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Abstract—This paper aims to propose a quantitative 
tuning method for active disturbance rejection control 
(ADRC) that controls the K/(Ts+1)n-type high-order 
processes. An asymptote in the Nyquist curve has been 
observed for the first time and its mathematical expression 
has been deduced. An asymptote condtion is provided in 
order to derive a parameter tuning rule under the 
sensitivity constraint. Although this proposed tuning rule 
is originally designed for a certain type of high-order 
processes, it can be extended to other types processes 
that can be approximated into the form of K/(Ts+1)n. 
Comparisons with different PID control strategies have 
been conducted for a range of cases to demonstrate the 
efficiency of the proposed tuning method. Finally, the 
effectiveness of the proposed tuning rule is experimentally 
verified on water tank system that exhibits high-order 
dynamics. Field tests on the superheater steam 
temperature control of a circulating fluidized bed (CFB) 
power plant further demonstrate its potential for 
applications in complex industrial processes.  

 
Index Terms—Active Disturbance Rejection Control, 

high-order processes, parameter tuning, steam 
temperature control, maximum sensitivity. 

I. INTRODUCTION 

igh-order systems represent a common feature existing in 
many industrial processes, such as the superheater steam 

temperature and main steam pressure control in power 
plants[1][2][3]. In fact, many complex industrial processes with 
nonlinear dynamics are inherently of high-order [4]. Transfer 
function approximation for a distributed parameter system 
often results in a high-order model representation [5]. However, 
designing high-order controllers for high-order processes 
brings complexities in control analysis, control algorithm 
implementation and parameter tuning. Therefore, in industrial 
practice, lower order controllers are usually preferred. For 
instance, it is reported that more than 94% of the controllers 
configured in power plant in Guangdong province, China, are 
lower order PI controllers [6]. When the low order controller is 
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used, higher-order dynamics are often considered as a part of 
the internal disturbances. Besides, various external 
disturbances and uncertainties are inevitable in industrial 
processes, such as variation in fuel quality, load change, 
environmental temperature and pressure changes. Conventional 
PI/PID controllers are found inadequate in dealing with all kind 
of disturbances in many cases, thus efficient anti-disturbance 
techniques need to be applied in industrial control [7]. 

Active disturbance rejection control (ADRC) is one of the 
notable disturbance/uncertainty estimation and attenuation 
techniques [8]. ADRC is firstly proposed by Han [9] to serve as 
an alternative control to the classical PID [10]. The extended 
state observer (ESO), the core part of ADRC, estimates the 
internal uncertainties (the un-modeled dynamics, the 
higher-order dynamics, and parameter errors) and the external 
disturbances as a lumped term called the total disturbance, 
which is then compensated via control actions in real time. 
During the last two decades, ADRC has been extensively 
investigated and applied by many researchers in different 
countries and in different industrial sectors [11]. The theoretical 
analysis of ADRC with regard to convergence and stability 
proof have been studied in [12][13]. Performance and 
properties of ADRC have been analyzed in frequency domain 
[14]. Improved ADRC have been proposed to address the 
challenges caused by large time-delays [15], non-minimum 
phase [16], and multi-variable coupling [17][18]. ADRC were 
initially studied via simulations and experiments and then 
extended to industrial applications with the range from motion 
control [19], electronic and mechanical systems [20] to process 
control [21].  

Control parameter tuning is a key factor for ADRC’s 
successful implementation in real industrial processes. 
However, there are no well-established quantitative tuning 
rules for ADRC parameters, especially for high-order processes. 
Most of the tuning work is performed manually, although the 
process of trial and error is tedious, and in some cases, 
frustrating. There are successful attempts using heuristic 
algorithms to optimize parameters [2][22], but the tuning 
process is time-consuming and not convenient enough for 
industrial sectors to adopt. An important progress was made by 
Gao [23] in 2006. The bandwidth-parameterization in [23] had 
greatly simplified the tuning process by reducing six tuning 
parameters to three. Chen [24] graphically presented the stable 
region of second-order ADRC parameters and refined the 
tuning process in the sight of closed loop desired dynamics. 
Wang [25] proposed a particular ADRC tuning method for 
time-delay systems. However, those studies on parameter 
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tuning gave little attention to high-order processes with no 
consideration to the sensitivity constraint, such as the 
maximum sensitivity Ms, which is a dominant robustness index 
in control design. 

To address the challenges in ADRC parameter tuning, in this 
work, an asymptote condition is used to constrain the maximum 
sensitivity of the control system. Based on the asymptote 
condition, a new quantitative one-parameter-tuning rule is 
proposed for ADRC used in high-order processes. The 
proposed tuning method has demonstrated the following 
advantages: 1) the explicit tuning formulas are simple and easy 
to use; 2) there is a tuning parameter to trade-off between 
performance and robustness; 3) the proposed method can be 
easily extended to other types of processes. 

The rest of this paper is organized as follows. The problem is 
formulated in Section II. Section III describes the derivation of 
the tuning rule. In Section IV, comparative simulations are 
performed on various types of processes. Laboratory 
experiments of a water tank system and field tests in a 
circulating fluidized bed (CFB) power plant are carried out to 
verify the effectiveness of this tuning methods in section V. 
Conclusions are given in Section VI.   

II. PROBLEM FORMULATION  

For derivation of tuning rules, the process is assumed to be in 
the form of high-order,  1

n
K Ts  . Model parameter , ,K T

and n will be incorporated in the derivation of the tuning rule.  
The second-order ADRC is used as an example to show how 

the low-order ADRC controls high-order process. The tuning 
rules of first-order ADRC can be easily derived based the 
method introduced. Due to page limit, the stability analysis of 
the second-order ADRC controlling high-order process is 
presented in Supplementary materials. The schematic diagram 
is shown in Fig. 1, from which the second-order ADRC is 
formulated by the state feedback control, the extended state 
observer (ESO), and the real time disturbance compensation. 
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Fig.  1. The schematic diagram of second-order linear ADRC 

For the second-order ADRC, the process can be formulated 
into the canonical form of two cascaded integrators, with the 
external disturbance d , noise w , nonlinear and high-order 
dynamics lumped in the total disturbance f .  
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The ESO is designed based on the above canonical form, so 
the mathematical expression of the ESO is presented in (2), 
where 1 2,   and 3  are the observer gains and 0b is the input 
gain. 
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  (2) 

The ESO states 1z and 2z are used for feedback control. 
p

k

and
d

k are the feedback control parameters. 
  0 1 2p d

u k r z k z     (3) 

State 3z is the estimated total disturbance, and it is 
compensated in real time by 

  0 3 0 .u u z b    (4) 

The second-order ADRC has six parameters 0 1 2, , , ,
p d

k k b  
and 3 . The bandwidth-parameterization [23] has greatly 
simplified the tuning process. It makes ,

p d
k k as a function of 

the desired closed-loop bandwidth
c

 and 1 2 3, ,   as a 
function of ESO bandwidth

o
 . 

 2 2 3
1 2 3, 2 , 3 , 3 ,

p c d c o o o
k k              (5) 

It leaves three parameters ,
c o

  and 0b to tune. However, it is 
still not easy to find three proper values for ,

c o
  and 0b . 

Therefore, there is a demand for developing an efficient ADRC 
tuning rule that can reduce the workload of manual tuning. 

III. DESIGN PROCEDURE  

A. The sensitivity constraint  

In process control design, the models used for controller 
design are often imprecise, and the process parameters and 
dynamics change with time and also operating conditions. 
Therefore, it is desired that the control system should be 
insensitive to the process variations and disturbances. The 
maximum sensitivity

s
M and Maximum complementary 

sensitivity
t

M are typical measures of sensitivity to process 
variation [26]. This paper uses maximum sensitivity

s
M

constraint to develop a parameter tuning method for ADRC 
controlled high-order processes. The

s
M is defined as 

     max 1 1      , ,
s l

M G i


        (6) 

where  l
G i is the frequency characteristic of open loop 

transfer function.  
The open loop transfer function  l

G s can be deducted by 
looking at the two degree of freedom (2-DOF) structure of the 
second-order ADRC control system. 
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r y
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Fig.  2. 2-DOF configuration of ADRC 

In Fig. 2, the transfer functions of three blocks are 
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 (7) 

Then, the open loop transfer function  l
G s  and closed loop 

transfer function  cl
G s can be obtained.  
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2
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3 2
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p d p d p
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  (8)
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 (9) 

Thus, the frequency characteristic of the open loop transfer 
function..is 
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 (10) 

Figure 3 shows the Nyquist diagram of  l
G i . Combined with 

equation (6), the definition of the maximum sensitivity sM  can 
be graphically interpreted: sM equals to the inverse of the 
shortest distance between the Nyquist curve of  l

G i and the 
critical point (-1,0i). 

 1,0i

1
sc

M

Circle of sensitivity

Re

0 

  
 1 1,0

sc
M i

Im
0 

1
s

M

 
Fig.  3. Graphical interpretation of maximum sensitivity Ms 

Given a certain maximum sensitivity constraint scM , a circle 
of sensitivity, centered at (-1,0i) with the radius1 scM , can be 
constructed. Then the actual value of the maximum sensitivity

s
M is guaranteed to be not higher than scM , provided that the 
Nyquist curve of  l

G i  does not enter into the circle of 
sensitivity. This important principle will be used in next 
subsection to derive ADRC parameters tuning rules. 

B. Derivation of ADRC tuning rule 

As it is mentioned in Section II, 
c

 is called the desired 
closed-loop bandwidth, also, the desired closed-loop system 
poles. When the observer gains are properly chosen so that the 
ESO states 1 2,z z  and 3z track ,y y and f well, combining 
equations (3), (4), the second equation in (1) can be rewritten as 

 
 

 0
0

.
p d

p d

k r y k y f
y f b k r y k y

b

           (11) 

Therefore, the transfer function from the reference r  to the 
output y  can be approximated into 

    
   

2

2 2
.p c

yr

d p c

kR s
G s

Y s s k s k s




  
  

  (12) 

The choice of
c

  mainly influences the set-point tracking 
performance. In [24], it is recommended that *10

c s
t  , where

*
s

t is the desired settling time. The choice of the desired settling 

time *
s

t can incorporate the information of the process model. In 
this study, the controlled process,  1

n
K Ts  , can be seen as n 

first-order processes  1 1Ts  being cascaded connecting 
together. Since parameters n and T influence the transient time 
of the process most, it is natural to assume that *

s
t  is 

proportional to nT . Therefore, 
c

 is decided as  
 10 ,

c
knT    (13) 

where k is the desired settling time factor and it is the only 
tuning parameter in this proposed tuning method. 

Bandwidth
o

 is the ESO pole. In general, a larger
o

 value 
can speed up the total disturbance being estimated and rejected, 
so a large

o
 is usually preferred. However, in practice, the 

sampling rate limits the upper bound of
o

 . In general, it is 
recommended that [23] 

 10 .
o c

    (14) 

The tuning equation of 
c

 is derived from the perspective of 
the desired set-point tracking, and the choice of

o
 considers the 

disturbance rejection speed. Now, the design of 0b will consider 
the closed-loop system robustness, that is, sensitivity constraint 
will be applied in determination of 0b . 

Using the bandwidth-parameterization (5) and equation (14), 
the frequency characteristics of the open loop system transfer 

function  l
G i , equation (10), can be rewritten as 

  
 

   

2 3 3

2 2
0

1.63 2.3 101
.

32 361 1

c c c

l n

c c

i K
G i

bi T i

    


    

 
 
   

 (15) 

When come to derive PID control parameters under the 
sensitivity constraints, previous studies [26][27] have made 
effort on solving the nonlinear equations related to the 
definition of maximum sensitivity and the open loop transfer 
function. It is possible to yield explicit solutions for PID design, 
although derivation operation and numerical calculation are 
often involved, making it not easy for control engineers to 
execute the solving procedure. For the ADRC control system 
studied in this work, it is very difficult to directly solve the 
sensitivity constraint from equations (6) and (15). It is highly 
nonlinear because of the absolute operation. In addition, it is at 
least 5th-degree, which means it almost impossible to obtain an 
explicit solution. 

 Instead of strictly solving the sensitivity constraint, an 
alternative asymptote constraint is used to determine b0 in this 
study. The asymptote is vertical to the real axis in the Nyquist 
plot of  l

G i  (see Fig. 3). Considering the relationship 
between the asymptote and the circle of sensitivity, an 
asymptote condition is further proposed below:  

Provided that the vertical asymptote of Nyquist curve
 l

G i  is located at the right side of the circle of sensitivity, 
and the Nyquist curve of  l

G i does not enter into the circle 
of sensitivity, then the actual maximum sensitivity sM is 
guaranteed to be smaller than scM . 

The asymptote function of Nyquist curve  l
G i  needs to be 

found. Let x , y  denote the real axis and imagine axis 
respectively, so      l

G i x y i    . The line x a  is a 
vertical asymptote of the plot of  l

G i , when there exists a 
*  so that  
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* *

* *

lim lim Re

lim lim Im .

l

l

x G i a

y G i

   

   

 

 
 

 

    


     
 (16) 

Observed from Fig. 3, the imaginary coordinate of the 
Nyquist curve tends to infinity when → ±0, so the limiting 
values of the real and imaginary part of  l

G i are concerned 
when → ±0. Let 

   1 21 ,
n

T i p p i     (17) 

then 

        
       

2 1 4 22 4
1

3 1 5 23 5
2

1 1 1

1 1 .

n n

n n
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p nT C T C T

 

  

     

     
  (18) 

Therefore, we have 
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Then, 
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 (21) 

When →0-, 1 1p  , 2p nT , and  
2

2 2

1 2 1 1 1
n

p p T i    , in 
the expressions of   Re

l
G i  and   Im

l
G i , the terms in the 

form of multiplying diminish to 0, while the terms which are 
divided by tend to ∞. Thus, we have 

 

 
   

 
 

3 4 3 3

2 40
0

2 3
0

0

798.3 361 10
lim Re

361

                           6.1256 2.77

lim Im .

c c c

l

c

c c

l

nT K
G i

b

nT K b
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  (22) 

As previously, when →0+, 

 
   
 

2 3
0

0

0

lim Re 6.1256 2.77

lim Im - .

l c c

l

G i nT K b

G i





  











   

   

  (23) 

Equations (22) and (23) show that there exists * 0  satisfying 
the definition in (16), so the function of the asymptote is 

  2 3
06.1256 2.77 .

c c
x nT K b     (24) 

As it is shown in the Fig. 3, the right endpoint of the circle of 
sensitivity locates at  1 1,0

sc
M i . Applying the asymptote 

condition, 

  2 3
06.1256 2.77 1 1,

c c sc
nT K b M      (25) 

and solving (25) for 0b , we have 
    2

0 2.77 6.1256 1
c c sc sc

b nT K M M      (26) 

Since increasing 0b can reduce the maximum sensitivity
sM , 

for a conservative design, let 0b be m times the lower limit. Then, 
the parameter 0b  can be determined by  

    2
0 2.77 6.1256 1 .

c c sc sc
b m nT K M M      (27) 

Coefficient m and scM can be chosen according to 
engineering experience. In this study, we choose 1.4m  , and 
the maximum sensitivity constraint scM is chosen as the 
maximum of the allowable value, 2.5, thus (27) becomes 

   2
0 6.4541 14.2726 .

c c
b nT K     (28) 

In summary, the tuning rules for the second-order linear 
ADRC controlling high-order processes  1

n
K Ts   are as 

follow: 

 

  2
0

10

10

6.4541 14.2726 .

c

o c

c c

knT

b nT K


 

 

 



  

  (29) 

Similarly, the tuning rules for the first-order linear ADRC 
can also be derived.  

 

  2
0

10           

10

11.1111 12.8042

c

o c

c c

knT

b nT K


 

 

 



  

  (30) 

Remark: Applying the proposed second-order ADRC tuning 
method to the high-order process, two interesting conclusions 
can be further inferred. 
1) The asymptotes for the different controlled systems are the 

same. Substitute the expression of 0b , equation (28), into 
the asymptote function (24), then we get x = -0.429. 
It shows the real axis value of the asymptote remains 
constant, which can be verified in the Fig. 4(b). Different 
Nyquist curves of  l

G i converge to the same asymptote. 
2) Complementary maximum sensitivity 1tM  . 

Complementary maximum sensitivity tM  is also an 
important indicator for measuring robustness. It implies 
the sensitivity of the closed-loop system to the large 
process dynamic variations. tM is defined as 

       =max 1    , .
t l l

M G i G i


        (31) 

Since      l
G i x y i    , 

 
   

     

2 2

2 2
= max ,

1 2
t

x y
M

x x y

 

  



  
  (32) 

if   0.5x    , 1tM  . The proposed ADRC tuning 
method gives asymptote function 0.429x   . Under the 
proposed tuning method, the Nyquist curve of  l

G i can 
be tuned to be located at the right side of the asymptote line, 
that is,  x  is not smaller than -0.429. Therefore, 1tM 
is achieved. This conclusion indicates that the proposed 
ADRC tuning method derived under sM constraint can lead 
to satisfactory tM . 

C. Tuning parameter 

The effect of the tuning parameter k  should be clear to users. 
According to [28], to ensure the closed loop system stability, 

0b and the process gain K must share the same sign. Then, the 
upper limit of the desired settling time factor k can be deducted 
from (28), 0 4.5k  . In order to avoid unstable or oscillatory 
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output response caused by nearing the critical values, the range 
of the tuning parameter k can be further narrowed. In 
engineering practice, the range of 1.0 ~ 4.0k   is suitable for 
most high-order process. However, the adjustment of k is still 
necessary to achieve a certain robustness level. Consider a 
cascaded fifth-order process 

  5
1 8 1 .

p
G s    (33) 

The model parameter 5n  , 8T  , and 1K  can be directly 
used to calculate the ADRC parameters by (29). The control 
results and robustness indices under the different tuning 
parameter k are shown in Fig. 4. In general, increasing k results 
in faster tracking response and better disturbance rejection 
performance, but higher maximum sensitivity sM . This 
influence pattern can be used as a crude guideline to adjust k to 
a certain maximum sensitivity sM . 

(a) (b)

 
Fig.  4. Performance and robustness under different tuning parameter k. 
(a) tracking response (t=0-200 s) and disturbance rejection (t=200-400 s) 

of Gp; (b) Nyquist diagram and robustness indices of Gp. 

Although this study provides a simple straightforward tuning 
method for ADRC parameters, sometimes it is better to give the 
values of parameters in the form of limitations. If a range of the 
tuning parameter k is decided, then the ADRC parameters can 
be presented in the form of limitations. For example, if an 
appropriate range of k is tuned for a certain process,

,  k k k
     , then the ranges of ADRC parameters are 

3 2 2 2 3 2 2 2

10 10
,  

100 100
,  .

6454.1 1427.26 6454.1 1427.26
,  

c

o

o

k nT k nT

k nT k nT

K K
b

k k n T k k n T





 

 

   

     
     
                 

 (34) 

Theorem 1: Assuming the process is modelled by
 1

n
K Ts  , and the second-order ADRC is given by (2)~(4). 
ADRC parameters ,

c o
  and 0b are controller parameters that 

need to be determined. Then, we have the following results: 
i) There exists an asymptote of the Nyquist curve of the 

open-loop transfer function (8), which can be described by 
(24).  

ii) If the asymptote is located at the right side of the circle of 
sensitivity, which is constructed by maximum sensitivity 
constraint scM . Then 0b satisfies the inequality (26) and 0b

can be m times the lower limit, i.e., 0b can be given by the 
equality (27). 

iii) ADRC parameters ,
c o

  are given by (13) and (14), where 
the only tuning parameter k satisfies 0 4.5k  , so that 
ADRC can be tuned to achieve satisfactory performance 

and robustness. 
Remark 1: m and scM in the Theorem can be determined by 

engineering experience. In this study, we choose 1.4m  , 
2.5

sc
M  , then ,

c o
  and 0b can be given by (29). 

Remark 2:Similarly, when the controller is first-order 
ADRC, the controller parameters ,

c o
  and 0b can be given by 

(30), where the only tuning parameter k satisfies 0 8.6k  . 
Remark 3: For self-regulatory processes which can be 

approximated into  1
n

K Ts  , the ADRC tuning equations 
(29) and (30) can also be applied. 

IV. ILLUSTRATIVE EXAMPLES 

In order to demonstrate the efficacy of the proposed ADRC 
tuning method, comparative simulation studies have been 
carried out for different types of processes.  

A. Approximation method 

Although the proposed ADRC tuning method is originally 
designed for the certain type of high-order processes, 

 1
n

K Ts  , the proposed ADRC tuning method can also be 
applied to other types of processes, which can be approximated 
into the form of  1

n
K Ts  . The empirical two-point method 

is used for model approximation or process identification [29]. 
The principle of the two-point approximation is illustrated in 
Fig. 5 and (35). If the open-loop system step response indicates 
that the process is self-regulating, find the time coordinates t1, t2 
corresponding to 0.4y(∞) and 0.8y(∞). When 1 2 0.46t t  the 
process can be approximated to the high order process . 
Applying the empirical formulas (35), the model parameters

,n T and K can therefore be determined. It should be pointed 
out that the order n should be rounded to an integer in the 
calculation. 
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Fig.  5. Two-point approximation method 

B. Simulation examples 

Example 1: 100th-order process 

  100

1 1 1
p

G s    (36) 

This is an extreme case of a standard  1
n

K Ts  - type 
high-order process. The model parameters n=100, T=1, and 
K=1 can be directly used for ADRC parameters calculation. 
The well-known Skogestad IMC (SIMC) [30] and the 
Ms-constrained integral gain optimization (MIGO) [26] design 
methods are also applied to the process 1p

G for comparison. 
Since performance and robustness are a pair of ever-lasting 
paradox, for fair comparison, the maximum sensitivity sM is 
tuned to have the same value. Note that the MIGO method 
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instead of the simpler tuning rule AMIGO [31] is used in the 
simulations because the AMIGO does not have a tuning 
parameter to achieve a desired maximum sensitivity. Therefore, 
the tracking performance, disturbance rejection ability, and the 
control effort of different tuning methods can be compared 
under the same robustness level. The output responses with a 
unit load disturbance added to the system at 800 t s are 
depicted in Fig. 6(a). The simulation step size is 0.01h  . For 
the three simulations, white noises with a variance of 0.005 are 
added during the last one third of the simulation time span 

E
t . 

The parameters setting and performance indices are 
summarized in Table 1, including robustness indices sM , tM , 
output performance settling time sT , overshoot , variance of 
control input noise

n
 , the integrated time-weighted absolute 

error (ITAE), and the control effort index total variation (TV) 
of the input. Indices ITAE and TV are defined in (37). They 
should be as small as possible [30]. 
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It can be seen from the comparative results that under the 
same robustness level 1.51sM  , the proposed ADRC tuning 
rule provides smooth and non-overshoot tracking, meanwhile, 
gives better performance in disturbance rejection among these 
three control design methods. Moreover, it handles 
measurement well without additional filer. This 100th-order 

process behaves like systems with large time-delay. The 
success of controlling this model implies the possibility of 
applying this tuning method to other delay-dominate processes. 

Example 2: Oscillatory high-order process 

 
    2 42

9 1
.

1 2 9 0.2755 1
p

G
s s s s

 
   

  (38) 

This is a non-  1
n

K Ts  -type high-order process. 2pG can 
be approximated to a fourth-order process by using equations 
(35) of the two-point approximation method. Although the 
approximated high-order process cannot capture the oscillatory 
feature of the original process, the ability of ADRC estimating 
and compensating the un-modelled dynamics enables 
high-order process based ADRC design to provide good control 
results on oscillatory process. The proposed tuning equations 
(29) can be used to decide ADRC parameters. For SIMC-PID 
tuning, process 2pG is approximated to a second-order plus 
time delay process,    0.34 0.72 1 0.14 1s

e s s
   . ADRC, 

SIMC-PID and MIGO are tuned to have the same maximum 
sensitivity, which is 1.86sM  . The detailed parameter settings 
and the control results are show in Table I and Fig. 6(b).  

It can be seen from the Fig. 6(b) and Table 1 that the 
proposed ADRC tuning method provides least-oscillatory 
tracking performance with small overshoot, and the noise level 
under ADRC control is acceptable. 

(a) (c)(b)

 1p
G s  2p

G s  3p
G s

(b)(a)

 
Fig.  6. Response comparison under different control strategies 

TABLE I 
CONTROLLER PARAMETERS AND PERFORMANCE INDICES FOR GP1(S), GP2(S), AND GP3(S) 

Models Method 
Tuning 
parameter 

Controller parameters Ms Mt 
Tracking 

Disturbance 
rejection ITAE TV σn 

Ts /s σ/% Ts /s σ/% 

Gp1(s) 
ADRC k =1.5 ɷc=0.067, ɷo=0.667, b0=0.128 1.51 1.00 349 0.24 415 98.6 206306 1.98 0.0003 

SIMC-PID τc =1.2θ Kp=0.833, Ki=0.333, Kd=0.500 1.51 1.00 413 1.23 520 101.4 302058 3.45 0.0076 
MIGO Ms =1.5 K=0.2406, Ki=0.204,b=1 1.51 1.00 496 0.25 578 99.9 239575 1.76 0.0003 

Gp2(s) 
ADRC k =3.34 ɷc=2.717, ɷo=27.17, b0=37.34 1.86 1.08 4.41 3.38 4.65 47.5 13.8 2.64 0.0021 

SIMC-PID τc =1.35θ Kp=1.069, Ki=1.242, Kd=0.124 1.86 1.03 5.83 6.43 4.88 53.3 15.5 15.0 1.0052 
MIGO Ms =1.86 K=0.456, Ki=1.414,b=0 1.86 1.29 6.13 22.0 5.16 64.5 19.9 3.58 0.0008 

Gp3(s) 
ADRC k =2.55 ɷc=0.509, ɷo=5.088, b0=2.86 1.80 1.00 19.3 0.11 21.6 90.2 651 2.12 0.0016 

SIMC-PID τc =0.6θ Kp=0.284, Ki=0.114, Kd=0.171 1.80 1.11 31.6 14.0 39.3 92.6 951 36.5 4.7022 
MIGO Ms =1.8 K=0.304, Ki=0.106,b=0 1.80 1.04 31.6 6.87 36.8 93.4 926 2.43 0.0005 
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Example 3: Process with time delay, non-minimum phase 

and high order 
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As previously, process 3p
G is approximated to a 13th-order 

process. Then, the proposed ADRC tuning method is applied 
and the SIMC-PID and MIGO are also performed for 
comparison. The comparative results in Fig. 6(c) and Table I 
show that the proposed ADRC tuning method delivers smooth 
and non-overshoot set-point tracking performance, better 
performance in disturbance rejection, while it requires least TV 
in control input.  

Three illustrative examples have shown that the proposed 
ADRC tuning method is capable of providing good 
performance for cascade high-order process, non-cascade 
high-order process, time-delay process and non-minimum 
phase process. More simulation results can be found in 
Supplementary materials.  

 
Discussion:  
The application scope of the proposed ADRC tuning method 

should be discussed. Generally speaking, the proposed tuning 
method is applicable to processes that can be modelled as or 
approximated to the form of  1

n

K Ts  . The process must be 
self-regulatory, so processes with unstable or integrating 
characteristics are beyond the scope of this study. Processes 
with delay, oscillatory and non-minimum phase characteristics 
are target processes for the proposed tuning method. To be 
more specific, based on extensive simulations, 
delay-dominated systems, whose delay-lag constant ratio 

1T  , are highly likely to be approximated to  1
n

K Ts  . 
Oscillatory systems with the damping ratio not smaller than 0.3, 
and non-minimum phase system with inverse overshoot not 
exceeding 30% of the steady-state gain are also recommended 
for this proposed tuning method. Since most of the industrial 
processes are self-regulatory, and many processes can be 
modelled into this high-order form, such as the steam 
temperature and pressure control, combustion control system in 
power plant, we believe that the proposed method is of certain 
generality and practical value. 

The proposed tuning method requires the value of model 
parameters , ,K n T , but this does not mean the proposed ADRC 
tuning laws depend on the exact modelling of the actual 
processes. Simulation examples of 2pG and 3pG show that a 
rough approximation to the original process is enough for 
ADRC design. In addition, when a process is identified or 
approximated to a  1

n
K Ts  -type model, different choices of 

the model order n do not influence the control results notably. 
For instance, when the 100th-order process 1pG , is modelled 
with different order n , such as 102,98,70n  , the control 
results based on these models with different n are very similar. 
This is because the ADRC has the ability of rejecting a total 
disturbance that includes the modelling errors. Besides, the 
ADRC tuning equations (29) and (30) do not solely depend on 
the model order n , instead, it depend on nT together. This 
implies that when a process is modelled with different n , the 
value nT may not change significantly, considering that a 

higher n usually results in a smaller T during identification, and 
vice versa. Thus, controller parameters and control results 
remain similar.  

The above simulations also show the influence of 
measurement noise on the control input for three different 
control strategies. For ADRC control system, no additional 
filter is added but the variance of the noise on control input is 
still at acceptable level. This can be explained by analysing the 
transfer function from the noises n to the control input u, Gun(s). 
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The Gun(s) is strictly proper, implying that  lim 0
un

G i





 . 
Therefore, the high-frequency component of the measurement 
noise will decay and make limited influence on the control 
input. For MIGO tuning, the derivative term is not used, so the 
noise has little influence on the control input. While for PID 
control system, Gun,PID(s) is not proper, so the high frequency 
component of the noise will be magnified. Additional filter is 
necessary when high-frequency noise exists. 

V. EXPERIMENTAL VERIFICATION AND FIELD TEST 

D. Experimental tests on water tank 

To validate the proposed ADRC tuning method, a laboratory 
test is performed on a water tank system. Fig. 7 shows the 
experiment setup. The water tank control system, developed by 
©Feedback Instruments Ltd, consists of water tanks, pumps, 
sensors, a controller, and a monitor. In this experiment, water 
tanks 1 and 2 connected by a water tube are used. Water level y 
of Tank 2 is the process variable (PV), and the voltage of the 
pump u is the manipulated variable (MV). 

 
Fig.  7. The water tank experiment setup 

 
Fig.  8. Open loop step experimental data vs. Identified model 
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response 

A step input is added in the open loop control system at the 
working point y =9 cm, as shown in Fig. 8. Noted that the water 
level y is slightly oscillatory before a step input is added, but 
this does not influence the design of control system because the 
proposed ADRC tuning does not relay on accurate modelling. 
A rough high-order model is identified from the open loop 
system response data by using the empirical equations (35). 

 
 4

5.72

27.72 1
G

s



  (41) 

For comparison purpose, PID algorithm is also implemented 
on the water tank. PID controller is tuned by the SIMC method 
due to its simplicity in use. The choice of

c
  leads to the 

maximum sensitivity 1.4
s

M  and the PID controller 
parameters are 0.1458,

p
K  0.0021,

i
K  2.4249

d
K  . The 

tuning parameter of ADRC, the desired settling factor 4.17k  , 
is manually tuned to achieve the same maximum sensitivity of 
SIMC-PID, which gives the controller parameters 0.0278,

c
 

0.2775,
o

  0 0.0246b  . 
These two controllers were tested by changing the water 

level set point from 9 cm to 11 cm first, then an input step 
disturbance d=1V is artificially added in the system at time t 
=1000 s. Fig. 9 shows the real time control results. It can be 
seen that the proposed ADRC tuning results in slightly slower 
response during the set-point tracking, t= 500-1000 s, but 
ADRC has much better performance in disturbance rejection. 

Moreover, the MV chattering under ADRC algorithm is less 
severe than SIMC-PID. Note that the calculated ADRC 
parameters are directly used on the plant without retuning. The 
experimental results demonstrate the reliability and 
effectiveness of the proposed ADRC tuning method.  

 
Fig.  9. Experiment results under SIMC-PID and proposed ADRC tuning 

parameters 

Although it is expected that ADRC behaves better than 
SIMC-PID in terms of disturbance rejection, the ADRC results 
of the water tank experiment show much better disturbance 
rejection than the simulated situation. A possible reason is that 
the working condition has varied, such as water level change of 
the water reserve, change of pump characteristic, to the 
direction that is beneficial to ADRC control.  
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Fig.  10. The schematic diagram of the superheater steam temperature control system in CFB power plant 

E. Field tests on a power plant 

Encouraged by the positive results from simulation examples 
and water tank experiment, the proposed ADRC tuning method 
is further applied to the superheater steam temperature (SST) 
control in a 330 MW in-service CFB unit in Shanxi, China. The 
SST control system, which is one of the most important control 
systems in the power plant, is a typical high-order process. The 
SST has to be controlled within a certain range, so that the 
temperature will not exceed the upper limit that is set for safe 
operation of the steam turbine. At the meantime, the 
temperature will not drop out of the lower limit that ensures the 
efficiency of the whole power plant. For this CFB unit, the 
allowable SST temperature fluctuation range is ±5°C. The 
steam that comes from the drum is heated by the fuel gas 
through three sets of superheaters as show in Fig. 10. Two sets 

of desuperheaters are deployed to control the steam 
temperature. Since the control of the 2nd desuperheater directly 
influence the SST, ADRC control algorithm and the proposed 
tuning method are implemented on the 2nd desuperheater. 

For the purpose of controller design, the SST models are 
identified from the open-loop data. As shown in Fig. 11, it is 
not a standard open-loop step test, because there is a spike in 
the control input signal and the control input changes before the 
temperature reaches steady state due to the operation limit. 
Therefore, the superheater models are identified by using 
optimization method instead of the empirical formulas 
presented in (35). The dynamic from the spray water valve to 
the desuperheater outlet temperature 1T is denoted as model

 1G s , and the dynamic from the desuperheater outlet 
temperature 1T  to the SST 2T  is denoted as model  2G s .  



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 
Fig.  11. Identification results of the superheater steam temperature 

control system 

The model identification process is accomplished by 
MATLAB Simulink parameter estimation tool. The chosen 
optimization method is pattern search. The model order n is 
decided by choosing the identified model with the lowest cost 
function value. The identification results are shown in Fig. 11 
and the identified transfer functions are 
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For the simplicity of implementing the control algorithm and 
relevant protective logics in the distributed control system 
(DCS), the first-order ADRC control algorithm is chosen to 
enhance the control performance of the SST control system. 
Compared to the outer loop process model  2G s , the inner 
loop process model  1G s is relatively fast response, and 
usually the PI controller or even the P controller is enough to 
eliminate the disturbances in the inner loop. Therefore, the 
inner PI controller remains unchanged and the first-order 
ADRC is implemented as outer loop controller in parallel with 
the original outer loop PID controller (see Fig. 12). 
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Fig.  12. Cascade control system of the superheater steam temperature 

The tuning of the outer loop controller is based on the 
equivalent model  G s for the combined inner controlled 
system and the model  2G s , as shown in Fig. 12. The inner PI 
controller parameters are 2 1,

p
K   2 1 40

i
K   , so the 

equivalent model for outer loop controller is 

      
     

 
, 1
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The outer loop PI is tuned by the experienced field engineer, 
and the PI parameters are 1 1 3,

p
K  1 1 240,

i
K   which results 

in a robustness level of 1.5
s

M  . ADRC controller parameters 
are calculated by using (30). The desired settling time factor is 
manually tuned as 3.9k  to achieve a similar maximum 
sensitivity of SIMC-PI tuning, which gives ADRC control 
parameters 00.0187, 0.187, 0.4554

c o
b    .  

Two sets of field test results are shown in Fig. 13 and Fig. 14. 

Fig. 13 shows the SST control result when the outer loop 
controller switches between PI and ADRC. Fig. 14 compares 
the control results under reference step change. It should be 
mentioned that the artificial input disturbance is not allowed for 
the commercial operation of the power plant, thus the strict 
disturbance rejection tests are not performed. 

 
Fig.  13. Field test 1: switch between PI and ADRC with the SST 

set-point of 537°C (date of test: 15th of March, 2017) 

 
Fig.  14. Field test 2: SST set-point step from 538°C to 536°C (Time 

span of PI test: 14th of March, 2017 07:00-09:30; time span of ADRC test: 
16th of March, 2017 11:00-13:30) 

In addition, control performance indices such as peak 
positive error e

 , peak negative error e
 , standard deviation , 

integral absolute error (IAE) and the TV of control input, are 
summarized in Table II. 

TABLE II  
PERFORMANCE INDICES FOR THE SST CONTROL TESTS 

Test Controller e+/°C e-/°C σ IAE TV 

Test 1 
PID 4.20 -4.34 1.82 8519 44.4 

ADRC 2.08 -2.59 1.05 4645 37.1 

Test 2 
PID 4.20 -5.63 1.93 9836 66.6 

ADRC 2.18 -2.25 1.38 6757 53.5 

It can be found that the proposed ADRC tuning method 
reduced the peak error and standard deviation  by about 50%. 
The IAE is reduced by more than 30%. The TV of the control 
input is decreased by about 20%, which means less overall tear 
and wear of valves, so the lifetime of valves can be prolonged 
and the maintenance cost is therefore reduced. 

The field test results show that the proposed ADRC tuning 
can reduce the SST fluctuation to a large extent. Since the SST 
is one of the main concerns when the power plant changes its 
load, the reduced SST fluctuation range indicates the possibility 
of large-scale load-varying operation, thus also indicates the 
potential of flexible operation of power plants to integrate more 
renewables into grid. 
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VI. CONCLUSION 

This paper describes the derivation of a quantitative tuning 
rule for low-order ADRC controller. In order to derive 
parameters under sensitivity constraint, an asymptote condition 
is propounded. Rooted from the high-order process system 
control, the proposed tuning rule has been expanded to other 
types of process applications. Comparative simulation studies, 
laboratory experiments and field tests have shown the 
efficiency of this tuning method. Future research will be 
continued on the ADRC parameters tuning toward 
multivariable processes. 
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