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method and assumptions and in section IV and V respectively
performance metrics and result are presented. Finally in section
VI, conclusion and possible future work are presented.

II. RELATED WORK

A large proportion of relocation and movement algorithms
in the literature [3], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15] are devoted to currently deployed nodes in or-
der to give the network more flexibility, swiftness to react
autonomously in the environments where centralized control
and supervision are not feasible. Each of these algorithms
are aimed at different and overlapping goals such as network
connectivity [13], lifetime [12], re-alignment of unbalanced
deployments [7], coverage increase [7], recovery of small
and large scale coverage holes [6], [9], [14]. However, these
algorithms more or less would be able achieve other than their
primary objectives. Thus, the performance and efficacy of these
algorithms should also be investigated for applications other
than their primary design goals. As most algorithms partially
inspired and evolved from each other, it is hard to draw fine
line between them. They can be mainly classified into virtual
force-based (radial [7], [16] or angular [13]), voronoi-based
[14] and flip-based [6] movement algorithms. Among these
algorithms in WSNs, the amount of unnecessary movements,
oscillations and power exhaustion of nodes with local interac-
tions in the distributed relocation algorithms especially with a
harsh and hostile environments with lack of central supervision
and operation should be reduced as possible. In order to
save nodes’ power and to localize movement to a specific
area in the network, relocation algorithm can be applied to
a selected set of nodes [17], [18], fully or partially to avoid
unnecessary node oscillations or energy consumption caused
by careless movement strategies. Reduction in overhead and
delay of centralized relocation paradigm comes at the price
of increased uncertainty among autonomous nodes who have
local interactions within their ranges.

Although fuzzy logic relocation model shown to be candi-
date solution to address such a uncertainty for the autonomous
moving nodes [10], among indefinite choices, proper and
justifiable fuzzy parameters and membership functions should
be selected. In proposed model, the proper fuzzy parameters
in fuzzy logic relocation model can be obtained by applying
PSO technique locally with different ranges and globally over
the given deployed area. similar to [10] with different angular,
boundary conditions and movement strategies, the efficiency
and performance of the given model in terms of coverage,
uniformity and movement are also compared with distributed
Self-Spreading Algorithm (DSSA) [7] which benefited from
expected global node density.

III. METHODS AND ASSUMPTIONS

With the given sensing range Rs and transmission range
Rc, sensor nodes are modeled as unite disk graphs (UDG)
and are bi-directionally connected when they reside within
their one another’s ranges. Nodes are randomly deployed in
2D rectangular field of [xmin xmax] × [ymin ymax] with the
uniform distribution. Nodes’ locations are known by either
centralized or distributed localization algorithms [19], [20].
Circular zone around the node is defined as a circle with radius
of Rzone (Rzone = k · Rc) with the node in the center of
circle and are used to obtain the fuzzy parameters from nodes’
neighbours residing in the given zone via PSO.

TABLE I: Fuzzy Rules [10]

(a) Pair Radial Force
System

Distance Pressure

Very Far No Action(0)

Far Pull hard(-1)

Moderate Pull(-0.5)

Close Push(0.5)

Too Close Push Hard(1)

(b) Pair Angular Force Sys-
tem

Distance Pressure

Very Far Hard(1)

Far Medium(0.75)

Moderate Slow(0.5)

Close Very Slow(0.25)

Too Close Nothing (0)

TABLE II: Membership Functions
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A. Fuzzy Logic Parameters

Fuzzy rule-based systems are applied in a variety of
research areas [21], [22]. For fuzzy control problems Takagi-
Sugeno (TS) [21] rule based systems briefly are described as
follows:

Rule Rj : if x1 is Aj1 and · · · and xn is Ajn

then yj = a0j + a1jx1 + · · ·+ anjxn
(1)

where x = (x1, x2, ..., xn) is an n-dimensional input, Anj is
a fuzzy membership and y is a non-fuzzy output. Fuzzy rule
base system’s output is calculated from the following equation,

y =

∑p

j=1
µj(x) · yj

∑N

j=1
µj(x)

, (2)

µj(x) = µ1j(x)⊗ µ2j(x)⊗ · · · ⊗ µnj(x) (3)

p is the total number of rules. Similar to [10] two different
fuzzy inference systems are used: fuzzy radial pair force
and fuzzy angular force. Both fuzzy radial pair force system
and fuzzy angular force system have one input as distance
with 3 gaussian functions, one z-function and one s-function
memberships (Table II) and one crisp output, pressure which
can take the fuzzy values push hard, push, no action, pull
and pull hard. The rules of these systems are listed in Table
I. Membership function parameters a, b, c, d, µ, σ computed
using particle swarm optimization. Figure 1 is brought as the
example of respectively tuned radial and angular membership
functions for angular strategy A1, boundary condition B2 and
movement strategy FRAM . Hence, fuzzy parameters can be
tuned using particle swarm optimization with regard to linear
weighted combinations of metrics in terms of percentage of
coverage, uniformity, and average movement equation 4.

F
∗ = argmaxF {w1 · C(F )− w2 · U(F )− w3 ·M(F )} (4)

w1, w2, w3 are respectively weights for coverage (C), unifor-
mity (U ), and average movement (M ). F is a set of fuzzy
parameters tuned by PSO with regard to the performance
weights. Thus, parameters can be tuned based on one or linear
combination of the metrics. The negative and positive signs
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Fig. 1: Radial and Angular Membership function

used where performance metrics should be minimized (i.e.
movement, uniformity) or maximized (i.e. coverage) respec-
tively. In order to tune parameters PSO is applied in two
different global and local zone range which are as follows:
In global range, PSO applied on all deployed nodes over
whole 2D rectangular field ([xmin xmax]× [ymin ymax]) while
in local zone-range, proportion of nodes Nsel from set of
deployed nodes Ntotal (Nsel ≤ Ntotal) are randomly selected
with uniform distribution. PSO is applied for each selected
node with a zone-range of Rzone (Rzone = k · Rc) around
selected node by taking account node’s neighbours residing
within its Rzone range. It should be noted that in both local and
global ranges, boundary conditions are considered in tuning
fuzzy parameters.

B. PSO structures

In this paper, the constriction coefficient PSO used similar
to the [23]. Thus,in this approach the velocity update equation
is as follows:

υij(t+1) = χ
[

υij(t) + φ1

(

yij(t) − xij(t)

)

+ φ2

(

ŷij(t) − xij(t)

)]

(5)

yij is the particle best and ŷij is the global best particles and,

χ =
2k

∣

∣

∣
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√

φ(φ− 4)

∣

∣

∣

(6)

with φ = φ1 + φ2, φi = ciri i = 1, 2. Equation 6 is
used under the constraint that φ ≥ 4 and k, ri ∈ [0, 1]. The
parameter k in the equation 6 controls the exploration and
exploitation. For k ∼ 0, fast convergence is expected and for
k ∼ 1 we can expect slow convergence with high degree of
exploration [23]. Each particle consists of two arrays, which
one is related to the memberships of the pair force fuzzy
systems and another one is related to the memberships of
the angular force fuzzy systems. Each fuzzy system has 5
memberships and each membership is specified by its mean
and variance, therefore each array has 10 cells.

C. Boundary Strategies

In relocation algorithm, behaviour of moving nodes while
approaching to the given area’s boundaries (i.e. [xmin, xmax]×

Iteration i Iteration i+1

Angular Force

Radial Force

Fig. 2: Fuzzy Node Movement Algorithms [10]

[ymin, ymax]) with respect to different boundary conditions
should be taken into account. Boundary strategies applied
in [10] are adopted here which are non-stop at boundary,
stop at boundary, wrap around. (B1)-In non-stop at boundary,
regardless of boundaries of given area, nodes relocate towards
their new locations without limit. (B2)-In stop at boundary,
nodes stop at boundaries of given area and their movements
are limited if their new computed locations are beyond the
area boundaries. (B3)-In wrap around, according to toroidal
surface, nodes are wrapped around to other (opposite) sides if
new computed locations go beyond the area boundaries.

D. Angular Force Strategies

Force exerting node nfv is considered as vertex of angle
� α = (n1, nfv, n2) (0 < α ≤ 180◦) with each pair of
its neighbours n1,n2. Angular force strategies in [10] based
on exerted forces from node’s neighbours can be considered
as:(A1)-Smallest Angular Movement Strategy, among exerted
angular forces from node’s neighbours, the one is selected
that causes smallest node angular movement. (A2)-Closest
Neighbour Movement Strategy, among exerted angular forces
from nodes’ neighbours, the closest neighbour is selected as
the exerting angular nodes.

E. Fuzzy Node Movement Algorithms

In our model, similar to [10], fuzzy node movement
algorithms are as: Fuzzy radial movement (FRM)- Nodes are
mutually affected by radial force from their neighbours. The
amount of node movement is related to overall push/pull virtual
forces from their in-range neighbours. Fuzzy angular Move-
ment (FAM)- Nodes exert a force to their in-range neighbours
depending on aforementioned angular force strategies. FRM
then FAM (FRAM)- FAM is applied to result of FRM in
consecutive iterations. (Figure 2). FAM then FRM (FARM)-
FRM is applied to the result of FAM in consecutive iterations
(Figure 2).

IV. PERFORMANCE METRICS

The performance metrics presented are: Percentage
of Coverage(C)-Suppose that a 2-D rectangular area of
[xmin, xmax] × [ymin, ymax] is divided into grid cells. The
coverage of the given grid cells is defined as the number
of nodes covering the cells’ corner coordinates zi=(xi, yi).
Thus, percentage of 1-coverage is defined as the ratio of
grid cells within range of at least one sensor node to the
total number of area’s grid cells. This metric illustrates how
an efficient relocation algorithms are able to cover the given
area. Uniformity (U )-The measure of nodes being uniformly
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Fig. 3: Performance Comparison of Relocation Algorithm for
globally and locally (Rzone={1,2,4}·Rc) Tuned fuzzy param-
eters

distributed is defined in [7]. U is defined as the average local
standard deviation of internodal distances [7].

Ui =











ki
∑

j=1

(Di,j −Mi)
2

ki











1/2

, U =

N
∑

i=1

Ui

N
, (7)

where N is the total number of nodes, ki is number of
neighbours of the ith node, Di,j is the distance between the ith
and jth nodes, and Mi is the mean internodal distance between
the ith node and its neighbours [7]. Average Movement (M )

- It is defined as total movement of nodes in each iteration
over the number of nodes in the given iteration. As movement
is related to amount of node’s consumed energy, average
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Fig. 4: Performance of Different Movement Strategies with
Boundary condition B2 and Angular Force Strategy A1

movement of nodes in each iteration represent a suitable metric
for comparison of various node relocation algorithms in the
context of energy efficiency.

V. RESULTS

The proposed node relocation algorithm was simulated
by Matlab and N=100 nodes with the transmission and
sensing range of Rc=Rs=15 are distributed uniformly in
the rectangular 2-D space of [−100 100] × [−100 100]m2.
The fuzzy parameters are obtained locally as Nsel = 30 of
total deployed nodes Ntot = 100 are randomly selected with
zone ranges of Rzone=(1, 2, 4)·Rc. The fuzzy parameters are
tuned via particle swarm optimization (k = 0.5, c1 = 3,
c2 = 3 equation 6) with boundary conditions of B1, B2,
B3 and angular strategies of A1 and A2. The membership
parameters are also obtained globally in rectangular field of



[−100 100]× [−100 100]m2. By tuning fuzzy parameters both
globally and locally (Rzone=(1, 2, 4) ·Rc) by PSO, relocation
algorithms were simulated 500 times and 500 iterations for
different boundary conditions and angular strategies. For the
sake of brevity and page limit, only the result based on tuned
fuzzy parameters with (ω1, ω2, ω3) = (0, 0, 1) (Equation 4),
with zone range Rzone=1 ·Rc and A1 and B2 and movement
algorithm of FRM are presented in Figure 3. The rest of the
results more or less follow the same trends.

The performance of the all movement strategies with
Rzone=Rc and A1 and B2 (Nsel=30, Ntot = 100) is compared
to DSSA (Figure 4). In Figure 3, as Rzone reduces, perfor-
mance degrades. Figure 3 also shows that even when PSO is
applied locally to zone range of Rzone=Rc and for 30% of total
nodes, performance still is comparable to the case where PSO
is applied globally on all the nodes over the whole given area.
Figure 3 also shows that proposed model either outperform
or is comparable to DSSA for different movement strategies,
even DSSA benefits from expected global node density. Since
for each node, tuned parameters are obtained once in the first
iteration and do not change in remaining iterations, proposed
model still has acceptable performance with regard to DSSA.
Figure 4 shows FRAM and FARM have the best percentage
of 1-coverage, FAM has the worst percentage of 1-coverage
and FRM has a comparable performance to DSSA. With regard
to uniformity and average movement FRM, FAM, FRAM, and
FARM have similar performance and are comparable to DSSA.
It should be noted that depending on different linear combi-
nations of weights (ω1,ω2, ω3) (Equation 4), performance of
relocation algorithms with different movement strategies FRM,
FAM, FRAM and FARM can vary.

VI. CONCLUSION AND FUTURE WORK

A tuned fuzzy logic relocation model is proposed in which
its fuzzy parameters are tuned either globally or locally via
particle swarm optimization technique so proper amount of
virtual forces can be exerted on nodes. The results show
that our proposed model either outperform or closely matches
the performance DSSA in terms of percentage of coverage,
uniformity and average movement even the tuned parameters
are obtained locally within nodes’ transmission range Rc. As
a possible extension, by using light PSO computations, instead
of only the first relocation iteration, fuzzy parameters can
continuously be tuned and modified in consecutive iterations in
each node according to the neighbours behaviour in the given
iteration.
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