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ABSTRACT

Achieving good performance on a modern machine with a
multi-level memory hierarchy, and in particular on a ma-
chine with software-managed memories, requires precise tun-
ing of programs to the machine’s particular characteristics.
A large program on a multi-level machine can easily expose
tens or hundreds of inter-dependent parameters which re-
quire tuning, and manually searching the resultant large,
non-linear space of program parameters is a tedious pro-
cess of trial-and-error. In this paper we present a general
framework for automatically tuning general applications to
machines with software-managed memory hierarchies. We
evaluate our framework by measuring the performance of
benchmarks that are tuned for a range of machines with dif-
ferent memory hierarchy configurations: a cluster of Intel
P4 Xeon processors, a single Cell processor, and a cluster of
Sony Playstation3’s.

Categories and Subject Descriptors

C.4 [Performance Of Systems]: Measurement techniques,
Modeling techniques; D.3.4 [Programming Languages]:
Processors—Compilers, Optimization

General Terms

Algorithms, Design, Performance

1. INTRODUCTION
Program performance is often limited by data movement,

not arithmetic. An emerging class of high performance ar-
chitectures, including stream processors such as Stanford’s
Merrimac [9] and Imagine [21] and the Sony/Toshiba/IBM
Cell Broadband Engine Processor [26] (Cell), use software-
managed memory hierarchies to bridge the gap between mem-
ory bandwidth and arithmetic throughput. Unlike cache-
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based machines, machines of this type require applications to
explicitly orchestrate all data transfers between on-chip and
off-chip memories, and further, to explicitly manage data
allocation in the on-chip local memories. Due to this fun-
damentally different programming requirement, a number
of programming systems have emerged to simplify the task
of programming machines with software-managed memory
hierarchies [24, 5, 14, 25, 3, 13, 12]. In this paper, our appli-
cations are coded in Sequoia [14], a language whose goal is to
provide portable performance across machines with varying
explicitly-managed memory hierarchies.

Sequoia focuses on the decomposition and communica-
tion aspects of a problem so that algorithms can be struc-
tured to be bandwidth-efficient. Sequoia achieves portabil-
ity through parameterized application decomposition. We
call the machine-dependent parameters tunables and the ra-
tios between values of tunables the shape of the tunables.
The performance of the application depends heavily on the
values of the tunables. With large programs exposing non-
linear, multi-dimensional parameter spaces, it is natural that
programmers are increasingly looking to automated tuning
approaches to avoid the tedious, error-prone process of man-
ually tuning applications. As architectures and applications
increase in complexity, statically predicting the performance
of an application becomes an intractable problem outside of
certain regular application domains, and thus a recent trend
[23, 6, 31, 32] is to combine empirical tuning with static
modeling to tune a program for a particular machine.

Given that memory bandwidth is scarce, compilers should
ensure that data elements are reused as often as possible
at each level of the memory hierarchy. Loop fusion is a
well-known compilation technique that enhances locality by
merging loop nests that access similar sets of data. When
two loop nests are fused, the tunables of the two loop nests
are combined, which means compromising on the best val-
ues of each individual loop nest. Because of capacity con-
straints, the tunables after fusion are usually smaller than
prior to fusion. Also the tunable shape of one loop nest can
be very different from the shape of another, and the combi-
nation of two different shapes can cause serious performance
degradation. As an example, for two loop nests of our FFT3D
benchmark, the performance after fusing two loop nests is 5
times worse than without fusion on the Cell processor.

The work presented in this paper extends existing tun-
ing and compilation techniques to handle machines with
software-managed memory hierarchies. Our contributions
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Figure 1: Machine models for our system configura-
tions

are as follows:

• We characterize the search space of tunables for ma-
chines with software-managed memory hierarchies and
present several methods to search the space. Only 20
evaluations are required to achieve 90% performance
for all three platforms.

• We present a loop fusion algorithm targeting software-
managed memory hierarchies, which considers mismatch
of the tunables.

• Our tuning framework is evaluated by running bench-
marks on a cluster of Intel P4 Xeon processors, on a
single Cell processor and on a cluster of Sony PS3s, in
each case comparing the performance obtained by our
automatically tuned program against the best-available
hand-tuned version coded in Sequoia ([20]); in all cases,
our automated framework achieved similar or better
performance.

The rest of the paper is organized as follows. We describe
the machine model and the programming model in Section 2
and give an overview of the tuning framework in Section 3.
In Section 4, we characterize the search space of the tunables
and present algorithms to search the tunable space. We
present the loop fusion algorithm in Section 5. Section 6
evaluates the framework, Section 7 discusses related work
and Section 8 concludes.

2. BACKGROUND

2.1 Abstract Machine Model
We represent machine hierarchies as trees of nodes. Each

node of the machine hierarchy has storage (memory) and
may have the ability to perform computation. This sim-
ple model captures the important features of modern ma-
chines with multi-level (and software-managed) memory hi-
erarchies. In this paper, we target 3 machines: a Cell pro-
cessor, a cluster of PCs and a cluster of PS3s; the abstract
machine models are shown in Figure 1. Virtual levels [14] are
used to model inter-node communication in a cluster: trans-
ferring data from the aggregate cluster memory to the mem-
ory in a single node may result in communication among the
cluster nodes.

2.2 The Sequoia Programming Language
In brief, the input language (Sequoia) [14] has the follow-

ing properties:

• Hierarchical, bulk decompositions: Sequoia is de-
signed to permit the expression of program decompo-
sitions: computations on large datasets are split into
sub-computations on sub-datasets. All data transfers
and computations are expressed in bulk.

• Isolated tasks: Sequoia’s core construct is the task:
a side-effect free function that executes on private bulk
data. Sequoia allows the programmer to provide sev-
eral implementations, or variants, of a task. At any
given task call site, there may be multiple choices for
which variant of the subtask to call.

• Tunables: task parameters or tunables can be set to
different values for different machines.

Sequoia focuses on the decomposition and communication
aspects of a problem, and how to intelligently structure al-
gorithms to be bandwidth-efficient. Thus high-performance
leaf tasks are generally written in a platform-specific lan-
guage. We impose a phase order between tuning the Sequoia
program and tuning the leaf tasks. First the leaf tasks are
tuned with the problem size chosen to assure all data is
accessed from the lowest memory level. This should sim-
plify the problem of scheduling the contents of the leaf tasks
because the uncertainty of a memory operation is reduced.
Next our tuning framework is invoked to maximize the per-
formance of the whole application. A user can use the find-
ings of the tuning framework to determine the bottleneck
of the application, and to decide whether it is necessary to
improve the implementation of a certain leaf task.

A Sequoia implementation of 2D convolution is given in
Figure 2. The conv2d task convolves a 2D array ((Ny+U−1)
x (Nx + V − 1)) with a 2D filter (U x V ) to generate a 2D
array (Ny x Nx). The inner variant partitions the input ar-
ray into blocks and iterates over the small-sized convolution
performed on these blocks.

void task conv2d::inner(in d1[Ny+U-1][Nx+V-1],
out d2[Ny][Nx], in f[U][V])

{
tunable YBLK, XBLK;
mappar (int j=0 to Ny/YBLK;

int i=0 to Nx/XBLK) {
conv2d(d1[j*YBLK;YBLK+U-1][i*XBLK;XBLK+V-1],

d2[j*YBLK;YBLK][i*XBLK;XBLK], f);
}

}
void task conv2d::leaf_ext(...); //external leaf task

Figure 2: 2D convolution in Sequoia

2.3 Data Reuse
Since Sequoia deals with bulk operations and each array

reference refers to a range of an array, we extend the stan-
dard reuse analysis for Sequoia. Define footprint(R, L,~v)
as a region of data accessed by reference R at iteration vec-
tor ~v of loop nest L. If footprint(Rs, Ls, ~vs) overlaps with

footprint(Rd, Ld, ~vd), we say there exists

• loop-carried reuse when Ls = Ld, ~vs 6= ~vd.

• loop-independent reuse when Ls = Ld, ~vs = ~vd.

• inter-loop reuse when Ls 6= Ld.

We say reuse is exploited if the reuse leads to saved memory
accesses.



3. TUNING FRAMEWORK DESIGN
The tuning framework presented in this paper first maps

the Sequoia program to the target machine. Next, a bottom-
up pass empirically explores the tunable space of each mem-
ory level, beginning with the lowest memory level (Section
4). Finally the integrated loop fusion algorithm (Section
5) is invoked to select a loop order for each loop nest and
a fusion configuration to maximize the profitability of loop
fusion.

On cache-based architectures, [36] makes tiling decisions
after loop fusion and loop distribution. But for software-
managed memory hierarchies, we believe it is better to per-
form loop fusion after exploring the tunable space. The
detailed reasons are given in Section 5.

3.1 Mapping Programs to Target Machines
The tuning framework maps a Sequoia program to the tar-

get machine by matching the decomposition hierarchy with
the machine’s memory hierarchy, placing data into a mem-
ory level and annotating control statement with the level of
a machine at which it will execute. The tuning framework
uses a top-down algorithm (starting from each entry task)
to generate multiple such mapped versions of the program,
which are consumed by subsequent stages; ultimately the
fastest version is selected.

When setting the level of each data object and the execu-
tion level of each statement, the following constraints apply:

• All arguments of a task are located within a single
level of the memory hierarchy and are resident at the
memory level L the entire time the task is in progress.
If an element of an argument is reused inside the task,
the reuse is exploited at level L.

• A control statement at level L can only access data ob-
jects (scalar variables or array blocks) that are placed
in the same level L.

A copy operation is inserted by the framework if a data
object resides in one level and it (or part of it) is needed in
another level.

Consider the conv2d example, the call graph of the orig-
inal program is displayed in the left column of Figure 3.
Only the name of the callee task is specified for the call site
in conv2d::inner, so it can call either conv2d::inner or
conv2d::leaf. The expanded call graph targeting a cluster
of PS3s is shown in the right side of Figure 3. Copy oper-
ations that transfer data between M2 and M1 are inserted
since the call site at M1 accesses subblocks of arrays at M2.
Similarly copy operations which move data between M1 and
M0 are inserted.

3.2 Performance Measurement
For each control level (machine level that can perform

computation), profiling code measuring the performance of
each loop nest and each bulk operation (data transfer or
task call) is inserted during code generation. This level-
aware profiling facilitates level-by-level tuning. Consider the
conv2d example targeting a cluster of PS3s. For the loop
nest at M1, the profiling system will collect the run time
of the loop nest, the run time of each copy operation that
moves data between M2 and M1, and the run time of the
task call that is invoked by the call site at M1. The profiling
system collects the same data for the loop nest at M0.

conv2d::inner M2conv2d::inner

Loop: i, j

Call site: conv2d

conv2d::leaf

Tunable XBLK, YBLK

Loop: i, j                   M1

Call site: conv2d::inner

Tunable XBLK, YBLK

Loop: i, j                   M0

Call site: conv2d::leaf

Figure 3: Call graph of the original program (left)
and the version mapped to a cluster of PS3s (right)

In our experience, the profiling system gives the user valu-
able feedback. For each loop nest at each control level, is
it communication-bound or computation-bound? For each
control level, which loop nest (which bulk operation) is the
most time-consuming?

4. SEARCHING THE TUNABLE SPACE
We first discuss how to reduce the size of the tunable

search space. Next we characterize the search space of tun-
ables on software-managed memory hierarchies. Finally we
give methods for empirically searching the space.

4.1 Pruning the Search Space
A point is an assignment of values to the tunables. Since

data is already allocated to a specific memory level in Sec-
tion 3.1, a point is infeasible if data no longer fits in the
memory level with the assignment of tunables. This capac-
ity constraint is used to prune the search space. In addition,
several types of user-provided constraints are supported in
the system: a tunable can be constrained to be bound be-
low, bound above, a multiple of, or a factor of an integer.
These constraints allow a user to express correctness condi-
tions for external leaf tasks (e.g. alignment restrictions) and
to manually prune the search space.

4.2 Reducing the Dimensionality of the Search
Space

The dimensionality of the search space is equal to the
number of tunables and the number of tunables increases
with the depth of the memory hierarchy. The largest appli-
cation we evaluated has 78 tunables on a cluster of PS3s,
and searching the resultant high-dimensional tunable space
is very time-consuming. Thus we reduce the dimensionality
by grouping tunables and searching each group separately.

The level of a tunable is L if it affects the decomposition
of a problem at level L + 1 to a set of sub-problems at level
L. When exploring the search space of tunables at level L,
a problem size that fits in level L+1 is chosen, and profiling
results at level L are collected to guide the search. In order
to collect profiling results, tunables at lower levels should
have been set. Thus we use a bottom-up approach, but re-
evaluate the decisions made at lower levels when necessary.

Consider targeting a cluster of PS3s, which has three levels
M2, M1 and M0. We first search the space of tunables at M0

with a problem size P1 chosen to fit M1. Next tunables at
M0 are set to the best point found at the previous step, and
the space of tunables at M1 is searched. The problem size



determined by the best values of tunables at M1 is P2. If P2

is different from the assumed size P1, to get the optimal per-
formance, the tunable space at M0 should be explored again.
Unlike cache-based architectures, where conflict misses vary
with the problem size, for software-managed memory hierar-
chies, we observe much less correlation between the problem
size and the best values of tunables. If the run time of the
problem at M2 is dominated by communication operations,
or if both problem sizes P1 and P2 at M1 are much larger
than the best problem size at M0, there is little or no benefit
gained from re-exploring the space at M0. In fact, for all our
benchmarks, at least one of the two conditions are satisfied.
Therefore, a single bottom-up pass suffices.

Changing the values of the tunables involved in one loop
nest, in many cases has little or no effect on the performance
of other loop nests. To exploit this independence, we fur-
ther divide tunables in the same level into groups. If two
tunables are not involved in the same loop nest, we say they
are independent and belong to different groups. Separate
instances of the search algorithm on individual groups are
initiated with loop level profiling results to guide the search.
And those instances run simultaneously to reduce the tuning
time.

4.3 Characteristics of the Search Space
We compare the search space of tile sizes on cache-based

machines with the search space of the tunables on software-
managed memory hierarchies. Since conflict misses play
a significant part in the cache behavior of blocked algo-
rithms, the repetitive characteristic of conflict misses causes
the search space of tile sizes to be periodic with high fre-
quency oscillations. Studies [22][17] have shown that indeed
the search space is neither smooth nor continuous. A small
deviation from “good” tile sizes can cause a huge increase
in execution time. Due to conflict misses, “good” tile sizes
usually utilize only a fraction of the cache’s capacity, and
square tile sizes usually work well.

Consider how the performance of an application changes
with the tunables on software-managed memory hierarchies.
First, the amount of reuse that is exploited changes when
the tunables are varied. We can estimate the exploited
reuse by the number of memory transfers: more exploited
reuse means fewer bytes transferred. For our conv2d ex-
ample, the number of elements transferred scales with 1 +

U−1
Y BLK

and 1 + V −1
XBLK

. For IJK version of matrix multi-
plication with NxN problem size, the amount of transfer
scales with N/JBLK and N/IBLK. For different appli-
cations, the exploited reuse varies with the tunables in dif-
ferent ways. Second, transfer sizes of communication oper-
ations vary as the tunables. We achieve higher bandwidth
for larger transfers, particularly for MPI communication op-
erations between nodes and DMA operations across levels.
Third, the values of tunables can impact the number of TLB
misses, because they change the way arrays are traversed.
Finally, alignment of transfer operations and SIMD opera-
tions in the leaf tasks affect performance.

We study the search space of tunables by evaluating all
the feasible points on a coarse grid (some tunables are mul-
tiples of 8). For conv2d on Cell, the search space is shown in
Figure 4. We notice that the space is smooth and the high
frequency components due to alignment issues cause vari-
ations of no more than 20 percent. If we downsample the
space by collecting the points that are multiples of 32, most

of the high frequency components are gone (i.e. the data
is properly aligned). We observe similar characteristics on
our other benchmarks running on Cell. A rougher surface
is observed for our benchmarks on a cluster of PCs because
each node is a cache-based machine. And we notice that the
best values are often close to the boundary created by the
capacity constraints.
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Figure 4: Search space of conv2d on Cell

We notice that square tunables (i.e. the same value is used
for multiple tunables) do not work well for several tunable
groups of SUmb (Stanford University MultiBlock, see Sec-
tion 6). On Cell, the best tunable values for two loop nests
of SUmb are (128,1,4) and (128,4,1) respectively, far from the
square shape. With the best square tunables, the perfor-
mance of the two loop nests degrades 6.5x and 5.4x, due to
small transfer sizes.

In summary, the tunable search space on software-managed
memory hierarchies displays different characteristics from
the search space on cache-based architectures:
• Smoothness: The search space is rough for cache-based

machines due to the repetitive characteristic of conflict
misses. If a subblock is copied to a contiguous region,
the search space becomes much smoother due to re-
duced self-interference misses. For software-managed
memory hierarchies, the search space is smooth with
high-frequency components due to alignment issues.

• Sensitivity to the tunable shape: Memory bandwidth
saturates at the cache line size for cache-based ar-
chitectures, but on software-managed memory hierar-
chies, the achieved bandwidth of bulk transfers still
scales up at 1K bytes. This often requires tunables
affecting the transfer size to be larger than other tun-
ables on software-managed memory hierarchies. We
say the performance is more sensitive to the tunable
shape for software-managed memory hierarchies than
for cache-based architectures.

• Closeness to the search boundary: Due to conflict misses
on cache-based architectures, only a small portion of
the cache capacity is utilized when achieving the best
performance. However for machines with software-
managed memory hierarchies, the best tunable values
are often close to the capacity boundary.



• Sensitivity to the problem size: Performance of an
application is sensitive to the problem size on cache-
based architectures due to the correlation between self-
interference misses and the problem size.

4.4 The Search Algorithm
We employ a pyramid search that starts with a coarse grid,

and refines the grid when no further progress can be made.
At each grid level, we are looking at the downsampled space,
thus ignoring the local oscillations of the search space. Since
the search space for software-managed memory hierarchies
is relatively smooth compared to the search space of cache-
based machines, greedy search algorithms that rely solely
on profiling can achieve good performance quickly. To avoid
local minima, once we are done with one pass of the search
from the coarsest grid to the finest grid, we restart the pass
again with a base point at each grid level chosen to be the
point with the best performance among the evaluated points
that have not been used as base at this grid level. The search
stops when no progress is made for the last restarting or
when the maximal number of evaluations is reached.

4.4.1 Setup of the Search Algorithm

We associate a weight with each tunable. Initially the
weight of any tunable (wt) is set to zero. If the transfer size
of an operation gets larger when the tunable is increased, we
update its weight to max(wt, w1), w1 is a machine-specific
constant. If the exploited reuse increases as the tunable, we
set its weight to max(wt, w2), w2 is application-specific de-
pending on how the exploited reuse scales with the tunable.
Currently, we set both w1 and w2 to 1 for any application.

To get the initial point, we set the tunables with weight
zero to minimum possible values, and set other tunables to
the maximum feasible values, with the ratio between tun-
ables equal to the relative weight. As shown in the eval-
uation section, square grid (i.e. same grid spacing in each
tunable dimension) does not work well for some of our bench-
marks. In fact, we update the ratios between grid spacing
in each tunable dimension to be the ratios between tunable
values of the initial point.

4.4.2 The Algorithm at Each Grid Level

Define vector st as one step along the direction of tunable
t, and vector v as the base point. The algorithm is described
in Figure 5. If the current best point is on the boundary,
it is very likely that the algorithm will become stuck, since
making any tunable larger will make the new point infeasi-
ble. step(v, st) handles the boundary case by first checking
whether v+st is feasible. If it is infeasible, it keeps the value
of tunable t, and reduce the values of other tunables until a
feasible point is found.

5. INTEGRATED LOOP FUSION
Loop fusion is a well-known compilation technique to re-

duce the distance of inter-loop reuse by merging pairs of
loop nests. However loop fusion can increase the distance of
the original loop-carried reuse since more data is touched in
the fused loop. Traditional loop fusion algorithms often use
reuse distances to estimate profitability. However, reduced
reuse distances do not guarantee performance improvement.
Consider the last two loop nests from our FFT3D benchmark
(shown in Figure 6). There exists a single inter-loop reuse
pair between reference to d2 in the forth loop nest and ref-

procedure search(v)
while progress is made
choose x ∈ {+st,−st | ∀ tunable t}
s.t. f ′ is maximized, where {v′, f ′} ← step(v, x)

if no better point is found, break
v ← the best point
do

{v′, f ′} ← step(v, x)
if v′ is better than v, v ← v′

else break

while true

procedure step(v, x)
if x is a backward step

f ′ ← evaluate the performance at v + x
return {v + x, f ′}

v′ ← v + x
while v′ is infeasible
v′ ← reduce values of tunables other than t, where x = st

if tunables cannot be reduced further, return {v, 0}
f ′ ← evaluate the performance at v′

return {v′, f ′}

Figure 5: The search algorithm
tunable Kz_0, Kx_0;
mappar (int k0 ..., int i0 ...) {

fft1D_Y(d0[k0*kz_0;Kz_0][0:Ny][i0*Kx_0;Kx_0], coef);
}
tunable Kz_1, Ky_1, Kx_1;
mappar (int k1 ..., int j1 ..., int i1 ...) {

transpose(d0[k1*Kz_1;Kz_1][i1*Kx_1;Kx_1][j1*Ky_1;Ky_1],
d1[k1*Kz_1;Kz_1][j1*Ky_1;Ky_1][i1*Kx_1;Kx_1]);

}
tunable Kz_2, Kx_2;
mappar (int k2 ..., int i2 ...) {

fft1D_Y(d1[k2*kz_2;Kz_2][0:Nx][i2*Kx_2;Kx_2], coef);
}
tunable Kz_3, Ky_3, Kx_3;
mappar (int k3 ..., int j3 ..., int i3 ...) {

transpose(d1[k3*Kz_3;Kz_3][i3*Kx_3;Kx_3][j3*Ky_3;Ky_3],
d2[k3*Kz_3;Kz_3][j3*Ky_3;Ky_3][i3*Kx_3;Kx_3]);

}
tunable Ky_4, Kx_4;
mappar (int j4 ..., int i4 ...) {

fft1D_Z(d2[0:Nz][j4*Ky_4;Ky_4][i4*Kx_4;Kx_4], coef);
}

Figure 6: Loop nests from FFT3D

erence to d2 in the last loop nest, so loop fusion cannot
increase the distance of any reuse. However, on Cell the
performance is 5 times worse after fusion compared to no
fusion. The performance degradation is caused by the tun-
able mismatch penalty, an important factor not captured by
reuse distances.

Suppose for loop nests L1 and L2, the best tunable values
are V1,V2 prior to fusion and V1

′,V2
′ after fusion. The per-

formance degradation of runtime(L1,V1
′)+runtime(L2,V2

′)−
(runtime(L1,V1) + runtime(L2,V2)) is called the tunable
mismatch penalty, where runtime(L,V) is the execution time
of loop nest L with tunable values V. The reason that
V1 6= V1

′ V2 6= V2
′ is two-fold:

• Due to capacity constraints, the tunable values after
fusion are reduced.

• The best tunable shape of one loop nest can be very dif-
ferent from the best tunable shape of another. When
two loop nests are fused, two different shapes are com-
bined, which means compromising on the best tunable
shape of each individual loop nest.

The tunable mismatch penalty should be greater on software-
managed memory hierarchies than on cache-based architec-



tures because performance is less sensitive to tunable shape
on cache-based architectures and because the best tunable
values prior to fusion are usually close to the search bound-
ary on software-managed memory hierarchies.

In most cases, we want tunables to be large to have more
exploited reuse and to have larger transfer sizes. On a
memory level with smaller capacity, the tighter capacity
constraints will drive the tunables to have smaller values.
Usually performance varies more rapidly with the tunables
when the tunables are smaller. Thus the tunable mismatch
penalty is greater on levels with smaller capacity.

We propose a fusion algorithm for software-managed mem-
ory hierarchies that is different from the traditional fusion
algorithms targeting cache-based architectures:

• Without exploring the tunable space first, we can’t
measure the amount of degradation caused by tunable
mismatch. Thus we perform loop fusion after explor-
ing the tunable space. In fact, the knowledge gained
when searching the tunable space is used to guide the
selection of a fusion configuration.

• Since it is important to consider tunable mismatch, we
can no longer make fusion decisions by looking only
at the outermost loop level. Our algorithm considers
multiple outermost loop levels in a single step.

5.1 The Fusion Algorithm
The term fusion depth is used throughout this section. At

each algorithmic step, if only the outermost loop level is con-
sidered, the fusion depth is 1, if we consider two outermost
loop levels, the fusion depth is 2, and so on. Profitability is
not estimated from a static model of the targeted architec-
ture, instead it is constructed from the profiling information
collected when searching the tunable space. We focus on
the problem of selecting a loop order for each loop nest and
a fusion configuration to maximize the profitability of loop
fusion.

A reuse pair is defined as a pair of references that touch
overlapping memory regions.In this section, we consider inter-
loop reuse pairs only. Our framework solves the fusion prob-
lem top-down, beginning with the top memory level, because
fusion at high memory levels can create more fusion possibil-
ities at low levels and bandwidth is scarcer at higher mem-
ory levels. The algorithm for a memory level is described
below. First, for each reuse pair, the possibility of exploit-
ing the reuse is checked by applying fusion multiple times,
considering only the loops the pair of data references are in
(Section 5.1.2). This step annotates each reuse pair with
information that will help the later steps make their deci-
sions. The fusions applied are reverted after the reuse pair
is analyzed. The algorithm then generates a loop order for
each loop nest (Section 5.1.4). Finally a weighted pair-wise
fusion algorithm is applied (Section 5.1.5).

5.1.1 Multi-dimensional Loop Alignment

Loop alignment [1] is an iteration space transformation
technique that aligns the iterations of two loops to remove
backward true dependencies which make loop fusion illegal
or to bring data reuse closer. Here, we are aligning multiple
outermost loop levels of a pair of loop nests. Tunable rela-
tions (relationships between tunables of the two loop nests),
and iteration relations are generated as a result of the loop
alignment.

A basic iteration relation is written as:

[k0 i0] == [k1 j1][k0 i0] == [k1 j1]

[k1 i1] == [k2 i2][k1 i1] == [k2 i2]

[k2 i2] == [k3 j3][k2 i2] == [k3 j3]

[j3 i3] == [j4 i4][j3 i3] == [j4 i4]

{[k0] == [k1] [i0] == [j1]}{[k0] == [k1] [i0] == [j1]}

{[k1] == [k2] [i1] == [i2]}{[k1] == [k2] [i1] == [i2]}

{[k2] == [k3] [i2] == [j3]}{[k2] == [k3] [i2] == [j3]}

{[j3] == [j4] [i3] == [i4]}{[j3] == [j4] [i3] == [i4]}

fft1D_Y d0[…]fft1D_Y d0[…]

transpose d0[…], d1[…]transpose d0[…], d1[…]

fft1D_Y d1[…]fft1D_Y d1[…]

transpose d1[…], d2[…]transpose d1[…], d2[…]

fft1D_Z d2[…]fft1D_Z d2[…]

fft1D_Y d0[…]fft1D_Y d0[…]

transpose d0[…], d1[…]transpose d0[…], d1[…]

fft1D_Y d1[…]fft1D_Y d1[…]

transpose d1[…], d2[…]transpose d1[…], d2[…]

fft1D_Z d2[…]fft1D_Z d2[…]

Figure 7: Annotated reuse pairs for FFT3D. Left:
Cell, Right: a cluster of PCs. Edges represent reuse
pairs and are annotated with the iteration relations.

[i1 l1 i2 l1 ... iN l1]==[i1 l2 i2 l2 ... iN l2], where N is
the fusion depth and ik lj represents a loop level of loop
nest j with loop variable ik. The basic iteration relation
says that loop levels i1 lj to iN lj are the N outermost loop
levels, loop ik l1 must be at the same loop position as ik l2,
and loop order is not specified. An iteration relation is a set
of basic iteration relations, which means any basic iteration
relation in the set will work.

5.1.2 Annotating Reuse Pairs

For each reuse pair, we test whether it is possible to re-
duce the reuse distance such that the reuse can be exploited
at the targeted memory level. Considering only the loops
the reuse pair resides in, a series of fusions is performed un-
til the reuse distance is smaller than the memory capacity
or further fusion is illegal. The series of fusions, together
with alignment information for each fusion, are annotated
with the reuse pair and the fusion depth of each fusion is
determined as follows:
• k1 = maxk k-deep loop nest is fully permutable and

k-deep fusion is legal.

• k2 = mink≤k1 data touched by a single iteration of
fused k-deep loop nest fits in the targeted memory level

• If such k2 exists, use k2, otherwise, use k1 as fusion
depth.

We use FFT3D (Figure 6) as an example and show how
our fusion algorithm performs differently on Cell vs. on a
cluster of PCs. k1 is machine-independent and k2 is specific
to a machine. Since the capacity of a cluster node is much
bigger than that of local store, k2 is determined to be 2 for
Cell and 1 for a cluster of PCs. The fusion depth is equal
to k2. In Figure 7, a reuse pair is shown as an edge between
two references and the annotations are displayed along the
edge. Only a single pair-wise fusion is required to exploit
each reuse pair in our example.

5.1.3 Profitability

We consider penalties due to tunable mismatch and bene-
fits gained by exploiting the inter-loop reuse, when calculat-
ing the profitability of fusing a pair of loop nests. We first
determine the tunable values of the fused loop nest, and
then calculate MismatchPenalty (Table 1). Data transfer
operations can be (partially) removed as a result of fusing
the pair. A penalty term is applied for transfer operations
that are eliminated from misaligned reuse (see Section 5.1.6).



IN: (Li, Ti) = An original loop nest before any loop fusion is applied and its tunables
Pi = Set of data points evaluated when exploring the tunable space of Li

(Lj , Tj) = A loop nest at the current state and its tunables
Sj = {(Ljk, Rjk), k ∈ [1, Nj ]}

Ljk: The set of original loop nests that Lj is generated from
Rjk: Tunable relation that maps Tj to Tjk

Candidate Pair = (L1, T1) (L2, T2)
R(T1 → T2) = Tunable relation given by alignment of L1 with L2

OUT: MismatchPenalty
ALG.: (V1,V2) = The best values of T1 and T2

RunTime(Li, Vi) = Neighborhood interpolation of data points in Pi

RunTime(Lj ,Vj) =
P

(Ljk,Rjk)∈Sj
RunTime(Ljk, Rjk(Vj))

(V1
′,V2

′) = Values of T1 and T2 minimizing RunTime(L1, T1) + RunTime(L2, T2)
∀(T1, T2) ∈ R and (T1, T2) is feasible for the fused loop nest

MismatchPenalty = RunTime(L1,V1
′) + RunTime(L2,V2

′)− (RunTime(L1,V1) + RunTime(L2,V2))

Table 1: Algorithm to calculate the tunable mismatch penalty

k0 i0k0 i0

k1 j1 k1 i1

k2 i2k2 i2

k3 j3j3 i3

j4 i4j4 i4

k0k0

k1k1

k2k2

k3k3

i0i0

j1j1 i1i1

i2i2

j3j3

j4j4

i3i3

i4i4

Figure 8: Loop order graph for FFT3D. Left: Cell,
Right: a cluster of PCs. Edges mean alignment con-
straints between the node pair in order to exploit
reuse.

Finally the profitability is updated to be the transfer time
reduced minus MismatchPenalty. Due to the smoothness
of tunable search space on software-managed memory hier-
archies, neighborhood interpolation is used to estimate per-
formance at un-evaluated points.

5.1.4 Selecting Loop Order

We create a loop order graph from the annotations gener-
ated at Section 5.1.2. Nodes are created from the iteration
relations associated with each reuse pair. For example, from
the iteration relation [k0 i0]==[k1 j1], two nodes [k0 i0] and
[k1 j1] are constructed. An edge is added between two nodes
if there exists a reuse pair that requires the alignment of the
two nodes and all such reuse pairs are associated with the
edge. Edge weight is defined as the profitability of fusing the
pair with the alignment defined by the edge. The loop order
graphs of FFT3D are shown in Figure 8. Nodes belonging to
the same loop nest are displayed at the same row.

From the loop order graph, we select a single node for
each loop nest to maximize the potential profitability of loop
fusion. And the profitability of loop fusion is measured as
sum of weight on edges that can be realized with the set
of selected nodes. For FFT3D, the set of selected nodes are
highlighted by darker colors in Figure 8, and no node is
chosen for the last loop nest because its loop order does not
affect the profitability of loop fusion.

5.1.5 Performing Fusion

After a loop order is selected for each loop nest, a pair-
wise fusion algorithm is used. At each step, the algorithm

greedily picks the candidate pair with the biggest profitabil-
ity to fuse. If the profitability is calculated as described
in Section 5.1.3, we name the approach model-based fusion,
since no further program evaluations are required when ap-
plying the fusion algorithm. If for each candidate pair, we
empirically determine the tunables of the fused loop nest us-
ing our search algorithm and update the profitability with
the actual performance gain, this approach is called search-
based fusion. We compare the performances of these two
approaches in the evaluation section.

5.1.6 Misaligned Reuse

Given a reuse pair <(Rs, Ls) (Rd, Ld)>, where ~vs of Ls

is aligned with ~vd of Ld, if footprint(Rs, Ls, ~vs) overlaps

with but is not the same as footprint(Rd, Ld, ~vd), we say
the reuse pair is misaligned. On cache-based architectures,
the compiler is responsible for reducing the reuse distance
and reuse is automatically exploited by the cache once the
distances are short enough. For software-managed memory
hierarchies, there is a separate namespace for each memory
level, and the compiler is responsible for renaming the data
such that misaligned reuse can be explicitly exploited.

For misaligned read-after-read reuse, a data object cover-

ing union of footprint(Rs, Ls, ~vs) and footprint(Rd, Ld, ~vd),
is created in the lower memory level. Then Rs and Rd are
updated to be relative to the newly-created data.

The handling of misaligned read-after-write (RAW) reuse
is more complicated. We use two loop nests from the SUmb

benchmark as an example, shown in Figure 9, where the
RAW reuse of array r is misaligned at data dimension y.
The left column of figure 10 shows the access patterns of the
two references to array r prior to fusion. To make fusion
legal, we can either duplicate computation at Rs to generate
aligned reuse or shift the region produced by Rs. The right
column of Figure 10 shows the access patterns after duplicat-
ing computation along y dimension. The case where the first
loop nest is shifted is displayed in the middle column. The
dark rectangles are regions of array r that are needed at Rd,
but are generated at previous iterations. That means some
of the inter-loop reuse is converted to loop-carried reuse.

Reuse can be exploited if the overlapping region stays at
the same physical location and is not evicted. We use a cir-
cular layout to exploit reuse carried by the innermost loop if
possible. A circular layout is the mapping from logical data
to physical location that wraps around at boundary of the
physical region. For data used by external leaf tasks, its lay-



tunable Kz_0, Ky_0, Kx_0;
mappar (int k0 ..., int j0 ..., int i0 ...) {

inviscidEta(r[k0*Kz_0;Kz_0][j0*Ky_0;Ky_0][i0*Kx_0;Kx_0],
...); //update r

}
//different blocking for boundary sub-blocks
tunable Kx_1, Ky_1, Kx_1;
mappar (int k1 ..., int j1 ..., int i1 ...) {

diffEta(r[k1*Kz_1;Kz_1]
[max(0,j1*Ky_1-2):min((j1+1)*Ky_1+2, Ny);Ky_1+4],
[i1*Kx_1;Kx_1], ... );

}

Figure 9: Loop nests from SUmb with misaligned
reuse.
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Figure 10: Example of misaligned reuse.
Top(Bottom) row is the data accessed by ref-
erence r of the first(second) loop nest at iterations
A B and C. Left: prior to fusion; Middle: shift the
first loop nest to make fusion legal; Right: duplicate
computation along y dimension.

out at the lowest dimension should be contiguous to enable
vector operations, thus a circular layout is not supported for
the lowest dimension due to violation of contiguity.

We can discard the loop-carried reuse by always loading
from the higher memory level, which means reference Rs

stores part of its footprint back to the higher memory level,
then reference Rd loads from the higher memory level. And
we call it loading method. Since loading a small section along
the lowest data dimension requires transfers of small sizes,
and the achieved bandwidth is low for small transfers, we do
not recommend loading method for the lowest dimension.

For each misaligned data dimension of RAW reuse, we can
choose one method out of the three methods described above
(i.e. loading method, a circular layout and computation du-
plication). Since a circular layout has the least amount of
overhead, we give it the highest priority. Due to the reasons
described above, for the lowest dimension, we consider com-
putation duplication before loading method. For other data
dimensions, we give loading method higher priority.

6. EVALUATION
In this section, we present an evaluation of our method us-

ing some preliminary experimental results. We implemented
several benchmarks (described in Table 2) in Sequoia. The
benchmarks were executed on three different platforms:

• Cell: a single 3.2GHz Cell processor with 8 SPEs and
1GB of XDR memory in an IBM BladeCenter. 16MB
pages are used to reduce TLB misses.

• Cluster of PCs: a cluster of 16 nodes each with dual
2.4GHZ Intel P4 Xeon processors and 1GB of main
memory. The nodes are connected with Infiniband 4X

SDR PCI-X HCAs and only one processor is utilized
per node.

• Cluster of PS3s: a cluster of 2 nodes, each is a Sony
Playstation3 with 256MB of memory, which uses a
Cell processor with 6 SPEs. Nodes are connected with
GigE.

FFT3D Fast Fourier transform of a complex 2563 dataset
(1283 for Cluster of PS3s).

SGEMM BLAS L3 sgemm, multiplying matrices of size
4096x4096.

CONV2D Convolution of a 9x9 filter with a 8192x4096 input
signal.

SUmb Stanford University multiblock. A massively par-
allel flow solver which uses a multi-block struc-
tured meshing approach. It has 13 kernels and
39 tunables on a machine with a 2-level memory
hierarchy.

Table 2: Benchmarks used for evaluation (single-
precision)

We implemented two versions of the FFT3D benchmark
that differ in how to decompose the problem. The example
used in Section 5 is named FFT3D V2 here, and it transposes
the data twice and performs three 1D FFTs in a (Y,X,Z)
dimension order. The other version, which is called FFT3D

V1 here, is a 3-transpose version and it performs three 1D
FFTs in a (Y,Z,X) dimension order.

Our leaf tasks utilize the fastest implementations avail-
able. For x86, we use FFTW [15] and the Intel MKL and
for Cell or PS3, we use the IBM SPE matrix library. All
other leaf tasks are our own best effort implementations,
hand-coded in SSE or Cell SPE intrinsics. Other than the
Sequoia source codes and the codes for the leaf tasks, the
user only provides necessary constraints on tunables at the
leaf level to express correctness conditions for the external
leaf tasks.

6.1 The Achieved Raw Performance
Table 3 compares the raw performance achieved by our

tuning framework using our search algorithm that evaluates
30 data points followed by our model-based fusion algorithm,
to the performance of the best-available hand-tuned version
coded in Sequoia ([20]). Applying our fusion algorithm may
create the possibility of fusion of leaf tasks (i.e. combining
leaf tasks to improve utilization of the leaf processor). With
fusion of leaf tasks, the performance achieved by our tun-
ing framework is similar to or better than the hand-tuned
version. For FFT3D on Cell, the best performance achieved
by our tuning framework is 57 GFLOPS, which is better
than the 39 GFLOPS reported for version 3.2 of FFTW
[15], the 54 GFLOPS achieved by the hand-tuned version
[20], and the 46.8 GFLOPS reported for IBM’s large FFT
implementation [7]. FFT3D on Cluster of PCs achieves 5.5
GFLOPS with kernel fusion, which is a little better than
the 5.3 GFLOPS achieved by FFTW 3.2 alpha 2 using the
same system configuration and dataset size. The Intel MKL
provides support for execution of SGEMM on a cluster of
workstations. Compared with the 101 GFLOPS achieved by
Intel Cluster MKL on the same cluster configuration, our
performance of 92.4 GFLOPS is within 9%. Since SUmb is
too complex for hand-tuning, no performance data is avail-
able for hand-tuned version.



CONV2D SGEMM FFT3D SUmb
auto 99.6 137 42(57) 12.1

Cell hand 85 119 54
Cluster of auto 26.7 92.4 4.4(5.5) 2.2
PCs hand 24 90 5.5
Cluster of auto 20.7 33.4 0.57 0.63
PS3s hand 19 30 0.36

Table 3: Measured raw performance of benchmarks:
the tuning framework vs. hand-tuned version in
GFLOPS. For FFT3D, performance with fusion of
leaf tasks is displayed in parentheses.

Our approach attempts to maximize the utilization of
communication bandwidth by intelligently setting the values
of tunables and our fusion algorithm aims to reduce the fre-
quency of memory accesses and communication. Figure 11
shows the breakdown of execution time and the utilization
of communication bandwidth for our 4 applications across
3 platforms. On Cell, the sustained bandwidth is the total
execution time divided by number of bytes transferred be-
tween memory and LS. On both Cluster of PCs and Cluster
of PS3s, the sustained bandwidth is calculated as the total
execution time divided by number of bytes communicated
inter-node.

On Cell, CONV2D and SGEMM are compute bound and spend
97% of execution time running kernels. For compute limited
benchmarks, the only way to improve performance would be
to further tune the kernels. SUmb is bandwidth limited, wait-
ing on memory transfers 25% of the time, and it achieves
16.6GB/s, which is a high utilization of the memory band-
width, relative to the optimal DRAM throughput of our Cell
system (25.6GB/s). FFT3D strikes a balance between compu-
tation and memory. It spends 94% of execution time running
leaf tasks and 6% of time waiting on memory transfers. The
above 4 applications either fully utilize the SPEs’ arithmetic
resources or achieve a high sustained memory bandwidth.

On Cluster of PCs, the 4 applications spend between 10
and 42 percent of their time waiting for transfer operations
to finish. SGEMM is sufficiently compute intensive that it only
spends 10% of its time waiting on transfers, while the other
3 applications are limited by the interconnect performance.
FFT3D achieves the highest sustained communication band-
width (650 MB/s), while CONV2D has the lowest bandwidth
since it reads the boundary of a region from neighboring
nodes, causing remote transfers with small sizes.

On Cluster of PS3s, all 4 applications spend a significant
amount of time, between 63 and 95 percent, waiting for
transfers. So all applications are limited by transfer opera-
tions between M2 and M1. For each transfer operation from
a virtual level, a contiguous block is usually constructed for
the requested data at the destination node, with memcpys to
move the portion owned by the node and inter-node com-
munication to transfer data from remote nodes. Other than
the temporary data blocks, memory space is also required
at each node to store the owned portion of each distributed
array. The speed of GigE interconnect, the limited available
memory and the overhead of memcpys drive the transfers
between M2 and M1 slow.

6.2 Evaluation of the Tunable Space Search
To evaluate the performance of our search algorithm on

Cell, we use the best result from an exhaustive search on a
coarse grid as the baseline. The number of program evalua-
tions required by the exhaustive search is shown in the last
column of Table 4. On Cluster of PCs and Cluster of PS3s,

Number of Number of Number of
Tunable Groups Tunables Search Points
Per Level Per Level

FFT3D V1 6 15 361
FFT3D V2 5 12 363
SGEMM 1 3 6546
CONV2D 1 2 566
SUmb 13 39 486

Table 4: Search space properties. The last column
is the maximal number of search points across all
tunable groups on Cell.
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Figure 12: Convergence rate of our search algorithm
on Cell, Cluster of PCs and Cluster of PS3s.

the baseline is the best performance achieved by 50 evalua-
tions. Figure 12 shows that our search algorithm converges
quickly on Cell, 90% performance achieved in 6 evaluations.
On Cluster of PCs and Cluster of PS3s, we observe slower
convergence compared to targeting Cell. We believe it is
due to: First, the search spaces for these two targets, af-
ter pruned by the capacity constraints, are larger than the
search space on Cell; Second, the search space on Cell is
relatively smoother.

We also studied the performance of our search algorithm
on each tunable group. Even though there are 26 tunable
groups across our benchmarks, since some tunable groups
are from multiple instantiations of the same loop nest, only
19 tunable groups are unique. Figure 13 shows that after x
program evaluations, how many tunable groups (y) achieve
70%, 80%, 95% or 99% performance relative to the baseline.
Our search algorithm works well on Cell: in 14 evaluations,
all tunable groups achieve 85% performance and 16 out of
19 tunable groups achieve 99% performance. An additional
15 evaluations are needed for the other 3 tunable groups to
reach 99% performance.

We achieve good performance quickly on all three plat-
forms due to:

• the smoothness of the search space.

• the relative insensitivity to the problem size. Thus
less correlation is observed between tunable values at
a level and tunable values at its child level.

• the specialization of the search algorithm for software-
managed memory hierarchies, such as how to select the
initial point, how to set a non-square grid, and how to
handle the case that the current search point is close
to the boundary.

6.2.1 Comparison of Search Algorithms on Cell

The performance of random search is shown in Figure
14 and it makes progress at a much slower rate than our
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Figure 11: Utilization of communication bandwidth (left bar) and execution time breakdown (right bar).
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Figure 13: Performance of our search algorithm
across tunable groups, on Cell.
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Figure 14: Comparing different search algorithms
on Cell.

search algorithm. To achieve 80 percent performance, ran-
dom search requires only 3 evaluations for CONV2D, but
139 evaluations for one tunable group of SUmb.

To evaluate sensitivity to the initial point, an alternative
approach first finds the maximal square tunables, then the
value of each tunable is halved to get an initial point that is
in the middle of the search space. This alternative approach
is often used when empirically searching tile sizes on cache-
based architectures. We observe that with the alternative
approach more evaluations are required to achieve a certain
performance, as shown in Figure 14. Since the middle point

(Pa) often performs worse than the initial point (Pb) chosen
by our algorithm, it takes up to 12 evaluations to reach the
performance of Pb if we start the algorithm with Pa.

If we use a square grid, the search algorithm shows a
slower convergence. At coarse grid levels there are fewer
points with a square grid than with a non-square grid, thus
less progress is made at those levels.

6.3 Evaluation of the Integrated Fusion Algo-
rithm

FFT3D V1 FFT3D V2 SUmb
search-based 2.26 1.92 1.27

Cell model-based 2.26 1.92 1.20
Cluster of search-based 1.0 1.1 1.21
PCs model-based 0.9 1.1 1.16
Cluster of search-based 1.12 1.21 2.7
PS3s model-based 1.12 1.21 2.3

Table 5: Performance improvement with loop fusion
for FFT3D V1, FFT3D V2 and SUmb, compared to
without fusion.

We evaluate the model-based and search-based fusion al-
gorithms on SUmb, FFT3D V1 and FFT3D V2, since those are
the only applications that have multiple loop nests. Ta-
ble 5 shows the performance improvement gained by our
integrated fusion algorithm, with 30 points evaluated dur-
ing the tunable search and without fusion of leaf tasks. On
Cell a 2.26x performance is achieved for FFT3D V1, and we
see a performance improvement of 92 percent and 20 per-
cent for FFT3D V2 and SUmb respectively. The performance
of model-based fusion is close to that of search-based fusion,
which suggests that our profitability model is quite accurate.
A greedy pair-wise fusion algorithm that fuses the pair with
the biggest gain at each step does not guarantee optimal per-
formance. Global loop fusion can be formulated as a graph-
partitioning problem [18, 10], where loops are divided into
a sequence of partitions. Our profitability model targeting
software-managed memory hierarchies, and our extension to
handle multiple outermost loop levels are applicable to other
fusion methods.

The fusion algorithm on Cluster of PCs does not achieve
much performance gain, in fact, the performance degrades
for FFT3D V1. Since we do not explicitly model the cache of
each node as a machine level, there are cache interactions
that are not captured by our model-based fusion algorithm.



Table 6 shows the sensitivity of model-based fusion to the
number of points evaluated during the tunable search. With
30 points evaluated, we achieve the highest performance
of 12.1 GFLOPS. The performance degrades by 12 percent
when only 10 points are evaluated. Since model-based fusion
uses neighborhood interpolation to estimate the run time of
a loop nest with given tunable values, the accuracy of its
profitability model varies with how many points are evalu-
ated during the tunable search.

30 25 20 15 10
no fusion 10.1 10.0 9.73 9.77 9.7
fusion 12.1 12.1 11.3 11.4 10.6

Table 6: Performance in GFLOPS without fusion
and with model-based fusion for SUmb on Cell,
varying number of points evaluated during the tun-
able search.

7. RELATEDWORK
A number of empirically-tuned libraries deliver high per-

formance for a range of architectures, such as FFTW [15],
SPIRAL [30], ATLAS [35] and PhiPAC [4]. Both FFTW and
SPIRAL use empirical techniques to choose among multiple
implementations of the same problem. They recursively de-
compose a problem into simpler sub-problems using a set
of rules, derived from mathematical properties of the sig-
nal processing algorithms. SPIRAL is more general than
FFTW: it generates optimized code for a large class of sig-
nal transforms, while FFTW is a library for computing dis-
crete Fourier transforms. PhiPAC and ATLAS both gener-
ate high performance matrix-matrix multiply by empirically
searching a large space of parameter values. Our approach is
different in that it does not exploit properties of any specific
domain.

Empirically-based tuning methods have been used in gen-
eral purpose compilers. In [17], tile sizes and unroll factors
of nested loops are empirically searched, and [6] considers
tiling for each memory hierarchy level (from registers as the
lowest level to main memory as the highest level), empiri-
cally searching tiling and prefetching parameters. [33] uses
direct search to explore the space of tile sizes and unroll fac-
tors. Unlike the previous work that targets cache-based ar-
chitectures, our tuning framework targets software-managed
memory hierarchies; in particular, our search algorithm is
tailored to the characteristics of the search space of tunables
on software-managed memory hierarchies.

A fusion algorithm incorporating loop alignment, loop in-
terchange, and a data regrouping step after fusion is pre-
sented in [11]; their method considers the outermost loop
level only at each step of the algorithm, and the selection of
loop order is driven by number of fusions. Our integrated
fusion algorithm differs in that it looks at multiple outer-
most loop levels at each algorithmic step and the profitabil-
ity measurement considers mismatch of the tuning parame-
ters. Several loop transformations including loop fusion and
tiling are evaluated in [36], but only static models are used
to determine profitability and tiling decisions are made after
loop fusion and loop distribution.

In [31], a profitability model based on reuse analysis tar-
geting cache-based architectures is presented for loop fu-
sion, and several architectural parameters in the profitability
model are empirically searched. When those parameters are
changed, a different fusion configuration can be generated

from a greedy fusion algorithm. This work is extended to
tiling and fusion in [32]. With this approach less speedup is
observed for more complex machines, since its effectiveness
depends on how well the model matches the underlying ar-
chitecture, to some degree. Our tuning framework calculates
the profitability of a fusion configuration with information
collected when exploring the search space of tunables.

Steady progress has been made in the past decade on de-
pendence analysis, transformations, and code generation in
the polyhedral model [34, 2, 27]. The cost function used to
select a transformation must be simple to be tractable math-
ematically. In addition to model-based approaches, semi-
automatic and search-based frameworks also exist [8, 19, 16,
29, 28]. The search space of finding a set of transformation
coefficients for each statement can be huge, thus heuristics
are used to bound the search space and to guide the search
[16, 29, 28]. Our approach depends on the programmer to
decompose a program and to pick parameters as tunables,
while those information is automatically extracted from the
program in the polyhedral model. The polyhedral model is
applicable to affine loop nests only, but our framework works
for non-affine programs as well.

8. CONCLUSION
We have presented a tuning framework that allows pro-

grams written in a portable language, Sequoia, to be auto-
matically tuned for a wide range of machines with software-
managed memory hierarchies. Our framework matches the
decomposition strategies to the memory hierarchies, and
uses a search algorithm, specialized to software-managed hi-
erarchies by intelligently choosing the initial search point
and using a non-square grid, that achieves good perfor-
mance quickly due to the smoothness of the search space.
Since tunable mismatch penalties are greater on software-
managed hierarchies than on cache-based architectures, we
apply a novel fusion algorithm that considers multiple out-
ermost loop levels in a single step. The knowledge learned
when searching the tunable space is used to guide the selec-
tion of a fusion configuration.

Our system, on top of a portable, structured language,
with the profiling system matching the machine hierarchy
and profiling results for each loop nest and each bulk opera-
tion, can provide valuable and easy-to-understand feedback
to the user. The user can use the findings to deduce the
bottlenecks of the application and to decide whether he/she
should modify the Sequoia source code or external leaf im-
plementations.

We have demonstrated the performance of our framework
on a single Cell processor, on a cluster of Intel Xeon proces-
sors, and on a cluster of PS3s. Our framework gives similar
or better performance than what is achieved by the best-
available hand-tuned version coded in Sequoia.

9. REFERENCES
[1] R. Allen and K. Kennedy. Optimizing Compilers for

Mordern Architectures. 2001.
[2] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy,

J. Ramanujam, A. Rountev, and P. Sadayappan.
Automatic data movement and computation mapping for
multi-level parallel architectures with explicitly managed
memories. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of
parallel programming, pages 1–10, 2008.



[3] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta.
CellSs: A programming model for the Cell BE architecture.
In Proceedings of the ACM/IEEE Conference on
Supercomputing, 2006.

[4] J. Bilmes, K. Asanovic, C.-W. Chen, and J. Demmel.
Optimizing matrix multiply using phipac: a portable
high-performance ansi-c coding methodology. In
Proceedings of the 1997 ACM International Conference on
Supercomputing, 1997.

[5] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian,
M. Houston, and P. Hanrahan. Brook for GPUs: Stream
computing on graphics hardware. ACM Trans. Graph.,
23(3):777–786, 2004.

[6] C. Chen, J. Chame, and M. Hall. Combining models and
guided empirical search to optimize for multiple levels of
the memory hierarchy. In CGO ’05: Proceedings of the
international symposium on Code generation and
optimization, pages 111–122, 2005.

[7] A. Chow, G. Fossum, and D. Brokenshire. A programming
example: Large FFT on the Cell Broadband Engine, 2005.

[8] A. Cohen, M. Sigler, S. Girbal, O. Temam, D. Parello, and
N. Vasilache. Facilitating the search for compositions of
program transformations. In ICS ’05: Proceedings of the
19th annual international conference on Supercomputing,
pages 151–160, 2005.

[9] W. J. Dally, P. Hanrahan, M. Erez, T. J. Knight,
F. Labonte, J. Ahn, N. Jayasena, U. J. Kapasi, A. Das,
J. Gummaraju, and I. Buck. Merrimac: Supercomputing
with streams. In Proceedings of the 2003 ACM/IEEE
Conference on Supercomputing, page 35, 2003.

[10] C. Ding and K. Kennedy. The memory bandwidth
bottleneck and its amelioration by a compiler. In IPDPS
’00: Proceedings of the 14th International Symposium on
Parallel and Distributed Processing, page 181, 2000.

[11] C. Ding and K. Kennedy. Improving effective bandwidth
through compiler enhancement of global cache reuse. In
Parallel and Distributed Processing Symposium.,
Proceedings 15th International, 2001.

[12] A. Eichenberger, J. O’Brien, K. O’Brien, P. Wu, T. Chen,
P. Oden, D. Prener, J. Shepherd, B. So, Z. Sura, A. Wang,
T. Zhang, P. Zhao, M. Gschwind, R. Archambault, Y. Gao,
and R. Koo. Using advanced compiler technology to exploit
the performance of the Cell Broadband Engine
architecture. IBM System Journal, 45(1), 2006.

[13] A. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen,
P. Oden, D. Prener, J. Shepherd, B. So, Z. Sura, A. Wang,
T. Zhang, P. Zhao, and M. Gschwind. Optimizing compiler
for the Cell processor. In Proceedings of the 2005
International Conference on Parallel Architectures and
Compilation Techniques, September 2005.

[14] K. Fatahalian, T. J. Knight, M. Houston, M. Erez, D. R.
Horn, L. Leem, J. Y. Park, M. Ren, A. Aiken, W. J. Dally,
and P. Hanrahan. Sequoia: Programming the memory
hierarchy. In Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, 2006.

[15] M. Frigo and S. G. Johnson. The design and
implementation of FFTW3. Proceedings of the IEEE,
93(2):216–231, 2005. special issue on ”Program Generation,
Optimization, and Platform Adaptation”.

[16] G. Fursin. A heuristic search algorithm based on unified
transformation framework. In ICPPW ’05: Proceedings of
the 2005 International Conference on Parallel Processing
Workshops, pages 137–144, 2005.

[17] G. Fursin, M. O’Boyle, and P. Knijnenburg. Evaluating
iterative compilation. In Proc. Languages and Compilers
for Parallel Computers (LCPC), pages 305–315, 2002.

[18] G. R. Gao, R. Olsen, V. Sarkar, and R. Thekkath.
Collective loop fusion for array contraction. In 1992
Workshop on Languages and Compilers for Parallel
Computing, number 757, pages 281–295, New Haven,
Conn., 1992. Berlin: Springer Verlag.

[19] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,

M. Sigler, and O. Temam. Semi-automatic composition of
loop transformations for deep parallelism and memory
hierarchies. Int. J. Parallel Program., 34(3):261–317, 2006.

[20] M. Houston, J. Y. Park, M. Ren, T. J. Knight,
K. Fatahalian, A. Aiken, W. J. Dally, and P. Hanrahan. A
portable runtime interface for multi-level memory
hierarchies. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN symposium on Principles and practice of
parallel programming, 2008.

[21] U. J. Kapasi, S. Rixner, W. J. Dally, B. Khailany, J. H.
Ahn, P. Mattson, and J. D. Owens. Programmable stream
processors. IEEE Computer, August 2003.

[22] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle.
Combined selection of tile sizes and unroll factors using
iterative compilation. In IEEE PACT, pages 237–248, 2000.

[23] P. M. W. Knijnenburg, T. Kisuki, and M. F. P. O’Boyle.
Iterative compilation. pages 171–187, 2002.

[24] P. Mattson. A Programming System for the Imagine Media
Processor. PhD thesis, Stanford University, 2002.

[25] M. D. McCool. Data-parallel programming on the Cell BE
and the GPU using the RapidMind development platform.
In GSPx Multicore Applications Conference, 2006.

[26] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hofstee,
C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Masubuchi,
M. Riley, D. Shippy, D. Stasiak, M. Suzuoki, M. Wang,
J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki, and
K. Yazawa. The design and implementation of a
first-generation CELL processor. In IEEE International
Solid-State Circuits Conference, 2005.

[27] S. Pop, A. Cohen, C. Bastoul, S. Girbal, P. Jouvelot, G.-A.
Silber, and N. Vasilache. Graphite: Loop optimizations
based on the polyhedral model for gcc. In Proceedings of
the 4th GCC Developper’s summit, 2006.

[28] L.-N. Pouchet, C. Bastoul, J. Cavazos, and A. Cohen.
Iterative optimization in the polyhedral model: Part ii,
multidimensional time. In PLDI ’08: Proceedings of the
ACM SIGPLAN 2008 conference on Programming
language design and implementation, 2008.

[29] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache.
Iterative optimization in the polyhedral model: Part i,
one-dimensional time. In CGO ’07: Proceedings of the
International Symposium on Code Generation and
Optimization, pages 144–156, 2007.
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