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Magic-angle twisted bilayer graphene
(MATBG) hosts a number of correlated states
of matter that can be tuned by electrostatic
doping1–4. Superconductivity has drawn con-
siderable attention and the mechanism behind
it is a topic of active discussion5. MATBG
has been experimentally characterized by nu-
merous transport6,7 and scanning-probe8–10

experiments. The material has also emerged as a
versatile platform for superconducting electron-
ics, as proven by the realization of monolithic
Josephson junctions11,12. However, even though
phase-coherent phenomena have been measured,
no control of the superconducting phase has
been demonstrated so far. Here, we present a
Superconducting Quantum Interference Device
(SQUID) in MATBG, where the superconduct-
ing phase difference is controlled through the
magnetic field. We observe magneto-oscillations
of the critical current, demonstrating long-range
coherence agreeing with an effective charge of
2e for the superconducting charge carriers. We
tune to both asymmetric and symmetric SQUID
configurations by electrostatically controlling the
critical currents through the junctions. With
this tunability, we study the inductances in the
device, finding values of up to 2 µH. Furthermore,
we directly observe the current-phase relation
of one of the Josephson junctions of the device.
Our results show that superconducting devices
in MATBG can be scaled up and used to reveal
properties of the material. We expect this to
foster a more systematic realization of devices
of this type, increasing the accuracy with which
microscopic characteristics of the material are
extracted. We also envision more complex de-
vices to emerge, such as phase-slip junctions or
high kinetic inductance detectors.

The recent realization of electrostatically defined
Josephson junctions (JJs) in MATBG, witnessed by
the observation of magnetic interference12 and Shapiro
steps11, has sparked interest in combining such devices
with other states like orbital magnets13. Gate-defined
quantum devices are thus emerging as a probe of the

physics hosted by MATBG that is complementary to bulk
measurements or scanning-probe experiments. When
combining two JJs into a SQUID, the interference be-
tween the supercurrents through each arm as a func-
tion of an out-of-plane magnetic field leads to an os-
cillatory critical current across the device14. Among
other characteristics, the effective charge of the carri-
ers, the system’s inductance, or the current-phase rela-
tion (CPR) of the JJs can be estimated from such os-
cillations15. Beyond being a material probe, SQUIDs
have an established history of applications as, for exam-
ple, magnetometers14,15, photon detectors16, tunable res-
onators17 or superconducting quantum bits18,19. An all-
electrically-controllable monolithic SQUID would allow
for in situ tuning of its macroscopic parameters, offering
new possibilities for controlling devices like highly bal-
anced SQUIDs20 or frequency-tunable quantum bits21.

To date, evidence of superconducting interference in
MATBG has been Fraunhofer-like patterns in single junc-
tion geometries11,12. Here, we build on previous gate-
defined JJ realizations and form a SQUID, a ring geom-
etry with one JJ in each arm. To observe interference,
a superconducting path must encircle the ring. Fulfill-
ing such a condition in MATBG remains a fabrication
challenge because of twist angle inhomogeneity22, mak-
ing our device a major leap forward in terms of com-
plexity. We observe coherent behavior over a distance at
least an order of magnitude larger than in single junction
interference11,12. Finally, a SQUID grants experimental
control of the superconducting phase, a knob upon which
our study builds.

The device is depicted in Fig. 1a. The MATBG is en-
capsulated in hexagonal boron nitride and the twist angle
averaged over the device is 0.95◦±0.04◦. A MATBG ring
is defined by etching a hole in the center of the device,
and contacted by three gold electrodes (I, II, III). The
data shown below are taken between contacts II and III
(see Extended Data Figs. S3, S4 and S5 for other contact
combinations). Two local top gates, G1 and G2, control
the local carrier densities n1 and n2 in a 120 nm long re-
gion in arm 1 and arm 2 of the ring and a graphite back
gate tunes the global carrier density n. We send a cur-
rent from contact II to III, and measure the voltage drop
between these contacts to calculate the two-terminal dif-
ferential resistance R = dV/dIdc. The circuit equivalent
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FIG. 1. Tunable superconducting quantum interference device. a Device schematics to scale. Contacts are in
yellow, top gates in blue, etched areas in red and MATBG in grey. The dashed green rectangles represent the different areas,
being Seff = 3.22 µm2, Seff = 1.61 µm2 and Seff = 0.805 µm2 corresponding to an effective charge of e, 2e and 4e for the
superconducting charge carriers, respectively. b Circuit equivalent representation of the device, hosting JJ1 and JJ2. The
current bias, voltage measure setup is displayed. c Line trace (red) at zero magnetic field of the voltage drop across the device
as a function of current bias Idc. The the contact resistance, present in the measurement due to the 2 terminal measurement
setup, accounts for the finite slope in the superconducting regime. The differential resistance dV/dIdc corresponding to the
voltage drop is shown in blue. d Resistance across the device as a function of Idc and out-of-plane magnetic field, with both
arms being tuned to host their maximal supercurrent, showing oscillations of period ∆B = 0.8 mT in the critical current. Dark
blue corresponds to a superconducting path connecting both contacts, light blue to a state in which a part of the device not
connected to both contacts is superconducting and red to the whole sample being normal. We subtract an offset in magnetic
field (see Methods). The inset shows a line trace of the critical current in the region where oscillations occur when both arms
of the SQUID are superconducting (red) or when only one is (blue). e Resistance across the device as a function of current
bias and out-of-plane magnetic field when the SQUID is tuned to a symmetric configuration.

to the electrical setup is shown in Fig. 1b, where the
dashed red box represents the device. All measurements
are performed in a 3He–4He dilution refrigerator at a
temperature of 50 mK unless stated otherwise. Further
details of the fabrication process, twist angle determina-
tion and measurement setup are given in the Methods
section and Extended Data Figs. S1 and S2.

We first find the optimal gate configuration at which
the critical current Ic is maximized in each junction. By
applying a gate voltage, we tune the electron density,
either of the whole device (in the case of the global back
gate), or of the region underneath a gate (for the local
top ones). MATBG presents flat bands at densities above

and below the charge neutrality point (CNP), where a
filling factor ν is defined as the number of electrons per
moiré unit cell2,3. The most prominent superconducting
region is expected for −3 < ν < −2. We measure Ic as a
function of the global back gate voltage with zero volts
applied to the top gates and extract, in such filling factor
range, the density at which the critical current is highest
nopt = −1.27× 1012 cm−2 (see Extended Data Fig. S6).
At this global density, we tune the top gate of JJ1 into
the normal state and maximize the critical current of
junction 2 using VG2 and vice versa (see Extended Data
Fig. S7). We find the maximum critical currents of the
two arms to be very different in magnitude, namely Ic,1 =
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0.5 nA for JJ1, and Ic,2 = 11 nA for JJ2.
We observe a finite slope in voltage in the supercon-

ducting regime, due to the two-terminal measurement
setup. The pronounced peak in resistance at Idc =
11.5 nA indicates the critical current of the device. The
second peak at Idc = 15.5 nA most likely corresponds to a
spatial region of higher critical current that does not ex-
tend all the way between the two contacts. We attribute
this observation to twist angle inhomogeneity.

In order to demonstrate phase-coherence around the
ring, we show the differential resistance as a function
of Idc and perpendicular magnetic field B in Fig. 1d.
We observe oscillations in Ic with period ∆B = 0.8 mT
and an amplitude of approximately 0.5 nA on top of a
critical current background of maximally 11.5 nA. When
electrostatically tuning JJ1 out of the superconducting
state, we suppress the oscillations, as seen in the inset of
Fig. 1d. Since Ic,2 is smooth in B and no Fraunhofer-
like interference is seen when JJ1 is tuned to the normal
state (See Extended Data Fig. S8), arm 2 is in a bulk
superconducting state at this optimal n2, indicated by
the absence of the junction in the schematics in Fig. 1d.
The fact that oscillations only appear when both arms
are superconducting, as shown in the inset of Fig. 1d,
confirms that we have phase coherence around the entire
ring.

The period of the oscillations is a direct measure the
effective area of the loop15 Seff = h/(e∗∆B), with e∗

being the effective charge of the superconducting charge
carriers. In Fig. 1a we plot rectangles corresponding to
this area for different effective charges of the carriers and
observe that the two extreme cases of e∗ = e and e∗ = 4e
have an effective surface that barely fits the device, while
e∗ = 2e leads to an interference path at the center of each
arm. Therefore, the observed periodicity points towards
the effective charge being 2e. This is consistent with the
Shapiro steps observed in a single JJ geometry, a quantity
which also depends on the charge of the carriers11.

For the oscillations shown in the inset of Fig. 1d, we
observe switches at B = −1 mT and B = 0 mT. We
cannot rule out that they are caused by our experimental
setup and therefore only address them in the methods
section and in Extended Data Fig. S9.

In addition to phase coherence throughout the super-
conducting ring, a SQUID requires the presence of a JJ
in each of its arms. If both junctions host the same su-
percurrent, the total critical current across the device
reaches zero periodically in magnetic field. We leave n1

in its optimal position, tune n2 so that Ic,1 = Ic,2 and ob-
serve the periodic critical current modulation that goes
close to zero shown in Fig. 1e. The parabolic shape
of the pattern is another characteristic of a symmetric
SQUID15, and further confirms that we do have a JJ in
each arm, as depicted by the inset schematic in the figure.
In this electrostatic configuration our device is therefore
a SQUID in its symmetric regime.

We now turn to the all-electrical in situ tunability
of our device and its limits, as this can be a key as-
set in simplifying current architectures20,23. Having es-
tablished that we have a SQUID, we interpret the data
shown in Fig. 1d as arising from the most asymmetric
regime we can tune our SQUID into, where arm 2 hosts
no JJ. Finally, we are also able to locally turn off super-
conductivity in each arm by biasing the local gates fur-
ther away from the superconducting dome (see Extended
Data Fig. S6). Therefore, we can tune arm 2 to having
no superconductivity, a JJ or being a bulk superconduc-
tor, while for arm 1 we can turn off superconductivity or
tune it to a JJ.

After considering the limiting scenarios, we study the
continuous evolution in asymmetry by changing n2. Fig-
ure 2a reveals the dependence of the critical current on
the electron density n2. It shows a plateau at 11 nA be-
tween filling factors ν = −4 and ν = −2 and decreases
sharply towards full filling of the lower flat band and
more progressively towards the CNP. Similar behaviour
has been observed before11,12. We keep Ic,1 = 0.5 nA
constant and in Fig. 2a indicate the points with stars
where we fix n2 for the magnetic interference patterns
shown in Fig. 2b-d. To avoid hysteresis due to heating24,
at each magnetic field value we take a trace from zero
current bias towards both I > 0 and I < 0 (see Sup-
plementary Information). Figure 2b shows oscillations in
the most asymmetric regime (same regime as in Fig. 1d).
We observe a flux shift ∆Φ in applied magnetic field and
an offset 2Ic,2 between the averages of the positive and
negative switching current. When reducing Ic,2, we ob-
serve a less asymmetric regime (Fig. 2c), where we still
have Ic,1 < Ic,2. Finally, as we keep decreasing Ic,2, we
observe a fully symmetric situation, as previously shown
in Fig. 1e, and even reach Ic,1 > Ic,2 in Fig. 2d.

Because in 2D materials the cross section A is strongly
reduced in the vertical direction compared to metallic su-
perconductors, the kinetic inductance25 LK ∝ 1/A is ex-
pected to be orders of magnitude higher than for 3D de-
vices. This would open the door for phase-slip devices26

or improved high-kinetic-inductance photon detectors16.
We now explain how one can extract inductances of each
arm in our SQUID from the flux shift observed at dif-
ferent gate configurations. The total flux threading a
superconducting loop is given by ΦT = Φa + Φs, where
Φa and Φs are respectively the externally applied and
the so-called self flux15. The latter originates from the
screening current circulating in the SQUID loop and re-
sults in an offset in flux for negative and positive currents
given by15

∆Φ = 2(L1I1 − L2I2), (1)

where L1,2 is the inductance of the respective arm. At the
maximum switching current of the interference pattern,
both junctions host their critical currents. Combining
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a function of L2 at a fixed value L1 = 2 µH.

this with the previous relation, we deduce

L2 = −(1/2)
∂(∆Φ)

∂(Ic,2)
, (2)

allowing us to extract the inductance of arm 2 from the
flux offset evolution as a function n2. Equation (2) holds,
however, only when L2 is constant, thus can only be lo-
cally applied when ∆Φ(Ic,2) is linear. It must also be
noted that, at finite temperature, the current at which
the junction switches out of the superconducting state
(switching current) is different from the one at which it
would do so at zero temperature (critical current). If
this difference is significant, this would result in a drift
of the phase at the switching current of our junctions as
we tune the local density. This would subsequently lead

to a contribution to the offset in field in the interference
patterns. However, based on switching statistics mea-
surements performed in a device hosting a similar JJ11,
we neglect this effect in our case (see Supplementary In-
formation).

In Fig. 2e, we first analyze the evolution of the flux
shift ∆Φ as a function of the critical current in JJ2 while
increasing the density. For the sake of clarity, the critical
current axis is mirrored at the maximal critical current.
We divide the density into ranges defined by the points
I to IV in Fig. 2a. Using Eq. (2), we extract an esti-
mate L2 = 120 nH for values of the critical current up to
point I (pink dashed line). The region between indicated
points I and II has no data due to the atypical interfer-
ence patterns observed in that range of parameters, from
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which we cannot extract the inductance. Subsequently,
in the region between point II and III, ∆Φ stays relatively
constant, resulting in a vanishing L2. Following the evo-
lution of ∆Φ from point III to IV and beyond, we observe
a slight non-linearity at IV, corresponding to ν = −2, as
highlighted by the orange and red dashed lines in Fig. 2e,
which correspond to L2 = 78 nH and L2 = 115 nH respec-
tively. Generally, by tuning the electron density through
the band, we not only tune the critical current but also
the inductance of arm 2.

The vanishing L2 between II and III gives access to L1

through Eq. (1) and using L2 ∼ 0. Figure 2f shows L1

calculated by simplifying Eq. (1) to L1 = ∆Φs/2I1, as
n2 is tuned. We extract an inductance at base tempera-
ture (where it is expected to be lowest27) L1 of the order
of 2 µH, orders of magnitude higher than in other 2D su-
perconductors27 or narrow 3D SQUID geometries28. The
geometric contribution to the inductance L is negligible
compared to the measured values, confirming the induc-
tance of the device to be mainly of kinetic origin (see
Methods). Our result shows that a value of 2 µH can be
reached while still having coherent transport, highlight-
ing the potential of MATBG as a host for high inductance
devices.

The evolution of the kinetic inductance with temper-
ature gives access to that of microscopic parameters of
the material such as the superfluid density or the effec-
tive mass of the superconducting charge carriers. While
staying in the same electrostatic configuration, we follow
the evolution of ∆Φs and Ic,1 as we increase the tempera-
ture until no oscillation is observed in the critical current
(Fig. 2g). We stress that the last point where a mea-
surable oscillation is observed (T = 80 mK) presents an
amplitude of 15 pA, a value which would be impossible
to distinguish from noise without an interferometric mea-
surement. The kinetic inductance and critical currents
are connected to microscopic parameters of the supercon-
ductor through LK ∝ m∗/(nsA) and Ic ∝ ns, with m∗

and ns the effective mass and superfluid density, respec-
tively14. As the temperature increases, ∆Φs = L1 × Ic,1,
independent of ns, remains constant while Ic,1 drops, in-
dicating an increase of the inductance, as depicted in
Fig. 2g. This suggests that we tune the local superfluid
density with temperature, rather than the effective mass,
the former vanishing as the critical temperature of arm 1
is reached. This density vanishes as the critical tempera-
ture of arm 1 is approached, leading to the divergence of
the kinetic inductance. We measure values of up to 50 µH
within the high experimental accuracy that the SQUID
device allows for.

Due to the inductance asymmetry, the magnetic inter-
ference patterns can present a skewed shape29. This is
the case for Fig. 2d, of which we show a zoom in Fig. 2h.
We estimate the flux shift ∆Φsk due to the skewness to
be of the order of 5% of a flux quantum30. By fixing
L1 = 2 µH, we calculate this shift as a function of L2,

as shown in Fig. 2i, and obtain two possible solutions
per flux value, with L2 > 1 µH being the most consis-
tent with our previous results (see Methods). Our model
remains limited and we do not extract an exact value
of L2 from the skewness. Having a higher Ic,1 and ac-
cess to the current-dependent inductance of the JJs could
contribute to a more accurate analysis of the magnetic
interference patterns. Finally, from Fig. 2i we observe
that for a vanishing L2, the expected ∆Φsk also tends to
zero. Therefore, when measuring interference patterns
at critical currents above 9 nA no skewness originating
from inductance effects is expected. This is crucial for
the next part, where we interpret the current-phase rela-
tion measured from an asymmetric configuration of the
SQUID.

The shape of the current–phase relation (CPR) in
semiconductor weak links is of interest, because it can re-
veal information about the number of channels through
the junction as well as about their transmission31. In
particular, a skewed CPR (having ruled out that the
skewness is of inductive origin), is the main indication
of a short, highly transmissive, junction32. To probe
that, we focus on the asymmetric regime of our device,
where we use the flux through the ring to control the
superconducting phase difference ϕ across JJ1. In the
most asymmetric regime, we have a critical current ra-
tio of Ic,2/Ic,1 ∼ 20. All the phase drop imposed by the
flux threading the SQUID therefore drops across JJ132,
while the moderate Ic,2 is not fully shunting JJ114. The
phase of JJ1 is then related to the applied flux through
ϕ = 2π(Φ/Φ0), the CPR being I(ϕ)32. Finally, the ab-
sence of inductance-induced skewness ensures that the
oscillations in critical current correspond to the CPR of
JJ1.

We present the CPR measurement result in Fig. 3a,
taken at the same electrostatic configuration as in
Fig. 1d, and observe agreement with a sinusoidal modula-
tion (red dashed line), where we attribute the mismatch
at higher B field values to the magnetic field dependence
of the critical current in each arm. As shown in Fig. 3b,
the measured oscillations fade away at Tc,JJ1 = 80 mK.
At our lowest temperature of 32 mK (see Methods) no
skewness is observed either. The lack of skewness could
be caused by the temperature, the geometry or the dif-
fusivity of JJ1. If the thermal energy kBT is of the or-
der of the proximity-induced gap in the junction region,
any skewness in the CPR is expected to fade away31.
Assuming that the temperature is the only reason for
which no skewness is observed, the local superconduct-
ing gap should be smaller than ∆ ∼ 2.5 µeV to account
for the sinusoidal CPR at 32 mK (see Supplementary In-
formation). Such a value is unexpectedly low for the
superconducting gap12,33, and therefore we dismiss this
as a possible explanation. To investigate the influence
of the geometry and diffusivity, we perform CPR mea-
surements at all available VG1. We observe that while
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taken a different values of VG1 ranging from VG1 = −3 V to
VG1 = 2 V in steps of 150 mV.

the oscillation amplitude is tuned the CPR remains si-
nusoidal (Fig. 3c). Since we do not expect to change the
length of the junction (it is defined by lithography), the
change in amplitude could be due to a decrease in trans-
mission as well as a decrease in the number of channels.
The lack of skewness of this CPR excludes JJ1 to be in
the short junction limit—the superconducting coherence
length is bigger than the junction length—and it having
highly transmissive Andreev states at the same time31.
However, having either a long junction or low transmis-
sive channels (or both), results in a sinusoidal CPR as
observed. Based on our observation we cannot rule out

any of these scenarios and therefore hope for future ex-
periments on shorter and more transmissive junctions.

In conclusion, we have shown a monolithic supercon-
ducting quantum interference device in MATBG, allow-
ing for local and all-electrical tuning of its critical cur-
rent and inductance. Our SQUID exhibits phase coher-
ence over long distances and testifies to the realization
of a superconducting-phase-controlled experiment in this
material. The device geometry has allowed us to extract
the effective charge 2e for the superconducting charge
carriers, to observe a trend in the superfluid density with
temperature, and to directly measure the current-phase
relation of one of its JJs. By measuring a kinetic induc-
tance of up to 2 µH at base temperature, we have shown
the potential of the material to host devices requiring
high inductances such as phase-slip junctions or high-
inductance photon detectors. The combination of local,
all-electrical tunability and phase control make our de-
vice a probe of MATBG complementary to previously
reported techniques and a stepping stone for complex in
situ-tunable superconducting architectures.

DATA AVAILABILITY

The data that support the findings of this study will
be made available online through the ETH Research Col-
lection.
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METHODS

Twist angle estimation

For extracting the twist angle of the device, we first
relate the electron density at which we observe the full
filling of the flat bands to the twist angle of the sample.
This relation is the following1:

θ = 2 arcsin
( a

2L

)
(3)

with L being the distance between two closest AA
stacked regions,

L = 2

√
2A/
√

3 (4)

and A being the area of a moiré unit cell. Each moiré
unit cell can host four electrons because of spin and valley
degeneracy (we write g = 4 for the degeneracy). It is
thus related to the electron density in the sample by the
following equation:

A =
g

nfilling
(5)

We then read the values for nfilling under each local
top gate from the density maps (Extended Data Fig. S2)
and an overall value for the whole sample. This results
in approximate twist angles of 0.95◦ for the whole sam-
ple, 0.98◦ for the region under gate G1 and 1.02◦ for the
region under gate G2.

Device fabrication

We first assemble the so-called stack using the dry
pick-up method34. All the flakes are exfoliated on a
285 nm p : Si/SiO2 wafer. To begin, we cut a large area
(> 40 µm × 40 µm) graphene flake in two using a tung-
sten needle of a tip diameter of 2 µm, controlled by a
micromanipulator. For the pick up phase we use a self
made polydimethylsiloxane/polycarbonate stamp. The
top hexagonal boron nitride (hBN) flake, of a thickness
of 25 nm, is picked up first at a temperature of 80 C◦. We
then pick up the first half of the previously cut graphene
flake at 40 C◦, rotate the stage by 1.1◦ and pick up the
other half. Then we move on to picking up the bot-
tom hBN flake, of a thickness of 85 nm. We first contact
it at 40 C◦ and then raise the temperature of the stage
to 80 C◦. Finally, we pick up a graphite flake, which
will be used as a back gate, by contacting it at 100 C◦.
The stack is then deposited at 180 C◦ on a p : Si/SiO2

chip. We clean the polycarbonate present on the chip
and stack after deposition using dichloromethane. We
define the area where the edge contacts will be evapo-
rated by electron beam lithography and etch the hBN by
reactive ion etching (CHF3/O2, 40/4 sccm, 60W, with a
hBN etching rate of 0.6 nm/s). Subsequently, we evap-
orate the contacts (Cr/Au, 10/70nm). We define, again
using electron beam lithography, the lines to the etched
contacts (Cr/Au, 10/110nm). The whole stack is etched
to define the mesa and deposit a 30 nm thick layer of alu-
minum oxide by atomic layer deposition. We follow this
by defining the top gates in our last electron beam lithog-
raphy step and evaporate them (Cr/Au, 10/110nm).

Measurement setup

In a two-terminal setup, we apply a current bias and
measure the corresponding voltage drop across the sam-
ple. To generate the bias current, we use an in-house
built d.c. source in series with a 100 MΩ resistor. We use
a d.c. amplifier built in-house and measure its output
with a Hewlett Packard 3441A multimeter. Each gate
is connected to a different voltage source, of the same
type as the one used for generating a direct current. We
convert the voltages we apply to our gates to electron
density by a parallel plate capacitor model. We estimate
the capacitance per unit area of each gate i to be:

Ci =
∑
j

ε0 × εj/dj (6)

where ε0 is the vacuum permittivity, and εj and dj
are, respectively, the relative permittivity and thickness
of layer j. We then calculate the electron density n as
follows:
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n =
∑
i

CiVi/e, (7)

e being the elementary charge and Vi the voltage
applied at gate i. We verify that the capacitance per
unit area that we estimate for the back gate fits the
Landau Fan dependence on density (Extended Data
Fig. S3)

In order to extract the critical current as a function
of magnetic field, we continuously sweep the bias cur-
rent and readout the voltage increase corresponding to
the switching out of the superconducting state only, in-
stead of measuring the voltage drop at every point in
current bias. This is done with a device built in-house
which consists of an analog circuit in combination with
a digital pyboard controller. Before performing such a
measurement, we measure (with the ’regular’ measure-
ment setup) an I/V curve and readout the jump in volt-
age when switching out of the superconducting state. We
then set the threshold Vth to be the average value of the
voltages defining such voltage jump. For measuring, we
linearly ramp up the current across the device, starting
at a negative value, resulting in a negative voltage being
readout at the beginning of the measurement procedure.
As the current is ramped up towards positive values, the
voltage drop changes sign. This sign change triggers the
pyboard, which stores the time at which it took place. As
the current keeps rising up linearly, so does the voltage
drop, which ends up attaining the threshold value Vth,
stored in the pyboard memory. The controller is then
triggered again, and stores the time at which the event
took place and permutes a series of digitally controlled
switches in the analog circuit of the device. This leads to
a fast ramp down of the current to the negative value at
the beginning of the measurement procedure. Then, from
knowing the ramp-up speed of the current and the time
difference between the two triggers, we deduce the cur-
rent at which the superconducting transition took place.
It is important to note that this measurement can only be
performed in regimes where the switching out transition
presents a sharp step in voltage. This ensures that there
is a wide enough range of values for the voltage threshold
that we choose which lead to the same resulting critical
current. We are therefore certain that we do not intro-
duce modifications to physically meaningful data by our
choice of a voltage threshold.

All measurements are performed in a 3He–4He dilution
refrigerator with a base temperature of 50 mK. To tem-
porarily reach lower temperatures, we perform a so-called
single-shot procedure in which the flow of 3He returning
from the mixing chamber (MC) is diverted to the dump of
the cryostat instead of the condenser line. This interrupts
the flow of liquid (and warmer) 3He from the condenser
towards the MC, preventing if from exchanging heat with

the colder outgoing flow of 3He. The procedure results
in a lower heat load for the still and MC, leading to a
decrease in temperature of the MC. The state can only
hold as long as there is 3He in the MC, of which the in-
coming flow has been interrupted. Once all the 3He is
removed from the MC, the system warms up.

Offset in magnetic field

We observe an offset in magnetic field due to our mag-
net. In addition, as shown in Extended Data Fig. S9,
the offset can depend on the history of the applied field.
For consistency through the manuscript, we subtract for
each measurement an offset so that the magnetic inter-
ference pattern results in a symmetric plot. Because of
such determination of the zero field, we do not make any
conclusion from the value of the critical current at zero
field.

Estimation of the geometric inductance

To estimate the geometric contribution to the total
inductance of the device we model our SQUID as a rect-
angular loop of wire. The formula giving the inductance
is then35:

Lgeo =
µ0µr

π

[
− 2(w + h) + 2

√
h2 +W 2

−h ln

(
h+
√
h2 +W 2

W

)

−W ln

(
W +

√
h2 +W 2

h

)

+h ln

(
2h

a

)
+W ln

(
2W

a

)]
with W being the length of the loop, h its height, a its

radius and µr the relative permitivity of the material. We
setW = 4 µm, h = 2 µm, a = 1 nm and µr = 1 and obtain
Lgeo = 17 pH, which is many orders of magnitude away
from the values measured. Having set a bigger radius for
our wire in this calculation would have resulted in an even
smaller value. Therefore, we attribute the inductance of
the device mainly to its kinetic inductance.

Relation of the skewness of the magnetic
interference pattern to the macroscopic parameters

of the SQUID

When operating a SQUID close to the critical current
symmetric regime, the eventual skewness of a magnetic
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interference pattern is related to the inductance asym-
metry αL = (L1 − L2)/(L1 + L2) through the following
relation29:

∆Φsk = βαLisk, (8)

with ∆Φsk the flux shift at the maximal critical cur-
rent, in units of the flux quantum, β = (Ic,1 + Ic,2)L/Φ0

and isk the current at which ∆Φsk is measured in units of
the average critical current of the arms, here leading to
isk = 2. Having L = L1L2/(L1 + L2), we fix L1 = 2 µH
and plot ∆Φsk as a function of L2 in Fig. 2i. Two values
of L2 are possible for a range of ∆Φsk. After estimating
∆Φsk of the order of a few percent we choose L2 > 1 µH
by exclusion: A value of L2 an order of magnitude lower
than L1 in the symmetric current regime would result in
∆Φ ∼ Φ0 according to Eq. (1), which we do not observe
in Fig. 2d. The value L2 > 1 µH is higher than those ob-
tained for critical currents higher than 3 nA. The induc-
tance L2 is not accessible through Eq. (2) at low values
of Ic,2 due to lack of resolution of our data. However,
following LK ∝ m∗/(nsA), one could expect the induc-
tance to increase non-linearly as the cross-section of the
supercurrent tends to zero, which happens when locally
tuning the material under top gate 1 to the edge of the
superconducting regime.
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Supplementary Information

HEATING EFFECT IN THE CRITICAL CURRENT OSCILLATIONS

As shown in Extended Data Fig. S10, for the most asymmetric regime, we observe oscillations in the switching
current as a function of magnetic field, but not in the retrapping current. We attribute this to a heating effect.
When the SQUID is being biased above the critical current, a voltage drop develops across each arm. This results
in an electron temperature being higher than the temperature of the cryostat24. When the retrapping into the
superconducting state takes place, the electron temperature in arm 1 is too high to allow for a transition into the
superconducting state, preventing the formation of a ring until superconductivity has been developed in arm 2. The
absence of a ring during the transition prevents phase coherence around the etched hole, thus preventing oscillations
in the critical current from appearing. When the critical current asymmetry is lower, the voltage drop across arm 1
when the transition takes place is lower, thus the electron temperature is also lower. Gradually, as symmetry in Ic is
restored, this reduction in electron temperature leads to an appearance of oscillations also in the retrapping current.
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PREMATURE SWITCHING OF A JJ DUE TO THERMAL EFFECTS

We neglect all the inductive effects in this example and call δ1 the phase across JJ1, δ2 the phase across JJ2 and
φ = 2π(Φ/Φ0) the phase around the loop due to the applied magnetic flux. We thus have φ = δ2 − δ1.

From the measured CPR in our device, we assume it to be sinusoidal in this example, yielding a total current
through the device I = Ic,1 sin(δ1) + Ic,1 sin(δ2). We now call δ2,sw the phase of JJ2 when the switching to the normal
state actually occurs in arm 2. Then, the positive switching current is

I+ = Ic,1 sin(δ2,sw − φ) + Ic,2 sin(δ2,sw)

and the negative one is

I− = Ic,1 sin(−δ2,sw − φ) + Ic,2 sin(−δ2,sw)

= −Ic,1 sin(δ2,sw + φ)− Ic,2 sin(δ2,sw).

Since Ic,2 >> Ic,1 the maximum of I+ is reached when JJ2 switches out of the superconducting state, and δ2,sw −
φ+ = π/2 thus at φ+ = δ2,sw − π/2. On the other hand, the maximum in |I−| is reached when δ2,sw + φ− = π/2 thus
at φ− = π/2− δ2,sw. Therefore, the offset in phase due to JJ2 switching before reaching a phase of π/2 is

∆φsw = φ+ − φ− = 2δ2,sw − π.

In the extreme case in which JJ2 switches at δ2,sw = 0, we have ∆φsw = −π. The measured offset in magnetic field
reaches ∆Φ ∼ Φ0, equivalent to ∆φ ∼ 2π (Fig. 2b). Therefore, in the worst case scenario, at least half of this offset
comes from the inductance of the loop.

This premature switching effect can only be measured if being able to determine the critical current of the
junction, by which we mean its switching current at zero temperature32. Unfortunately, such analysis only holds
for superconductor-insulator-superconductor (SIS) JJs36 and cannot be performed in our superconductor-normal-
superconductor (SNS) JJs. However, when performing repetition measurements of the switching current of the JJ of
a device hosting a similar type of JJ11, we observe a small broadening of the current histogram due to thermal effects,
comparing it to the ones typically obtained in the SIS case. We therefore neglect the contribution of this effect to the
measured offset in magnetic field when performing our analysis on the inductances of the device.
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ESTIMATION OF THE INDUCED SUPERCONDUCTING GAP FROM THE CURRENT-PHASE
RELATION

The CPR of a JJ can be derived from its free energy31 F :

I(ϕ) =
2e

h

∂F

∂ϕ
, (9)

where e is the elementary charge, ϕ the phase drop across the junction and h Planck’s constant. In the so-called
short-junction limit and considering the superconducting gap ∆ to be constant this leads to the following expression
for the CPR at a temperature T :

I(ϕ) =
e∆2 sin(ϕ)

2~
∑
p

τp
εp(ϕ)

tanh

(
εp(ϕ)

2kBT

)
, (10)

where ~ is the reduced Planck’s constant and kB, the Boltzmann constant, τp the transmission of the pth channel

and εp(ϕ) = ∆
√

1− τp sin2(ϕ/2) the phase-dependent energy of Andreev states. From this formula, we observe that

if the hyperbolic tangent function is small enough to be in the range where tanh(x) ∼ x, the argument of the sum over
Andreev states is 1, making of the current a non-skewed sum of sinus terms. Assuming that the non-skewness of the
CPR is due to temperature effects therefore corresponds to having tanh(x) ∼ x. For our estimations, we set εp(ϕ) = ∆
and the resulting argument of the hyperbolic tangent ∆/2kBT to 1/2 (tanh 0.5 = 0.46). Which leads to ∆ = kBT ,
thus obtaining ∆ ∼ 2.5 µeV for T = 30 mK. As mentioned in the main text, we dismiss such an unexpectedly low
value as the cause for the sinusoidal shape of the measured CPR.
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Extended data

a b

c d

FIG. S1. Device fabrication: Capture of the design file and optical images taken during the fabrication process.
a Optical image of the device after etching and evaporation of the gold contacts. The scale bar corresponds to a length of 1 µm.
b Optical image of the device after mesa etching. c Optical image of the device after the deposition of a layer of aluminum
oxide and definition and evaporation of top gates. d Capture of the design file of the device. Contacts are depicted in yellow,
etched areas in pink and top gates in white.
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FIG. S2. Density maps and angle extraction. a Differential resistance maps across the device as a function of electron
density in regions biased by only the back gate (global) or both back and top gates. The data in the left panel corresponds
to VG1 being swept and gate 2 being fixed at VG2 = 10 V. In the center panel VG2 is swept while gate 1 is kept constant at
VG1 = 10 V. In the right panel both top gates are swept together. Densities are computed from the model described in the
Methods section. Black dashed lines indicate the values at which we consider the flat bands to be fully filled. These values are
then used to extract the twist angle of the device. b Extended range trace of the resistance as a function of the global density
induced by the back gate, with each local top gate set to zero.
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FIG. S3. Landau Fans at different contact configurations. The top panel corresponds to a Landau Fan across the device
using the same contact configuration as used in all the measurements shown in the main text. The bias current is Idc = 1 nA.
Red dashed lines correspond to the expected Landau levels (their corresponding filling factors are indicated) from our estimation
of capacitance per unit area between the back gate and the graphene. The bottom panel shows the same measurement taken
between the two contacts that are not separated by the etched hole.
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FIG. S4. Magnetic interference between contacts I and III. a Schematics of the device, with the approximate maximal
critical current that can be reached at Vbg = −7.55 V between each pair of contacts. b Differential resistance between contacts
I and III as a function of current bias and magnetic field. The gate configuration is the same as for Fig. 1d. VG2 is then tuned
to reduce the critical current of arm 2, as indicated in the top right corner of each panel of the figure. We observe that at
the maximal critical current, a transition at 10.7 nA without oscillations is present, as well as an interference pattern at lower
current values. As we decrease Ic,2 to 7.3 nA the transition at higher currents goes to lower currents with the interference
pattern unchanged. When Ic,2 goes below the current at which the maximum of the interference pattern is observed, we see a
modification of such pattern. Finally, when superconductivity is switched off in arm 2, we observe no superconducting pattern.
We deduce from this that, at the optimal back gate voltage for contact combination II-III (main text) there is an area of arm
2 in the configuration I-III with Ic ∼ 5 nA, limiting to this value the maximal current attainable by the interference pattern.
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FIG. S5. Critical current as a function of magnetic field between contacts I and II. a Schematics of the device, with
the approximate maximal critical current that can be reached at Vbg = −8.55 V between the pair of contacts. b Voltage drop
between contacts I and II (no hole between them) as a function of current bias and magnetic field. The transition region is the
critical current. We observe no oscillations in critical current, further confirming the interference in data shown in the main
text and ruling out the effect of a second etched loop (see Extended Data Fig. S1.)
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FIG. S6. Resistance of the device as a function of density. VG1 and VG2 are kept at zero volts. We plot the derivative
of the measured voltage drop as a function of the current bias, which corresponds to the differential resistance R = dV/dIdc
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to the electron densities.
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FIG. S7. Differential resistance across each arm of the loop as a function of local densities. The back gate is tuned
to its optimal point nopt = −1.27 × 1012 cm−2. We step the local top gate of each arm and sweep the current bias. For a, the
voltage bias of gate G1 is fixed at VG2 = 10 V, to prevent any supercurrent from going through it, while we step VG1. For b
the configuration is the opposite, we have VG1 = 10 V while we step VG2. The dashed lines correspond to the voltage of each
top gate at the asymmetric (orange) and symmetric (red) regime measurements shown in Fig. 1d,e.
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FIG. S8. Critical field at each arm of the device. The voltage of the back gate is set to the optimal point for every
figure. a Differential resistance as a function of current bias and magnetic field when VG1 = 10 V, preventing any supercurrent
from flowing through arm 1 and VG2 = −0.5 V maximizes the critical current of arm 2. We thus observe the resistance across
arm 2 of the device as a function of current and magnetic field. b Same measurement as in a, this time with VG2 = 10 V and
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FIG. S9. Hysteresis and discontinuities in the critical current as a function of magnetic field. Each line represents
a CPR trace taken at the most asymmetric regime of the device. The magnetic field is swept from negative to positive in a
small range, then the direction is reversed and the range increased. This procedure is repeated several times to obtain the data
shown in the figure. Switches in the CPR traces and hysteresis appear as the range of the magnetic field sweep increases. We
can not rule out a ferromagnetic part of the cryostat or the superconducting magnet to be at the origin of this phenomenon.
Therefore, we do not highlight it in the main text.
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FIG. S10. Presence or absence of oscillations depending on the current sweep direction. The device is in the most
asymmetric configuration. The left panel of the figure is a zoom in of Fig. 1. We measure the voltage drop across the device as
a function of magnetic field and current. We observe oscillations due to superconducting interference in the superconducting
lobe or the switching current but no oscillations for the retrapping current. The current bias is swept from negative to positive
values in the left panel and from positive to negative in the right panel.
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