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ABSTRACT:

The high intra- and inter-tumor heterogeneity of many types of cancers, including 

breast cancer (BC), poses great challenge to development of subtype-specific 
prognosis. In BC, the classification of tumors as either ERα+ (Luminal A and Luminal 
B), HER2+ (ERα+ or ERα-) or triple-negative (TNBC)(Basal-like, claudin-low) guides 
both prognostication and therapy. Indeed, prognostic signatures for ERα+ BC are 
being incorporated into clinical use. However, these signatures distinguish between 

luminal A (low risk) and Luminal B (high risk) BC; signatures that identify low/
high risk patients with luminal B BC are yet to be developed. Likewise, no signature 
is in clinical use for HER2+ or TNBC. The major obstacles to development of robust 
signatures stem from diversity of BC, clonal evolution and heterogeneity within each 
subtype. We have recently generated a prognostic signature for HER2+:ERα- BC based 
on the identification of genes that were differentially expressed in a tumor-initiating 
cell (TIC)-enriched fraction versus non-TIC fraction from a mouse model of HER2+ 

BC (MMTV-Hers/Neu). Here we describe the rationale behind development of this 
prognosticator, and present new features of the signature, including elevated PI3K 

pathway activity and low TNFalpha and IFNgamma signaling in high-risk tumors. 

In addition, we address controversies in the field such as whether random gene 
expression signatures significantly associate with cancer outcome. Finally, we suggest 
a guideline for development of prognostic signatures and discuss future directions.

INTRODUCTION

Breast cancer (BC) is a heterogeneous disease that 

includes ERα+ (~65%; luminal A and B), HER2+ (~10% 

HER2+:ERα+; ~10% HER2+:ERα-), and triple negative 

(~15%; Basal-like, Claudin-low, metaplastic) forms [1]. 

Luminal A tumors have the best prognosis followed by 

luminal B and HER2+:ERα+, with HER2+:ERα-, Basal-like 

and Claudin-low having the worst outcome. Patients with 

ERα+ tumors are treated with tamoxifen and aromatase 

inhibitors [2], HER2+ tumors with chemotherapy plus 

anti-HER2 antagonists such as trastuzumab, a monoclonal 

antibody directed against HER2 [3-5], whereas TNBCs 

are currently treated with chemotherapy alone [6]. Many 

of these tumors may not develop macro-metastases, and 

therefore surgical removal alone with local radiation or 

hormonal therapy can cure patients. In contrast, other 

tumors form distal metastases that are virtually incurable. 

The goal of prognostic signatures is to segregate patients 

with primary tumors into low and high-risk groups, 

thereby identify patients who would benefit from 
withholding harsh therapy and those who will benefit from 
aggressive intervention. 

Heterogeneity within a tumor can affect its 

dissemination potential and response to therapy. In 

addition, many types of cancer exhibit hierarchical 

organization whereby only a fraction of cells, termed 

cancer stem cells (CSC) or, as they are operationally 
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defined by transplantation assays, Tumor Initiating 
Cells (TICs), sustains growth, whereas the remaining 

tumor cells, which descend from TICs, have lost their 

tumorigenic potential [7]. Early prognostic signatures 

were developed irrespective of this hierarchy or the 

diversity of BC. These signatures, such as Oncotype [8], 

predict outcome for ERα+ BC, the majority of cases, but 

not for HER2+ or triple negative BC [9]. These signatures 

also seem to segregate Luminal A (low proliferation, 

low risk) from Luminal B (high proliferation, high risk) 

patients, but not good/bad prognosis within each subtype. 

A second type of prognostic signature was developed 

for cancer stem cells (CSC/TICs). Thus, an invasiveness 

gene signature (IGS) was generated from CD44+/CD24-/

low breast TICs isolated from Pleural effusions from 

patients with metastatic disease [10]. When analyzed 

against several independent cohorts, this signature 

scored modestly for ERα+ BC (HR, 2.12) but poorly for 

TNBC (HR, 1.08) and HER2+ (HR, 0.96) patients [8]. 

A third type of prognostic signature was designed for 

specific breast cancer subtypes but irrespective of tumor 
hierarchy. This includes a stromal-derived prognostic 

predictor (SDPP) [11], which we found to be more 

predictive for HER2+:ERα+ than for HER2+:ERα- BC [12]. 

A signature has recently been developed for TNBC, based 

on microarray data from whole tumors [13]. A molecular 

signature of normal breast epithelial and stromal cells 

from Li-Fraumeni syndrome with p53 mutations has 

also been established [14]. Whether it predicts clinical 

outcome for TNBC or HER2+ BC patients, in which p53 

is frequently inactivated, remains to be seen. For a more 

detailed discussion of prognostic signatures, mainly for 

ERα+ BC, we refer readers to excellent recent reviews [15, 

16]. Importantly, none of these signatures were developed 

on the basis of TICs for a specific BC subtype. Here 
we discuss development of a TIC-derived signature for 

HER2+:ERα- BC, some new features of the signature, and 

lessons learned in this process.

Generation of a TIC-enriched prognostic 

signature for HER2+:ERα- BC 

Cognizant of the complexity of human BC, 

we have sought to derive a prognostic signature for 

HER2+:ERα- BC using TICs from this subtype.  As we 

can use transplantation into immune-competent host 

to operationally define TICs in the mouse, we chose to 
analyze tumors from MMTV-Her2/Neu mice, which 

give rise to HER2+:ERα--like mammary tumors, for these 

studies. We first identified through transplantation assays 
HER2+:ERα- TICs as CD24+:JAG- [12]. TIC frequency 

was ~2-4.5%. Next, using differentially expressed genes 

between the TIC-enriched fraction and non-TIC fraction 

we developed a 17-gene Her2-TIC-enriched signature 

(HTICS) that predicted clinical outcome on several 

independent HER2+ cohorts. Its prognostic power was 

independent of other predictors, stratified lymph node+ 

HER2+ BC into low- and high-risk subgroups, and was 

specific for HER2+:ERα- patients (hazard ratio (HR)=5.57; 

P=0.002)). Retrospective analyses revealed that patients 

with HTICS+ HER2+:ERα- tumors resisted chemotherapy 

but responded to chemotherapy plus trastuzumab [12]. 

HTICS is therefore a promising new prognostic signature 

for HER2+:ERα- BC that may be used to identify high-risk 

patients that would benefit from anti-HER2 therapy. 
Notably, a substantial percentage of 

HTICS+:HER2+:ERα- patients still developed metastasis 

(27%) or died (22%) within 4 years post-surgery even 

when treated with trastuzumab. HTICS+ patients may 

relapse because they are inherently resistant to trastuzumab 

and/or are prone to become drug-resistant. HER2+ TICs 

depend on HER2 signaling [17]. Therefore HTICS+ tumors 

should exhibit increased sensitivity to trastuzumab. On 

the other hand, in HTICS+ patients, a high frequency of 

TICs with enhanced self-renewal capacity may facilitate 

the accumulation of new mutations or epigenetic changes 

that can lead to clones with increased drug resistance 

(e.g. SRC activation [18]. Alternatively, HTICS+ tumors 

may represent a distinct, more aggressive subtype of 

HER2+:ERα- BC (see below).

HTICS: proliferation and immune response genes

HTICS included 8 up-regulated (Aurkb, Ccna2, 

Scrn1, Npy, Atp7b, Chaf1b, Ccnb1, Cldn8) and 9 down-

regulated genes (Nrp1, Ccr2, C1qb, Cd74, Vcam1, Cd180, 

Itgb2, Cd72, St8sia4). Pathway analysis of these genes, 

shown in Fig. 1A-B, classifies HTICS genes into 4 groups 
(i) cell cycle progression (Aurkb/Aurora kinase B, Ccna2/

CyclinA2, Ccnb1/cyclinB1, Chaf1b/chromatin Assembly 

Factor 1 Subunit B); (ii) immune-response (Scrn1, Npy, 

C1qb, CD74, Vcam1, CD180, CD72); (iii) angiogenesis 

(Nrp1, Ccr2, Itgb2); and (iv) others (Atp7b, Cldn8, 

St8sia4).  Some of these genes, e.g. Aurora kinase B, are 

potential therapeutic targets. 

We have recently performed gene expression 

analysis on human (HER2+ and Basal) BC cell lines, and 

confirmed expression of 11 HTICS genes (Aurkb, Ccna2, 
Scrn1, Npy, Atp7b, Chaf1b, Ccnb1, Nrp1, Vcam1, Itgb2, 

and St8sia4; Fig. 1B). In contrast, analysis of human 

peripheral blood monocyte cells revealed expression of 

Nrp1, Ccr2, C1qb, CD74, CD180, CD72, and St8sia4. 

The composition of HTICS is therefore consistent with 

previous reports that improved clinical outcome for HER2+ 

BC patients correlates strongly with immune response [19, 

20]. HTICS may be powerful because it encompasses both 

proliferation and immune-response/stromal genes.  

The identification of immune related genes in 
HTICS is somewhat surprising given that the signature 

was developed from lineage-depleted TICs. Indeed, the 

generation of a prognostic signature from TICs has the 



Oncotarget 2013; 4: 1317-13281319www.impactjournals.com/oncotarget

disadvantage that tumor-associated stroma cells, which 

express many informative markers, are intentionally 

depleted in the course of purifying TICs. In accordance, 

Morag Park and colleagues have generated potent 

prognostic signatures for breast cancer on the basis of 

cancer-associated stroma [11]. In MMTV-Her2/Neu 

Figure 1: Pathway analysis of HTICS. (A) The HTICS genes are listed with Entrez ID, Expression in different cell types as determined 

by analysis of HER2+ JIMT1, HCC1954 and BT549 breast cancer cells as well as Human Peripheral Blood Mononuclear Cells, official 
name, and pathways involved (as per panel B). (B) Superimposed HTICS genes onto GSEA pathways resulting from comparison between 

TIC-enriched and CD24- cell fraction. The node containing HTICS genes is highlighted in yellow. Pathways highly involved with HTICS 

are circled and labeled. 
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tumors, we found that the CD24+:JAG1- population was 

enriched for TICs, whereas the CD24-:JAG1- double-

negative population contained both mammary epithelial 

and stroma cells including immune-cells. The latter was 

evident from gene expression profiling and pathway 
analysis [12] (Fig. 1). Thus, the presence of contaminating 

stroma in the double-negative fraction inadvertently 

contributed to robustness of our signature. 

Ruling out randomness

A recent report by Venet and colleagues state that 

most random gene expression signatures are significantly 
associated with breast cancer outcome [21]. Specifically, 
3 unrelated signatures (e.g. “social defeat in mice”) 

were shown to be significantly associated with clinical 
outcome of breast cancer patients (P < 0.05). However, 

the HRs predicted by these examples were low (2.4, 1.9 

and 1.8). Moreover, the signatures were not directed, i.e. 

both positive and negative correlations were considered 

informative – whereas biological signatures are directed 

(i.e. HTICS+ correlates with poor prognosis). This 

constraint would reduce random correlation by a factor of 

2. In addition, for signatures that comprise up-regulated 

and down-regulated genes, randomness in a specific 
direction would be reduced by another factor of 2. Finally, 

the Venet et al. manuscript tested for prognostic value 

of the 3 unrelated signatures against only one cohort 

(NKI). But for a signature to be valuable, it must be able 

to predict outcome on multiple independent cohorts.  

Thus, if a signature has a genuine biological basis, it 

will predict clinical outcome on independent cohorts 

whereas a randomly selected signature that performs 

well on one cohort will fail on others.  Indeed, using a 

computer algorithm to optimize signatures on a training 

cohort, we identified signatures for HER2+ BC with HR 

of over 20, which were completely uninformative when 

tested against other cohorts. To directly test our prediction, 

we analyzed the “social defeat in mice” signature from 

Venet et al. (which gave HR of 2.4 on the NKI cohort), 

on multiple BC cohorts. This gave HR of approximately 

Figure 2: Weak prognostic power of “Mouse Social Defeat Signature” compared with 1000 random signatures in 

HER2+ breast cancer patients. Of the 163 genes in the Mouse Social Defeat (MSD) signature, 148 were found on GPL570 and 127 on 

GPL96 platforms. Analysis was performed with 116 HER2+ patients from 2 GPL570 cohorts (GSEs 16446 and 20685 with Overall Survival 

(OS) data) and 145 HER2+ patients from 6 GPL96 cohorts (GSEs 2034, 2603, 5327, 6532, 11121, and 25066 with Metastasis-Free Survival 

(MFS) data). The MFS cohorts contain 53 HER2+:ER- patients, sufficient for independent analysis. A set of 1000 random signatures with 
the same number of genes was generated from atmosphere background noise (random.org) for the OS analysis, and another set for MFS. 

We then used SSM algorithm (assuming all genes are up-regulated) to differentiate samples in OS and MFS cohorts. The signatures were 

ranked by HR and compared with Mouse Social Defeat Signature (red boxes). The % signatures with significant HR > 2.0 are listed at the 
bottom. Comparing to 1000 sets of random signatures, Mouse Social Defeat Signature ranked 124 for HER2+ MFS samples, 363 for HER2+ 

OS samples, and 368 for HER2+:ER- MFS samples. 
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~0.8, 1.2 and 1.1 (Fig. 2), demonstrating that at least this 

randomly selected signature performs poorly when tested 

on independent cohorts.

To test for significance of a candidate signature, 
Venet et al., suggested to test 1000 random signatures 

of the same composition against the same cohorts, and 

determine whether less than 5% of these random signatures 

(i.e. p< 0.05) have similar HR.  For the “social defeat in 

mice”, comparison to 1000 random sequences of similar 

structure ranked this signature at 124, 363 and 368 (Fig 2). 

In contrast, when such analysis was performed on HTICS, 

we found that only 3.3% of 1000 random signatures (with 

the same gene composition of HTICS) gave significant HR 
of more than 2.0, and importantly, HTICS scored highly in 

all cohorts, e.g. 2nd best on HER2+:ERα- patients (Fig. 3).

Thus, for a signature to be valid, both to support 

a biological process and to predict clinical outcome, we 

suggest the following guideline:

1. The signature should predict clinical outcome on 

multiple cohorts with high and significant HR (we suggest 
>4).  

2. The signature should identify a substantial 

number of patients in high/low risk groups (>10% total) 
to have clinical utility.  

3. A collection of 1000 random signatures of the 

same size and composition (up- and down-regulated 

genes) should contain less than 5% of signatures that 

can predict outcome with similar HR as the candidate 

signature.

TIC-derived prognostic signatures and cancer 

biology 

As TICs sustain tumorigenesis, it seems intuitive 

that a tumor with a high percentage of TICs would be 

more deadly than a tumor that has relatively fewer TICs. It 

is important to note however that we used a TIC-enriched 

fraction, not a pure population of TICs. The percentage of 

TICs in the CD24+:JAG1- fraction was still <5% and in 

most human cancers it is much lower.  Thus, the majority 

of cells in the “TIC-enriched fraction” are non-TICs. 

Figure 3: Comparing the prognostic power of HTICS with 1000 random sets of signatures in HER2+ breast cancer 

patients. All HTICS 17 genes (8 up-regulated and 9 down-regulated) were present on both GPL570 and GPL96 platforms. Analysis 

was performed with 116 HER2+ patients from 2 GPL570 and GPL96 cohorts (see legends to Figure 2). A set of 1000 random signatures 

with the same number of genes (8 genes up-regulated, 9 down-regulated) were generated from atmosphere background noise (random.

org) for OS analysis, and another for the MFS, and then SSM algorithm was employed to differentiate samples in OS and MFS cohorts. 

The signatures were ranked by HR and compared with HTICS (blue boxes). The % of signatures with significant HR > 2.0 is listed at the 
bottom. Comparing to 1000 sets of random signatures, HTICS ranked 2nd for HER2+ MFS, 12th for HER2+ OS, and 2nd for HER2+:ER- MFS. 
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Possibly, the actual percentage of TICs may be higher 

and underestimated due to death of most TICs following 

transplantation. This view implies that TIC frequency as 

determined by xenograft assays reflects the hierarchical 
organization of cancer cells plus the stochastic survival of 

TICs after transplantation. In this case, the TIC enriched 

fraction may contain high percentage of TICs, and the 

signature may indeed reflect the gene expression profile 
of TICs. Alternatively, the TIC-enriched fraction may 

comprise low percentage of TICs, and high percentage 

of TIC-derived progenitors with similar cell surface 

markers; the signature in this case may reflect the gene 
expression profile of progenitor cells, which may revert at 
low frequency back to TICs [22]. 

There is strong evidence that the rate-limiting 

step in metastasis is formation of macro-metastases at 

distal sites, not tumor dissemination (reviewed in [23]). 

Since we identified TICs through transplantation assays, 
this population has proven ability to regenerate tumors. 

Therefore HTICS+ tumors may have many TICs, which 

are more likely to self renew, form micro-metastases at 

distal sites, and acquire the necessary genetic or epigenetic 

alterations required for outgrowth of disseminated lesions. 

Indeed, 4 of 8 up-regulated genes in HTICS are directly 

involved in cell cycle progression, DNA replication and 

mitosis (Fig. 1).

TIC-derived prognostic signatures and TIC 

biology 

The forgoing discussion pertains to tumors driven 

by a single type of TIC.  Clonal and parallel evolution 

among TICs may complicate generation of TIC-derived 

prognostic signatures. First, there is evidence that TICs 

with metastatic potential represent a subclass of TICs.  

For example, in human pancreatic cancer, TICs express 

CD133+, but only a subclass of CD133+:CXCR4+ cells 

located at the invasive front of tumors have metastatic 

potential [24]. Thus, ideally signatures should be derived 

from a TIC sub-fraction that contains metastatic initiating 

cells. Second, the underling assumption of a linear 

relationship between primary tumors and their metastases 

is not always correct. Recent sequencing and genetic 

analyses of paired tumors and metastases reveal that in 

certain cases, primary tumors and metastases evolve in 

parallel with the latter arising from a small fraction of 

primary tumor cells [25, 26]. It remains to be seen whether 

in such tumors, a transplantation assay would identify the 

same small fraction of TICs that metastasize in human, 

i.e. whether the transplantation assay in mice detects 

cells that metastasize in patients, or whether even tumor 

cells that do not metastasize in human can score as TICs 

following injection into immune-compromised mice. In 

the latter case, it would seem impossible to generate useful 

prognostic signatures on the basis of enriched TICs. 

Third, highly heterogeneous primary tumors may 

have more than one type of TIC. In such tumors, TICs 

may be found in different fractions or may have similar 

cell surface markers hence sorted in the same fraction. In 

this case, the TIC-enriched signature would be a mixture 

of 2 different types of TICs. This may reduce (or increase) 

efficacy of a signature. One way to address this issue is to 
inject single tumor cells into recipient mice and compare 

multiple secondary tumors with their parental primary 

tumor. We performed such analysis on MMTV-Her2/Neu 

tumors, and found that independent secondary tumors 

arising from injection of single cells within the TIC-

enriched fraction were indistinguishable from primary 

tumors [12]. These results indicate that MMTV-Her2/

Neu tumors have a single type of TIC, and therefore gene 

expression profiles from enriched TIC fractions can be 
used to predict the behavior of this BC subtype. Thus, a 

prerequisite for generation of a TIC-derived signature is 

Figure 4: Ideal and typical Kaplan-Meier survival curves of patients segregated on the basis of a prognostic signature. 
(A) An ideal KM curve where all signature-negative patients survive (black line, group 1) and are well separated from signature-positive 

patients with bad prognosis (red line, group 2). (B) A typical KM curve with signature-negative patients with good prognosis (group 1); 

signature-positive patients with bad prognosis (group 2); signature-negative but bad prognosis (group 1b); and signature-positive but good 

prognosis (group 2b). See text for discussion.
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the demonstration that the specific tumor subtype has a 
single type of TIC.  Clearly, this prerequisite is difficult 
to satisfy by single cell transplantation assays for most 

human tumors, which show much reduced TIC frequency. 

Together, we suggest that prognostic signatures based on 

enriched TIC fractions are unlikely to be predictive for 

cancers that exhibit high heterogeneity, clonal evolution 

and multiple/distinct TICs. However, for many cancer 

types with single type of TIC, this approach should yield 

potent prognostic signatures.

Interpretation of signature-positive and signature-

negative Kaplan-Meier survival curves

Figure 4A depicts idealized and typical Kaplan-

Meier (KM) survival curves of patients segregated on the 

basis of a prognostic signature.  In the idealized curve, 

all signature-negative patients survive (black line), 

whereas all signature-positive patients die (red line). 

In such hypothetical curve, signature-negative patients 

would clearly benefit from receiving minimal or no 
treatment at all, while signature-positive patients should 

be treated aggressively. For ERα+ BC, many signatures 

stratify patients with similar KP curves seen in Figure 4A 

because they identify as signature-negative the luminal-A 

patients that have excellent prognosis. However, for other 

BC subtypes, a typical KM survival curve identifies four 
groups as shown in Figure 4B. Groups 1 and 2 behave 

as in the idealized curve (Fig. 4A). Yet, group 2 includes 

patients who succumb to the disease right off the bat and 

those who die after several years. Tumors from the former 

group of patients likely have already acquired oncogenic 

mutations that drive aggressive dissemination/metastasis. 

In contrast, the latter group may have not yet acquired 

such mutations at the time of biopsy, but because their 

tumors have a high number of TICs that self-renew, they 

are more likely to acquire such mutations that facilitate 

metastatic disease.

Group 1b represents patients that die despite 

being signature-negative, whereas group 2b represents 

patients who survive despite having signature-positive 

tumors. Survival of group 2b is a welcome outcome; 

it may reflect successful therapy or timely removal of 
primary lesions through surgery before tumor cells have 

disseminated. Group 1b is a major obstacle to clinical 

use of prognostic signatures because death of signature-

negative patients suggests that the entire cohort should 

Figure 5: PI3K, TNFalpha and IFNgamma pathway activities are significantly different in HTICS+ versus HTICS- 
patients. Pathway activities calculated for 53 MFS HER2+:ER- patients (Figure 2), identified significant differences in activities for PI3K, 
TNFalpha and IFNgamma pathways in HTICS+ versus HTICS- patients. Shown are heat map, box plot distribution, average (labeled in the 

box) and p values (by t-test). 
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be aggressively treated even if most patients in this group 

would do well with minimal intervention. Thus, to justify 

withholding aggressive drugs from signature-negative 

patients, the signature should be predictive enough to 

render group 1b a small minority. Group 1b may represent 

a subset of patients that the signature fails to identify 

as having a poor prognosis. Alternatively, these tumors 

may be misdiagnosed (e.g. they are ERα+ or TNBC not 

HER2+:ERα-). It is also possible that these tumors are 

heterogeneous with some aggressive clones (signature-

positive) that were not included or were diluted out in the 

biopsy from which RNA was extracted for microarray 

profiling. Alternatively, the tumor may have evolved 
to become more aggressive (signature-positive) post 

biopsy. Thus, it is possible that group 1b is unavoidable. 

The challenge is to generate prognosticators that can 

separate signature-negative and -positive curves wide 

enough so that risk of death for group 1b is out-weighted 

relative to the risk of side effects from aggressive therapy 

on signature-negative patients. Intriguingly, if HTICS- 

patients can be classified as a subgroup of HER2+:ERα- BC 

(see next section), there is a possibility that other clinical 

parameters or signatures could further separate group 1b 

and help identify novel treatments for these patients.

Are signature-negative and signature-positive 

tumors close variants or different subtypes?

Elevated PI3K signaling and reduced TNFalpha and 

INFgamma signaling in HTICS+ HER2+:ERα- patients
While we tend to view signature-negative and 

signature-positive patients as close variants of the 

same tumor subtype (e.g. HER2+:ERα-), they may 

represent different cancer subtypes that conventional 

immunohistochemistry with limited markers or microarray 

profiling (e.g. PAM50) fail to distinguish. Indeed, HTICS 
may classify seeming related tumors into two different 

subtypes, e.g. HER2+:ERα-:HTICS+ and HER2+:ERα-

:HTICS-, which differ by TIC frequency, immune response, 

etc. The question is, at what point can one classify tumors 

as distinct subtypes rather than close variants? Alterations 

in a single gene can determine response to therapy. For 

examples, the response of HER2+ BC to trastuzumab is 

strongly affected by phosphorylation /activity of SRC 

[18], expression of the autophagy gene ATG12 [27] or co-

treatment with metformin [28]. Therefore, highly related 

tumors may be separated into 2 groups when response to 

a single drug is considered. However, if tumors can be 

classified into 2 groups based on clinical outcome even 
without therapy, then, for all intent and purposes, these 

groups may be viewed as distinct subtypes. Interestingly, 

we showed that HER2+:ERα-:HTICS+ and HER2+:ERα-

:HTICS- patients have a different outcome even when 

not treated with chemotherapy [12], and may therefore 

represent distinct subtypes.

If signature-negative and signature-positive tumors 

represent distinct tumor subtypes, what makes them 

different? With the advent of genome-wide analysis 

of genetic and epigenetic alterations, this question can 

now be directly addressed.  At a more basic level, one 

can calculate activity for multiple pathways to identify 

features that distinguish signature-positive from -negative 

tumors. We calculated pathway activity for 18 signaling 

pathways as defined by [29], for 29 HER2+:ERα-:HTICS+ 

versus 24 HER2+:ERα-:HTICS- tumors. Strikingly, we 

found that PI3K pathway activity was significantly 
elevated in HTICS+ versus HTICS- tumors, whereas TNFα 
and INFγ pathway activities were significantly reduced 
(Fig. 5). This is in agreement with our HTICS signature 

analysis where the up-regulated genes are involved in 

cell proliferation and down-regulated genes are related to 

immune response (Figure 1B). These results suggest that 

HTICS+ and HTICS- HER2+:ERα- tumors are inherently 

distinguishable, at least in part, by levels of PI3K, 

TNFalpha and INFgamma signaling. Sequencing genes on 

these pathways may identify mutations that activate these 

pathways, separate HER2+:ERα- tumors into HTICS+ and 

HTICS- subtypes, and underlie their differential prognosis.   

PIK3CA is the second most frequently mutated 

oncogene whereas the PI3K pathway is frequently 

activated in BC [30].  Drugs targeting this pathway, 

including PI3K, AKT, mTOR and autophagy inhibitors, 

are in different phases of clinical trials and many new 

drugs are being developed [31].  It was shown that 

PI3K inhibitors are more effective against tumors with 

Pik3ca mutations [32].  Our findings therefore suggest 
that HER2+:ERα-:HTICS+ patients, with elevated 

PI3K signaling, may be highly responsive to PI3K 

pathway inhibitors in combination with anti-HER2 and 

chemotherapy. 

Rationale design of TIC-derived prognostic 

signatures

When designing TIC-derived prognostic signatures, 

one should consider the source of tumor samples, identify 

TICs and address their stability, secure independent 

cohorts with gene expression and clinical data, optimize 

a signature on one cohort (training) and then validate on 

multiple other (test) cohorts. Finally, the signature should 

be adopted for use on clinical samples.  Here we review 

major steps in this process.

1. Tumor samples.

Ideally, a TIC-derived prognostic signature should 

be derived from related primary tumors. However, 

this is technically very difficult especially given the 
heterogeneity of cancer. For example, HER2+:ERα- 

tumors represent ~10% of BC samples. To obtain at least 

5-10 independent HER2+:ERα- tumors - to identify TICs 

and derive the signature -  one needs fresh biopsies in 
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sufficient quantities from at least 50 patients. Our success 
in obtaining a good prognostic signature for human cancer 

using a mouse model for HER2+:ERα- BC [33], suggests 

that this approach may be applicable to other well-defined 
cancer subtypes. Mouse models of cancer provide ample 

supply of primary tumors and the ability to identify TICs 

in an immune-proficient host. Excellent mouse models for 
very specific breast cancer subtypes are being constantly 
created (e.g. [34-38]) and they offer great opportunity to 

generate subtype-specific signatures. 
While prognostic signatures are typically derived 

from primary tumors, it would be interesting to determine 

whether metastatic lesions could prove a better source.  

Intuitively, primary tumors should have the upper hand 

because they harbor the genetic/epigenetic information 

that determines TIC frequency and metastatic potential. 

Moreover, the prognostic test will ultimately be 

performed on primary tumor samples. Yet, given the 

heterogeneity and parallel evolution of some cancers, 

primary tumors may not be enriched for TICs that sustain 

metastatic disease, as has recently been demonstrated in 

Medulloblastoma [39]. Thus, TICs (or metastatic initiating 

cells) from metastases may provide better prognostic 

information than primary tumors.  

2. Identification of TICs and their stability.
 A prerequisite for generation of a TIC-derived 

signature is the identification of cell surface markers 
that can distinguish between TICs and non-TICs.  In 

mouse models of mammary adenocarcinomas, CD24 

and CD49f, which are used to identify mammary stem 

cells, are expressed on most tumor cells and cannot be 

used to segregate TICs from non-TICs. For MMTV-Wnt1 

tumors, CD24 and Thy1 were successfully used to identify 

a small fraction of cells that is highly enriched for TICs 

[40]. For MMTV-Her2/Neu, surface markers CD49f, Sca-

1, CD29, CD90, CD18 and CD14 failed to subdivide the 

CD24+ cell population for enrichment of TICs [41, 42]. 

We found that JAG1 (and Notch1) could subdivide the 

CD24 cell population into highly and moderately enriched 

fractions [12].  The CD24+:JAG1- population contained 

TICs at a frequency of 1-4.6%. As noted, TIC stability 

should be determined by comparing multiple secondary 

tumors derived from single cells to the primary tumors 

from which they were derived using global gene profiling 
methods. 

3. Cohorts with microarray and clinical data. 

Success in developing prognostic signatures very 

much depends on availability of cohorts with clinical 

and transcript expression data based on RNA extracted 

from fresh tumor biopsies. For breast cancer, there are 

relatively large cohorts that are publicly accessible.  For 

many other cancer types, this is a serious limitation. Even 

for breast cancer, the available cohorts are old and from 

patients given outdate treatment regimens. This problem 

is confounded by the fact that one large cohort should 

be used to “train” the signature, and then at least 2-3 

independent cohorts to assess its utility. 

4. Bioinformatics.

 To generate a prognostic signature, a training cohort 

is used to first determine the clinical relevance of each 
gene of interest. These genes can be identified through 
statistical analysis such as ANOVA or SAM by comparing 

expression in specific cell types (e.g. TIC-enriched vs. 
non-TICs). Alternatively, all genes on the microarray are 

used to correlate expression with clinical outcomes. A 

simple “training” process assesses the association of each 

individual gene with good or bad clinical outcome using 

Pearson’s correlation or cluster analysis, choosing the 

most predictive genes [12]. A more sophisticated approach 

involves binary regression to identify a set of genes with 

the highest ability to differentiate patients with good/bad 

prognosis [11, 13]. The advantage of the latter method is 

that it takes into account the effect of gene combination, 

rather than individual genes in isolation, to predict 

clinical outcome. In addition, cross-validation procedures 

like leave-one-out can be used to test for robustness of 

a signature. This is done by randomly selecting multiple 

subsets from the training cohort to gauge signature 

efficacy [13]. Ultimately, the effectiveness of a signature 
has to be validated on multiple independent cohorts.  

5. Bringing prognostic signatures to the clinic. 

Because microarray analysis requires large amount 

of intact RNA, which can only be obtained from freshly 

biopsied samples, it is not practical to perform this 

analysis as a diagnostic tool in the clinic. Indeed, most 

clinical samples are archived as Formalin-Fixed, Paraffin-
Embedded (FFPE) tissues. NanoString technology, which 

does not involve PCR amplification, allows for accurate 
measurement of gene expression even from degraded RNA 

samples including FFPE samples at pico molar levels [43]. 

This technology enables international multi-centered 

testing with thousands of formalin-fixed specimens, 
including old archived samples. One limitation of 

NanoString technology is that unlike microarray analysis 

in which genes of the entire transcriptome are measured, 

only a few hundred genes can be monitored at the same 

time. However, for short signatures such as Oncotype (21 

genes) PAM50 (50 genes), NanoString technology has 

already proved successfully [44], and can be applied to 

other signatures such as HTICS.

FUTURE DIRECTIONS

While much effort has been invested in RNA 

expression-based technologies to generate sensitive 

prognostic signatures, the advent of exome sequencing at 

reduced cost (now approaching $1000/sample), opens the 

door for exome-based prognosis or specific sequencing 
of genes associated with a particular cancer. This may 
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soon revolutionize diagnosis and treatment at a patient/

tumor-specific gene resolution. Sequencing-based 
prognosis alone may prove to be sufficiently powerful 
to guide therapy. However, given the complexity of 

gene regulation, splice form variants, genetic, epigenetic 

and post-translational effects, we envision that ultimate 

predictors would be based on complex analysis of several 

parameters including gene expression and mutation 

analysis. The applications of such next-generation 

signatures with effective therapies will likely transform 

personalized medicine, and dramatically reduce mortality 

rates in years to come. 
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