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Abstract

Recent Bayesian methods for the analysis of infectious disease outbreak data using stochastic epidemic

models are reviewed. These methods rely on Markov chain Monte Carlo methods. Both temporal and non-

temporal data are considered. The methods are illustrated with a number of examples featuring different

models and datasets.
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1. Introduction

This paper was written for the conference on Compartmental Models and Disease Transmis-
sion, in memory of John Jacquez, held at the University of Michigan, October 2001. The purpose
of the paper is to give an introduction and overview of some recent work concerned with methods
for performing Bayesian inference for stochastic epidemic models given data on outbreaks of
infectious diseases. Important generic ideas are discussed in the present section, with the bulk of
the remainder of the paper containing various illustrative examples.

Models and inference for epidemics: Analysing infectious disease data is a non-standard
problem, and many approaches have been developed (see [1] for a recent review). In general,
inference problems for disease outbreak data are complicated by the facts that (i) the data are
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inherently dependent and (ii) the data are usually incomplete in the sense that the actual process of
infection is not observed. However, it is often possible to formulate simple (to define, if not to
analyse!) stochastic models which describe the key features of epidemic spread, and these can be
used as a convenient starting point for inference. In particular, such models attempt to describe
the mechanism by which the observed data are generated. Inference then proceeds by attempting
to estimate, either in a classical or Bayesian framework, the parameters of the model. These
parameter estimates can in turn be used to provide information concerning quantities of epide-
miological interest.
Depending on the application in question, models may incorporate latent periods, variable

infectivity, reduced susceptibility following recovery, etc. Similarly, aspects of population heter-
ogeneity such as age structure, varying susceptibility, differential mixing rates between groups of
individuals, etc. can be included as appropriate. As with any statistical modelling, there is a
balance between models that are too complicated for the data to fully inform, and those which are
too simplistic to be regarded seriously as a basis for generating useful inference. In practice it is
not always straightforward to achieve this balance via a formal procedure; issues of model ade-
quacy and goodness-of-fit are not especially well-developed in the literature. Situations in which
the data essentially consist of repeated independent observations (e.g. different independent
outbreaks) are usually easier to assess than those featuring heavily dependent data (e.g. temporal
data from a single large outbreak).

Bayesian inference: In classical inference, model parameters are regarded as fixed quantities.
The values of the parameters are estimated from data using estimators that are random variables,
and whose distributional properties may be known. In Bayesian inference, the model parameters
are regarded as random variables, and the main object of interest is the posterior distribution, i.e.
the distribution of the parameters given the data. Specifically, the posterior density is defined via
Bayes’ Theorem as the normalised product of the prior density and the likelihood. The posterior
distribution contains all information about the parameters, from which one can obtain point and
interval summaries (e.g. mean, mode, credible intervals). Within the present context, the posterior
distribution for a parameter provides information concerning parameter uncertainty that might
be very hard to obtain using a classical approach. More precisely, in practice it is often
straightforward, using the methods we shall describe, to obtain Bayesian credible intervals for
parameters, whereas classical confidence intervals may require the development of appropriate
theoretical results. In particular, the usual conditions that ensure asymptotic normality of max-
imum likelihood estimators are often violated. Regarding prior distributions, the choice of prior is
largely application-specific, although it is common to use uninformative priors as part of any
analysis to provide a kind of baseline. However it is frequently reasonable to use informative
priors based on epidemiological beliefs.

Data imputation: As mentioned above, one of the difficulties when dealing with disease out-
break data is that the infection process is unobserved. The reason that this complicates matters is
that the likelihood (that is, the probability density or mass function of the data given the model
parameters) may become very difficult to evaluate. This problem is especially acute when con-
sidering temporal data, since then evaluating the likelihood typically involves integration over all
possible infection times, which is rarely analytically possible. Consequently, it is natural to con-
sider the use of data imputation methods. In these methods, unknown quantities that facilitate
likelihood evaluation are simply treated as extra model parameters. Two widely used data im-
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putation methods are the EM algorithm and Markov chain Monte Carlo (MCMC) methods. The
EM algorithm has been considered for epidemic inference problems (see e.g. [1,2]), although a
drawback with this method is that the evaluation of the expectation step can be rather compli-
cated. Conversely, MCMC methods usually allow data imputation in a straightforward manner.
More generally, one of the issues when using data imputation methods is selecting appropriate

quantities to impute. For example, suppose that the available data consist only of the number
ultimately infected by an outbreak. For some models, the likelihood of such data can be evaluated
directly and no imputation is needed. If this is not the case, then in theory the entire (temporal)
sample path of the process could be imputed, although in practice dealing with such a large extra
quantity of information, about which very little is known, is likely to be problematic. However,
alternative non-temporal information, such as who infects who, might be sufficient to enable the
likelihood to be evaluated. In general, the choice of imputed variables is facilitated by a good
understanding of the probabilistic structure and behaviour of the model under consideration.

Markov chain Monte Carlo: MCMC methods are an established suite of methodologies that
enable samples to be drawn from some target density that is only known up to proportionality.
The literature on MCMC methods is vast; the reader new to the subject can find a user-friendly
introduction in [3]. In the context of Bayesian inference, the target density is the joint posterior
density of the model parameters. The methods work by defining a Markov chain whose stationary
distribution is equal to the (normalised) target density. The chain is then simulated for a time
deemed adequate for convergence to have occurred, and then samples drawn from the simulated
chain. These samples are, provided convergence has occurred, samples from the target density of
interest. It should be noted that sampling-based methods such as this allow for straightforward
exploration not only of the posterior density of interest, but also marginal posterior densities of
the model parameters and functions of these parameters. As an example of the latter, a key
quantity of interest in epidemic models is the so-called basic reproduction number, denoted R0.
This quantity can often be regarded as a threshold parameter whose value indicates whether an
epidemic is likely to take off, or die out quickly. However, most epidemic models are not defined
directly in terms of R0, and so estimating R0 is often achieved by first estimating the basic model
parameters.

Why use MCMC? There are two related reasons why MCMC is an attractive choice of
methodology in the present context. First, it permits a huge amount of modelling flexibility. For
example, consider a dataset consisting of symptom-appearance times. Evaluation of the likelihood
involves integration over all the possible (unknown) infection times. To proceed analytically it
becomes necessary to chose a convenient distributional form for the infectious periods, so that the
integrals can be explicitly evaluated. Otherwise, the summation and high-dimensional integration
can make the problem at best numerically complicated, and at worst intractable. No such
modelling restriction on infectious periods is generally necessary for MCMC, in which the missing
infection times are included as extra model parameters. Note that MCMC can be used as a tool
for exploring the likelihood surface, so that its use extends beyond the purely Bayesian frame-
work. An additional point regarding model flexibility is that there is no restriction that models be
Markov, which is necessary when using martingale techniques for inference [1,4].
The second appeal of MCMC is that, in combination with the Bayesian approach, it enables

analysis of all of the model parameters, or any function of them. In particular, this includes
parameters or functions of parameters for which no classical estimator is known (see, for example,
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[5]). Posterior summaries such as means, medians, variances, credible intervals, etc. are all easily
obtained for individual parameters, or for joint distributions of parameters.

Scope and outline of paper: In the remainder of this paper we consider examples that illustrate
various kinds of datasets, models and MCMC algorithms. Our focus is primarily towards
methodology, and thus we do not consider matters such as the quality of actual data, sampling
and design issues, laboratory techniques and so on. Similarly, the examples presented do not
contain full statistical analyses for specific datasets. However, more details are usually available
elsewhere for the datasets that we discuss, as will be indicated. Additionally, we do not consider
here those applications of MCMC to infectious disease data analysis in which the transmission
process is not explicitly modelled (e.g. [6–8]).
We consider two broad classes of dataset, so that Section 2 address methods for data that do

not specifically include time-indexed information, and Section 3 address methods for temporal
data. Some concluding comments are given in Section 4.

2. Non-temporal and semi-temporal data

In this section we consider the situation in which the available data do not explicitly contain
information concerning the real-time progress of an epidemic. There are two scenarios. First, the
data are entirely non-temporal and consist only of the number of cases among a population of
known size. Second, the data consist of so-called chain information, which essentially describes
the progress of the epidemic in terms of generations of infection: we refer to such data as semi-
temporal. These data are usually obtained via expert opinion; for instance, the times between the
appearance of symptoms in infected individuals, considered alongside existing knowledge of latent
and infectious period lengths, might strongly suggest a particular infection chain. Of course, such
data might be viewed with scepticism because they are not clinically verified. Finally, in both
scenarios the data might be stratified in some way, for example according to age groups,
households, vaccination status, etc.

2.1. Rhode Island measles data

We begin with an analysis of some classic measles data from Providence, Rhode Island, pre-
sented in Table 1. These data were considered by Wilson et al. [9], Bailey [10], [11], and Becker [4],
and consist of chain data for measles outbreaks in households of size 3. The analysis in [4]
considers a number of different models, all of which regard the households as independent, in-
cluding a model in which the between-individual infection probability can vary between house-
holds. We consider this latter model and analyse it from a Bayesian perspective. The motivation

Table 1

Epidemic chain data from outbreaks of measles in households of size 3, Providence, Rhode Island

Chain Frequency

f1g 34

f1; 1g 25

f1; 2g 239

f1; 1; 1g 36
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here is largely pedagogical, since it is possible to illustrate several important features of the
MCMC methodology.

Model: The model is defined as follows. The population consists of N households, labelled
1; . . . ;N , each containing n individuals, a of whom are initially infectious, and the rest susceptible.
Within household j, an infected individual has a probability 1� qj of being able to independently
infect each other individual in the household, where qj is a realisation of some random variable Q

that takes values in [0,1]. This attempt at infection can only be made once, after which the in-
fective can be thought of as playing no further part in the epidemic. Each newly infected indi-
vidual can then try to infect remaining susceptibles in the same manner, and the process continues
until there are no more active infectives left. If YjðtÞ is the number of infectives in the tth gen-
eration of infection, where t ¼ 0; 1; . . ., and s ¼ max t : YjðtÞ > 0

� �
is the last generation in the

outbreak, then Yjð0Þ ¼ a; Yjð1Þ; . . . ; YjðsÞ
� �

is called the epidemic chain. Finally, each of the qjs
are assumed to be independent realisations of Q.
In our application, n ¼ 3 and a ¼ 1, and so the only possible epidemic chains are 1f g, 1; 1f g,
1; 2f g and 1; 1; 1f g. Note that these correspond respectively to 1, 2, 3 and 3 cases in total within a
household.

Inference: The likelihood is given by

pðn1; n11; n12; n111jhÞ ¼ ðE½Q2	Þn1ð2E½ð1� QÞQ2	Þn11ðE½ð1� QÞ2	Þn12ð2Eð1� QÞ2Q	Þn111 ; ð2:1Þ
where h denotes the parameters of Q. Note that the expectations on the right-hand side of (2.1) are
functions of h.
Following Becker [4], we assume that Q has a beta distribution with parameters a and b, so that

the analysis will seek to make inferences about a and b given the data. The likelihood becomes

pðn1; n11; n12; n111ja; bÞ ¼
aða þ 1Þ

ða þ bÞða þ b þ 1Þ

� �n1 2baða þ 1Þ
ða þ bÞða þ b þ 1Þða þ b þ 2Þ

� �n11

� bðb þ 1Þ
ða þ bÞða þ b þ 1Þ

� �n12 2abðb þ 1Þ
ða þ bÞða þ b þ 1Þða þ b þ 2Þ

� �n111

:

ð2:2Þ
By Bayes’ Theorem, the posterior density of a and b is proportional to the product of the like-
lihood and the prior distribution on (a; b), i.e.

pða; bjn1; n11; n12; n111Þ / pðn1; n11; n12; n111ja; bÞpða; bÞ ¼ hða; bÞ;
say. Thus hða; bÞ, when normalised, is the target density of interest.

MCMC algorithm: A Markov chain Xn : n ¼ 0; 1; . . .f g with the required target density as its
stationary distribution can be defined using a Metropolis–Hastings algorithm (see e.g. [3]), as
follows. First, initial values a0 and b0 are chosen, so that X0 ¼ ða0; b0Þ. These values can be ar-
bitrary, provided hða0;b0Þ > 0. Given Xn ¼ ðan; bnÞ, Xnþ1 is defined as follows. New values for a
and b are proposed according to some proposal density gða;bjan; bnÞ. With probability

paccða;bjan;bnÞ ¼
hða; bÞgðan;bnja;bÞ
hðan; bnÞgða;bjan;bnÞ

^ 1

the new values are accepted and Xnþ1 ¼ ða;bÞ; otherwise, Xnþ1 ¼ ðan; bnÞ. The quantity paccð�j�Þ is
known as the acceptance probability.
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The algorithm just described updates the values of a and b together (sometimes called block

updating), although it is also possible to update each separately, with a separate proposal and
acceptance probability for each. Note also that the choice of the proposal density g is essentially
arbitrary, although in practice a careful choice will help the algorithm to move quickly around the
parameter space (in this case, ða; bÞ : a;b > 0f g).

Results: The above algorithm was implemented using independent Gaussian proposal densities
for a and b, centred on the current values, each with variance r2 ¼ 0:01 (note that hða;bÞ is de-
fined as zero if either a or b is negative). Both a and b were assigned gamma-distributed priors
with mean 1 and variance 1000, which are esentially uninformative in comparison to the data.
Table 2 contains posterior summaries for a and b, based on a sample of 10 000 points from the
output of the Markov chain. As expected, the results are in harmony with the maximum likeli-
hood estimates in [4], namely âa ¼ 0:264 and b̂b ¼ 1:091. It is straightforward, and illuminating, to
consider posterior distributional information. Fig. 1 contains a scatterplot of a and b based on the
sample of 10 000 points, and illustrates clearly the posterior correlation between the two pa-
rameters. On the basis of this plot it seems reasonable to suppose that, for example, the data are
more informative about E½Q	 ¼ a=ða þ bÞ than a or b alone. This is readily investigated by using

Table 2

Posterior mean, median, standard deviation and equal-tailed 95% credible interval for a and b

a b

Mean 0.276 1.143

Median 0.266 1.104

Standard deviation 0.071 0.293

95% CI (0.180, 0.404) (0.743, 1.679)

Fig. 1. Pair-wise scatterplot of a and b.
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the a and b samples to derive a corresponding sample for E½Q	. From this sample E½Q	 was found
to have mean 0.195, and 95% equal-tailed credible interval (0.166, 0.225), the latter indicating the
expected increase in precision relative to a and b.
We conclude by considering ways in which the methodology can be generalised.
Missing data: If the data consisted only of the total numbers of cases in each household, so that

n111 þ n12 was observed instead of both numbers, then n111 (or n12) could be treated as an extra
parameter, and updated using some discrete proposal distribution in the same manner as for a and
b. In particular, the likelihood expression (2.2) could then be utilised. This approach is described
in more detail in [12].

Other distributions for Q: An important aspect of MCMC methods in the context of epidemic
modelling is that they often permit far more modelling flexibility than other exisiting methods. In
the present example, the use of a Beta distribution for Q is particularly convenient because it
yields explicit expressions for the expectations in (2.1). For other choices of distribution this may
not be the case, and in particular this can make maximum likelihood estimation far less tractable.
However, we can proceed by including each of the qjs as extra model parameters. More specifi-
cally, label the N households so that for j ¼ 1; . . . ;N , each household j has a known epidemic
chain yj and a household probability parameter qj. The likelihood pðy1; . . . ; yN jq1; . . . ; qNÞ ¼QN

j¼1 pðyjjqjÞ is straightforward to write down. By Bayes’ Theorem we have

pðh; q1; . . . ; qN jy1; . . . ; yNÞ / pðy1; . . . ; yN jq1; . . . ; qN ; hÞpðq1; . . . ; qN jhÞpðhÞ;
where pðq1; . . . ; qN jhÞ is simply a product of the density function of QðhÞ evaluated at each of the
qjs, and pðhÞ is the prior on h. Note that the posterior density is now augmented to include the
extra parameters q1; . . . ; qN . In principle this huge increase in the parameter space does not create
a problem for MCMC methods, although in practice careful implementation is necessary to avoid
problems of poor algorithm convergence. An MCMC algorithm for this set-up is obtained by
simply including updating steps for each of the qjs as well as h.

2.2. Influenza data in a community of households

We now illustrate how MCMC methods can be used to evaluate data consisting of numbers of
cases in a community of households of varying sizes. Such a dataset, taken from outbreaks of
influenza in Tecumseh, Michigan, is presented and analysed in [13], and has been considered in a
number of subsequent papers. Specifically, the dataset is of the form D ¼ nij

� �
, where nij is the

number of households containing iP 1 individuals in which 06 j6 i become infected during the
epidemic. Various possible modelling approaches for these data have been considered. First, as in
the previous example, it is possible to concentrate simply on within-household dynamics. Second,
modelling infection from the community at large in a simple way can be achieved by assuming
that every individual escapes infection from outside the household with some fixed probability. In
conjunction with the existing within-household process, this gives a two-parameter model, but
retains the mathematical convenience of households that act independently of one another. This
approach was first considered by Longini and Koopman [14]. A more realistic but analytically less
tractable model is to allow two levels of mixing, corresponding to within-household (local) and
between-household (global) infections. This approach is described in [15], using a model defined in
continuous time.
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Longini–Koopman model: An extension of the Longini–Koopman model is considered using
MCMC methods in [16], and we now outline the approach used there. The population is assumed
to be divided into households. Each individual in the population avoids infection from the
community outside its household with probability qc, and is immune to the disease with proba-
bility v. This immunity parameter is included in the analysis to allow for some simple population
heterogeneity. The within-household dynamics are identical to those described for the model in
the previous section, although now the probability of avoiding infection, qh, is the same in all
households. Finally, all households are assumed to be independent of one another.
The posterior density of (qc; qh; v) given D satisfies

pðqc; qh; vjDÞ / pðqc; qh; vÞ
Y
i;j

½PðTi ¼ jÞ	nij ; ð2:3Þ

where Ti is the total number ultimately infected in a household containing i individuals and
pðqc; qh; vÞ is the prior on (qc; qh; v). Calculating the probability mass function of Ti is relatively
straightforward for moderately sized households and can be achieved in several ways, as described
in [16]. A simple Metropolis–Hastings algorithm for sampling from pðqc; qh; vjDÞ is easily defined
along the lines described in Section 2.1. The three parameters can either be updated individually,
or in blocks. The acceptance probability is calculated using (2.3). The results are detailed in [16],
and one notable outcome is that, in the absence of strong prior information, there are strong
posterior correlations between the three model parameters. This is largely because the data are
insufficient to clearly distinguish between different possible sets of parameter values. If stronger
prior information is used then the joint posterior density of the parameters is correspondingly
more concentrated.

Two-level mixing model: Consider now a population divided into households. Suppose that
each individual in the population avoids infection from a given infective in its own household with
probability qL, and also from a given infective anywhere in the population with probability qG,
with the usual assumptions of independence applying. This model corresponds, in terms of final
outcome, to a special case of a continuous-time model described in [15]. Unfortunately, the
likelihood pðDjqL; qGÞ is practically intractable unless there are very few households. This is
because evaluating this likelihood involves, either explicitly or implicitly, consideration of all
possible ways in which the observed infections can have arisen, and the possibility of between-
household infections makes this calculation highly involved. This difficulty suggests that some
form of data imputation could be of use. One possibility that appears worthy of consideration is
to impute an underlying random graph [15] which essentially describes who each individual would
succeed in infecting if all other individuals were susceptible. In particular, given this information it
is possible to write down a likelihood. The practical challenge in formulating an MCMC algo-
rithm is to update the graph in an efficient manner. This is the subject of current research.

3. Temporal data

In this section we consider the use of MCMC methods to facilitate inference given temporal
outbreak data. In practice, at least for human diseases, such data typically consist of case-
detection times. The times at which infections actually occurred are invariably unknown, and for
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most situations this makes calculation of the likelihood infeasible. However, if the infection times
are known then the likelihood usually becomes tractable, and consequently the unknown infection
times are natural candidates for imputation.

3.1. Smallpox outbreak data

We begin by considering methodology motivated by a well-known dataset compiled from an
outbreak of smallpox in Abakaliki, Nigeria and made available by Drs D.M. Thompson and
W.H. Foege [17]. The data consist of 29 inter-removal times between detection of cases, measured
in days. These data have been considered by a number of authors (e.g. [4,11,12,18]), generally
using simplified models, and under the assumption that the disease spread through a closed
population consisting of 120 individuals.
Here we describe the methodology used by O’Neill and Becker [19]. As well as illustrating how

MCMC methods can be used for datasets of this kind, this example also demonstrates the level of
modelling possible using MCMC. In particular, likelihood methods would be highly complex for
the model we are about to describe.

Model: The model described below assumes that (i) individuals can have varying susceptibility
to infection; (ii) when infected, an individual undergoes a fixed-length latent period, during which
time it is not infectious; (iii) an individual’s infectious period is assumed to be distributed ac-
cording to a gamma distribution with unknown parameters; (iv) following its infectious period, an
individual acquires immunity (this is known as the removal of the individual). These assumptions
are not unreasonable for smallpox, which has both a latent period of appreciable length, and long-
term immunity following recovery. The non-random latent period in assumption (ii) is apparently
restrictive, but the lack of detail in the data makes it hard to reliably account for variation in both
the latent and infectious periods separately.
Denoting the numbers of susceptible, latent, infective and removed individuals at time t by SðtÞ,

LðtÞ, IðtÞ and RðtÞ respectively the process can be represented by the compartmental diagram

SðtÞ ! LðtÞ ! IðtÞ ! RðtÞ:

The population is assumed to initially consist of N � 1 susceptibles and one infective. The data
consist of a set of removal times r ¼ r1; . . . ; rnf g, where r1 ¼ 06 r26 � � � 6 rn ¼ T . Individual j,
who is removed at time rj, is infectious from time ij < rj, and the infectious period rj � ij is as-
sumed to be distributed according to a Gam(c; d) distribution. Individual j is assumed to have
been initially infected at time lj, so that ij � lj ¼ c is the length of the latent period. It is assumed
that c is known. Let j denote the label of the initial infective, so that ij ¼ min i1; . . . ; inf g, and
define i as the set ij : j 6¼ j

� �
.

A given susceptible, j say, receives an infection intensity ~uuj from each currently infectious in-
dividual, which is to say that j is infected at the first point of a Poisson process with (random)
intensity at time t > ij given by ~uujIðtÞ. The intensity ~uuj is sampled from a Gam(a;b) distribution,
and independent of intensities for other susceptibles. The epidemic ceases as soon as there are no
more latent or infectious individuals left in the population.
For j ¼ 1; . . . ; n, let uj denote the susceptibility of the jth individual to become infected, so that

uj ¼ ~uuk for some k. For convenience we also define uj for j ¼ nþ 1; . . . ;N so that the set of such
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ujs is equal to the set of susceptibilities of those individuals who are never infected. Finally, define
u as the set u1; . . . ; uNf g.

Inference: As show in [19], the augmented likelihood function is given by

pðr; ija; b; c; d; ijÞ ¼
an�1baðN�1Þ

½b þ WT ðiÞ	ÞaðN�nÞ

 ! Yn
j¼1;j6¼j

Iðlj�Þ
½b þWjðiÞ	aþ1

 ! Yn
j¼1

f ðri

 
� ijÞ

!
; ð3:1Þ

where

WjðiÞ ¼
Z lj

ij

IðuÞdu; WT ðiÞ ¼
Z T

ij

IðuÞdu;

f is the density function of a gamma random variable with shape and scale parameters c and d,
respectively, and Iðs�Þ ¼ limt"s IðtÞ. Note that in the likelihood in (3.1), the first two terms
account for infections, and the third accounts for the infectious periods.
By Bayes’ Theorem, the target density is

pða;b; c; d; i; ijjrÞ / pðr; ija;b; c; d; ijÞpða;b; c; d; ijÞ;

where pða; b; c; d; ijÞ is the prior density on (a;b; c; d; ij).
MCMC algorithm: A general MCMC algorithm for sampling from the required posterior

density is as follows (a specific algorithm is described in detail in [19]). The parameters a, b, c and
d can be updated using a Metropolis–Hastings step along the lines described in Section 2.1. To
update the infection times i and ij, a more involved Metropolis–Hastings step is used. More
precisely, an infection time is chosen uniformly at random, and a proposed replacement drawn
from some specified proposal distribution. Note that it is sensible here to use a proposal distri-
bution that avoids zero-density values (e.g. any time after the individual is removed) and rarely
proposes low-density values (e.g. such that the resulting infectious period is very unlikely). The
acceptance probability can then be calculated using the target density and proposal density in the
usual way. Note also both ij and j can be updated in this procedure.

Related work: The MCMC algorithm described above generalises one described in [12] for a
simpler Markov model in which there are no latent periods, and the infectious period has an
exponential distribution. However, there it is not assumed that the epidemic has ceased, and thus
the number of unknown infections is itself unknown. Accordingly, the mechanism by which
the infection times are imputed allows the creation and deletion of infection times. Hawakaya
et al. [20] apply similar methodology to a multitype epidemic model in which individuals are
grouped according to their susceptibility. Gibson [21] describes related MCMC methods for in-
ference for a spatial epidemic model in continuous time. Gibson and Renshaw [22] address more
general problems of inference for stochastic compartmental models, focussing in particular on
epidemics.

3.2. Random social structure

There has recently been some interest in models in which the social structure of the population
is itself unknown (e.g. [23]). Inference for the simplest example of such is model is considered in
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[5], this model being defined as follows. The population consists of N individuals, one of whom is
initially infectious and the rest susceptible. Any two individuals have regular social contact with
probability p, with independence assumed between all pairs. Thus, these contacts are described by
a Bernoulli random graph with parameter p. It is assumed that the epidemic can only propagate
among individuals in regular social contact, and thus an epidemic process is defined on a reali-
sation of the graph as follows. Each infectious individual remains so for a period of time having
an exponential distribution with mean c�1. During its infectious period, an infective individual has
infectious contacts with each of its neighbours in the graph at the points of a Poisson process of
rate b, with independence assumed between different neighbours. Each infectious contact results
in the infected individual immediately becoming infectious. The epidemic ceases as soon as there
are no more infectives in the population.
The essential ideas of the algorithm in Section 3.1 (e.g. Metropolis–Hasting steps for updating

parameter values and unknown infection times) apply to the current model, as described in [5].
However, the realisation of the underlying random graph for social structure also becomes a
parameter, and as such it is necessary to find ways of updating this graph. In this particular
model, it is not hard to compute the probabilities of edges appearing conditional on the data and
other parameter values, thus providing a natural proposal distribution. More generally, efficiently
updating conditioned graph structures is a non-trivial problem. Another feature of using graphs
as parameters is that their posterior distributions can, in principle, be explored. Exactly how to
represent such posterior information is not always clear, although certain summary statistics (e.g.
the number of edges) can be used as a first step.

4. Concluding remarks

In this paper we have described some of the key ideas relating to the implementation of
Bayesian inference for stochastic epidemics using MCMC methods. Broadly speaking, the
methodology is highly flexible and permits consideration of a wide range of models. However, as
with any application of MCMC, the existence of an algorithm does not necessarily mean that it is
efficient or practical. In the context of epidemic models, missing data and posterior correlation
structures can lead to situations where algorithm convergence does not occur in reasonable time
(see e.g. [16]). Such difficulties are often made worse when considering large population sizes,
containing hundreds or thousands of individuals. In such cases it can sometimes be profitable to
consider using approximation results (e.g. central limit theorems for the final size distribution, see
e.g. [24]). However, problems can arise in that these results may break down for some sets of
parameter values in the posterior density of interest. Developing methods of Bayesian inference
for large population models therefore remains an important open problem.
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