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Abstract
Background: Turner syndrome (TS) is associated with a neurocognitive phenotype that includes
selective nonverbal deficits, e.g., impaired visual-spatial abilities. We previously reported evidence
that this phenotype results from haploinsufficiency of one or more genes on distal Xp. This
inference was based on genotype/phenotype comparisons of individual girls and women with partial
Xp deletions, with the neurocognitive phenotype considered a dichotomous trait. We sought to
confirm our findings in a large cohort (n = 47) of adult women with partial deletions of Xp or Xq,
enriched for subjects with distal Xp deletions.

Methods: Subjects were recruited from North American genetics and endocrinology clinics.
Phenotype assessment included measures of stature, ovarian function, and detailed neurocognitive
testing. The neurocognitive phenotype was measured as a quantitative trait, the Turner Syndrome
Cognitive Summary (TSCS) score, derived from discriminant function analysis. Genetic analysis
included karyotyping, X inactivation studies, fluorescent in situ hybridization, microsatellite marker
genotyping, and array comparative genomic hybridization.

Results: We report statistical evidence that deletion of Xp22.3, an interval containing 31
annotated genes, is sufficient to cause the neurocognitive phenotype described by the TSCS score.
Two other cardinal TS features, ovarian failure and short stature, as well as X chromosome
inactivation pattern and subject's age, were unrelated to the TSCS score.

Conclusion: Detailed mapping suggests that haploinsufficiency of one or more genes in Xp22.3,
the distal 8.3 megabases (Mb) of the X chromosome, is responsible for a TS neurocognitive
phenotype. This interval includes the 2.6 Mb Xp-Yp pseudoautosomal region (PAR1).
Haploinsufficiency of the short stature gene SHOX in PAR1 probably does not cause this TS
neurocognitive phenotype. Two genes proximal to PAR1 within the 8.3 Mb critical region, STS and
NLGN4X, are attractive candidates for this neurocognitive phenotype.
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Background
Turner syndrome (45, X, TS, monosomy X) is the genetic
disorder resulting from the absence of all or part of one X
chromosome in females. The complex TS phenotype
includes short stature, ovarian failure, and a characteristic
neurocognitive profile [1]. Although severe developmen-
tal disorders do not predominate in TS, the risk of selec-
tive deficits in certain cognitive domains is substantially
increased. Girls and women with 45, X TS commonly
demonstrate deficits in visual-spatial abilities, visual-per-
ceptual abilities, motor function, nonverbal memory,
executive function and attentional abilities when com-
pared to normal females matched for age, height, IQ, and
socioeconomic status [2-9].

Both hormonal and genetic factors may influence the cog-
nitive development of TS females. Hormonal influences
are attributable to deficient ovarian production of estro-
gen, androgen, or both. Subtle estrogen effects on motor
function and processing speed and androgen effects on
working memory have been demonstrated [10-12]. How-
ever, many of the cognitive deficits characteristic of TS are
consistent across a wide age range, including children as
well as estrogen-replaced adults [4,11,12]. Furthermore,
these deficits are generally not seen in females with pre-
mature ovarian failure and intact X chromosomes [13,14],
suggesting a predominant role of genetic factors in the eti-
ology of TS cognitive deficits.

The genetic abnormality in TS is determined by the
absence of one copy of genes on the X chromosome. Most
aspects of the TS phenotype, including the cognitive phe-
notype, are thought to be due to half-normal gene dosage,
or haploinsufficiency, of X-linked genes that escape inac-
tivation [15,16]. Although one X chromosome undergoes
inactivation in normal females during early embryogene-
sis, about 15% of all X chromosome genes, mostly situ-
ated on the short arm (Xp), remain active to some degree
on both X chromosomes [17]. Some of these genes have
functional Y-linked homologs that are thought to balance
their dosage between males and females. The pseudoauto-
somal region (PAR1), a 2.6 Mb interval at the tips of the X
and Y short arms, is a plausible location for TS genes
because PAR1 genes are all expressed at diploid dosage in
both males and females [18,19]. One PAR1 gene, SHOX
[Mendelian Inheritance in Man (MIM) 12865], has been
implicated in TS short stature [20]. Whether any PAR1
genes contribute to other aspects of the TS phenotype is
unknown.

One way to deduce the underlying genotype-phenotype
relationships in TS is to compare the phenotypes of indi-
viduals missing various portions of one X chromosome in
order to assign specific features to "critical regions." A trait
maps to a region if deletion of that region accounts for the

variance in that trait. This approach was used to map short
stature to the SHOX gene on Xp [20] and ovarian failure
to regions of the long arm (Xq) [21]. We have previously
applied this phenotype mapping methodology to define
genetic correlates of the cognitive phenotype in children
with TS [22].

We used discriminant function analysis to derive a math-
ematically defined TS cognitive phenotype to test for asso-
ciation with deletions of specific regions of the X
chromosome [22,23]. The initial results from 34 subjects
with deletions of varying portions of Xp, mapped mostly
by fluorescence in situ hybridization (FISH), identified a
probable association between deletion of the distal ~10
Mb of Xp and the TS neurocognitive phenotype [22].
However, those conclusions relied upon identification of
the TS neurocognitive phenotype in a small number of
individual subjects; the sample was too small to permit
rigorous statistical inference. The TS cognitive phenotype
was defined as a dichotomous measure, rather than a
quantitative trait, using a cutoff score. In addition, the
population was heterogeneous, including both children
and adults, and did not include any subjects with Xq dele-
tions, who commonly receive the TS diagnosis.

In the present study, we attempted to confirm and expand
the initial findings using 47 adult females with nonmo-
saic deletions distributed along both Xp and Xq. Potential
sources of variation in cognitive outcome have been min-
imized by including only adults with similar estrogen-
replacement status. In this study we treated the TS cogni-
tive phenotype as a quantitative rather than a qualitative
trait and compared the results of women with deletions of
varying portions of the X chromosome to that of 45, X TS
and normal controls. We hypothesized that an association
exists between the defined TS neurocognitive phenotype
and deletion of Xp22.3, which includes the distal 8.3 Mb
of Xp.

Methods
Subjects
This study was approved by the Thomas Jefferson Univer-
sity Human Studies Committee and the UT Southwestern
Institutional Review Board. Informed consent was
obtained from all participants. Subjects, ages 17–55 years,
were recruited from North American genetics and endo-
crinology clinics. We excluded subjects with sex chromo-
some mosaicism, ring X chromosomes, clinical features of
autosomal aneuploidy in the case of unbalanced X;auto-
some translocations, or clinical diagnoses of Goltz [MIM
305600], Aicardi [MIM 304050], or MLS [MIM 309801]
syndromes in the case of Xp22.3 deletions. Subjects with
Verbal IQ (VIQ) < 69 were also excluded since signifi-
cantly reduced VIQ is atypical for this population and, in
the context of depressed spatial skills, implies generalized
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limitation of intelligence. Subjects with serum gonadotro-
pin levels in the castrate range (≥ twice the upper limit of
normal) and amenorrhea were determined to have ovar-
ian failure. Some of the deletion subjects had normal
menstrual histories and were evaluated in the follicular
phase of their cycle. Subjects with ovarian failure were
receiving standard estrogen replacement therapy (i.e.
cycling with estrogen and progesterone).

Cytogenetic and molecular analyses
Standard Giemsa-banded peripheral blood karyotypes
were obtained for subjects not evaluated cytogenetically
within the previous two years, with particular attention
paid to the X chromosome. Lymphoblastoid cell lines
were derived from blood samples by standard methods
[24]. X inactivation pattern was measured from blood
DNA using the androgen receptor methylation assay [25].
Metaphase spreads from blood or lymphoblastoid cells
were used for FISH as previously described [22,26].

A variety of techniques were used to map deletions,
including FISH [22,26], polymorphic microsatellite mark-
ers [27], and array comparative genomic hybridization
(CGH) [28]. Genotyping data were interpreted as
described previously [29]. Briefly, heterozygous markers
were scored as not deleted, and markers showing loss of
heterozygosity or non-inheritance of a parental allele were
scored as deleted. Selected subjects whose deletions were
initially mapped by FISH were restudied with microsatel-
lite markers when parental DNAs became available.
Breakpoints were inferred from data on relatives for sub-
ject 105 (blood sample unavailable) whose deletion was
familial. Oligonucleotide array CGH was performed on
male offspring of 430 and 702 known to carry the dele-
tion by Nimblegen Systems, Inc. (Madison, WI) using an
X chromosome tiling array (Catalog B3754001-00-01,
one probe every 340 bp on average) and pooled normal
male reference DNA (Promega Corp., Madison, WI).
Probe signal intensities were averaged over a 4 kilobase
window (~12 adjacent probes) and copy number changes
detected using a circular binary segmentation algorithm
[30]. Map locations of markers are based on the UC Santa
Cruz Genome Browser, March 2006 Human Genome
Assembly.

Derivation of the TSCS score
All cognitive evaluations were administered and scored by
psychometricians who were unaware of specific karyotype
results. We first performed discriminant function analysis
using the results of the battery of cognitive tests (Table 1)
on populations of nonmosaic, 45, X TS subjects (n = 94)
and age-, VIQ-, and socioeconomic status (SES)-matched
normal female controls (n = 103), ages 17.0–55.0 years.
The populations were randomly divided in halves to form
generative and prospective replication samples. The anal-

ysis used the Mahalanobis distance formula to maximize
the n-dimensional distance between group centroids to
weigh the variables in order to optimally separate the TS
and control generative samples. The resulting formula
yielded the TS cognitive summary (TSCS) score. The com-
ponents of the TSCS score and the weighting coefficients
are indicated in Table 1. The mean TSCS scores differed
significantly for the TS and control populations (53 ± 17
versus 67 ± 17, P < 0.0001, T-test, df = 195) and there was
no or minimal correlation of TSCS score with age or SES.
Based on an a priori cut-off, the sensitivity and specificity
of the TSCS score in this sample were 0.83 and 0.87,
respectively. The other half of the population formed a
prospective replication sample in which the sensitivity
and specificity of the TSCS score were each 0.78. The for-
mula for the TSCS score was similar to the previously pub-
lished discriminant function analysis [23] but was
performed on larger populations of TS and control sub-
jects.

Stability of the TSCS score was demonstrated by analysis
of the TSCS score results for a different group of TS sub-
jects (n= 29), evaluated at baseline and again, one year
later. The mean TSCS scores were highly consistent, 48.9
± 16.9 (baseline) and 49.9 ± 16.1 (one year later). The
Pearson correlation of results from the two sets of scores
was r = 0.84, df = 27, P < 0.0001). Thus, the TSCS score has
test-retest reliability and long-term stability with repeat
testing.

Statistical analyses
Results are presented as mean ± standard deviation (SD).
Comparisons among means for more than two groups
were performed using an analysis of variance (ANOVA),
and Tukey's Standardized Range test (Tukey test) was used
for pairwise, post-hoc comparisons. T-tests were also used
when comparisons were performed between two groups
which were not subgroups in the overall ANOVA compar-
isons. Correlations between age, height and ovarian status
with TSCS score were examined using the Pearson correla-
tion coefficient. Results were considered statistically sig-
nificant at P < 0.05. All analyses were performed using SAS
version 8.2 (Cary, NC).

Results
Study population
The genetic study population included 47 women, ages
17–55 years, with partial monosomy for Xp or Xq due to
terminal or interstitial deletions, unbalanced transloca-
tions, or other rearrangements (Table 2). Comparison
groups included adult women with 45, X TS and normal
female adult controls. These were mostly the same sub-
jects used in the construction and testing of the TSCS
score, which was described above.
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The groups (partial monosomy for Xp or Xq, 45, X TS, and
normal controls) were well matched for age (Table 3). The
study population (partial X deletions) included Caucasian
(39), African-American (2), Hispanic (4), and Other (2).
Six subjects were members of kinships (430, 428 and 175,
174 were mother and daughter pairs; 105, 315 were a sib-
ling pair. All other subjects were unrelated.

X chromosome deletions of the 47 subjects with partial
monosomy X are indicated schematically in Figs. 1 and 2.
Fifteen of these subjects were previously reported [26,29].
Based on combined karyotype and molecular analyses, 30
subjects had simple terminal deletions, 4 had interstitial
Xq deletions, and 13 had complex rearrangements, mostly
unbalanced translocations.

Phenotypes
Table 2 shows phenotypic data for the 47 individual par-
tial monosomy X subjects, including height z-score, ovar-
ian status, and X inactivation status. We calculated the
mean TSCS scores for four subgroups: subjects with Xp
deletions; subjects with Xq deletions; subjects with 45, X
TS; and normal controls. We also examined seven adult
subjects who carried SHOX point mutations (Table 3).

The mean TSCS scores (Table 3; Fig. 3A) differed signifi-
cantly among the six groups: five with X chromosome or
SHOX abnormalities and the controls (P < 0.0001,
ANOVA, df = 279). The mean TSCS score of the Xp dele-
tion group was similar to that of the 45, X TS group and
differed from that of the Xq and control groups (P < 0.05,
Tukey test). Thus, deletion of Xp may be necessary and
sufficient for the defined TS neurocognitive phenotype. By
contrast, it appears that Xq deletions did not affect cogni-
tive outcome, since mean TSCS score in this group was
similar to that of controls. Xq deletions did not all overlap
(Fig. 1). However, the mean TSCS score of just subjects
with overlapping terminal Xq deletions (69.5 ± 21.3, n =
15) was also similar to controls (P > 0.05, T-test, df = 117).

Eight of the Xp deletion subjects had unbalanced translo-
cations, and segmental trisomy could affect their pheno-
type. However, their mean TSCS score was 56.1 ± 18.2,
very similar to that of all other Xp deletion subjects (P =
0.64, T-test, df = 26).

Although all subjects with ovarian failure were receiving
estrogen replacement at the time they were studied, it is
possible that early ovarian failure could have long-term

Table 1: Components of the TSCS. Weighting coefficients of each variable in the discriminant function are indicated. SS denotes 
standardized score.

Cognitive Domain Variable Ref. Weighting Coefficient

Visual-Motor Ability Rey-Osterrieth Complex Figure-copy [51, 52] 1.06057
Developmental Test of Visual-Motor Integration [SS] [53] 0.31963
WAIS-III: Object Assembly [SS] [54] -1.47231
WAIS-III: Block Design [SS] [54] 0.98230
WAIS-III: Coding/Digit Symbol [SS] [54] -1.47952
The Pursuit Rotor Dominant Time Off Target [55] 0.07761
The Pursuit Rotor Distance [55] 7.62332
Judgment Of Line Orientation [# Correct] [56] -0.66818
Money Street Map [Errors Towards] [57] 3.35712

Spatial-Perceptual Ability WAIS-III Picture Completion [SS] [54] -0.22349
Kaufman Gestalt Closure [% Correct] [58] 0.17538
The Visual Object and Space Perception Battery-Memory Span [SS] [59] 0.72039
Test of Facial Recognition [# correct] [60] 4.22581

Spatial-Relational Memory The Wechsler Memory Scale-R: Visual Memory [SS] [54] 2.65698
Rey-Osterrieth Complex Figure – Immediate Recall [51, 52] -0.09704
Rey-Osterrieth Complex Figure – Delayed Recall [51, 52] -0.08993
Warrington Memory Test (Faces) [# correct] [59] 1.66476

Working Memory WAIS-III: Digit Span-Backwards [SS] [54] -1.22922
WAIS-III: Arithmetic [SS] [54] -1.09126
WIDE Range Achievement Test-3-Arithmetic [SS] [61] 0.72213

Attention-Impulse Control Test of Variables of Attention 2nd [Commission errors] [62] -2.12936
Matching Familiar Figures [# correct] [63] 0.02191

Executive Function Verbal Fluencies: Phonemic [# correct] [64, 65] 0.45404
Verbal Fluencies: Semantic [# correct] [64, 65] 0.24121
Rey-Osterrieth Complex Figure – Organization [51, 52] -0.71923
The Tower of Hanoi [66] 0.02541
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effects on cognitive outcome. Both Xp and Xq deletion
groups were heterogeneous for ovarian failure, so we
tested for an association between this phenotype and
TSCS score among all 47 subjects. The mean TSCS score of
subjects with or without ovarian failure did not differ sig-
nificantly, and in fact trended toward a higher score in
subjects with ovarian failure (64.3 ± 4.4, n = 27 versus
52.8 ± 4.3, n = 20; P = 0.07, T-test, df = 45). Seventeen of
the subjects without ovarian failure had Xp deletions;

their mean TSCS score was 51.9 ± 19.7, which was similar
to the other Xp deletion subjects (P = 0.7, T-test, df = 26).

TS neurocognitive deficits are consistent across a wide age
range. There was no significant correlation between age
and TSCS score (Pearson r = 0.006, P > 0.9, df = 45)
among our 47 subjects with partial X deletions.

Table 2: Cytogenetic and phenotypic data for subjects with X chromosome deletions.

Subject age (yr) ovarian failure karyotype height SD score X inactivation ratio

Xp deletions

447 30 no 46, XX -2.01 57:43
174 22 no 46, X, der(X)t(X;acrocentric) (p22.3;p11.2)mat -2.59 71:29
175 40 no 46, X, der(X)t(X;acrocentric) (p22.3;p11.2) -2.2 66:34
482 28 no 46, X, del(X)(p22.33) -1.10 61:39
428 20 no 46, X, del(X)(p22.33) in affected relative -0.82 51:49
430 47 no 46, X, del(X)(p22.33) 0.44 100:0
879 38 no 46, XX in affected relative -2.4 not informative
746 47 no 46, X, del(X)(p22.3) -2.39 92:8
298 44 no 46, X, del(X)(p22.33p22.33) in affected relative -0.70 65:35
157 42 no 46, X, del(X)(p22.31p22.33) -0.75 100:0
217 29 no 46, X, der(X)t(X;Y)(p22.3?1;q11.2) .ish der(X)KAL+STS+DYZ1+DYZ3-DYZ2- -2.77 93:7
702 39 no 46, XX -1.68 75:25
466 49 no 46, X, add(X)(p22.31) -0.61 60:40
439 31 yes 46, X, der(X)t(X;Y)(p22.3;q11.2) -1.68 89:11
451 40 no 46, X, der(X)t(X;Y)(p22.3;q11.2) -3.24 68:32
884 43 no 46, X, der(X)t(X;X)(p22.1;q24) -2.25 100:0
144 36 no 46, X, del(X)(p22.1) -3.2 100:0
46 34 no 46, X, del(X)(p21.2) -0.8 100:0
122 17 yes 46, X, del(X)(p21.2) -2.5 ND
71 20 yes 46, X, del(X)(p11.2) -1.1 100:0
211 20 yes 46, X, del(X)(p11.23) -2.4 100:0
324 54 yes 46, X, del(X)(p11.2) -3.42 100:0
539 23 yes 46, X, del(X)(p11.22) -2.2 100:0
111 20 yes 46, X, del(X)(p11.21) -1.1 ND
85 45 yes 46, X, del(X)(p11.2) -2.8 100:0
109 46 yes 46, X, del(X)(p11.1) -3.9 100:0
315 23 yes 46, X, der(X)t(X;1)(p11;q44)mat -3.19 100:0
105 31 yes 46, X, der(X)t(X;1)(p11;q44)mat -3.18 100:0

Xq deletions

495 19 yes 46, X, del(X)(q21.1) -0.86 100:0
383 24 yes 46, X, der(X), t(X, X)(q13.1;p11.21) 3.24 not informative
340 26 yes 46, X, rec(X)dup(Xp), inv(X)(p21q21) 3.17 100:0
403 32 yes 46, X, del(X)(q21.2) -2.22 100:0
785 37 yes 46, X, del(X)(q22.2) 0.35 100:0
140 37 yes 46, X, del(X)(q21.2) 2.9 100:0
173 48 yes 46, X, del(X)(q13q27.2) 0.73 100:0
475 20 yes 46, X, del(X)(q21) -2.18 not informative
162 40 yes 46, X del(X)(q21.2) -2.45 100:0
540 18 yes 46, X, der(X)t(X;Y)(q22;q11.2) .ish der(X)t(X;Y)(wcpX+, wcpY+) -1.98 100:0
218 35 yes 46, X, del(X)(q22) -1.38 100:0
139 24 yes 46, X, del(X)(q22) -1.7 100:0
184 31 no 46, X, del(X)(q24) -1.53 100:0
314 32 yes 46, X, del(X)(q25) 0.88 100:0
172 34 yes 46, X, der(X)t(X;13)(q22.3;q14.1) .ish der(X)t(X;13)(wcpX+;wcp13+) -0.73 100:0
192 29 yes 46, X, del(X)(q21.2, q26) -1.72 100:0
207 44 yes 46, X, del(X)(q22.3;q24) 1.37 100:0
438 40 no 46, X, del(X)(q24q26.1) 0.53 100:0
164 38 no 46, X, del(X)(q24q26) 0.42 100:0
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Having found the TSCS score associated with deletion of
Xp and not Xq, we attempted to narrow the associated
region. We calculated the mean TSCS score for the 15 sub-
jects whose deletions were limited to Xp22.3 (up to but
not including the KAL1 gene at 8.3 Mb) versus the popu-
lations of 45, X TS and controls (Fig. 3B). The mean TSCS
score was significantly lower in the population deleted for
only Xp22.3 compared to the normal control population
(P < 0.05, Tukey test, df = 243) and was similar to that of
the TS population (P > 0.05, Tukey test, df = 243)

The known TS short stature gene SHOX is located in
Xp22.3. To determine if SHOX might also influence cog-
nition, we evaluated the relationship between stature,
deletion of SHOX, and TSCS score. There was a correlation
between TSCS score and height among the whole popula-
tion of Xp and Xq deletion subjects (Pearson r = 0.3, P <
0.04, df = 45). However, there was no significant relation-
ship between TSCS score and height among subjects miss-
ing SHOX (Pearson r = 0.12, P > 0.56, df = 5). As noted
above, subjects with Xp deletions >Xp22.3, with mean
height SDS -2.5, showed a mean TSCS score similar to that
of subjects with deletions limited to Xp22.3, with mean
SDS -1.6 (Table 3). The correlation between height and
TSCS score observed among all Xp and Xq deletion sub-
jects is likely due to Xp22.3 deletions that encompass
both SHOX and the cognitive locus rather than a causal
association of stature per se on cognition.

In addition, we determined the TSCS scores for seven sub-
jects with loss-of-function SHOX point mutations, six
with SHOX haploinsufficiency (dyschondrosteosis) and
one with complete absence of SHOX (an 84-year old
woman with Langer mesomelic dysplasia due to com-
pound heterozygosity) [31]. If SHOX haploinsufficiency
was responsible for the neurocognitive phenotype, their
mean TSCS score should be lower than that of controls
and similar to that of the 45, X TS population. The mean
TSCS score of the seven SHOX mutation carriers was sim-
ilar to that of controls but was not significantly different
from that of the 45, X TS population (Table 3, P >0.05,
Tukey test, df = 279) due to the small sample size of the
SHOX group.

Refined mapping of Xp22.3 deletions
We fine-mapped deletion breakpoints in the 15 subjects
with deletions limited to Xp22.3 (Fig. 1, boxed) using
additional FISH probes and/or polymorphic microsatel-
lite markers. The smallest deletion (in subject 447) was
mapped using a somatic cell hybrid as described else-
where [29]. Fig. 2A shows the markers used for mapping
and the extent of distal Xp deletions in relationship to the
cytogenetic and physical maps of this region of the X chro-
mosome and genes annotated in the RefSeq database
[32].

We used array comparative genomic hybridization (CGH)
using an X-chromosome specific tiling oligonucleotide
array (Nimblegen Systems, Inc.) to confirm and refine the
mapping of two deletions associated with mental retarda-
tion in male relatives (Fig. 2B). The deletion in subjects
428 and 430, mapped in male relative 429, was visible
cytogenetically (Table 2), despite being limited to pseudo-
autosomal sequences. The deletion was larger in subject
702, spanning the STS gene, and was associated with X-
linked ichthyosis in her son (701); the mother's deletion
was missed by conventional karyotyping (Table 2). In
both cases, CGH data were consistent with the results
from FISH and genotyping analyses.

Deletion breakpoints were distributed throughout
Xp22.3, without any obvious recombination hotspots
(Fig. 2A). Six breakpoints fell within the Xp-Yp pseudoau-
tosomal region (PAR1). The smallest deletion, in subject
447, encompassed coding sequences of only four genes:
PLCXD1, GTPBP6, PPP2R3B, and SHOX. This subject,
who was ascertained on the basis of dyschondrosteosis,
had a TSCS score of 43.6. Other subjects with PAR1 dele-
tion breakpoints had TSCS scores of 56.1, 21.5, 71.9,
63.9, and 28.1. While the mean for these six subjects dif-
fered from that of normal controls (47.5 ± 20, n = 6 vs.
68.7 ± 17.5, n = 104, P = 0.02, T-test, df = 108), we inter-
pret this result from a small cohort cautiously.

X inactivation
We tested the pattern of X inactivation in blood DNA
from our subjects to see if nonrandom X inactivation

Table 3: Mean age, height standard deviation score, and TSCS score of subjects grouped according to X chromosome abnormality. 
Data shown are mean ± standard deviation.

n Age, yr Height SD score TSCS score

45, X 127 33.0 ± 10.4 -2.7 ± 1.1 58.3 ± 17.5
controls 104 29.8 ± 9.7 0.1 ± 1.0 68.7 ± 17.5
Xp deletion 28 34.1 ± 10.7 -2.1 ± 1.1 53.1 ± 20.8

<Xp22.3 15 36.3 ± 9.1 -1.6 ± 1.0 54.6 ± 22.0
>Xp22.3 13 31.7 ± 12.2 -2.5 ± 1.0 51.3 ± 20.2

Xq deletion 19 32.4 ± 8.3 -0.2 ± 1.9 68.7 ± 20.4
SHOX point mutations 7 42.7 ± 20.2 -2.7 ± 1.6 67.0 ± 11.5
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might play a role in the neurocognitive phenotype. Forty-
four of 47 subjects tested were informative for the andro-
gen receptor polymorphism used for the inactivation
assay. All informative subjects with deletions extending
beyond Xp22.3 had completely skewed X-inactivation,
with the deleted X presumably inactive (Table 2). By con-
trast, 11 of the 15 subjects whose deletions were limited
to Xp22.3 (Fig. 1, box) had inactivation patterns ranging
from 50:50–90:10, and only four showed >90% skewing
(Table 2). As previously noted, the distributions of TSCS
scores did not differ between subjects with deletions lim-
ited to Xp22.3 versus subjects with larger Xp deletions
(Fig. 2B), although the two groups had very different pro-
portions of skewed inactivation. Thus X inactivation skew-
ing did not seem to affect the TSCS score.

Discussion
An earlier descriptive study suggested that Xp22.3 con-
tains one or more genes that influence cognitive ability in
Turner syndrome [22]. The current results provide addi-
tional support for this hypothesis. The strength of the con-
clusion is based on a larger, all adult study population
that included both Xp and Xq deletion subjects, with uni-
form estrogen replacement status for those with ovarian
failure. Additionally, the previous study defined a critical
region by determining the minimal overlapping deletion
among a few individuals with the TS neurocognitive phe-
notype, assigned as a dichotomous trait. The present study
used a quantitative measure of the TS neurocognitive phe-
notype, the TSCS, to test for associations with deletions,
reducing error due to variability of individual results.

Schematic depiction of partial X deletionsFigure 1
Schematic depiction of partial X deletions. Black bars indicate nondeleted regions of the X chromosome; gray bars 
denote regions of uncertainty between FISH probes. Deletions are indicated by absence of bars. Locations of FISH probes on 
cytogenetic and physical maps is shown on the left. Xp22.3 deletion breakpoints shown in greater detail in Fig. 2 are boxed.
Page 7 of 14
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Refined mapping of Xp22.3 deletionsFigure 2
Refined mapping of Xp22.3 deletions. a. Positions of microsatellite and FISH markers used to map breakpoints are indi-
cated below ideogram. Black bars denote nondeleted X chromosome segments; gray bars denote segments whose status is 
uncertain. Positions of RefSeq http://www.ncbi.nlm.nih.gov/RefSeq annotated genes [32]) are indicated above physical map 
scale. Marker and gene locations are from the UC Santa Cruz Genome Browser http://genome.ucsc.edu, March 2006 (hg18) 
assembly. b. High resolution mapping of deletions in subject 429 (son of 430) and subject 701 (son of 702) by array compara-
tive genomic hybridization using an X chromosome tiling array. Each dot represents mean log2 signal intensity ratio of probes 
within consecutive 4000 bp intervals.

http://www.ncbi.nlm.nih.gov/RefSeq
http://genome.ucsc.edu
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The TSCS score is a composite, quantitative summary that
partially describes the TS cognitive phenotype. For each
individual, the score represents a weighted pattern of per-
formance on a number of cognitive tests that assess mul-
tiple clinical domains. Therefore, the mean TSCS score for
a group is an average of performance on this composite
measure. As with all computed means, the mean TSCS
score is not meant to reflect a typical performance but
rather the mean of performances by individuals in that
population that may contain both typical subjects and
atypical subjects. There is overlap in TSCS scores among
the TS and control populations. However, the difference
in the means is statistically significant (P < 0.001). This
overlap in TSCS scores indicates that many TS subjects
function within the normal range (mean ± 2 SD for con-
trols). If there were distinct and complete separation of
both populations in any cognitive trait, then discriminant
function analysis would not be necessary. This cognitive
result is similar to the findings for the height deficit in TS.
Although there are some TS subjects whose height is in the
normal range, the mean height is significantly reduced in
TS [1].

The mean TSCS score from 28 women with overlapping
Xp deletions of varying size was similar to that of 45, X TS
women and differed significantly from that of controls
and women with Xq deletions (Fig. 3A). Their overlap-
ping Xp deletions all included Xp22.3, the region previ-
ously hypothesized to affect TS cognition. We therefore
investigated the mean TSCS score of the 15 subjects whose
deletions were restricted to this interval (<Xp22.3). Their

mean TSCS score was also similar to that of 45, X TS sub-
jects and differed significantly from that of controls (Fig.
3B). Larger Xp deletions (>Xp22.3) were not associated
with further reduction in mean TSCS score or increased
individual variability in performance (Fig. 3B, Table 3).
This supports the conclusion that deletion of Xp22.3 may
be sufficient for producing this aspect of the neurocogni-
tive profile in TS.

Previous studies have shown that the likelihood of ovar-
ian failure in patients with terminal Xp deletions is
directly related to the size of the deletion [26,33]. Our
data also show this relationship. The mean TSCS score of
Xp deletion subjects without ovarian failure was similar to
that of 45, X TS subjects, suggesting that distinct Xp loci
contribute to ovarian failure and neurocognitive deficits
in TS.

Using an expanded panel of FISH and microsatellite
markers, and in two cases CGH, we mapped the associ-
ated interval to an 8.3 Mb region of Xp22.3 containing
approximately 30 genes. It is interesting that a deletion
limited to the pseudoautosomal region in subject 430 was
associated with mild developmental delay in her son. This
is surprising, since haploinsufficiency of the entire pseu-
doautosomal region does not usually cause global devel-
opmental delay in females. Possible explanations include
unmasking of a recessive Y pseudoautosomal allele, gen-
der-specific effects, or coincidence. The boy did not
undergo detailed cognitive testing.

TSCS scores of subjects according to deletionFigure 3
TSCS scores of subjects according to deletion. a. Comparison of mean TSCS scores of subjects with any Xp deletion, 
any Xq deletion, TS, and controls. b. Comparison of mean TSCS scores of subjects with Xp22.3 deletions, TS, and controls. 
Data shown are mean+SD. *P < 0.05, Tukey's test.
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While it appears that deletions limited to pseudoauto-
somal sequences may be sufficient to reduce the TSCS
score, as previously hypothesized, this conclusion is tem-
pered by the fact that two of these deletions were due to
unbalanced Xp;Yq translocations, and Yq heterochroma-
tin could exert position effects on nearby genes such as
NLGN4X [MIM 300427]. The lack of effect of Xq deletions
on the mean TSCS score suggests that the phenotype is
specific for deletion of Xp22.3 rather than a nonspecific
manifestation of aneuploidy or ovarian failure, which
showed no correlation with TSCS score.

Several aspects of the Xp22.3 region are noteworthy. Dele-
tions limited to Xp22.3 usually manifest short stature
rather than the full TS phenotype and are associated with
variable patterns of X inactivation, whereas larger dele-
tions are associated with nonrandom inactivation of the
deleted X chromosome [34]. Patients with Goltz, Aicardi,
or MLS syndrome, who may show deletions limited to
Xp22.3 with highly skewed inactivation [34], were
excluded from our study population. Most of our subjects
with deletions limited to Xp22.3 did not show highly
skewed inactivation. Subjects with larger Xp deletions or
Xq deletions generally showed nonrandom inactivation,
presumably of the deleted X chromosome. The TSCS score
distributions were similar for subjects with deletions lim-
ited to Xp22.3 and non-skewed inactivation and subjects
with larger Xp deletions and skewed inactivation. Further-
more, the TSCS scores of subjects with Xq deletions, all of
whom showed highly skewed inactivation, differed from
those of subjects with Xp deletions. Thus, TSCS score was
not related to pattern of X inactivation.

Most of the 30 or so genes in the Xp22.3 critical region
(Table 4) escape X inactivation, and many have Y-linked
homologs, suggesting that they are dosage sensitive [17].
Functional studies of genes in this region using animal
models are hindered by the apparent absence of almost
the entire region in mouse and rat, except for two genes,
PRKX [MIM 300083] and STS [MIM 308100] [19].

STS encodes steroid sulfatase, deficiency of which causes
X-linked ichthyosis [35]. Mouse Sts has been implicated
in modulating neurosteroid levels and thus GABAA recep-
tor function [36]. Mouse Sts is pseudoautosomal and
therefore dosage sensitive, and 39, X mice lacking one
copy of Sts show altered GABAA receptor expression [37].
These mice also show reduced visuospatial attention [38].
Restoration of Sts diploid dosage by a truncated sex chro-
mosome carrying the pseudoautosomal region and a
small number of X-linked genes normalized GABAA recep-
tor expression and rescued the visuospatial attention def-
icit [37,38]. The investigators concluded that
haploinsufficiency of a pseudoautosomal gene, possibly
Sts, is responsible for visuospatial attention deficits in 39,

X mice and perhaps analogous neurocognitive deficits in
humans with TS.

Other genes in the Xp22.3 region that have been linked to
cognitive phenotypes include VCX3A and NLGN4X.
VCX3A [variable charged X-linked gene 3A, MIM 300533]
belongs to a gene family with multiple closely related
members on both the X and Y chromosome. VCX3A was
proposed to be involved in cognition on the basis of over-
lapping Xp22.3 deletions associated with mental retarda-
tion in a few males [39]. However, a subsequent study
found that only one out of seven males in a family with
icthyosis due to a microdeletion that included VCX3A and
VCX [MIM 300229] had mental retardation [40]. Further-
more, expression of human VCX genes is restricted to
male germ cells [41].

NLGN4X, also in Xp22.3, encodes a neuroligin, or neural
cell adhesion molecule, widely expressed in brain that
escapes inactivation and has a functional Y homolog
[17,42]. Overexpression of the protein in cultured hippoc-
ampal neurons has been shown to stimulate formation of
presynaptic terminals [43]. Frameshift and nonsense
mutations in NLGN4X have been linked to Asperger syn-
drome/autism [MIM 300495, 300497] [44] and X-linked
mental retardation [MIM300495] [45]. Although cogni-
tive effects of reduced NLGN4X dosage have not been
described in female carriers of these mutations, autistic
features have been described as part of the 45, X TS neuro-
cognitive phenotype [46], and three females with autism
and deletions of distal Xp encompassing NLGN4X have
been reported [47]. However, none of our subjects carried
a diagnosis of autism spectrum disorder, and the relation-
ship of TSCS results and autistic features is not clear. The
TSCS score is based on performance on cognitive tests and
therefore has no direct relationship to autistic behavior.
However cognitive impairment on visual-perceptual and
spatial processing tasks may be related to increased risk of
social problems and altered interpersonal relationships.

Our study has several limitations. First, nonmosaic partial
X chromosome deletions are rare. In order to obtain suffi-
cient sample size for statistical comparisons, we included
eleven subjects with unbalanced translocations (eight
with Xp deletions and three with Xq deletions). While
none of these subjects had any obvious features of auto-
somal trisomy, presumably due to spread of X inactiva-
tion to the autosomal segment, we cannot exclude the
possibility of cognitive effects. However, the mean TSCS
score of the unbalanced translocation subjects with Xp
deletions was very similar to that of all Xp deletion sub-
jects. Similarly, because the number of Xq deletion sub-
jects was small, we included subjects whose deletions did
not all overlap. This deletion heterogeneity could mask an
effect of a locus in Xq. However, the mean TSCS score of
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just the subjects with terminal Xq deletions was similar to
controls. Our results strongly support a TS neurocognitive
locus in Xp but do not absolutely exclude a neurocogni-
tive effect of deletion of Xq.

There was ascertainment bias toward ovarian failure, par-
ticularly for subjects with Xq deletions, although this
aspect of the TS phenotype did not show any correlation
with TSCS score. Although the study included only adults,
the age range was relatively broad (17–55 years). How-
ever, age did not correlate with TSCS score either. Because
parental DNAs were not available for most of the subjects,
we could not address any possible imprinting effect, as
has been claimed for social-behavioral aspects of the TS
cognitive phenotype [48].

As with any complex trait, the presence and severity of the
TS neurocognitive phenotype is variable. This study used
discriminant function analysis, a relatively uncommon
method of defining cognitive phenotype. This method
was used because it allows a quantitative approach to cog-

nition using a group of subjects who, though similar, have
a moderate degree of cognitive heterogeneity. There is
clearly overlap between the distributions of TSCS scores of
45, X TS versus controls: some controls have lower TSCS
scores than the 45, X average, and some 45, X TS subjects
have higher TSCS scores than the control average. Because
of this overlap, the ability to infer genotype/phenotype
correlations based on individual subjects is limited. For
this reason, we based our conclusions on mean TSCS
scores of groups of subjects with similar deletions. This
approach does not require that every individual deleted
for the cognitive locus manifest the identical cognitive
phenotype.

The TSCS reflects performance in multiple cognitive
domains, and includes visual-motor tasks, visual-percep-
tual tasks, executive function/attention tasks and memory
tasks. Given the complex TS cognitive phenotype in TS, it
is not expected that the absence of a single gene leads
directly to this complete phenotype or even to a specific
cognitive trait associated with TS. Therefore, it is unlikely

Table 4: RefSeq genes in critical region.

Gene name RefSeq accession Product/function

PLCXD1 NM_018390 phospholipase
GTPBP6 NM_012227 GTP-binding protein-like
PPP2R3B NM_199326 phosphatase regulatory subunit
SHOX NM_000451 transcription factor/chondrocyte growth
CRLF2 NM_001012288 cytokine receptor-like
CSF2RA NM_006140 cytokine subunit
IL3RA NM_002183 interleukin 3 receptor subunit
SLC25A6 NM_001636 mitochondrial adenine nucleotide translocator
CXYorf2 NM_025091 hypothetical protein
ASMTL NM_004192 acetylserine O-methyltransferase-like
P2RY8 NM_178129 G-protein coupled purinergic receptor
DXYS155E NM_005088 novel protein
ASMT NM_004043 acetylserine O-methyltransferase
DHRSX NM_145177 dehydrogenase/reductase
ZBED1 NM_004729 Ac-like transposable element
CD99 NM_002414 cell surface antigen
XG NM_175569 cell surface antigen
GYG2 NM_003918 glycogenin
ARSD NM_001669 arylsulfatase
ARSE NM_000047 arylsulfatase (chondrodysplasia punctata)
ARSH NM_001011719 arylsulfatase
ARSF NM_004042 arylsulfatase
MXRA5 NM_015419 adlican
PRKX NM_005044 protein kinase; kidney development
NLGN4X NM_020742 neuroligin 4; see text
VCX3A NM_016379 germ cell protein; see text
HDHD1A NM_012080 haloacid dehalogenase-like hydrolase domain
STS NM_000351 steroid sulfatase; see text
VCX NM_013452 germ cell protein; see text
PNPLA4 NM_004650 phospholipase
VCX2 NM_016378 germ cell protein; see text
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that within Xp22.3 there is a specific gene that codes for a
specific cognitive dysfunction. Rather, absence of this
gene most likely affects a biological activity that is inti-
mately involved in the development of the phenotype,
manifesting as a complex and nonfocal neurocognitive
phenotype. The TSCS is still an incomplete representation
of the TS cognitive phenotype. There are other cognitive
features, including motor and social function not
included in the TSCS. Therefore, it is likely that the TS cog-
nitive phenotype is due to multiple cognitive determi-
nants and multiple genes, each contributing to the
phenotypic variance.

Molko et al. [49] described cerebral structural changes in
TS compared to female controls. These regions included
the right intrapatietal sulcus and bilateral superior tempo-
ral sulci. These regions have classically been associated
with spatial-perceptual ability and spatial-relational
memory. Dysfunction in these cognitive domains is part
of the TS cognitive phenotype. Therefore, it is reasonable
to speculate that the cognitive change associated with
deletion of Xp22.3 may be mediated through structural
changes in these anatomic regions.

These results are clinically relevant for patients with par-
tial X chromosome deletions. TS is classically defined as
monosomy X with typical physical and cognitive pheno-
types. Early karyotype/phenotype correlations studies
implicated loss of the short arm in growth failure. The dis-
covery of the SHOX gene suggested a continuum between
idiopathic short stature [MIM 300582], due to deletion of
only the SHOX gene, and TS, which could be viewed as a
contiguous gene deletion syndrome. For purposes of diag-
nosis and treatment, the distinction has been made
between deletions smaller than Xp22.3 associated only
with short stature (idiopathic short stature or dyschon-
drosteosis [MIM 127300]) and larger Xp deletions associ-
ated with both short stature and ovarian failure (TS) [50].
However, it must now be recognized that patients with
Xp22.3 deletions, regardless of diagnosis, are at risk for TS
neurocognitive deficits and should be evaluated accord-
ingly. Furthermore, in the absence of mosaicism, the risk
of these cognitive deficits in patients with Xq deletions is
low.

Conclusion
In summary, haploinsufficiency of genes located in
Xp22.3 appears to cause at least part of the multifaceted
cognitive phenotype of 45, X TS, as indexed by TSCS score.
This critical region contains 30 or so genes. The lack of
murine orthologs of most of these genes (with the excep-
tion of STS and PRKX) and the limitations of mouse mod-
els for complex human cognitive abilities precludes
identifying the causative gene by knockout models. An
alternative approach is to test for association between

genetic variation in Xp22.3 genes and the TSCS in 45, X TS
subjects. In addition, high resolution genomic technolo-
gies such as array comparative genomic hybridization
may detect submicroscopic deletions associated with TS
cognitive deficits that would identify the causative
gene(s), as was the case for short stature due to SHOX
deletion. Identification of the TS cognitive gene would
facilitate early diagnosis and intervention in individuals
with the associated neurocognitive deficits.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
ARZ and JLR conceived of the study, participated in its
design and coordination and wrote the manuscript. DR
participated in the interpretation of the results and manu-
script preparation. GS participated in the design of the
neurocognitive assessment and manuscript preparation.
PR performed molecular genetic studies. FE performed
karyotypes. HK performed statistical analyses. KK coordi-
nated subject recruitment and supervised neurocognitive
testing. All authors read and approved the final manu-
script.

Acknowledgements
Supported by NIH grants NS35554 (ARZ) and NS42777 (JLR). We thank 
Bo Luo for performing FISH studies and all of the TS families who partici-
pated in the study.

References
1. Lippe B: Turner syndrome.  Endocrinol Metab Clin North Am 1991,

20(1):121-152.
2. Bender B, Puck M, Salbenblatt J, Robinson A: Cognitive develop-

ment of unselected girls with complete and partial X mono-
somy.  Pediatrics 1984, 73(2):175-182.

3. Rovet JF: The cognitive and neuropsychological characteris-
tics of females with Turner syndrome.  In Sex chromosome abnor-
malities and behavior: psychological studies Edited by: Bender B, Berch
D.  Westview Press; 1991:39-77. 

4. Romans SM, Stefanatos G, Roeltgen DP, Kushner H, Ross JL: Transi-
tion to young adulthood in Ullrich-Turner syndrome: neu-
rodevelopmental changes.  Am J Med Genet 1998, 79(2):140-147.

5. Ross JL, Stefanatos G, Roeltgen D, Kushner H, Cutler GB: Ullrich-
Turner syndrome: neurodevelopmental changes from child-
hood through adolescence.  Am J Med Genet 1995, 58(1):74-82.

6. McCauley E, Kay T, Ito J, Treder R: The Turner syndrome: cog-
nitive deficits, affective discrimination, and behavior prob-
lems.  Child Develop 1987, 58(2):464-473.

7. Waber D: Neuropsychological aspects of Turner syndrome.
Develop Med Child Neurol 1979, 21:58-70.

8. Haberecht MF, Menon V, Warsofsky IS, White CD, Dyer-Friedman J,
Glover GH, Neely EK, Reiss AL: Functional neuroanatomy of
visuo-spatial working memory in Turner syndrome.  Hum
Brain Mapp 2001, 14(2):96-107.

9. Russell HF, Wallis D, Mazzocco MM, Moshang T, Zackai E, Zinn AR,
Ross JL, Muenke M: Increased prevalence of ADHD in Turner
syndrome with no evidence of imprinting effects.  J Pediatr Psy-
chol 2006.

10. Ross JL, Roeltgen D, Feuillan P, Kushner H, Cutler GB: Effects of
estrogen on nonverbal processing speed and motor function
in girls with Turner's syndrome.  J Clin Endocrinol Metab 1998,
83(9):3198-3204.
Page 12 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2029883
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6694875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6694875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6694875
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9741472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9741472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9741472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7573160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7573160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7573160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3829787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3829787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3829787
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=437385
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11500993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11500993
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16524959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16524959
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9745426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9745426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9745426


Behavioral and Brain Functions 2007, 3:24 http://www.behavioralandbrainfunctions.com/content/3/1/24
11. Ross JL, Roeltgen D, Feuillan P, Kushner H, Cutler GB Jr.: Use of
estrogen in young girls with Turner syndrome: effects on
memory.  Neurology 2000, 54(1):164-170.

12. Ross JL, Roeltgen D, Stefanatos GA, Feuillan P, Kushner H, Bondy C,
Cutler Jr GB Jr.: Androgen-responsive aspects of cognition in
girls with Turner syndrome.  J Clin Endocrinol Metab 2003,
88(1):292-296.

13. Ross JL, Stefanatos GA, Kushner H, Bondy C, Nelson L, Zinn A,
Roeltgen D: The effect of genetic differences and ovarian fail-
ure: intact cognitive function in adult women with prema-
ture ovarian failure versus turner syndrome.  J Clin Endocrinol
Metab 2004, 89(4):1817-1822.

14. Ross JL, Stefanatos GA, Kushner H, Zinn A, Bondy C, Roeltgen D:
Persistent cognitive deficits in adult women with Turner syn-
drome.  Neurology 2002, 58(2):218-225.

15. Zinn AR, Page DC, Fisher EMC: Turner syndrome - the case of
the missing sex chromosome.  Trends Genet 1993, 9(3):90-93.

16. Zinn AR, Ross JL: Turner syndrome and haploinsufficiency.
Curr Opin Genet Dev 1998, 8(3):322-327.

17. Carrel L, Willard HF: X-inactivation profile reveals extensive
variability in X-linked gene expression in females.  Nature
2005, 434(7031):400-404.

18. Rappold GA: The pseudoautosomal regions of the human sex
chromosomes.  Hum Genet 1993, 92(4):315-324.

19. Ross MT, Grafham DV, Coffey AJ, Scherer S, McLay K, Muzny D,
Platzer M, Howell GR, Burrows C, Bird CP: The DNA sequence of
the human X chromosome.  Nature 2005, 434(7031):325-337.

20. Rao E, Weiss B, Fukami M, Rump A, Niesler B, Mertz A, Muroya K,
Binder G, Kirsch S, Winkelmann M, Nordsiek G, Heinrich U, Breuning
MH: Pseudoautosomal deletions encompassing a novel
homeobox gene cause growth failure in idiopathic short stat-
ure and Turner syndrome.  Nat Genet 1997, 16(1):54-63.

21. Skibsted L, Westh H, Niebuhr E: X long-arm deletions. A review
of non-mosaic cases studied with banding techniques.  Hum
Genet 1984, 67(1):1-5.

22. Ross JL, Roeltgen D, Kushner H, Wei F, Zinn AR: The Turner syn-
drome-associated neurocognitive phenotype maps to distal
Xp.  Am J Hum Genet 2000, 67(3):672-681.

23. Ross JL, Kushner H, Zinn AR: Discriminant analysis of the Ull-
rich-Turner syndrome neurocognitive profile.  Am J Med Genet
1997, 72(3):275-280.

24. Gilbert J: Establishment of permanent cell lines by Epstein-
Barr virus transformation.  In Current protocols in human genetics
Volume 2. Edited by: Dracopoli NC, Haines JL, Korf BR, Moir DT,
Morton CC, Seidman CE, Seidman JG, Smith DR. New York , John
Wiley; 1995:A.3.H.1-A.3.H.5. 

25. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW:
Methylation of HpaII and HhaI sites near the polymorphic
CAG repeat in the human androgen-receptor gene corre-
lates with X chromosome inactivation.  Am J Hum Genet 1992,
51(6):1229-1239.

26. Zinn AR, Tonk VS, Chen Z, Flejter WL, Gardner HA, Guerra R, Kush-
ner H, Schwartz S, Sybert VP, Van Dyke DL, Ross JL: Evidence for
a Turner syndrome locus or loci at Xp11.2-p22.1.  Am J Hum
Genet 1998, 63(6):1757-1766.

27. James RS, Coppin B, Dalton P, Dennis NR, Mitchell C, Sharp AJ, Skuse
DH, Thomas NS, Jacobs PA: A study of females with deletions of
the short arm of the X chromosome.  Hum Genet 1998,
102(5):507-516.

28. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A,
Dohner H, Cremer T, Lichter P: Matrix-based comparative
genomic hybridization: biochips to screen for genomic
imbalances.  Genes Chromosomes Cancer 1997, 20(4):399-407.

29. Zinn AR, Ramos P, Ross JL: A second recombination hotspot
associated with SHOX deletions.  Am J Hum Genet 2006,
78(3):523-525.

30. Olshen AB, Venkatraman ES, Lucito R, Wigler M: Circular binary
segmentation for the analysis of array-based DNA copy
number data.  Biostatistics 2004, 5(4):557-572.

31. Zinn AR, Wei F, Zhang L, Elder FF, Scott CI Jr., Marttila P, Ross JL:
Complete SHOX deficiency causes Langer mesomelic dys-
plasia.  Am J Med Genet 2002, 110(2):158-163.

32. Pruitt KD, Tatusova T, Maglott DR: NCBI Reference Sequence
(RefSeq): a curated non-redundant sequence database of
genomes, transcripts and proteins.  Nucleic Acids Res 2005,
33(Database issue):D501-4.

33. Ogata T, Muroya K, Matsuo N, Shinohara O, Yorifuji T, Nishi Y,
Hasegawa Y, Horikawa R, Tachibana K: Turner syndrome and Xp
deletions: clinical and molecular studies in 47 patients.  J Clin
Endocrinol Metab 2001, 86(11):5498-5508.

34. Franco B, Ballabio A: X-inactivation and human disease: X-
linked dominant male-lethal disorders.  Curr Opin Genet Dev
2006, 16(3):254-259.

35. Webster D, France JT, Shapiro LJ, Weiss R: X-linked ichthyosis
due to steroid-sulphatase deficiency.  Lancet 1978,
1(8055):70-72.

36. Mortaud S, Donsez-Darcel E, Roubertoux PL, Degrelle H: Murine
steroid sulfatase gene expression in the brain during postna-
tal development and adulthood.  Neurosci Lett 1996,
215(3):145-148.

37. Isles AR, Davies W, Burrmann D, Burgoyne PS, Wilkinson LS: Effects
on fear reactivity in XO mice are due to haploinsufficiency of
a non-PAR X gene: implications for emotional function in
Turner's syndrome.  Hum Mol Genet 2004, 13(17):1849-1855.

38. Davies W, Humby T, Isles AR, Burgoyne PS, Wilkinson LS: X-mono-
somy effects on visuospatial attention in mice: a candidate
gene and implications for Turner syndrome and attention
deficit hyperactivity disorder.  Biol Psychiatry 2006.

39. Fukami M, Kirsch S, Schiller S, Richter A, Benes V, Franco B, Muroya
K, Rao E, Merker S, Niesler B, Ballabio A, Ansorge W, Ogata T: A
member of a gene family on Xp22.3, VCX-A, is deleted in
patients with X-linked nonspecific mental retardation.  Am J
Hum Genet 2000, 67(3):563-573.

40. Lesca G, Sinilnikova O, Theuil G, Blanc J, Edery P, Till M: Xp22.3
microdeletion including VCX-A and VCX-B1 genes in an X-
linked ichthyosis family: no difference in deletion size for
patients with and without mental retardation.  Clin Genet 2005,
67(4):367-368.

41. Lahn BT, Page DC: A human sex-chromosomal gene family
expressed in male germ cells and encoding variably charged
proteins.  Hum Mol Genet 2000, 9(2):311-319.

42. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L,
Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Dele-
haunty A, Delehaunty K, Du H: The male-specific region of the
human Y chromosome is a mosaic of discrete sequence
classes.  Nature 2003, 423(6942):825-837.

43. Chih B, Afridi SK, Clark L, Scheiffele P: Disorder-associated muta-
tions lead to functional inactivation of neuroligins.  Hum Mol
Genet 2004, 13(14):1471-1477.

44. Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC,
Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T: Muta-
tions of the X-linked genes encoding neuroligins NLGN3 and
NLGN4 are associated with autism.  Nat Genet 2003,
34(1):27-29.

45. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A,
Moizard MP, Raynaud M, Ronce N, Lemonnier E, Calvas P, Laudier B:
X-linked mental retardation and autism are associated with
a mutation in the NLGN4 gene, a member of the neuroligin
family.  Am J Hum Genet 2004, 74(3):552-557.

46. Skuse DH: X-linked genes and mental functioning.  Hum Mol
Genet 2005, 14 Spec No 1:R27-32.

47. Thomas NS, Sharp AJ, Browne CE, Skuse D, Hardie C, Dennis NR:
Xp deletions associated with autism in three females.  Hum
Genet 1999, 104(1):43-48.

48. Skuse DH, James RS, Bishop DV, Coppin B, Dalton P, Aamodt-Leeper
G, Bacarese-Hamilton M, Creswell C, McGurk R, Jacobs PA: Evi-
dence from Turner's syndrome of an imprinted X-linked
locus affecting cognitive function.  Nature 1997,
387(6634):705-708.

49. Molko N, Cachia A, Riviere D, Mangin JF, Bruandet M, LeBihan D,
Cohen L, Dehaene S: Brain Anatomy in Turner Syndrome: Evi-
dence for Impaired Social and Spatial-Numerical Networks.
Cereb Cortex 2004.

50. Bondy CA: Care of girls and women with Turner syndrome: A
guideline of the Turner Syndrome Study Group.  J Clin Endocri-
nol Metab 2007, 92(1):10-25.

51. Denman S: The Denman Neuropsychology Memory Scale.
Charleston, SC , Dr. Sidney B. Denman; 1984. 

52. Waber DP, Holmes JM: Assessing children's copy productions
of the Rey-Osterrieth complex figure.  J Clin Exper Neuropsych
1985, 7:264-280.
Page 13 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10636143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10636143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10636143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12519868
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15070950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15070950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15070950
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805247
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8488568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8488568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9690998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772666
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8225310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8225310
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15772651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9140395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9140395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9140395
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6745919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6745919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10931762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10931762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10931762
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9332653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9332653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1281384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1281384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1281384
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9654198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9654198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9408757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9408757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9408757
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16572514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16572514
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15475419
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12116254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12116254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12116254
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16650755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16650755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=74568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=74568
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8899734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8899734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8899734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15238507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15238507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15238507
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10903929
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15733277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15733277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15733277
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10607842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10607842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10607842
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12815422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12815422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12815422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15150161
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12669065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12669065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12669065
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14963808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15809269
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10071191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10071191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9192895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9192895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9192895
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15054057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15054057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17047017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17047017


Behavioral and Brain Functions 2007, 3:24 http://www.behavioralandbrainfunctions.com/content/3/1/24
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

53. Beery KE: Development test of visual-motor integration:
Administration, scoring, and teaching manual, 3rd revision.
Cleveland , Modern Curriculum Press; 1989. 

54. Wechsler D: Wechsler adult intelligence scale - Third edition.
Administration and scoring manual.  San Antonio, TX , The Psy-
chological Corporation; 1997. 

55. Chute D: Pursuit rotor.  Devon, PA , MacLaboratory, Inc.; 1990. 
56. Benton AL, Varney NR, Hamsher KD: Visuospatial judgment. A

clinical test.  Arch Neurol 1978, 35(6):364-367.
57. Money J, Alexander D, Walker HT: A standardized road map of

directional sense.  Baltimore,MD , Johns Hopkins Press; 1965. 
58. Kaufman AS: K-ABC Assessment Battery for Children.  Circle

Pines, MN , American Guidance Service; 1983. 
59. Warrington EK: Recognition Memory Test.  Darville House,

Windsor, UK , NFER-Nelson Publishing Company Ltd.; 1984. 
60. Benton AL, Sivan AB, Hamsher KD, Varney NR, Spreen O: Facial

Recognition Test.  In Contributions to Neuropsychological Assessment
New York , Oxford University Press; 1994:112. 

61. Wilkerson GS: WRAT3 Administration Manual.  Wilmington,
Delaware , Wide Range, Inc.; 1993. 

62. McCarthy D: Manual for the McCarthy scales for children's
abilities.  New York , The Psychological Corporation; 1972. 

63. Kagan J: Reflection-impulsivity:The generality and dynamics
of conceptual tempo.  J Abnormal Psychol 1966, 71:17-24.

64. Spreen O Strauss, E: A compendium of neuropsychological
tests.  New York , Oxford University Press; 1998:447-464. 

65. Spreen O, Strauss E: A compendium of neuropsychological
tests: administration, norms and commentary.  New York ,
Oxford University Press; 1991. 

66. Reeves D, Kane R, Winter K: Automated neuropsychological
assessment metrics: test administrators guide.  Washington,
DC , Office of Military Performance Assessment Technology, Division
of Neuropsychiatry, Walter Reed Army Institute of Research; 1994. 
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=655909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=655909
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Subjects
	Cytogenetic and molecular analyses
	Derivation of the TSCS score
	Statistical analyses

	Results
	Study population
	Phenotypes
	Refined mapping of Xp22.3 deletions
	X inactivation

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

