comput.vol. 1, no. 2, pp.
270-280, 1989.

D. Thierens and D. Goldberg, “Elitist recombination: An integrated se-
lection recombination GA,” ifProc. IEEE Int. Conf. Evolutionary Com-
putation vol. 1, 1994, pp. 508-512.

P. Larranaga, M. Poza, Y. Yurramenddi, R. H. Murga, and C. M. H. Kui-
jpers, “Structure learning of Bayesian networks by genetic algorithms:
A performance analysis of control parametetEEE Trans. Patt. Anal.
Mach. Intell, vol. 18, pp. 912-926, Sept. 1996.

C. F. Juang, “Construction of dynamic fuzzy if-then rules through ge-
netic reinforcement learning for temporal problems solving,Pmac.
Joint 9th IFSA World Congress 20th NAFIPS Int. Coxéncouver, BC,
Canada, July 2001, pp. 2341-2346.

D. E. Goldberg,Genetic Algorithms in Search Optimization and Ma-
chine Learning Reading, MA: Addison-Wesley, 1989, ch. 3.

E. F. Camacho and C. Bordomdpdel Predictive Control in the Process
Industry. New York: Springer-Verlag, 1995.

Chia-Feng Juang (M'99) received the B.S. and
Ph.D. degrees in control engineering from the
National Chiao-Tung University, Hsinchu, Taiwan,
R.0.C., in 1993 and 1997, respectively.

In 1999, he joined Chung Chou Institute of
Technology, as an Assistant Professor. In 2001,
he joined the National Chung Hsing University,
]i‘ Taichung, Taiwan, R.O.C., where he is currently an
: Assistant Professor of Electrical Engineering. His
current research interests are neural fuzzy systems,
intelligent control, evolutionary computation, and

-

i\

Y. Sato and S. Nagaya, “Evolutionary algorithms that generate recurepteech signal processing.

neural networks for learning chaos dynamics,Pioc. IEEE Int. Conf.
Evolutionary Comp.1996, pp. 144-149.

Dr. Juang is a member of the IEEE Signal Processing Society and the IEEE
Robotics and Automation Society.

Authorized licensed use limited to: UNIVERSIDAD DE GRANADA. Downloaded on July 06,2010 at 10:46:06 UTC from IEEE Xplore. Restrictions apply.

