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A Tutorial for Competent Memetic Algorithms:
Model, Taxonomy and Design Issues

Natalio Krasnogor and Jim Smith

Abstract— The combination of Evolutionary algorithms with
local search was named “Memetic Algorithms” (MAs) in [1].
These methods are inspired by models of natural systems that
combine the evolutionary adaptation of a population with indi-
vidual learning within the lifetimes of its members. Additionally,
MAs are inspired by Richard Dawkin’s concept of a meme,
which represents a unit of cultural evolution that can exhibit
local refinement [2]. In the case of MAs “memes” refer to
the strategies (e.g. local refinement, perturbation or constructive
methods, etc) that are employed to improve individuals. In this
paper we review some works on the application of MAs to well
known combinatorial optimisation problems, and place them in
a framework defined by a general syntactic model. This model
provides us with a classification scheme based on a computable
index D, which facilitates algorithmic comparisons and suggests
areas for future research. Also, by having an abstract model for
this class of meta-heuristics it is possible to explore their design
space and better understand their behaviour from a theoretical
standpoint. We illustrate the theoretical and practical relevance of
this model and taxonomy for MAs in the context of a discussion
of important design issues that must be addressed to produce
effective and efficient Memetic Algorithms.

Index Terms— Memetic Algorithms, Evolutionary Global-
Local Search Hybrids, Model, Taxonomy, Design Issues.

I. I NTRODUCTION

EVOLUTIONARY ALGORITHMS (EAs) are a class of
a search and optimisation techniques that work on a

principle inspired by nature:Darwinian Evolution. The concept
of natural selection is captured in EAs. Specifically, solutions
to a given problem are codified in so–called chromosomes.
The evolution of chromosomes due to the action of crossover,
mutation and natural selection are simulated through computer
code.

It is now well established thatpure Evolutionary algorithms
are not well suited to fine tuning search in complex combi-
natorial spaces and that hybridisation with other techniques
can greatly improve the efficiency of search [3]–[6]. The
combination of Evolutionary Algorithms with Local Search
(LS) was named “Memetic Algorithms” in [1]. Memetic
algorithms (MAs) are extensions of evolutionary algorithms
that apply separate processes to refine individuals, for example
improving their fitness by hill-climbing.

These methods are inspired by models of adaptation in
natural systems that combine the evolutionary adaptation of
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a population with individual learning within the lifetimes of
its members. The choice of name is inspired by Richard
Dawkins’ concept of a meme, which represents a unit of
cultural evolution that can exhibit local refinement [2]. In the
context of heuristic optimisation a meme is taken to represent
a learning or development strategy. Thus a memetic model of
adaptation exhibits the plasticity of individuals that a strictly
genetic model fails to capture.

In the literature, MAs have also been named Hybrid Genetic
Algorithms (e.g. [7]–[9]), Genetic Local Searchers (e.g. [10]),
Lamarckian Genetic Algorithms (e.g. [11]), Baldwinian Ge-
netic Algorithms (e.g. [12]), etc. As noted above, they typically
combine local search heuristics with the EAs’ operators, but
combinations with constructive heuristics or exact methods
may also be considered within this class of algorithms. We
adopt the name of Memetic Algorithms for this meta-heuristic,
because we think it encompasses all the major concepts
involved by the other ones, and for better or worse has become
the de factostandard e.g. [13]–[15].

EAs and MAs have been applied in a number of different
areas, for example operational research and optimisation, au-
tomatic programming, machine and robot learning. They have
also been used to study and optimise of models of economies,
immune systems, ecologies, population genetics, and social
systems, and the interaction between evolution and learning,
to name but a few applications.

From an optimisation point of view, MAs have been shown
to be both more efficient (i.e. requiring orders of magnitude
fewer evaluations to find optima) and more effective (i.e.
identifying higher quality solutions) than traditional EAs for
some problem domains. As a result, MAs are gaining wide
acceptance, in particular in well-known combinatorial opti-
misation problems where large instances have been solved
to optimality and where other meta-heuristics have failed
to produce comparable results (see for example [16] for a
comparison of MAs against other approaches for the Quadratic
Assignment Problem).

II. GOALS, A IMS AND METHODS

Despite the impressive results achieved by some MA prac-
titioners, the process of designing effective and efficient MAs
currently remains fairly ad-hoc and is frequently hidden behind
problem-specific details. This paper aims to begin the process
of placing MA design on a sounder footing. In order to do this
we begin by providing some examples of MAs successfully ap-
plied to well known combinatorial optimisation problems, and
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draw out those differences which specifically arise from the
hybridisation of the underlying EA, as opposed to being design
choices within the EA itself. These studies are exemplars, in
the sense that they represent a wide range of applications and
algorithmic options for a Memetic Algorithm.

The first goal is to define a syntactic model which enables
a better understanding of the interplay between the different
component parts of an MA. A syntactic model is devoid of
the semantic intricacies of each application domain and hence
exposes the bare bones of this meta-heuristic to scrutiny. This
model should be able to represent the many different parts that
compose a MA, determine their roles and interrelations.

With such a model we can construct a taxonomy of MAs,
the second goal of this paper. This taxonomy is of practical
and theoretical relevance. It will allow for more sensible and
fair comparisons of approaches and experimental designs. At
the same time it will provide a conceptual framework to deal
with more difficult questions about the general behaviour of
MAs. Moreover, it will suggest directions of innovation in the
design and development of MAs.

Finally, by having a syntactic model and a taxonomy,
the process of more clearly identifying which of the many
components (and interactions) of these complex algorithms
relate to which of these design issues should be facilitated.

The rest of this paper is organised as follows: In Section III
we motivate our definition of the class of meta-heuristics under
consideration, and give examples of the type of design issues
that have motivated this study. This is followed in Section IV
by a review of some applications of Memetic Algorithms
to well known problems in combinatorial optimisation and
bio-informatics. Section V presents a syntax-only model for
Memetic Algorithms and a taxonomy of possible architectures
for these meta-heuristics is given in Section VI. In Section VII
we return to the discussion of design issues, showing how
some of these can be aided by the insights given by our
model. Finally we conclude with a discussion and conclusions
in Section VIII.

III. B ACKGROUND

A. Defining the Subject of Study

In order to be able to define a syntactic model and taxonomy
we must first clarify what we mean by a Memetic Algorithm.
It has been argued that the success of MAs is due to the
trade-off between the exploration abilities of the EA, and the
exploitation abilities of the local search used. The well known
results of MAs over Multi Start Local Search (MSLS) [17]
and Greedy Randomised Adaptive Search Procedure(GRASP)
[8] suggest that, by transferring information between different
runs of the local search (by means of genetic operators) the
MA is capable of performing a much more efficient search.
In this light, MAs have been frequently described asGenetic
Local Search which might be thought as the following process
[18]:

In each generation of GA, apply the LS operator to all
solutions in the offspring population, before applying
the selection operator.

Although many MAs indeed use this formula this is a some-
what restrictive view of MAs and we will show in the
following sections that many other ways have been used to
hybridise EAs with LS with impressive results.

In [19] the authors present an algebraic formalisation of
memetic algorithms. In their approach an MA is a very special
case of GA where just one period of local search is performed.
As we will show in following sections, MAs are used in
a plethora of alternative ways and not just in the way the
formalism introduced in [19] suggests.

It has recently been argued by Moscato that the class of
MAs should be extended to contain not only “EAbased MAs”,
but effectively include any population-based approach based
on a “k-merger” operator to combine information from solu-
tions [13], creating a class of algorithms called thePolynomial
Merger Algorithm (PMA) (pp227 and 228, ibid). However,
PMA ignores mutation and selection as important components
of the evolutionary meta-heuristic. Rather, it focuses exclu-
sively on recombination, or it’s more general form, the “k-
merger” operator. Therefore we do not use this definition here,
as we feel that it is both restrictive (in that it precludes the
possibility of EAs which do not use recombination), and also
so broad that it encompasses such a wide range of algorithms
as to make analysis difficult.

As the limits of “whatis” and “what is not” an MA are
stretched, it becomes more and more difficult to assess the
benefit of each particular component of the meta-heuristic in
search or optimisation.A priori formalisations such as [13]
and [19] inevitably leave out many demonstrably successful
MAs and can seriously limit analysis and generalisation of
the (already complex) behaviour of MAs. Our intention is to
provide ana posteriori model of MAs, usingalgorithms as
data; that is, applications of memetic algorithms that have
been proven successful. It will be designed in such a way
to encompass those algorithms. Thus we use a commonly
accepted definition, which may be summarised as [20]:

A Memetic Algorithm is an Evolutionary Algorithm
that includes one or more local search phases within
its evolutionary cycle

While this definition clearly limits the scope of our study it
does not curtail the range of algorithms that can fit this scope.
As with any formal model and taxonomy, ours will have its
own “outsiders”, but hopefully they will be less numerous than
those left aside by [13] and [19]. The extension of our model
to other population based meta-heuristics is being considered
in a separate paper.

Finally we should note that we have restricted the survey
part of this paper to Memetic Algorithms approaches for single
objective combinatorial optimisation problems (as opposed to
multi-objective or numerical optimisation problems). This is
not because MAs are unsuited to these domains - they have
been very successfully applied to the fields of multi-objective
optimisation (see e.g. [21]–[24], an extensive bibliography can
be found in [25]), and numerical optimisation (see e.g. [26]–
[32]). Rather, the reason for this omission is partly practical,
to do with the space this large field would demand. It is also
partly because we wish to introduce our ideas in the context
of the simple algorithmStandard Local Search(...) where
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it is straightforward to define a neighbourhood, improvement,
and the concept of local optimality. When we consider Multi-
objective problems, the whole concept of optimality becomes
clouded by the trade-offs between objectives, and dominance
relations are usually preferred. Similarly in the case of numer-
ical optimisation, the concept of local optimality is clouded
by the difficulty, in the absence of derivative information, of
knowing when a solution is truly locally optimal, as opposed
to say, a point a very small distance away. Nevertheless, it
is worth stressing that the issues cloud the exposition, rather
than invalidate the concept of “schedulers” which leads to
our syntactic model and taxonomy, and the subsequent design
guidelines which can equally well be applied in these more
complex domains.

B. Design Issues for Memetic Algorithms

Having provided a fairly broad-brush definition of the class
of meta-heuristics that we are concerned with, it is still vital to
note that the design of “competent” [33] Memetic Algorithms
raises a number of important issues which must be addressed
by the practitioner.

Perhaps the foremost of these issues may be stated as:

“What is the best trade-off between local search and
the global search provided by evolution?”

This leads naturally to questions such as:

• Where, and when, should local search be applied within
the evolutionary cycle?

• Which individuals in the population should be improved
by local search, and how should they be chosen?

• How much computational effort should be allocated to
each local search?

• How can the genetic operators best be integrated with
local search in order to achieve a synergistic effect?

As we will see in the following sections, there are a host
of possible answers to these questions, and it is important
to use both empirical experience and theoretical reasoning in
the search for answers. The aim of our syntactic model is
to provide a sound basis for understanding and comparing the
effects of different schemes. The use of a formal model aids in
this by making some of the design choices more explicit, and
by providing a means of comparing the existing MA literature
with the (far broader) body of research into EAs.

Similarly, while theoretical understanding of the interplay
between local and global search is much less developed than
that of “pure” EAs, it is possible to look in that literature for
tools and concepts that may aid in the design of competent
Memetic Algorithms, for example:

• Is a Baldwinian or Lamarckian model of improvement to
be preferred?

• What fitness landscape(s) does the population of the
Memetic Algorithm operate on?

• What local optima are the Memetic Algorithms operating
with?

• How can we engineer Memetic Algorithms that efficiently
traverse large neutral plateaus and avoid deep local op-
tima?

IV. SOME EXAMPLE APPLICATIONS OFMEMETIC

ALGORITHMS IN OPTIMISATION AND SEARCH

In this section we will briefly comment on the use of MAs
on different combinatorial optimisation problems and adap-
tive landscapes. Applications toTravelling Salesman Prob-
lem (TSP), Quadratic Assignment Problem (QAP), Binary
Quadratic Programming (BQP), Minimum Graph Colouring
(MGC), and Protein Structure Prediction Problem (PSP) will
be reviewed.

This section does not pretend to be an exhaustive bibliogra-
phy survey, but rather a gallery of well known applications of
MAs from which some architectural and design conclusions
might be drawn. In [34] a comprehensive bibliography can be
found.

For the definition of the problems the notation in [35]
will be used. The reader interested in the complexity and
approximability results of those problems is referred to the
previous reference. The pseudo-code used to illustrate the
different algorithms is shown as used by the respective authors,
with only some minor changes made for the sake of clarity.

In [36] a “standard” local search algorithm is defined
in terms of a local search problem. Because this standard
algorithm is implicit in many MAs, we repeat it here:

StandardLocal Search (x):
Begin

produce a starting solution s;
to problem instance x;
Repeat Until ( locally optimal ) Do

using s and x generate the next neighbour nx,s;
If ( nx,s is better than s) Then

s := nx,s;
Fi

Od
End.

Algorithm Standard Local Search(...) captures the intu-
itive notion of searching a neighbourhood as a means of
identifying a better solution. It doesn’t specify tie-breaking
policies, neighbourhood structure, etc.

This algorithm uses a “greedy” rather than a “steepest”
policy i.e. it accepts the first better neighbour that it finds. In
general a given solution might have several better neighbours,
and the rule that assigns one of the (potentially many) better
neighbours to a solution is called apivot rule. The selection
of the pivot rule or rules to use in a given instantiation of the
standard local search algorithm has tremendous impact on the
complexity of the search and potentially in the quality of the
solutions explored.

Note also that the algorithm above implies that local search
continues until a local optima is found. This may take a
long time, and in the continuous domain proof of local
optimality may be decidedly non-trivial. Many of the local
search procedures embedded within the MAs in the literature
are not standard in this sense, that is, they usually perform a
shorter “truncated” local search.
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A. Memetic Algorithms for theTSP
The TSP is one of the most studied combinatorial optimi-

sation problems. It is defined by

Traveling Salesman Problem
Instance: A set C of m cities, and for each pair of cities
ci, cj ∈ C a distanced(ci, cj) ∈ N .
Solution: A tour of C, i.e.,
a permutationπ : [1 . . .m] 7→ [1 . . .m].
Measure: The length of the tour, i.e.,
d(π) = d({cπ(m), cπ(1)}) +

∑i=m−1
i=1 d({cπ(i), cπ(i+1)}).

Aim: minimum length tourπ∗ : ∀π 6= π∗ d(π) > d(π∗).

In [37] a short review on early MAs for the TSP is presented,
where an MA was defined by the following skeleton code:

GeneticLocal Search(P ∈ Sl):
Begin

/* λ, µ, m ≥ 1 */
For i := 1 To µ Do

Iterative Improvement( si);
Od
stop criterion := false;
While ( ¬ stop criterion ) Do

P ′ := ∅;
For i := 1 To λ Do

/* Mate */
Mi ∈ P m ;
/* Recombine */
si ∈ Hm(Mi);
Iterative Improvement( si);
P ′ := P ′ ∪ {si};

Od
/* Select */
P :∈ (P ∪ P ′)µ;
evaluate stop criterion;

Od
End.

Here we can regardIterative Improvement(...) as a
particular instantiation ofStandard Local Search(...) , and
appropriate code should be used to initialise the population,
mate solutions and select the next generation. Note that the
mutation stage was replaced by the local search procedure.
Also a (µ + λ) selection strategy was applied. The use of
local search and the absence of mutation is a clear difference
betweenGenetic Local Search(...) and standard EAs.

In [37] early works on the application of MAs to theTSP
were commented on. Those works used different instantiations
of the above skeleton to produce near optimal solution for
small instances of the problem. Although the results were
not definitive, they were very encouraging, and many of the
following applications of MAs to theTSP (and also to other
NPO problems) were inspired by those early works.

In [38] the MA GLS Based Memetic Algorithm(...) is
used which has several non-standard features. For details
the reader is referred to [38] and [13]. We are interested
here in remarking two important differences with the MA
Genetic Local Search(...) shown previously. In this MA
the local search procedure is used after the application of each
of the genetic operators and not only once in every iteration
of the EA. These two meta-heuristics differ also in that in
the last case a clear distinction is made between mutations

and local search. In [38] the local search used is based
on the powerful Guided Local Search (GLS) meta-heuristic
[39]. This algorithm was compared against MSLS, GLS and
a second MA,where the local search engine was the same
basic move used by GLS without the guiding strategy. In this
paper results were presented from experiments using instances
taken from TSPLIB [40] and fractal instances [41]. In no
case was the MSLS able to achieve an optimal tour unlike
the other three approaches. Out of 31 instances tested the
GLS Based Memetic Algorithm(...) solved 24 to optimality,
MSLS 0, MA with simple local search 10 and GLS 16. It is
interesting to note that the paper was not intended as a “better
than” paper but rather as a pedagogical paper where the MAs
were exposed as a new meta-heuristic in optimisation.

GLSBasedMemeticAlgorithm:
Begin

Initialise population;
For i := 1 To sizeOf(population) Do

individual := populationi;
individual := Local − Search− Engine(individual);
Evaluate(individual);

Od
Repeat Until ( termination condition ) Do

For j := 1 To #recombinations Do
selectToMerge a set Spar ⊆ population;
offspring = Recombine(Spar, x);
offspring = Local − Search− Engine(offspring);
Evaluate(offspring);
Add offspring to population;

Od
For j := 1 To #mutations Do

selectToMutate an individual in population;
Mutate(individual);
individual = Local − Search− Engine(individual);
Evaluate(individual);
Add individual to population;

Od
population = SelectPop(population);
If (population has converged) Then

population = RestartPop(population);
Fi

Od
End.

Merz and Freisleben in [42], [43] and [44] show many
different combinations of local search and genetic search
for the TSP (in both its symmetricSTSP and asymmetric
ATSP versions) while defining purpose-specific crossover and
mutation operators. In [42] the following code was used to
conduct the simulations:

STSP-GA:
Begin

Initialise pop P with Nearest-Neighbour(...) ;
For i := 1 To popsize(P ) Do

Lin−Kernighan−Opt(individuali), i ∈ P ;
Od
Repeat Until ( converged ) Do

For i := 0 To #crossover Do
Select two parents ia, ib ∈ P randomly;
ic = DPX − STSP (ia, ib);
Lin-Kernighan-Opt( ic);
With probability mp do Mutation-STSP( ic);
Replace an individual of P by ic;

Od
Od

End.
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In this pseudo-code the authors employ specialised
crossover and mutation operators for theTSP (and a similar
algorithm for theATSP). As in previous examples the initial
population is a set of local optima, in this case, with respect
to Lin-Kernighan-Opt(...) . In this case theLK heuristic
is also applied to the results of crossover and mutation. The
authors motivate this, saying

...and let a GA operate on the set of local optima to
determine the global optimum

However they also note that this can lead to a disastrous
loss of diversity, which prompts their use of a selection
strategy which is neither a(µ + λ) nor a (µ, λ) but a hybrid
between the two, whereby the new offspring replaces the most
similar member of the population, (subject to elitism). As the
authors remark, theLarge Step Markov Chains and Iterated-
Lin-Kernighan techniques are special cases of their algorithm.

In [44] the authors change their optimisation scheme to
one similar toGLS Based Memetic Algorithm(...) which has
a more traditional mutation and selection scheme and in
[43] they use the same scheme asSTSP-GA(...) but after
finalisation of the GA run, post-processing by means of local
search is performed.

It is important to notice that Merz and Freisleben’s MAs
are perhaps the most successful meta-heuristics forTSP and
ATSP, and a predecessor of the schemes described was the
winning algorithm of theFirst International Contest on Evolu-
tionary Optimisation.

In [45] Nagata and Kobayashi described a powerful MA
with an intelligent crossover, in which the local searcher is
embedded in the genetic operator. The authors of [46] describe
a detailed study of Nagata and Kobayashi’s work, and relate
it to the local searcher used by Merz and Freisleben.

B. Memetic Algorithms for theQAP

The QAP is found in the core of many practical problems
such as facility location, architectural design, VLSI optimisa-
tion, etc. Also, theTSP andGP can be recast as special cases
of QAP. The problem is formally defined as:

Quadratic Assignment Problem
Instance: A,B matrices ofn× n.
Solution: A permutationπ : [1 . . .m] 7→ [1 . . .m].
Measure: The cost of the permutation, i.e.,
C(π) =

∑i=n
i=1

∑j=n
j=1 ai,j · bπ(i),π(j)

Aim: Minimum cost permutationπ∗ :∀π 6=π∗ C(π) > C(π∗).

Because of the nature ofQAP it is difficult to treat with
exact methods, and many heuristics and meta-heuristics have
been used to solve it. In this section we will briefly comment
on the application of MAs to theQAP.

In [9] the following MA described as a “hybrid genetic
algorithm meta-heuristic” is proposed:

GeneticHybrid Algorithm(H1, H2):
Begin

P := ∅;
For i := 1 To m Do

Generate a random permutation p;
Add H1(p) to P ;

Od
Sort P ;
For i := 1 To number of generations Do

For j := 1 To num offspring per generation Do
select two parents p1, p2 from P ;
child := crossover(p1, p22);
Add H2(child) to P ;

Od
Sort P ;
Cull(P, num offspring per generation);

Od
Return the best p ∈ P ;

End.

In the code shown aboveH1(...) andH2(...) are initial-
isation and improvement heuristics respectively. In particular
the authors reports on experiments whereH2(...) is a Tabu
Search (TS) heuristic. At the time that paper was written
their MA was one of the best heuristics available (in terms
of solution quality for standard test instances).

It is interesting to remark that as
in Genetic Local Search(...) and
GLS Based Memetic Algorithm(...) , the GA is seeded
with a high quality initial population, which is the output
of an initial local search strategy,H1 (Tabu Search in this
case). Again we find that the selection strategy, represented
by Cull(...) , is a (µ + λ) strategy as in the previous MAs.
The authors further increase the selection pressure by using a
mating selection strategy. As inGenetic Local Search(...)

, no explicit mutation strategy is used: Fleurent and Ferland
regardH1(...) and H2(...) as mutations that are applied
with a probability 1. As in Genetic Local Search(...) ,
the optimisation step is applied only to the newly generated
individual, that is, the output of the crossover stage.

In [16] results were reported which are improvements to
those in the paper previously commented, and for other meta-
heuristics forQAP. The sketch of the algorithm used is:

QAP MA:
Begin

Initialise population P ;
For i := 1 To sizeof(P ) Do

individual := Pi;
individual := Local Search(individual);

Od
Repeat Until ( terminate=True ) Do

For i := 1 To #recombinations Do
Select two parents ia, ib ∈ P randomly;
ic := Recombine(ia, ib);
ic := Local Search(ic);
Add individual ic to P ;

Od
P := Select(P );
If ( Pconverged) Then

For i := 1 To sizeof(P ), i 6= index(Best) Do
individual := Pi;
individual := Local Search(Mutate(individual));

Od
Fi

Od
End.
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Regardless of the new representation and crossover on
which the MA relies to perform its search, it should be
particularly noted thatMutation(...) is applied only when
a diversity crisis arises, and immediately after mutating a
solution of the population a new local search improvement
is performed. Because the selection strategy is again a(µ+λ)
strategy, it may be the case that an old individual, i.e. one that
survived many generations, goes through local search many
times unlike inGenetic Hybrid Algorithm(...) .

In this case the initial population is obtained by the
use of the local search engine. As a marginal comment
we can mention that the local search procedure employed
was a variant of2 − Opt(...) also known as thepairwise
interchange heuristic.

C. Memetic Algorithms for theBQP
Binary quadratic programming is defined by:

Binary Quadratic Programming Problem
Instance: Symmetric rationaln× n matrix Q = (qi,j).
Solution: Binary vectorx of lengthn.
Measure: The benefit ofx, i.e,
f(x) = xtQx =

∑i=n
i=1

∑j=n
j=1 qi,j · xi · xj

Aim: Maximum benefit solutionx∗ : ∀x 6= x∗ f(x) < f(x∗).

As well as being a well knownNP-Hard problem, BQP
has many applications, i.e, financial analysis, CAD problems,
machine scheduling, etc. In [47] the authors used an MA with
the same architecture as inQAPMA(...) but tailored forBQP
and they were able to improve over previous approaches based
on TS and Simulated Annealing (SA). They also were able to
find new best solutions for instances in the ORLIB [48].

D. Memetic Algorithms for theMGC
The MGC is one of the most studied problems in graph

theory, with many applications in the area of scheduling and
timetabling. Its definition is

Graph Coloring
Instance: GraphG = (V,E).
Solution: S, a coloring ofG, i.e.,
a partition ofV into disjoint setsv1, . . . , vk

such that eachvi is an independent set forG
Measure: Cardinalityk of the coloring
Aim: Minimum k coloring: S∗ :∀S 6= S∗ k(S) ≥ k(S∗).

In [49] an MA was presented for this problem which used
an embedded kind ofStandard Local Search(...) after the
mutation stage. The selection strategy used was a generational
GA with 1−elitism (the worst individual of the new population
is replaced with the best of the previous one) and the algorithm
also used some specially designed operators. The authors
reported what, at the time the paper was written, were exciting
results.

Fleurent and Ferland [50] studied a number of MAs for
MGC based on the hybridisation of a standard steady state

GA with problem-specific local searchers and Tabu Search.
The improvement stage was used instead of the mutation
stage of the standard GA. The authors also ran experi-
ments with a problem-specific crossover. The pseudo-code
employed in the paper is omitted because of its similarity with
Genetic Hybrid Algorithm(...) already discussed.

In [51] Dorne and Hao’ proposed an MA for theMGC. This
MA used a new crossover, based on the union of independent
sets, which is itself a kind of local searcher. The mutation stage
was replaced by the powerful Tabu Search. With this MA the
authors were able to improve over the best known results of
some large instances of the famousDimacs benchmarks. Their
algorithm is:

GL for Colouring:
Begin

/* f, F ∗: fitness function and */
/* best value encountered so far */
/* s∗: best individual encountered so far */
/* best(P ): returns the best individual */
/* of the population P */
i=0;
generate( P0);
s∗ := best(P0);
f∗ := f(s∗);
While ( f∗ > 0 and i < maxIter ) Do

P ′
i := crossing(Pi, Tx);

/* using specialised crossover */
Pi+1 := mutation(P ′

i );
/* using Tabu search */
If ( f(best(Pi+1)) < f∗) Then

s∗ := best(Pi+1);
f∗ := f(s∗);

Fi
i := i+1;

Od
End.

E. Memetic Algorithms for thePSP

Protein Structure Prediction is one the most exciting prob-
lems that computational biology faces today. In words of John
Maynard Smith [52]:

Although we understand how genes specify the se-
quence of amino acids in a protein, there remains the
problem of how the one-dimensional string of amino
acids folds up to form a three-dimensional protein...
it would be extremely useful to be able to deduce the
three-dimensional form of a protein from the base
sequence of the genes coding for it; but this is still
beyond us.

Because “all-atom” simulations are extremely expensive re-
searchers often resort to a simplified model of thePSP. One
well studied example is Dill’sHP model [53]. Despite being a
simplification, variations of this model have been shown NP-
hard, see for example [54]–[56]. It may be defined as follows:



KRASNOGOR AND SMITH:A TUTORIAL FOR COMPETENT MEMETIC ALGORITHMS 7

HP-model of Protein Structure Prediction
Instance: A simplified protein sequence of lengthl,
i.e. a strings ∈ {H,P}l.
Solution: A self-avoiding pathp which embedss into
a two or three dimensional lattice (i.e.Z2 or Z3)
This defines aDistance Matrix, D, of inter-residue distances.
Measure: Potential energy,of the sequence in that fold,
approximated by the number of pairs of H-type residues,
which are not sequence–adjacent, but are at distance 1 inp
E(p) = −

∑l−2
i=1

∑l
j=i+2 Dij | (Dij = 1) ∧ (si = sj = H)

Aim: Minimum energy solutionp∗ : ∀p 6= p∗ E(p) > E(p∗).
In [57] we applied the following MA to thePSP

PF MA:
Begin

Random initialise population Parents;
Repeat Until ( Finalisation criteria met ) Do

Local Search(Parents);
mating pool := Select mating(Parents);
offsprings := Cross(mating pool);
Mutate(offsprings);
Parents := Select(Parents + offsprings);

Od
End.

This algorithm was able to find optimum configurations
for 19 out of 20 protein instances of moderate size, out
performing a GA with identical architecture except for the
use ofLocal Search(...) . In this MA a (µ+λ) replacement
strategy was used, together with fitness-proportionate selection
for mating. In contrast to all the previous MA, in this scheme
Local Search(...) is considered a “first class” operator. It
receives the entire population and applies with probabilitypls a
complex local search algorithm to each individual. Under this
scheme, solutions are improved during all their life span. In
[58] several MAs for other molecular conformation problems
are briefly commented on. In [59] a comparison of Simulated
Annealing against GA and Local Search hybrids is presented
for the closely relatedDrug Docking domain. In [60] a co-
evolutionary memetic approach is introduced while in [61]
the authors introduce a memetic crossover for thePSP.

V. A SYNTACTIC MODEL FORMEMETIC ALGORITHMS

A. A Syntactic Model for Evolutionary Algorithms

Following [62] the Evolutionary Algorithm can be for-
malised within a “Generate-and–Test” framework by:

GA = (P 0, δ0, λ, µ, l, F, G,U)

• P 0 = (a0
1, . . . , a

0
µ) ∈ Iµ Initial population

• I = {q1, . . . , qn}l n−ary finite discrete problem repre-
sentation

• δ0 ⊆ < Initial parameter set for operators
• µ ∈ N Population size
• λ ∈ N Number of offspring
• l ∈ N Length of representation
• F : I 7→ <+ Fitness function
• G : Iµ 7→ Iλ Generating Function
• U : Iµ × Iλ 7→ Iµ Updating function

Note that in this model we consider the effects of survivor
selection at the end of one generation, and parent selection at

the start of the next, to be amortised into a single functionU
which is responsible for updating the working memory of our
algorithm. The Memetic Algorithms’ literature, as does the
general EA literature, contains examples of the incorporation
of diversity-preservation measures intoU . These have included
implicit measures, such as the imposition of spatial structure
on the population (e.g., [42], [63], [64]) or explicit measures
such as duplicate prevention (e.g. [65], [66]). This issue will
be discussed in more depth in Section VII

Examples ofG as generating functions are mutation and
crossover operators. A recombination operator has as its signa-
ture1 R : Iµ× δ 7→ I and a mutation operatorM : I× δ 7→ I.
The initial values for parameters of the operators used (e.g.
mutation probabilities) are represented byδ0. If O ∈ Iλ

denotes the set of offspring then an iteration of the GA is:

Ot
i = M(R(P t, δt), δt) ∀i ∈ {1, . . . , λ}

P t+1 = U(Ot ∪ P t), (1)

wheret is the time step.
Although the formalisation above assumes a finite discrete

problem representation with each element of the representation
having the same arity, this is done simply for the sake of
clarity, and the framework permits the use of any desired
representation via suitable redefinition ofI.

B. Extension to Memetic Algorithms

We will need to extend this notation to include local search
operators as new generating functions. We define these to
be members of a set,L = {L1, . . . , Lm}, of local search
strategies available to the MA.

Examples of so called “Multimeme Algorithms” where the
local search phase has access to several distinct local searchers
(i.e. m > 1) can be found in [20] and [67]. The signature of
each member of the setL is Lj : Ic1 × ζ 7→ Ic1 whereζ is a
strategyspecific parameter (with a role equivalent toδ), j is
an index into the setL and c1 is a constant that determines
how many solutions the local searcher uses as its argument
and how many solutions it returns. In general we will assume
that c1 = 1, and consequently drop the subscript for the sake
of clarity, but as an example of a local searcher withc1 = 2
the reader might consider Jones’ Crossover Hill Climber [68].

As can be seen from the pseudo-code in the previous
sections, the local search stage can happen before or after
crossover, mutation and selection or in any imaginable com-
bination, and the local searchers are members of a (potentially)
large set of alternative heuristics, approximate or exact algo-
rithms with which solutions could be improved.

To model this we define entities calledschedulers which are
higher order functions.2 An early example of the application
of higher order functions to memetic algorithms see [69],
where the authors implement Radcliffe and Surry’s formalism
[19] in a functional language.

1Note that the use of the superscriptµ permits the modelling of crossover
operators with variable arity, e.g., Moscato’sK−mergers

2A higher order function or functional is a function whose domain is itself
a set of functions, e.g., the indefinite integral of a function is a higher order
function.
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C. Co-ordinating Local Search with Crossover and Mutation

Thefine grain scheduler (fS) co-ordinates when, where and
with which parameters local searchers fromL will be applied
during the mutation and crossover stages of the evolutionary
cycle. It has the following signature:

fS : (Ic1 × δ 7→ I)× L× Ic1 × δ × ζ 7→ I

The fS receives three arguments. The first is a generating
function with signatureIc1 × δ 7→ I, that is, recombination
(with c1 = µ) or mutation (withc1 = 1). The second is a
set of local searchers to be scheduled, which have signatures
Ic2 × ζ 7→ Ic2 . Usually c2 will have the value 1: for example
in most of the examples above local search is appliedafter
recombination or mutation. However our model should not
rule out other possibilities - for example doing local search
on the parentsbefore recombination, in which casec2 = c1.
Finally it receives a set of solutions by means of theIc1 and
operators and two sets of strategy specific parametersδ and
ζ. In the simplest case there will be a mutation (fSM ) and a
recombination (fSR) schedulers with the following signatures:

fSM : (I × δ 7→ I)× L× I × δ × ζ 7→ I

fSR : (Iµ × δ 7→ I)× L× Iµ × δ × ζ 7→ I

To illustrate this point, consider the case where a single
local search method is used:fSM (M,L1, i, δ, ζ1) wherei is
an individual,M is a mutation operator, andL1 is the local
searcher with parametersζ1. Note that we are not specifying
how M and L1 will be used “inside” the scheduler. As
examples of how the scheduler might operate consider a simple
case where mutationM is applied to i and the result of
this operation is given as an argument toL1. The symmetric
case is equally valid i.e applying mutationM to the result
of improving i with L1. More complex scenarios can be
imagined, it is up tofS to organise the correct pairing of
inputs/outputs to functions.

A similar case can be stated forfSR(R,L2, Q, δ, ζ2) ,
where in this case we are receiving as actual parameter a
population of individualsQ (usually a subset ofP ) rather
than a single individual.

An illustration of this can be found in [46] where the
authors argue in favour of encapsulating a2-Opt(...) local
searcher into an algorithm with Nagata’s and Kobayashi’s
Edge Assembly Crossover [45]. The latter is a good example
of an “intelligent” crossover operator which uses information
about edge lengths to construct an offspring by connecting
sub-tours common to both parents. However in both the
Nagata and Kobayashi’s original algorithm, and Watson et.
al.’s “improved” version the crossover operator is used to
generate a single offspring. In the original paper, “Iterative
Child Generation” is used, i.e. the scheduler repeatedly applies
the crossover operator until a good solution is found, and in
Watson’s version, a 2-opt local search is appliedafter the
crossover operator.

An even clearer example can be found in [70] where a new
crossover for theJob-shop Scheduling Problem is proposed.
In this case the crossover is a local search procedure that
uses a two-solutions based neighbourhood. In other words we

can make a clear distinction between a generating operator
that only ever considers one or two potential offspring, (even
if it “intelligently” uses heuristics such as edge distances in
its construction phase) and one that constructs and evaluates
several solutions before returning an offspring. The latter
case clearly is that of a scheduled local search, where the
“neighbourhood” of a [pair of] point[s] is defined by the action
of a generating operator.

D. Co-ordinating Local Search with Population Management

An alternative model, as illustrated in Section IV-E, is to co-
ordinate the action of local search with the population man-
agement and updating functions. ACoarse Grain Scheduler
(cS) is defined by:

cS : (Iµ × Iλ 7→ Iµ)× L× Iµ × Iλ × δ × ζ 7→ Iµ

In this scheduler the formal parameters stand for the up-
dating functionU , the set of the local searchersL, the sets
of parents and offspring (Iµ and Iλ respectively), and the
operator specific parameter setsδ and ζ. The goal of this
scheduler is to organise the application of a local searcher
to either the set of parents, the set of offspring or to their
union. The difference between a coarse grain scheduler and a
fine grain scheduler is that the former can provide population
statistics to its local search operator while the fine grain
scheduler knows just one individual at a time (or two for the
one associated with crossover).

By the introduction of the local search schedulers we can
simulate any of the algorithmic combinations above. Also,
by using aset of local searchers by the schedulers we can
model powerful multi-operator hybrid strategies like those
described in [71], [72] and [73]. We can also include the
approaches discussed in [74] and [75] where partial Lamar-
ckianism or “sniffs” rather than complete local searches are
allowed and allocated dynamically during the search. Further,
it is possible to model the local search methods described in
[26] where statistics from the population are used to apply
local search selectively. Another interesting example of the
use of coarse grain schedulers can be seen in [76] where a
hybrid meta-heuristic is introduced which uses concepts of
both evolutionary algorithms and gradient search. Under this
scheme potentially all the individuals in the populations are
continuously “learning” since each stage of Local Search may
be truncated rather than continue to local optimality.

E. Incorporating Historical Information

The natural extension to this model is to introduce ameta
scheduler(mS) with the following signature:

mS : L ×Ht
P × Iµ × δ × ζt 7→ Iµ

whereHt
P ⊆ P1 ∪ P2 ∪ . . . ∪ Pt−1.

The meta scheduler is able to use information from previous
populations to influence its search by means ofζ and the
elements ofL, hence a kind of evolutionary memory is
introduced into the evolutionary search mechanisms. Note
that in these cases the parameter setsζ associated with the
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schedulers may now represent complex data structures rather
than simple probability distributions.

With the introduction of this scheduler, a new class of meta-
heuristics is available given by the many possible instantiations
of:

Ot
i = fSM (M,L, fSR(R,L, P t, δt, ζt), δt, ζt)

∀i ∈ {1, . . . , λ} (2)

P t+1 = mS(L,Ht
P , cS(U,L, P t, Ot, δt, ζt), δt, ζt)

where the use of superscriptst recognises that the several
parameters may be time-dependant. We have not found this
kind of MAs in the literature, yet they represent a novel,
qualitatively different and perhaps powerful family of MAs.
As an example of its use, one can imagine that the elements
of L are based on Tabu search and that the meta scheduler
uses the information of ancient populations to update their
Tabu lists, thus combining global and local informationacross
time. An advantage of considering meta-schedulers which
affect ζ, is that by setting all elements ofL to the identity
function, it is possible to include within our model the work on
Adaptive GAs which use ahistory of previous results to update
the probabilities of applying genetic operators, such as those
described in [77]–[79]. Furthermore the more recent approach
to optimisation called “Hyper-heuristics”, in particular those
described in [80], [81] can be considered to be Multimeme
algorithms where the set of low level operators (i.e. local
searchers and constructive heuristics) are adaptively applied
to one solution (λ = µ = 1) by the meta-scheduler (called
hyper-manager in hyper-heuristics terminology).

VI. A TAXONOMY FOR MEMETIC ALGORITHMS

A. A Scheduler-Based Taxonomy

With the use of Eqn. (2), it is possible to model the vast
majority of the MAs found in the literature, capturing the
interaction between local search and the standard evolutionary
operators (mutation, crossover, selection). From this syntactic
model a taxonomy of architectural classes can be naturally
derived based on an index numberD(A) which can be
ascribed to any MA (A).

D(A) = bmSbcSbfSR
bfSM

is a four bit binary number
with each bi taking the value0 or 1 according to whether
scheduleri is absent, respectively present, inA. To understand
the ordering of the bits, note that the least significant bit is
associated to the scheduler that receives as one of its arguments
at most 1 solution, the next bit to the one that receives at most
µ solutions, the next two bits are assigned to the schedulers
that employ at mostµ + λ or | 2P1∪...∪Pt−1 | solutions
respectively in their arguments.

To illustrate this point with examples from the re-
view above, the algorithmGenetic Local Search(...) has
an index D = 2 because just the fine grain sched-
uler associated with crossover and meme is present, while
GLS Based Memetic Algorithm(...) has D = 3, since the
mutation and crossover schedulers are used.

Table I classify the various methods discussed in section III
accordingly to theirD number, but it will rapidly be seen that
only a small fraction of the alternative MAs were employed

and investigated, and that the pattern is inconsistent across
different problem types. Of particular interest are the frontiers
for D ≥ 4 andD ≥ 8. Although throughout this paper we have
concentrated mainly on single objective problems, we have in-
cluded in this table a reference to [21]. In that paper the authors
tackle a Multi-Objective problem using a memetic algorithm
with what they call a “non-dominated Pareto archive” as an
evolutionary memory. This work represents a clear example
of an MA that resides above the frontierD ≥ 8. It is clear
from visual inspection of this table that there are plenty of
alternative MAs waiting to be investigated for these problems.

B. Relationship to Other Taxonomies

The taxonomy presented here complements the one intro-
duced in [91] by Calegary et al. who provide a comprehen-
sive taxonomic framework for EAs. They define a ‘Table of
Evolutionary Algorithms” (TEA) where the main features of
the design space of evolutionary algorithms are placed in the
columns of the table. In a related and complementary work,
Talbi [92] provides a general classification scheme for meta-
heuristics based on two different aspects of a meta-heuristic: its
design space and its implementation space. He then develops
a hierarchical organisation for each one. Specifically for the
design space of hybrid meta-heuristics, he identifies what he
called low-level-relay hybrids (LRH), low-level-cooperative
hybrids (LCH), high-level-relay hybrids(HRH) and high-level-
cooperative hybrids(HCH). Regarding those two works, MAs
can be considered to be represented in Calegary et.al. work
with a TEA where the column associated to an improving
algorithms always receives a value of “yes”, while in Talbi’s
taxonomy an MA could be placed within the LCH class.

Our approach categorises the architecture of a subclass of
the algorithms both of the previous taxonomies include. In that
way a more refined classification is obtained for the subclass
of evolutionary algorithms and hybrid meta-heuristic that are
memetic algorithms. Of course such a syntactic model and
taxonomy is of little interest to the practitioner unless it in
some way aids in the conceptualisation and design process.
In the following sections we shall move on to show how the
model may be used during the design of an algorithm.

C. Distinguishing Types of Local Search Strategies

Making the separation into two sets of objects (candidate
solutions in the EA’s population, and local search heuristics),
with interactions mediated by a set of schedulers facilitates a
closer examination of the potential nature of the elements of
L. In keeping with the name given to this class of algorithms,
so coincidentally very much in the spirit of his idea, we will
adapt Dawkins’ original definition and call eachL ∈ L a
“meme”. Metaphorically speaking, memes can be thought of
as representing alternative improvement strategies that could
be applied to solutions, where these strategies may be imitated,
improved, modified, etc.

The model presented in Eq. (2) already allows us to distin-
guish and define three cases:

• If Lt = L0∀t then we callL a static meme.
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• If Lt adapts through changes in its parametersζt as t
increases then we callL an adaptive meme.

• If Lt adapts through changes inL itself, e.g. by evolving
under a GP approach, (and possibly inζt also) then we
call L a self-adaptive meme.

It is important to realise that it is sufficient for anyL ∈ L to
be adaptive to make the whole set of memes into an adaptive
meme set. In the same way, if just oneLt is self-adaptive then
the entireL is self-adaptive3.

To the best of the authors’ knowledge the only memetic
algorithms that scheduled more than one static local searcher
at a time are those described in [71]–[73]. Almost all the
papers studied in this work use single static memes with
the exceptions of the algorithms described in [76] (if the
momentum term is included into the model described therein),
GLS Based Memetic Algorithms(...) and PF MA(...) . As
examples of self-adaptive memes we refer the reader to the
more recent [93]–[98].

The extension to considering aset of adaptive or self-
adaptive memes, rather than a single local search method,
gives rise to an extra level of complexity in the schedulers.
The simplest case uses static memes and requires thatζ is
enlarged to include a probability distribution function (pdf)
for the likelihood of applying the different memes, in addition
to their operational parameters. More complex cases might
involve a different pdf for each scheduler.

The simplest adaptive case requires thatζ is time-dependent,
with the scheduler becoming responsible for adapting the
pdf. In more complex scenarios it might be necessary to
store a different pdf for each member of the population -
i.e. individual rather than population level adaptation in the
terminology of [99], [100]. Allowing for adaptivity within
MAs makes it necessary to couple the adaptation over time
of ζ andL to the evolutionary equation (2).

VII. D ESIGN ISSUES FOR“COMPETENT” M EMETIC

ALGORITHMS

In [33] Goldberg describes “competent” Genetic Algorithms
as:

genetic algorithms that solve hard problems quickly,
reliably, and accurately.

3For the sake of clarity of the model we have left out the minor signature
modifications that are needed to reflect the fact that a meme might change its
arguments or change itself.

As we have described above, for a wide variety of prob-
lems, Memetic Algorithmscan fulfil these criteria better
than traditional Evolutionary Algorithms. However the simple
inclusion of a given local search method is not enough to
increase the competence of the underlying EA. Rather, the
design of “competent” Memetic Algorithms raises a number of
important issues. It is now appropriate to revisit these issues, in
the light of our syntactic model and taxonomy, in order to see
what new insights can be gained. While we are not suggesting
that all implementations of MAs should follow the scheduler-
based view-point, we would argue that it is certainly beneficial
to consider this perspective to inform design decisions.

To re-cap, some of the principal design issues are:

• What Local Search Operator should be used?
• Which fitness landscape(s) is the MA navigating?
• With what local optima is the MA operating?

• Where, and when, should local search be applied within
the evolutionary cycle?

• Is a Baldwinian or Lamarckian model to be preferred?
• How can the genetic operators best be integrated with

local search in order to achieve a synergistic effect?

• How can we engineer MAs that can efficiently traverse
large neutral plateaus and avoid deep local optima?

• Which individuals in the population are to be improved
by local search and how do we choose among them?

• How much cpu budget will be allocated to the local
search?

We now discuss these items according to the grouping
above.

A. Choice of Local Search Operators

The reader will probably not be surprised to find that our
answer to the first question is“it depends”. In [67] we
showed that even within a single problem class (in that case
TSP) the choice of which single LS operator gave the best
results when incorporated in an MA was entirely instance-
specific. Furthermore, studies of the dynamic behaviour of
various algorithms (including Multi-Meme MAs) showed that
in fact the choice of which LS operator yielded the biggest
improvements was also time-dependent.
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It is well known that most meta-heuristics suffer from
getting trapped in local optima. It is also trivially true that a
point which is locally optimal with respect to one operator may
not be with respect to another (unless it is globally optimal).
Taking these points together has motivated recent work into
meta-heuristics such asVariable Neighbourhood Search[101],
which utilise multiple local search operators.

In earlier sections we have listed a number of papers in
the recent MA literature which use multiple LS operators,
and we would certainly argue that faced with a choice of
operators, a sensible design approach would be not to decide
a priori but to incorporate several. Given such an approach,
for the sake of efficiency it is worth considering methods to
avoid spending time utilising non-productive operators, which
implies at least some way of adapting the operator probabilities
in ζ. This in turn implies a coarse-grain or meta scheduler
is present. It is perhaps worth noting that in [95] it was
shown that while coarse-grain adaptation ofζ was sufficient
for a steepest − ascent LS, the extra noise inherent in an
first−ascent approach gave worse results. It was suggested
that in such a case using a “history” of relative performance
gains, as per Paredis’ LTFE would be beneficial - in other
words a meta-scheduler.

Related to this point are the two more theoretical issues
concerning landscape and local optima. Merz et.al in [10],
[102], [103] employ the concept of fitness landscape distance
correlation to assess the behaviour of MAs. Although the
correlation measures discussed in those papers can provide
very valuable indications on the likely performance of MAs,
they can sometimes be misleading. In particular, as a fitness
distance correlation is measured based on one particular move
operator (e.g. local searcher), if any of the schedulers in Eqn.
(2) has access to more than one local searcher then different
fitness landscapes will need to be considered. This fact was
recognised by Jones’ “One Operator, One Landscape” axiom
[104].

B. Integration into EA cycle

We have grouped together the next three issues in our list as
they are intimately related, and there has been some confusion
in the previous literature.

Some researchers [18] consider that when the LS operator
is applied before crossover and mutation then the MA is
a “Lamarckian” algorithm, and when the LS operator is
appliedafter crossover and mutation it is a pure “Darwinian”
algorithm. This is an erroneous interpretation of Lamarckian
vs. Baldwin Learning. In both cases local search is used to
improve (if possible) the fitness of the candidate solution, thus
changing its selection probabilities. The difference is simply
that in the case of Lamarckian (but not Baldwinian) learning
the modifications are also assimilated into the individual
– in other words the fitter neighbourreplaces the original
candidate solution. As is clearly illustrated in the case of
GLS Based Memetic Algorithm(...) , Lamarckian learning in
MAs can happen before or after the application of the other
genetic operators. However there is little point in applying
Baldwinian search after parent selection but before recombi-

nation and mutation, since the resultant offspring will need to
be re-evaluated anyway.

If a Lamarckian local search is continued to optimality,
then on average the recombination and mutation are likely
to reduce the fitness of a solutions which were previously
locally optimal. The hoped-for synergy in such an MA is that
the use of genetic variation operators will produce offspring
which are more likely to be in the basin of attraction of a
high-quality local optimum than simply randomly selecting
another point to optimise. Clearly in order to achieve this
synergy, i.e. to avoid selection discarding these new points,
it is a good idea to perform local search on these offspring
prior to selection. In other words an algorithm “Select–local
search – probabilistically recombine – probabilistically mutate
–select ...” makes little sense.

In practice, most recent work has tended to use a Lamarck-
ian approach, and the papers cited by Merz and Freisleben are
typical in their (highly successful) advocacy of running the
local search to optimality. However as noted in Section IV,
simply incorporating one or more powerful local searchers
into an EA can lead to a rapid loss of diversity if steps are not
taken to prevent this during the design phase. This has clear
implication for the likelihood of the algorithm getting stuck
in local optimum, or “stagnating” on a plateau.

The use of coarse-grain schedulers provides a simple means
of avoiding this by monitoring population convergence statis-
tics. In QAPMA(...) this is done by monitoring convergence
then applying vigorous mutation to the whole population. An
alternative approach can be seen in [20], [57] which utilises
a Boltzmann criteria in the pivot rule of local search, with
the inverse of the population fitness range determining the
temperature, and hence the likelihood of accepting a worse
neighbour in a local search.

C. Managing the Global-Local Search Trade-off

The majority of MAs in the literature apply local search
to every individual in every generation of the evolutionary
algorithm, our model makes it clear that this is not mandatory.
In [26] and [74] the authors explore these issues and suggest
various mechanisms by which individuals are chosen to be
optimised by local search, the intensity of local search and the
probability of performing the local optimisation. They achieve
this by providing sophisticated coarse grain schedulers that
measure population statistics and take them into consideration
at the time of applying local search.

In [74] Land addresses the problem of how to best integrate
the local search operators with the genetic operators. He
proposes the use of fine grain schedulers, both for mutation
and crossover, that “sniff” (sample) the basin of attraction
represented by a solution. That is, instead of performing
a complete local search in every solution generated by the
evolutionary operators, a partial local search is applied; only
those solutions that are in promising basin of attraction will
be assigned later (by the coarse grain scheduler) an extended
cpu budget for local search. In a similar spirit Krasnogor in
[20] proposes “crossover-aware” and “mutation-aware” local
searchers.
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In [71] and [57] the issue of large neutral plateaus and
deep local optima is addressed by providing modified local
searchers that can change their behaviour accordingly to the
convergence state of the evolutionary search. As we have
noted above, a different approach to avoid getting trapped in a
local optimum is to use various local searchers simultaneously
in the population. In [67], [72] and [73] the authors resort
to that technique to improve the robustness of the Memetic
Algorithms.

VIII. C ONCLUSIONS ANDFURTHER WORK

In this work we committed ourselves to the study of several
works on Memetic Algorithms, coming from different sources,
with the purpose of designing a syntactical model for MAs. In
contrast with [19] where ana priori formal memetic algorithm
is given, ours is ana posteriori formalisation based on the
papers cited here and several others.

The syntactical model obtained allowed for the definition
of an index numberD into the taxonomy of MAs implicit in
Eq. 2. When plotting theD index for a number of papers we
were able to identify classes of MAs that had received a lot
of attention and other classes that were little explored from a
theoretical and practical point of view. For example, we found
no representatives of MAs (for mono objective optimisation)
with D > 7, although their counterparts are well known in the
GA literature and in the multi-objective MA literature.

Furthermore, our syntactical model suggests the existence
of a novel class of meta-heuristic in which four schedulers
interact. The reader should note that while a higherD value
implies a more complex algorithm it does not necessarily
result in a better algorithm; all things being equal, a lower
D algorithm should be preferred to one with a largerD.

We were able to identify two kinds of helpers, static and
adaptive, and to generalise a third type: self-adaptive helpers.
Whilst examples were found of the first two types, the third
type was just recently explored [93]–[98] suggesting another
interesting line of research.

The adaptation of the indexD to reflect the kind of helpers
being used by the schedulers is straightforward.

Another important avenue of research is the study of which
kind of MA, defined by itsD index, is suitable for different
types of problems. As shown in the second graph, just a
few MAs’ architectures were studied for each of the problem
surveyed, it remains to be seen whether there are structural
or merely historical reasons for the grouping observed . Our
taxonomy complements the taxonomies in [91] and [92]. Both
the syntactic model and the taxonomy aids our understanding
of the design issues involved in the engineering of Memetic
Algorithms.

Finally we were able to revisit a list of important design
questions and reconsider them in the light of our model,
which offered us some new insights and ways of seeing
common threads in disparate successful MAs. While we are
not suggesting that all implementations of MAs should follow
this scheduler-based viewpoint, we would argue that it is
certainly beneficial to consider this perspective to inform
design decisions.
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