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Abstract

Nonlinear filtering is the process of estimating and tracking the state of a nonlinear
stochastic system from non-Gaussian noisy observation data. In this technical memo-
randum, we present an overview of techniques for nonlinear filtering for a wide variety
of conditions on the nonlinearities and on the noise. We begin with the development
of a general Bayesian approach to filtering which is applicable to all linear or nonlinear
stochastic systems. We show how Bayesian filtering requires integration over probability
density functions that cannot be accomplished in closed form for the general nonlinear,
non-Gaussian multivariate system, so approximations are required. Next, we address the
special case where both the dynamic and observation models are nonlinear but the noises
are additive and Gaussian. The extended Kalman filter (EKF) has been the standard
technique usually applied here. But, for severe nonlinearities, the EKF can be very un-
stable and performs poorly. We show how to use the analytical expression for Gaussian
densities to generate integral expressions for the mean and covariance matrices needed for
the Kalman filter which include the nonlinearities directly inside the integrals. Several
numerical techniques are presented that give approximate solutions for these integrals,
including Gauss-Hermite quadrature, unscented filter, and Monte Carlo approximations.
We then show how these numerically generated integral solutions can be used in a Kalman
filter so as to avoid the direct evaluation of the Jacobian matrix associated with the ex-
tended Kalman filter. For all filters, step-by-step block diagrams are used to illustrate the
recursive implementation of each filter. To solve the fully nonlinear case, when the noise
may be non-additive or non-Gaussian, we present several versions of particle filters that
use importance sampling. Particle filters can be subdivided into two categories: those
that re-use particles and require resampling to prevent divergence, and those that do not
re-use particles and therefore require no resampling. For the first category, we show how
the use of importance sampling, combined with particle re-use at each iteration, leads to
the sequential importance sampling (SIS) particle filter and its special case, the bootstrap
particle filter. The requirement for resampling is outlined and an efficient resampling
scheme is presented. For the second class, we discuss a generic importance sampling par-
ticle filter and then add specific implementations, including the Gaussian particle filter
and combination particle filters that bring together the Gaussian particle filter, and ei-
ther the Gauss-Hermite, unscented, or Monte Carlo Kalman filters developed above to
specify a Gaussian importance density. When either the dynamic or observation models
are linear, we show how the Rao-Blackwell simplifications can be applied to any of the
filters presented to reduce computational costs. We then present results for two nonlinear
tracking examples, one with additive Gaussian noise and one with non-Gaussian embed-
ded noise. For each example, we apply the appropriate nonlinear filters and compare
performance results.
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1. Introduction

Nonlinear filtering problems abound in many diverse fields including economics, bio-
statistics, and numerous statistical signal and array processing engineering problems such
as time series analysis, communications, radar and sonar target tracking, and satellite
navigation. The filtering problem consists of recursively estimating, based on a set of
noisy observations, at least the first two moments of the state vector governed by a dy-
namic nonlinear non-Gaussian state space model (DSS). A discrete time DSS consists of
a stochastic propagation (prediction or dynamic) equation which links the current state
vector to the prior state vector and a stochastic observation equation that links the ob-
servation data to the current state vector. In a Bayesian formulation, the DSS specifies
the conditional density of the state given the previous state and that of the observation
given the current state. When the dynamic and observation equations are linear and
the associated noises are Gaussian, the optimal recursive filtering solution is the Kalman
filter [1]. The most widely used filter for nonlinear systems with Gaussian additive noise
is the well known extended Kalman filter (EKF) which requires the computation of the
Jacobian matrix of the state vector [2]. However, if the nonlinearities are significant,
or the noise is non-Gaussian, the EKF gives poor performance (see [3] and [4], and the
references contained therein.) Other early approaches to the study of nonlinear filtering
can be found in [2] and [5].
Recently, several new approaches to recursive nonlinear filtering have appeared in the

literature. These include grid-based methods [3], Monte Carlo methods, Gauss quadrature
methods [6]-[8] and the related unscented filter [4], and particle filter methods [3], [7],
[9]-[13]. Most of these filtering methods have their basis in computationally intensive
numerical integration techniques that have been around for a long time but have become
popular again due to the exponential increase in computer power over the last decade.
In this paper, we will review some of the recently developed filtering techniques ap-

plicable to a wide variety of nonlinear stochastic systems in the presence of both additive
Gaussian and non-Gaussian noise. We begin in Section 2 with the development of a general
Bayesian approach to filtering, which is applicable to both linear and nonlinear stochastic
systems, and requires the evaluation of integrals over probability and probability-like den-
sity functions. The integrals inherent in such a development cannot be solved in closed
form for the general multi-variate case, so integration approximations are required.
In Section 3, the noise for both the dynamic and observation equations is assumed to

be additive and Gaussian, which leads to efficient numerical integration approximations.
It is shown in Appendix A that the Kalman filter is applicable for cases where both the
dynamic and measurement noise are additive and Gaussian, without any assumptions on
the linearity of the dynamic and measurement equations. We show how to use analytical
expressions for Gaussian densities to generate integral expressions for the mean and co-
variance matrices needed for the Kalman filter, which include the nonlinearities directly
inside the integrals. The most widely used numerical approximations used to evaluate
these integrals include Gauss-Hermite quadrature, the unscented filter, and Monte Carlo
integration. In all three approximations, the integrals are replaced by discrete finite sums,
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leading to a nonlinear approximation to the kalman filter which avoids the direct eval-
uation of the Jacobian matrix associated with the extended Kalman filter. The three
numerical integration techniques, combined with a Kalman filter, result in three numer-
ical nonlinear filters: the Gauss-Hermite Kalman filter (GHKF), the unscented Kalman
filter (UKF) and the Monte Carlo Kalman filter (MCKF).
Section 4 returns to the general case and shows how it can be reformulated using re-

cursive particle filter concepts to offer an approximate solution to nonlinear/non-Gaussian
filtering problems. To solve the fully nonlinear case, when the noise may be non-additive
and/or non-Gaussian, we present several versions of particle filters that use importance
sampling. Particle filters can be subdivided into two categories: those that re-use particles
and require resampling to prevent divergence, and those that do not re-use particles and
therefore require no resampling. For the particle filters that require resampling, we show
how the use of importance sampling, combined with particle re-use at each iteration, leads
to the sequential importance sampling particle filter (SIS PF) and its special case, the
bootstrap particle filter (BPF). The requirement for resampling is outlined and an efficient
resampling scheme is presented. For particle filters requiring no resampling, we discuss
a generic importance sampling particle filter and then add specific implementations, in-
cluding the Gaussian particle filter and combination particle filters that bring together
the Gaussian particle filter, and either the Gauss-Hermite, unscented, or Monte Carlo
Kalman filters developed above to specify a Gaussian importance density from which
samples are drawn. When either the dynamic or observation models are linear, we show
how the Rao-Blackwell simplifications can be applied to any of the filters presented to
reduce computational costs [14]. A roadmap of the nonlinear filters presented in Sections
2 through 4 is shown in Fig. 1.
In Section 5 we present an example in which the noise is assumed additive and

Gaussian. In the past, the problem of tracking the geographic position of a target based
on noisy passive array sensor data mounted on a maneuvering observer has been solved by
breaking the problem into two complementary parts: tracking the relative bearing using
noisy narrowband array sensor data [15], [16] and tracking the geographic position of a tar-
get from noisy bearings-only measurements [10], [17], [18]. In this example, we formulate a
new approach to single target tracking in which we use the sensor outputs of a passive ring
array mounted on a maneuvering platform as our observations, and recursively estimate
the position and velocity of a constant-velocity target in a fixed geographic coordinate
system. First, the sensor observation model is extended from narrowband to broadband.
Then, the complex sensor data are used in a Kalman filter that estimates the geo-track
updates directly, without first updating relative target bearing. This solution is made
possible by utilizing an observation model that includes the highly nonlinear geographic-
to-array coordinate transformation and a second complex-to-real transformation. For
this example we compare the performance results of the Gauss-Hermite quadrature, the
unscented, and the Monte Carlo Kalman filters developed in Section 3.
A second example is presented in Section 6 in which a constant-velocity vehicle is

tracked through a field of DIFAR (Directional Frequency Analysis and Recording) sensors.
For this problem, the observation noise is non-Gaussian and embedded in the nonlinear
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Figure 1: Roadmap to Techniques developed in Sections 2 Through 4.
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observation equation, so it is an ideal application of a particle filter. All of the particle
filters presented in Section 4 are applied to this problem and their results are compared.
All particle filter applications require an analytical expression for the likelihood function,
so Appendix B presents the development of the likelihood function for a DIFAR sensor
for target signals with bandwidth-time products much greater than one.
Our summary and conclusions are found in Section 7. In what follows, we treat bold

small x and large Q letters as vectors and matices, respectively, with [·]H representing the
complex conjugate transpose of a vector or matrix, [·]| representing just the transpose
and h·i or E (·) used as the expectation operator. It should be noted that this tutorial
assumes that the reader is well versed in the use of Kalman and extended Kalman filters.

2. General Bayesian Filter

A nonlinear stochastic system can be defined by a stochastic discrete-time state space
transition (dynamic) equation

xn = fn (xn−1,wn−1) , (1)

and the stochastic observation (measurement) process

yn = hn (xn,vn) , (2)

where at time tn, xn is the (usually hidden or not observable) system state vector, wn is
the dynamic noise vector, yn is the real (in comparison to complex) observation vector and
vn is the observation noise vector. The deterministic functions fn and hn link the prior
state to the current state and the current state to the observation vector, respectively. For
complex observation vectors, we can always make them real by doubling the observation
vector dimension using the in-phase and quadrature parts (see Appendix A.)
In a Bayesian context, the problem is to quantify the posterior density p (xn|y1:n),

where the observations are specified by y1:n , {y1,y2, . . . ,yn} . The above nonlinear
non-Gaussian state-space model, Eq. 1, specifies the predictive conditional transition
density, p (xn|xn−1,y1:n−1) , of the current state given the previous state and all previous
observations. Also, the observation process equation, Eq. 2, specifies the likelihood func-
tion of the current observation given the current state, p (yn|xn). The prior probability,
p (xn|y1:n−1) , is defined by Bayes’ rule as

p (xn|y1:n−1) =

Z
p (xn|xn−1,y1:n−1) p (xn−1|y1:n−1) dxn−1. (3)

Here, the previous posterior density is identified as p (xn−1|y1:n−1).
The correction step generates the posterior probability density function from

p (xn|y1:n) = cp (yn|xn) p (xn|y1:n−1) , (4)

where c is a normalization constant.
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The filtering problem is to estimate, in a recursive manner, the first two moments of
xn given y1:n. For a general distribution, p (x), this consists of the recursive estimation of
the expected value of any function of x, say hg (x)ip(x), using Eq’s. 3 and 4 and requires
calculation of integrals of the form

hg (x)ip(x) =

Z
g (x) p (x) dx. (5)

But for a general multivariate distribution these integrals cannot be evaluated in closed
form, so some form of integration approximation must be made. This memorandum is
primarily concerned with a variety of numerical approximations for solving integrals of
the form given by Eq. 5.

3. The Gaussian Approximation

Consider the case where the noise is additive and Gaussian, so that Eq’s. 1 and 2 can
be written as

xn = fn (xn−1) +wn−1, (6)

and
yn = hn (xn) + vn, (7)

where wn and vn are modeled as independent Gaussian random variables with mean
0 and covariances Qn and Rn, respectively. The initial state x0 is also modeled as a
stochastic variable, which is independent of the noise, with mean bx0 and covariance Pxx0 .
Now, assuming that deterministic functions f and h, as well as the covariance matrices

Q andR, are not dependent on time, from Eq. 6 we can identify the predictive conditional
density as

p (xn|xn−1,y1:n−1) = N (xn; f (xn−1) ,Q) , (8)

where the general form of the multivariate Gaussian distribution N (t; s,Σ) is defined by

N (t; s,Σ) ,
1p

(2π)n kΣk
exp

½
−1
2
[t− s]| (Σ)−1 [t− s]

¾
(9)

We can now write Eq. 3 as

p (xn|y1:n−1) =

Z
N (xn; f (xn−1) ,Q) p (xn−1|y1:n−1) dxn−1. (10)

Much of the Gaussian integral formulation shown below is a recasting of the material
found in Ito, et. al. [6]. For the Gaussian distribution N (t; f (s) ,Σ), we can write the
expected value of t as

hti ,

Z
tN (t; f (s) ,Σ) dt = f (s) . (11)
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Using Eq. 10, it immediately follows that

hxn|y1:n−1i , E {xn|y1:n−1}

=

Z
xnp (xn|y1:n−1) dxn

=

Z
xn

∙Z
N (xn; f (xn−1) ,Q) p (xn−1|y1:n−1) dxn−1

¸
dxn

=

Z ∙Z
xnN (xn; f (xn−1) ,Q) dxn

¸
p (xn−1|y1:n−1) dxn−1

=

Z
f (xn−1) p (xn−1|y1:n−1) dxn−1, (12)

where Eq. 11 was used to evaluate the inner integral above.
Now, assume that

p (xn−1|y1:n−1) = N
¡
xn−1; bxn−1|n−1,P

xx
n−1|n−1

¢
, (13)

where bxn−1|n−1 and Pxxn−1|n−1 are estimates of the mean and covariance of xn−1, given
y1:n−1, respectively. Estimates of the mean and covariance of xn, given y1:n−1, bxn|n−1 and
Pxxn|n−1, respectively, can now be obtained from Eq. 12 as follows

bxn|n−1 =

Z
f (xn−1)N

¡
xn−1; bxn−1|n−1,P

xx
n−1|n−1

¢
dxn−1, (14)

and

Pxxn|n−1 = Q+

Z
f (xn−1) f

| (xn−1)N
¡
xn−1; bxn−1|n−1,P

xx
n−1|n−1

¢
dxn−1

− bx|n|n−1bxn|n−1. (15)

The expected value of yn, given xn and y1:n−1, can be obtained from

hyn|xn,y1:n−1i , E {yn|xn,y1:n−1}

=

Z
ynp (xn|y1:n−1) dxn. (16)

Now, if we use a Gaussian approximation of p (xn|y1:n−1) given by

p (xn|y1:n−1) = N
¡
xn; bxn|n−1,P

xx
n|n−1

¢
, (17)

we can obtain an estimate, byn|n−1, of hyn|xn,y1:n−1i from

byn|n−1 =

Z
ynN

¡
xn; bxn|n−1,P

xx
n|n−1

¢
dxn

=

Z
h (xn)N

¡
xn; bxn|n−1,P

xx
n|n−1

¢
dxn. (18)
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If we let eyn|n−1 , h (xn)−byn|n−1,we can also estimate the covariance of yn, given xn,y1:n−1,
from

P
yy

n|n−1 =
Dh

eyn|n−1

i h
eyn|n−1

i|E

= R+

Z
h (xn)h (xn)N

¡
xn; bxn|n−1,P

xx
n|n−1

¢
dxn

− by|n|n−1by
|
n|n−1. (19)

In addition, we can use the same technique to estimate the cross-covariance matrix Pxyn|n−1
from

P
xy

n|n−1 =
D£
xn − bxn|n−1

¤ h
eyn|n−1

i|E

=

Z
xnh

| (xn)N
¡
xn; bxn|n−1,P

xx
n|n−1

¢
dxn

−bxn|n−1by|n|n−1. (20)

In Appendix A, we show that the Kalman filter is applicable to any DSS where both
the dynamic and observation models have additive Gaussian noise, regardless of the non-
linearities in the models. Therefore, we can use the Kalman filter to construct a Gaussian
approximation of the posterior density p

¡
xn|n

¢
with mean and covariance given by

bxn|n = bxn|n−1 +Kn

£
yn − byn|n−1

¤
, (21)

and
Pxxn|n = P

xx
n|n−1 −KnP

yy

n|n−1K
|
n, (22)

where the Kalman gain Kn is given by

Kn = P
xy

n|n−1

h
P
yy

n|n−1

i−1
. (23)

Note that the only approximation to this point in the development is that the noise
be modeled as additive and Gaussian. So the above formulation generates bxn|n and P

xx
n|n

without any approximations. In order to implement this filter, however, we must develop
approximation methods to evaluate the integrals in Eq’s. 14, 15 and 18-20, which are of
the form

I =

Z
g (x)N (x;bx,Pxx) dx, (24)

where N (x;bx,Pxx) is a multivariate Gaussian distribution with mean bx and covariance
Pxx.
In the subsections below, we will present three approximations to the integral given

in Eq. 24. The first is a Gauss-Hermite quadrature approximation to the integral which
also results in a weighted sum of support points of the integral, where both the weights
and support points are predetermined and related to the first and second moments of
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the probability density function (PDF). The second approximation is given by the un-
scented transform, which is a modification of a Gauss-Hermite quadrature approxima-
tion. The last is a Monte Carlo approximation in which random samples (support points)
{xi, i = 1, 2, . . . , Ns} are generated from N (x;bx,Pxx) and the integral is evaluated as the
sample mean. All of these approximations result in the propagation of the PDF support
points through the nonlinearity g (x) and the resulting outputs summed after multiplica-
tion with the appropriate weights.

3.1. Numerical Integration Using Gauss-Hermite Quadrature or The Un-
scented Transform

Following the work first presented in [6], we can write Eq. 24 explicitly as

I =

Z
g (x)

1

[(2π)n kΣk]1/2
exp

½
−1
2
(x− bx)|Σ−1 (x− bx)

¾
dx. (25)

Let Σ = S|S using a Cholesky decomposition, and define

z ,
1√
2
S−1 (x− bx) . (26)

Then, noting that the state vector x is of dimension n, Eq. 25 reduces to

I =

√
2

(2π)n/2

Z
g (z) e−z

| zdz. (27)

For the univariate case, n = 1 and z = (x− bx) /
¡√
2σ
¢
and Eq. 27 becomes

I = π−1/2
Z ∞

−∞
f (z) e−z2dz. (28)

Eq. 28 can be approximated by the well known Gauss-Hermite quadrature rule [19] of
the form Z ∞

−∞
e−z2f (z) dz '

MX

i=1

wif (zi) . (29)

The quadrature points zi and weights wi can be determined as follows [20]-[22]. A
set of orthonormal Hermite polynomials, Hj (t) , can be generated from the recurrence
relationship

H−1 (t) = 0, H0 (t) = 1/π
1/4,

Hj+1 (z) = z

r
2

j + 1
Hj (z)−

s
j

j + 1
Hj−1 (z) ; j = 0, 1, . . . ,M. (30)

Letting βj ,
p

j/2, and rearranging terms yields

zHj (z) = βjHj−1 (z) + βj+1Hj+1 (z) . (31)
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Eq. 31 can now be written in matrix form as

zh (z) = JMh (z) + βMHM (z) eM , (32)

where

h (z) = [H0 (z) ,H1 (z) , . . . , HM−1 (z)]
| , (33)

eM = [0, 0, . . . , 1]| , (34)

and JM is the M ×M symmetric tridiagonal matrix

JM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 β1
β1 0 β2 0

β2 0
. . .

0| 0 βM−1
βM−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (35)

.
The eigenvectors of JM are vectors that, when multiplied by JM , generate vectors in

the same direction but with a new length. The factor by which the length changes is
the corresponding eigenvalue. By convention, the eigenvectors are orthonormal. So, if
the term on the far right of Eq. 32 were not there, h (z) would be an eigenvector with
corresponding eigenvalue z.
If Eq. 32 is evaluated for those values of z for which HM (z) = 0, the unwanted term

vanishes, and this equation determines the eigenvectors of JM for the eigenvalues that are
the M roots, zi, of HM (z), with i = 1, 2, . . . ,M. The eigenvectors are given by

vi
j = Hj (zi) /

p
Wi, (36)

where the normalizing constant
√
Wi is given by

Wi =
M−1X

j=0

H2
j (zi) . (37)

Now, the orthogonality and completeness conditions of the eigenvectors can be ex-
pressed as

M−1X

j=0

vi
jv

k
j = δik, (38)

and
MX

i=1

vi
jv

i
l =

MX

i=1

Hj (zi)Hl (zi) /Wi = δjl. (39)
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Comparing Eq. 39 with the orthogonality relationship for the Hermite polynomials
given by Z ∞

−∞
dzw (z)Hj (z)Hl (z) = δjl, (40)

we can see that in the discrete space, the weights 1/Wi replace the continuous weight
dzw (z) for functions evaluated at zi. In addition, for products of polynomials up to order
M , this quadrature will yield exact results. The integral of the product HM (z)HM−1 (z)
will also be zero, because HM (z) vanishes on the nodes. Since any polynomial of order
2M−2 can be written as a sum of products of pairs of polynomials up to orderM−1, for
any polynomial of order 2M − 1 or less, the quadrature equations will yield exact results.
That is, Eq. 29 is valid for wi = 1/Wi, with Wi given by Eq. 37 and zi given by the
eigenvalues of JM .

For the univariate case withM = 3, {z1, z2, z3} =
n
−
p
3/2, 0,

p
3/2
o
and {q1, q2, q3} ,

π−1/2 {w1, w2, w3} = {1/6, 2/3, 1/6}. Since xi = bx+
√
2ziσ, Eq. 28 becomes

I = π−1/2
Z ∞

−∞
f (z) e−z2dz '

3X

i=1

qif (xi) . (41)

By re-indexing, I can be evaluated as

I '
2X

j=0

qjf (xj) , (42)

where

x0 = bx
x1 = bx+

√
3σ

x2 = bx−
√
3σ. (43)

with q0 = 2/3 and q1 = q2 = 1/6.
The mathematical theory of Gaussian quadrature described above is inherently one-

dimensional. For the multivariate case, it must be applied sequentially, one state variable
at a time. The weights in Eq. 41 will then be products of weights from each of the n
variables. With M = 3 and an n-dimensional state vector, it follows from Eq. 27 that

I =

√
2

(2π)n/2

Z
g (z) e−z

| zdz

=
√
2

3X

i1=1

· · ·
3X

in=1

g (xi1 , xi2 , . . . , xin) pi1pi2 . . . pin . (44)

where pin , qin/
√
2.
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When g (z) = 1, Eq. 44 is the integral of the multivariate Gaussian probability distri-
bution N (0, I) and must therefore integrate to 1. Thus, we must apply the normalization
criteria

epji =
pji√

2
P
· · ·
P

pj1 · · · pjn
. (45)

For a two-dimensional state vector, after reindexing and weight normalization, Eq. 44
can be written as

I2 =
8X

j=0

g (xj)αj, (46)

with the quadrature points given by

x0 = bx
xj = bx+

√
3
¡
Σ1/2

¢
j
, j = 1, 2

xj = bx−
√
3
¡
Σ1/2

¢
j−2 , j = 3, 4

xj = bx+
√
3
¡
Σ1/2

¢
1
+ (−1)j−1

√
3
¡
Σ1/2

¢
2
, j = 5, 6

xj = bx−
√
3
¡
Σ1/2

¢
1
+ (−1)j−1

√
3
¡
Σ1/2

¢
2
, j = 7, 8, (47)

and the normalized weights {α0, α1, α2, α3, α4, α5, α6, α7, α8} are given by
{4/9, 1/9, 1/9, 1/9, 1/9, 1/36, 1/36, 1/36, 1/36}. Here,

¡
Σ1/2

¢
j
, is the jth column or row of

Σ1/2.
For the general case of an n-dimensional state vector, we can write

In =
Mn−1X

j=0

g (xj)αj , (48)

where

x0 = bx
xj = bx+

√
3
¡
Σ1/2

¢
j
, j = 1, . . . , n

xj = bx−
√
3
¡
Σ1/2

¢
j−n

, j = n+ 1, . . . , 2n.

xj = bx± higher order terms, j = 2n+ 1, . . . ,Mn − 1 (49)

The higher order terms are additional terms at the edges of an n-dimensional hypercube.
The weights, after normalization, can be shown to be products of the form qi1qi2 . . . qin.
In [4], the unscented filter is presented as

x0 = bx

xj = bx+
r

n

1− w0

¡
Σ1/2

¢
j
, j = 1, . . . , n

xn = bx−
r

n

1− w0

¡
Σ1/2

¢
j−n

, j = n+ 1, . . . , 2n, (50)
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with

wj =
1− w0
2n

, j = 1, . . . , 2n. (51)

w0 provides control of how the positions of the Sigma points lie relative to the mean.
In the unscented filter, the support points, xj, are called Sigma points, with associated
weights wj. In [6], several one-dimensional non-linear estimation examples are given in
which Ito and Xiong show that the full Gauss-Hermite filter gives slightly better estimates
than an unscented filter and both give far better estimates than the extended Kalman
filter.
By comparing Eq. 50 with Eq. 49, it is easy to see that the unscented filter is a

modified version of a Gauss-Hermite quadrature filter. It uses just the first 2n+ 1 terms
of the Gauss-Hermite quadrature filter and will be almost identical in form with the
Gauss-Hermite filter. The computational requirements for the Gauss-Hermite filter grow
rapidly with n, and the number of operations required for each iteration will be of the
order Mn. The number of operations for the unscented filter grows much more slowly, of
the order 2n+ 1, and is therefore more attractive to use. If the PDF’s are non-Gaussian
or unknown, the unscented filter can be used by choosing an appropriate value for w0.
In addition, other, more general quadrature filters can be used [22]. These more general
quadrature filters are referred to as deterministic particle filters.
The estimation procedure for the first two moments of xn using the output of either

the Gauss-Hermite quadrature filter or the unscented filter as input to a Kalman filter
result in the nonlinear Kalman filter procedures shown in Fig. 2. In the figure, cj =

√
3

and Ns = Mn − 1 for the Gauss-Hermite filter and cj =
p

n/ (n− w0) and Ns = 2n
for the unscented filter. Also, the higher order terms are only present in the Gauss-
Hermite quadrature filter. Note that the weights for both filters are generally computed
off-line. The Track File block is used to store the successive filter estimates. These filter
structures are called the Gauss-Hermite Kalman filter (GHKF) and the unscented Kalman
filter (UKF)

3.2. Numerical Integration Using a Monte Carlo Approximation

A Monte Carlo approximation of the expected value integrals uses a discrete ap-
proximation to the PDF N (x;bx,Pxx). Draw Ns samples from N (x;bx,Pxx) , where©
x(i), i = 1, 2, . . . , Ns

ª
are a set of support points (random samples or particles) with

weights
©
w(i) = 1/Ns, i = 1, 2, . . . , Ns

ª
. Now, N (x;bx,Pxx) can be approximated by

p (x) = N (x;bx,Pxx) '
NsX

i=1

w(i)δ
¡
x− x(i)

¢
. (52)

Note that w(i) is not the probability of the point x(i). The probability density near x(i)

is given by the density of points in the region around x(i), which can be obtained from
a normalized histogram of all x(i). w(i) only has meaning when Eq. 52 is used inside an

12



Figure 2: Nonlinear Gauss-Hermite/Unscented Kalman Filter Approximation
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integral to turn the integral into its discrete approximation, as will be shown below. As
Ns −→∞, this integral approximation approaches the true value of the integral.
Now, the expected value of any function of g (x) can be estimated from

hg (x)ip(x) =

Z
g (x) p (x) dx

'

Z
g (x)

NsX

i=1

w(i)δ
¡
x− x(i)

¢
dx

'
1

Ns

NsX

i=1

g
¡
x(i)
¢
, (53)

which is obviously the sample mean. We used the above form to show the similarities
between Monte Carlo integration and the quadrature integration of the last section. In
quadrature integration, the support points x(i) are at fixed intervals, while in Monte Carlo
integration they are random.
Now, drawing samples of xn−1 from it’s distribution p (xn−1|y1:n−1) , we can write

x
(i)
n−1|n−1 ∼ p (xn−1|y1:n−1) = N

¡
xn−1; bxn−1|n−1,P

xx
n−1|n−1

¢
, (54)

for i = 1, 2, . . . , Ns. Then, letting bxn|n−1 be an approximation of hxn|y1:n−1i, Eq’s. 14 and
15 become

bxn|n−1 =
1

Ns

NsX

i=1

f
³
x
(i)
n−1|n−1

´
, (55)

and

Pxxn|n−1 = Q+
1

Ns

NsX

i=1

f
³
x
(i)
n−1|n−1

´
f|
³
x
(i)
n−1|n−1

´

−
"
1

Ns

NsX

i=1

f
³
x
(i)
n−1|n−1

´#" 1
Ns

NsX

i=1

f
³
x
(i)
n−1|n−1

´#
. (56)

Now, we approximate the predictive PDF, p (xn|y1:n−1) , asN
³
xn; bxn|n−1,Pxxn|n−1

´
and

draw new samples
x
(i)
n|n−1 ∼ N

¡
xn; bxn|n−1,P

xx
n|n−1

¢
. (57)

Using these samples from p (xn|y1:n−1) , Eq’s. 18, 19 and 20 reduce to

byn|n−1 =
1

Ns

NsX

i=1

h
³
x
(i)
n|n−1

´
, (58)

P
yy

n|n−1 =
1

Ns

NsX

i=1

h
³
x
(i)
n|n−1

´
h
³
x
(i)
n|n−1

´

−
"
1

Ns

NsX

i=1

h
³
x
(i)
n|n−1

´#" 1
Ns

NsX

i=1

h
³
x
(i)
n|n−1

´#|
+R, (59)
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Figure 3: Nonlinear Monte Carlo Kalman Filter (MCKF) Approximation

and

P
xy

n|n−1 =
1

Ns

NsX

i=1

x
(i)
n|n−1h

³
x
(i)
n|n−1

´

−
"
1

Ns

NsX

i=1

x
(i)
n|n−1

#"
1

Ns

NsX

i=1

h
³
x
(i)
n|n−1

´#|
. (60)

Using Eq’s. 55, 56, and 58-60 in Eq’s. 21-23 results in a procedure that we call the non-
linear Monte Carlo approximation to the Kalman filter (MCKF). The MCKF procedure
is shown in Figure 3.
For Monte Carlo integration, the estimated variance is proportional to 1/

√
Ns, so for

10,000 samples, the error in the variance is still 1%. Since the MCKF uses multiple inte-
grations in a recursive manner, the errors can build up and the filter can diverge rapidly.
However, the computational load, as well as the error in the variance, are independent of
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the number of dimensions of the integrand. The computational load for Gauss-Hermite
quadrature integration approximations goes as Mn, which grows rapidly with the dimen-
sion n. For large n, which is the case for multitarget tracking problems, Monte Carlo
integration becomes more attractive than Gauss-Hermite quadrature. However, the UKF
computational load grows only as 2n + 1, which makes the UKF the technique of choice
as the number of dimensions increases.

4. Non-Linear Estimation using Particle Filters

In the previous section we assumed that if a general density function p (xn|y1:n) is
Gaussian, we could generate Monte Carlo samples from it and use a discrete approximation
to the density function given by Eq. 52. In many cases, p (xn|y1:n) may be multivariate
and non-standard (i.e. not represented by any analytical PDF), or multimodal. For these
cases, it may be difficult to generate samples from p (xn|y1:n). To overcome this difficulty
we utilize the principle of Importance Sampling. Suppose p (xn|y1:n) is a PDF from which
it is difficult to draw samples. Also, suppose that q (xn|y1:n) is another PDF from which
samples can be easily drawn (referred to as the Importance Density) [9]. For example,
p (xn|y1:n) could be a PDF for which we have no analytical expression and q (xn|y1:n)
could be an analytical Gaussian PDF. Now we can write p (xn|y1:n) ∝ q (xn|y1:n) , where
the symbol ∝ means that p (xn|y1:n) is proportional to q (xn|y1:n) at every xn. Since
p (xn|y1:n) is a normalized PDF, then q (xn|y1:n) must be a scaled unnormalized version
of p (xn|y1:n) with a different scaling factor at each xn. Thus, we can write the scaling
factor or weight as

w (xn) =
p (xn|y1:n)

q (xn|y1:n)
. (61)

Now, Eq. 5 can be written as

hg (xn)ip(xn|y1:n) =

R
g (xn)w (xn) q (xn|y1:n) dxnR

w (xn) q (xn|y1:n) dxn

, (62)

If one generates Ns particles (samples)
n
x
(i)
n , i = 1, . . . , Ns

o
from q (xn|y1:n), then a pos-

sible Monte Carlo estimate of hg (xn)ip(xn|y1:n) is

bg (xn) =

1
Ns

PNs
i=1 g

³
x
(i)
n

´
ew
³
x
(i)
n

´

1
Ns

PNs
i=1w

³
x
(i)
n

´ =
NsX

i=1

g
¡
x(i)n
¢
ew
¡
x(i)n
¢
, (63)

where the normalized importance weights ew
³
x
(i)
n

´
are given by

ew
¡
x(i)n
¢
=

ew
³
x
(i)
n

´

1
Ns

PNs
i=1w

³
x
(i)
n

´ . (64)
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However, it would be useful if the importance weights could be generated recursively.
So, using Eq. 4, we can write

w (xn) =
p (xn|y1:n)

q (xn|y1:n)
=

cp (yn|xn) p (xn|y1:n−1)

q (xn|y1:n)
. (65)

Using the expansion of p (xn|y1:n−1) found in Eq. 3 and expanding the importance density
in a similar fashion, Eq. 65 can be written as

w (xn) =
cp (yn|xn)

R
p (xn|xn−1,y1:n−1) p (xn−1|y1:n−1) dxn−1R

q (xn|xn−1,y1:n) q (xn−1|y1:n−1) dxn−1
. (66)

When Monte Carlo samples are drawn from the importance density, this leads to a recur-
sive formulation for the importance weights, as will be shown in the next section.

4.1. Particle Filters that Require Resampling: The Sequential Importance
Sampling Particle Filter

Now, suppose we have available a set of particles (random samples from the dis-

tribution) and weights,
n
x
(i)
n−1|n−1, w

(i)
n−1

oNs

i=1
, that constitute a random measure which

characterizes the posterior PDF for times up to tn−1. Then this previous posterior PDF,
p (xn−1|y1:n−1), can be approximated by

p (xn−1|y1:n−1) ≈
NsX

i=1

w
(i)
n−1δ

³
xn−1 − x(i)n−1|n−1

´
. (67)

So, if the particles x
(i)
n−1|n−1 were drawn from the importance density q (xn−1|y1:n−1), the

weights in Eq. 67 are defined by Eq. 61 to be

w
(i)
n−1 =

p
³
x
(i)
n−1|n−1

´

q
³
x
(i)
n−1|n−1

´ . (68)

For the sequential case, called sequential importance sampling (SIS) [10], at each iter-

ation one could have the random measure
n
x
(i)
n−1|n−1, w

(i)
n−1

oNs

i=1
constituting an approxi-

mation to p (xn−1|y1:n−1) (i.e., not drawn from q (xn−1|y1:n−1)) and want to approximate
p (xn|y1:n) with a new set of samples and weights. By substituting Eq. 67 in Eq. 66,
and using a similar formulation for q (xn−1|y1:n−1) , the weight update equation for each
particle becomes

w(i)n ∝
p
³
yn|x

(i)
n|n−1

´
p
³
x
(i)
n|n−1|x

(i)
n−1|n−1,y1:n−1

´
p
³
x
(i)
n−1|n−1

´

q
³
x
(i)
n|n−1|x

(i)
n−1|n−1,y1:n−1

´
q
³
x
(i)
n−1|n−1

´

= w
(i)
n−1

p
³
yn|x

(i)
n|n−1

´
p
³
x
(i)
n|n−1|x

(i)
n−1|n−1

´

q
³
x
(i)
n|n−1|x

(i)
n−1|n−1

´ , (69)
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where we obtain x
(i)
n|n−1 from Eq. 1, rewritten here as

x
(i)
n|n−1 = f

³
x
(i)
n−1|n−1,w

(i)
n−1

´
. (70)

This form of the time update equation requires an additional step, that of generating sam-
ples of the dynamic noise, w

(i)
n−1 ∼ p (w), which must be addressed in the implementation

of these filters.
The posterior filtered PDF p (xn|y1:n) can then be approximated by

p (xn|y1:n) ≈
NsX

i=1

w(i)n δ
³
xn − x(i)n|n

´
, (71)

where the updated weights are generated recursively using Eq. 69.
Problems occur with SIS based particle filters. Repeated applications of Eq. 70 causes

particle dispersion, because the variance of xn increases without bound as n→∞. Thus,
for those x

(i)
n|n−1 that disperse away from the expected value bxn, their probability weights

w
(i)
n go to zero. This problem has been labeled the degeneracy problem of the particle filter
[9]. To measure the degeneracy of the particle filter, the effective sample size, Neff , has

been introduced, as noted in [11]. Neff can be estimated from
∧
Neff = 1/

PNs
i=1

³
w
(i)
n

´2
.

Clearly, the degeneracy problem is an undesirable effect in particle filters. The brute force
approach to reducing its effect is to use a very large Ns. This is often impractical, so for
SIS algorithms an additional step called resampling must be added to the SIS procedure
(sequential importance sampling with resampling (SISR)). Generally, a resampling step
is added at each time interval (systematic resampling) [10] that replaces low probability
particles with high probability particles, keeping the number of particles constant. The

resampling step need only be done when
∧
N eff ≤ Ns. This adaptive resampling allows the

particle filter to keep it’s memory during the interval when no resampling occurs. In this
paper, we will discuss only systematic resampling.
One method for resampling, the inverse transformation method, is discussed in [23].

In [23], Ross presents a proof (Inverse Transform Method, pages 477-478) that if u is
a uniformly distributed random variable, then for any continuous distribution function
F , the random variable defined by x = F−1 (u) has distribution F . We can use this
Inverse Transform Method for resampling. We first form the discrete approximation of
the cumulative distribution function

F (x) = P (z ≤ x) =
xZ

−∞

p (z) dz

=

xZ

−∞

NsX

i=1

w(i)δ
¡
z− z(i)

¢
dz

=

jX

i=1

w(i), (72)
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where j is the index for the x(i) nearest but below x. We can write this discrete approx-
imation to the cumulative distribution function as F

¡
x(j)

¢
=
Pj

i=1w
(i). Now, we select

u(i) ∼ U (0, 1) , i = 1, . . . , Ns and for each value of u
(i), interpolate a value of x(i) from

x(i) = F−1 ¡u(i)
¢
. Since the u(i) are uniformly distributed, the probability that x(i) = x

is 1/Ns, i.e., all x
(i) in the sample set are equally probable. Thus, for the resampled

particle set,
∼
w
(i)
= 1/Ns,∀i. The procedure for SIS with resampling is straightforward

and is presented in Fig. 4
Several other techniques for generating samples from an unknown PDF, besides impor-

tance sampling, have been presented in the literature. If the PDF is stationary, Markov
Chain Monte Carlo (MCMC) methods have been proposed, with the most famous being
the Metropolis-Hastings (MH) algorithm, the Gibbs sampler (which is a special case of
MH), and the coupling from the past (CFTP) perfect sampler [24], [25]. These techniques
work very well for off-line generation of PDF samples but they are not suitable in recur-
sive estimation applications since they frequently require in excess of 100,000 iterations.
These sampling techniques will not be discussed further.

Before the SIS algorithm can be implemented, one needs to quantify the specific prob-

abilities for q
³
x
(i)
n|n−1|x

(i)
n−1|n−1

´
, p
³
x
(i)
n|n−1|x

(i)
n−1|n−1

´
and the likelihood p

³
yn|x

(i)
n|n−1

´
. If

the noise in the respective process or observation models cannot be modeled as additive
and Gaussian, quantification of these density functions can sometimes be difficult.

4.1.1. The Bootstrap Approximation and the Bootstrap Particle Filter

In the bootstrap particle filter [10], we make the approximation that the importance

density is equal to the prior density, i.e., q
³
x
(i)
n|n−1|x

(i)
n−1|n−1

´
= p

³
x
(i)
n|n−1|x

(i)
n−1|n−1

´
. This

eliminates two of the densities needed to implement the SIS algorithm, since they now
cancel each other from Eq. 69. The weight update equation then becomes

w(i)n = w
(i)
n−1p

³
yn|x

(i)
n|n−1

´
. (73)

The procedure for the bootstrap particle filter is identical to that of the SIS particle filter
given above, except that Eq. 73 is used instead of Eq. 69 in the importance weight
update step. Notice that the dimensionality of both the observation vector and the state

vector only appear in the likelihood function p
³
yn|x

(i)
n|n−1

´
. Regardless of the number of

dimensions, once the likelihood function is specified for a given problem the computational
load becomes proportional to the number of particles, which can be much less than the
number of support points required for the GHKF, UKF, or MCKF. Since the bootstrap
particle filter can also be applied to problems in which the noise is additive and Gaussian,
this filter can be applied successfully to almost any tracking problem. The only flaw
is that it is highly dependent on the initialization estimates and can quickly diverge if
the initialization mean of the state vector is far from the true state vector, since the
observations are only used in the likelihood function.
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Figure 4: The General Sequential Importance Sampling Particle Filter
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4.2. Particle Filters That Do Not Require Resampling

There are several particle filter approximation techniques that do not require resam-
pling and most of them stem from Eq. 65. If samples are drawn from the importance den-

sity
h
x
(i)
n|n ∼ q (xn|y1:n)

i
, and we can calculate the importance weights in a non-iterative

fashion from

w(i)n ∝
p
³
yn|x

(i)
n|n

´
p
³
x
(i)
n|n;xn|y1:n−1

´

q
³
x
(i)
n|n;xn|y1:n−1

´ . (74)

This is followed by a normalization step given in Eq. 64.
This more general particle filter is illustrated in the block diagram of Fig. 5, which

uses Eq. 74 to calculate the weights. In the paragraphs that follow, we will show how to
fill in the boxes and make approximations for the predictive density p (xn|y1:n−1) and the
importance density q (xn|y1:n). Note that terms in Eq. 74 are not the PDFs, but instead
are the PDFs evaluated at a particle position and are therefore probabilities between zero
and one.

4.2.1. The Gaussian Particle Filter

The so-called Gaussian particle filter [12] approximates the previous posterior density

p (xn−1|y1:n−1) by the Gaussian distribution N
³
xn−1; bxn−1|n−1,Pxxn−1|n−1

´
. Samples are

drawn
x
(i)
n−1|n−1 ∼ N

¡
xn−1; bxn−1|n−1,P

xx
n−1|n−1

¢
, (75)

and x
(i)
n|n−1 is obtained from x

(i)
n−1|n−1 using Eq. 70. Then, the prior density p (xn;xn|y1:n−1)

is approximated by the Gaussian distribution N
³
xn; bxn|n−1,Pxxn|n−1

´
, where

bxn|n−1 =
NsX

i=1

w
(i)
n−1x

(i)
n|n−1, (76)

Pxxn|n−1 =
NsX

i=1

w
(i)
n−1

³
x
(i)
n|n−1 − bxn|n−1

´³
x
(i)
n|n−1 − bxn|n−1

´|
, (77)

After samples are drawn from the importance density, the weights are calculated from

w(i)n ∝
p
³
yn|x

(i)
n|n

´
N
³
x
(i)
n|n; bxn|n−1,Pxxn|n−1

´

q
³
x
(i)
n|n;xn|y1:n−1

´

Now, the first and second moments of xn|n can then be calculated from

bxn|n =
NsX

i=1

w(i)n x
(i)
n|n, (78)
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Figure 5: A General Particle Filter Without Resampling
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and

Pxxn|n =
NsX

i=1

w(i)n

³
x
(i)
n|n − bxn|n

´³
x
(i)
n|n − bxn|n

´|
. (79)

The Gaussian particle filter (GPF) process is shown in Fig. 6.

4.2.2. The Monte Carlo, Gauss-Hermite, and Unscented Particle Filters

In Fig. 6, the importance density is not specified. Thus the Gaussian particle fil-
ter is not complete and still requires the specification of an importance density. In [12],
it is suggested that a Gaussian distribution be used as the importance density, i.e., let

q (xn|y1:n−1) = N
³
xn; bxn|n,P

xx
n|n

´
, where bxn|n and P

xx
n|n are obtained from the prior den-

sity, as in the SIS algorithm, or from an EKF or UKF measurement update of the prior.
In this section, we will show how this can be accomplished with the previously introduced
MCKF, GHKF, or UKF.
Two composite particle filters are presented in Figures 7 and 8. In both figures,

we have taken the Gaussian particle filter of Fig. 6 and used it to replace the prior

p (xn|y1:n−1) with the Gaussian density N
³
xn; bxn|n−1,Pxxn|n−1

´
, where bxn|n−1, and Pxxn|n−1

are obtained from a time update step. In Fig. 7 we used the MCKF let the importance

density q (xn|y1:n) be the Gaussian density N
³
xn;µ

x
n|n,Σ

xx
n|n

´
, where µxn|n, and Σ

xx
n|n are

the outputs of the MCKF. Along the bottom of Fig. 7, you can identify the Gaussian
particle filter structure and along the top and upper right the MCKF structure can be seen.
The mean and covariance output of the MCKF are then used in a Gaussian importance
density from which the particles are sampled. Then, the particles are used in a particle
filter down the left hand side. The estimated mean and covariance outputs for the current
sample time are then stored in a track file.
In Fig. 8 we use the GHKF/UKF to replace the importance density q (xn|y1:n) by

the Gaussian density N
³
xn;µ

x
n|n,Σ

xx
n|n

´
, where µxn|n, and Σ

xx
n|n are the outputs of the

GHKF/UKF. In [13], an unscented particle filter is presented that is similar, but does not
include the Gaussian approximation for the prior.

When applying these filters to real-world problems, both the Gauss-Hermite and Un-
scented particle filters work very well and can usually be implemented in such a way that
they run in real-time. However, the Monte Carlo particle filter is very difficult to imple-
ment due to the large number of particles required and numerical instabilities caused by
outlier samples. In the example shown in Section 6, below, we do not present results for
the Monte Carlo particle filter due to difficulties with numerical instabilities.

4.2.3. Rao-Blackwellization to Reduce Computational Load

When either the process model or the observation model is linear, the computational
load can be reduced for any of the techniques presented above using Rao-Blackwellization
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Figure 6: Gaussian Particle Filter
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Figure 7: Monte Carlo Particle Filter.
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Figure 8: Gauss-Hermite or Unscented Particle Filter.

[14], [26], [27]. For any equation of the linear form

z = Cd+w, (80)

where w is N (0,Pww) noise, z and d are stochastic n-vectors and C is an n × n deter-
ministic matrix, then

bz = Cbd, (81)

and
Pzz = CPddC

|
+Pww. (82)

Thus, if the process equation is linear, for the Rao-Blackwellization procedure an
equation of the form given by Eq’s. 81 and 82 can be used in the time update step in
place of the combination sampling and time update steps used for the nonlinear case.
Similarly, if the observation equation is linear, an equation of the form given by Eq. 81
and 82 can be used to replace the combination sampling and measurement update step.
For example, in Fig. 2, if xn = Cxn−1 +wn−1, then the Generate Prior Samples and

Time Update blocks can be replace by the equations

bxn|n−1 = Cbxn−1|n−1 (83)

and
Pxxn|n−1 = CP

xx
n−1|n−1C

| +Q, (84)

thus reducing the computational load considerably.
A similar reduction can be obtained if the observation equation is linear.
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5. A Tracking Example Where all Noise is Additive Gaussian

Consider the problem of successively estimating (tracking) a constant velocity target
using only noisy broadband passive array sensor data from an array mounted on a ma-
neuvering observer ship. In a fixed two dimensional geographic coordinate system, the
geo-tracks of the observer and a target ship are shown in Fig. 9.

Figure 9: Tracks of Target and Observer Ships in a Fixed Geographic Coordinate System

Now define an array coordinate system whose origin is at the phase center of an
array mounted on the moving observer ship, whose Y 0-axis is positive in the forward
direction (direction of motion of the moving array) and whose X 0-axis is perpendicular
in a clockwise direction (athwartship), as shown in Fig. 10. The instantaneous observer
heading, ϑ (t), is defined as the angle between the geographic Y -axis (North) and the
array coordinate Y 0-axis (forward), with 0 ≤ ϑ (t) ≤ 2π. The relative bearing, θ (t), is
defined as the angle clockwise from the Y 0-axis to the observer-to-target line-of-sight line,
where 0 ≤ θ (t) ≤ 2π, shown in Fig. 11.

The source state vector in the array coordinate system, xa (t) , is defined by

xa (t) = A (ϑ (t)) [xs (t)− xo (t)] , (85)

where

A (ϑ (t)) ,

∙
Λ (ϑ (t)) 02
02 Λ (ϑ (t))

¸
, (86)
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Figure 10: Relationship Between Fixed Geograhic Coordinate System and Moving Array
Centered Coordinate System.

Figure 11: Definition of Relative Bearing
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and

Λ (ϑ (t)) ,

∙
cosϑ (t) − sinϑ (t)
sinϑ (t) cosϑ (t)

¸
, (87)

where 02 is a 2 × 2 matrix of zeros. xs (t) and xo (t) are the constant-velocity target
and maneuvering observer state vectors, respectively, in the fixed geographic coordinate
system, defined by

xs (t) , [rxs (t) , rys (t) , vxs, vys]
| , (88)

and
xo (t) , [rxo (t) , ryo (t) , vxo (t) , vyo (t)]

| . (89)

Also, define the relative target state vector, xa (t), as

xa (t) , [rxa (t) , rya (t) , vxa (t) , vya (t)]
| . (90)

Note that xo (t) and ϑ (t) are assumed to be known by the observer.
Now, from Fig.11, we can identify the relative bearing as

θ (tn) = tan
−1

∙
rxa (tn)

rya (tn)

¸
. (91)

For a constant-velocity target ship, Eq. 1 can be written as

xs (tn) =

∙
I2 T I2
02 I2

¸
xs (tn−1) +

∙
T 2

2
I2

T I2

¸
u (tn) , (92)

where u (tn) , [ux (tn) , uy (tn)]
|, I2 is a two-dimensional identity matrix, and T is the

sample period. The acceleration noise component u (tn) is N (0,Σv), with
Σv ,

­
u (tn)u

H (tn)
®
= σ2vI2.

In vector-matrix form, the broadband complex output of the array can be written as

y (t) = D (θ (t)) s (t) +w (t) , (93)

where y (t), s (t), and w (t) are concatenated complex vectors over element number and
the discrete frequencies fk, k = 1, ...,K. The array manifold matrix, D (θ (t)) , is a block
diagonal matrix

D (θ (t)) =⎡
⎢⎢⎢⎣

d (f1; θ (t)) · · · 0

0 d (f2; θ (t)) 0
...

. . .
...

0 · · · 0 d (fK; θ (t))

⎤
⎥⎥⎥⎦ , (94)

with steering vector elements, d (fk; θ (t)), defined as

d (fk; θ (t)) , [a0 (fk; t) , a1 (fk; t) , . . . , aM−1 (fk; t)]
| , (95)
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with am (fk; t) , ej2πfkτm(θ(t)). Here,

τm (θ (t)) , −
rm
c
cosφm cos (θm − θ (t)) , (96)

where the spherical coordinates of the mth sensor relative to the array phase center are
(rm, θm, φm) and c is the speed of sound in water.
Let the observation noise, w (t), be N (0,Σw), with Σw =

­
w (t)wH (t)

®
= σ2wIMK .

For the signal, s (t), we will assume the identical structure, with Σs = σ2sIMK . We will
also assume that the signal components are uncorrelated with the noise components, with
σ2w and s (fk, t) known or estimated using a maximum likelihood approach.
Since Eq’s. 92 and 93 are of the same form as Eq’s. 6 and 7, the Gaussian approxima-

tion filter framework developed in the Section 3 can now be applied to this single target
tracking problem. Since Eq. 92 is linear, we can simplify the "Generate Prior Samples"
and the "Time Update" blocks shown in Figs. 2 and 3 using a Rao-Blackwell procedure
[14]. If we let

Φ ,

∙
I2 T I2
02 I2

¸
, (97)

prior samples need not be generated and the time update can be accomplished directly,
as follows

­
xn|n−1

®
= Φ

­
xn−1|n−1

®
, (98)

and
Pxxn|n−1 = ΦP

xx
n−1|n−1Φ

|+Q. (99)

In Hue, et. al. [28], a multitarget tracking problem was defined, with four targets
tracked by a single observer ship. We have extracted the tracks for one of their targets
and the observer ship. The initial positions and velocities of the chosen constant velocity
target and observer ships are

xs (t0) =

⎡
⎢⎢⎣

200 yds
1500 yds
1.0 yds/sec
−0.5 yds/sec

⎤
⎥⎥⎦ xo (t0) =

⎡
⎢⎢⎣

200 yds
−3000 yds
1.2 yds/sec
+0.5 yds/sec

⎤
⎥⎥⎦ .

The observer is following a noise-free leg-by-leg trajectory with a constant velocity vector
on each leg which is modified at the following instants (see Fig. 9):

µ
vxo (t200)
vyo (t200)

¶
=

µ−0.6
+0.3

¶
;

µ
vxo (t400)
vyo (t400)

¶
=

µ
+2.0

+0.3

¶
;

µ
vxo (t600)
vyo (t600)

¶
=

µ−0.6
+0.3

¶
;

µ
vxo (t800)
vyo (t800)

¶
=

µ
+2.0

+0.3

¶
;

µ
vxo (t900)
vyo (t900)

¶
=

µ−0.6
+0.3

¶
.
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The acceleration noise used in the dynamic model is a normal zero-mean Gaussian vector
with σx = σy = 2× 10−3 yds/sec2. A total of 1000 seconds of data was simulated for this
example, with T = 6 seconds.
The array used for this simulation is a horizontally flat ring array with 60 elements at

a radius of 2.5 yards evenly spaced in θm, with θ0 = 0
o and θ59 = 354

o. The noise at each
element is a broadband zero-mean complex Gaussian random process with σ2w = 1. The
source signal arriving at all elements is a broadband complex zero mean Gaussian random
signal modeled as 31 equally spaced frequency bins across the band 1400 Hz to 2200 Hz.
All tracking filters were tested with a signal level adjusted to generate a signal-to-noise
ratio (SNR) of −20 dB.
For all tracking filters, bxs (t0) was initialized by offsetting the initial value, i.e. bx0|0 ,

xs (t0)+q
off
s , where xs (t0) is the true initial state and q

off
s = [qx, qy, 0, 0]

|. The initialization
offset used for this example was designed to maximally stress the tracker. It assumes that
the initial bearing is almost known (the initial target position is at 0o true bearing), but
that the initial range guess is off considerably, i.e. qx = 100, qy = 5000. The covariance
Pxx0|0 was initialized to

Pxx0|0 =

⎡
⎢⎢⎣

103 0 0 0
0 2× 103 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ .

The three nonlinear tracking filters developed in Section 3 have been applied to this
problem. Specifically, Fig. 12 presents a generic Kalman filter for the above single target
tracking problem.
In our formulation, the observations vector variable y represents the FFT output of

all array elements and is thus complex and of dimension (M ·K)× 1. Instead of dealing
with complex variables, we transformed y into a matrix of dimension (2 ·M ·K)×1, with
the factor of two now representing the in-phase and quadrature components of y. Now,
all variables are real and we can apply the Kalman filter equations directly.
A comparison of the outputs of all three nonlinear Kalman filters for this tracking

problem are presented in Figure 13. For each subplot, the upper solid line is the true
target track, the lower solid jagged line is the observer ship track, the blue dotted lines
are observer-to-target line-of-site lines, the dotted line is the target track mean position
estimate, and the red ellipsoids are the 1-sigma uncertainty ellipsoids. Examination of
the figure shows that all filters converge shortly after the first own-ship maneuver, even
though the initialization guess was very long in range. It is obvious from the figure that
the results for the UKF and the GHKF are nearly identical and that both have better
performance than the MCKF. The performance of the MCKF will improve if the number
of Monte Carlo samples is increased from the 2000 samples used for this example. From
a computational point of view, the UKF was the fastest followed by the GHKF, with the
MCKF requiring the most computation time. The MCKF took approximately 1.5 times
the computation time of the UKF, with the GHKF at an increase in time by a factor of
1.2.
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Figure 12: Block Diagram of Nonlinear Track Estimation for a Singler Target
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Figure 13: A Comparison of Three Nonlinear Kalman Tracking Filters
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6. A Tracking Example with Non-Gaussian Noise Embedded in the Obser-
vation Model

Consider the problem of tracking a vehicle moving through a distributed field of
acoustic DIFAR sensors. A DIFAR sensor is composed of three elements, a monopole
and two dipole sensors, with one dipole sensor oriented in a north-south direction and the
other in an east-west direction. The output of the three sensor channels can be expressed
[29]-[32] as

yo (t) = s (t) + n0 (t) , (100a)

yc (t) = s (t) cos(θ (t)) + nc (t) , (100b)

ys (t) = s (t) sin(θ (t)) + ns (t) , (100c)

where s (t) is the signal received at the monopole sensor and n0 (t) , nc (t) ,and ns (t) are
the noise components on the three channels. θ (t) is the bearing of the vehicle at the
sensor, relative to true North, with (0 ≤ θ (tn) ≤ 2π). In references [29], [31], and [32],
a time domain approach is used, while reference [30] uses a frequency domain approach.
We will follow the lead of reference [30], and use the frequency domain.
To estimate the bearing observations, the DIFAR channel outputs are passed through

an FFT with an integration time T = tn − tn−1, where the output of the FFT for one
frequency bin at block time tn is defined by

Y (f ; tn) =
1

T

Z tn

tn−1

y (t) e−j2πftdt. (101)

After the FFT for each channel, we can write the channel outputs as

Yo (fk; tn) = S (fk; tn) +No (fk; tn) , (102a)

Yc (fk; tn) = S (fk; tn) cos(θ (tn)) +Nc (fk; tn) , (102b)

Ys (fk; tn) = S (fk; tn) sin(θ (tn)) +Ns (fk; tn) , (102c)

with fk defined as the frequency of the kth frequency bin, k = 1, . . . , N. Let No (fk; tn) ∼
N
¡
0, σ2No

¢
, Nc (fk; tn) ∼ N

¡
0, ρσ2No

¢
, Ns (fk; tn) ∼ N

¡
0, ρσ2No

¢
, and S (fk; tn) ∼

N (0, S (fk; tn)), where ρ is a dipole gain factor and N (µ, σ2) is a Gaussian distribution
with mean µ and variance σ2. Also assume that all signal and noise components are
independent of each other and independent over frequency bin and time index.
Next, the cross-correlations C1 (fk; tn) and C2 (fk; tn) are formed, where

C1 (fk; tn) = Re {Yo (fk; tn)Y
∗
c (fk; tn)} , (103a)

C2 (fk; tn) = Re {Yo (fk; tn)Y
∗
s (fk; tn)} . (103b)

Then a bearing observation is obtained from

θ (tn) = tan
−1
(
X

k

C2 (fk; tn)

C1 (fk; tn)

)
. (104)
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Note that the sum over frequency constitutes an estimate of the expected value of the
correlations outputs. In references [29], [31], and [32], this expectation is accomplished
using averaging of samples in the time domain.
For our tracking problem demonstration, we simulated a scenario with a vehicle moving

with a constant velocity through a field of 5 DIFAR sensors. We used Eq’s. 102 - 104 to
generate a vector of simulated noisy observations
y (tn) = θ (tn) , [θ1 (tn) , θ2 (tn) , . . . , θ5 (tn)]

|; tn = 0, T, . . . , nT . For the mth DIFAR
sensor at position (xm, ym) , the true values of θm (tn) used in Eq. 102 were computed
from

θm (tn) = tan
−1
½
x (tn)− xm

y (tn)− ym

¾
, (105)

with the y-axis pointing North and the x-axis pointing East. Although the noise for
each individual channel is additive and Gaussian, the noise in the observation θ (tn)
is embedded (not additive) and may not necessarily be Gaussian. Thus, estimation and
tracking of the expected value of the vehicle state vector, hx (tn)i , from noisy observations
from multiple DIFAR sensor outputs, can be most readily accomplished using one of the
particle filters developed in Section 4.
If we assume a constant-velocity model for the vehicle motion, we can use the model

developed in our previous example. Thus, the state transition equations governing our
constant-velocity vehicle are given by Eq. 92. Therefore, since the transition equations
are linear, we can use a Rao-Blackwell procedure for simplifying the time update equation.
The outputs of the time update equations are bxn|n−1 and Pxxn|n−1.
Looking at figures 5 - 8, we see that for all versions of the particle filter we need an

analytical expression for the likelihood function, p
¡
yn|x(i)

¢
, where x(i) , x(i)n|n−1 are par-

ticles obtained from the time update equations for the SIS filters (Fig. 5) and x(i) , x(i)n|n
are samples drawn from the importance density for the more general particle filters (Figs.
7 and 8). Davies [29] developed a DIFAR sensor likelihood function for the time domain
case which is not applicable here. Mars [32] also developed a time-domain tracking tech-
nique for DIFAR sensors that uses a second-order Taylor expansion of the log-likelihood
about the prior estimate, which is also not applicable here. Maranda [31] presented
frequency-domain likelihood functions, but only for single frequency signals and signals
with a Gaussian frequency distribution. Since we wish to track vehicles which radiate
wideband acoustic sound, we developed our own wideband likelihood function. The par-
ticulars of the development of the wideband likelihood function for a single DIFAR sensor
is presented in Appendix B.
First, assuming that the sensors likelihood functions are independent of each other

and letting the dependence of θm (tn) on tn be understood , then

p
¡
yn|x

(i)
¢
, p

¡
θ|x(i)

¢
=

5Y

m=1

p
¡
θm|x

(i)
¢
. (106)
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Putting x(i) into Eq. 105 yields an expression for θ(i)m

θ(i)m = tan−1
½
x(i) − xm

y(i) − ym

¾
. (107)

From Appendix B, if we let zm , tan θm, then

p
¡
θm|x

(i)
¢
=
£
1 + (zm)

2¤ p
³
zm|θ

(i)
m

´
, (108)

with

p
³
zm|θ

(i)
m

´
= A

(p
(1− r2)

π
e−α +

δβ1/2√
2π

"
Φ

Ã
−δβ1/2p
(1− r2)

!
− Φ

Ã
δβ1/2p
(1− r2)

!#
e−γ

)
.

(109)
Here

A ,
eσ1eσ2

eσ22 − 2reσ1eσ2zm + eσ21z2m
, (110a)

α ,
eσ22η21 − 2reσ1eσ2eη1eη2 + eσ21eη22

2eσ21eσ22 (1− r2)
, (110b)

β ,

£¡
eσ22eη1 − reσ1eσ2eη2

¢
+
¡
eσ21eη2 − reσ1eσ2eη1

¢
zm
¤2

eσ21eσ22
¡
eσ22 − 2reσ1eσ2zm + eσ21z2m

¢ , (110c)

γ ,
(eη2 − eη1zm)2

2
¡
eσ22 − 2reσ1eσ2zm + eσ21z2m

¢ , (110d)

δ , sign
£¡
eσ22eη1 − reσ1eσ2eη2

¢
+
¡
eσ21eη2 − reσ1eσ2eη1

¢
zm
¤
. (110e)

The components of Eq. 110e are given by

eη1 ,
√
2BTSNR cos θ(i)m , (111)

eη2 ,
√
2BTSNR sin θ(i)m , (112)

eσ21 , (2SNR+ 1)SNR cos2 θ(i)m + ρ (SNR+ 1) , (113)

eσ22 , (2SNR+ 1)SNR sin2 θ(i)m + ρ (SNR+ 1) , (114)

r ,
(2SNR+ 1)SNR cos θ(i)m sin θ

(i)
m

eσ1eσ2
, (115)

Φ (x) ,
1√
2π

Z ∞

x

e−u2/2du. (116)

SNR is the signal-to-noise ratio at the monopole channel, BT is the time-bandwidth
product of the vehicle frequency signature and ρ is the noise gain (loss) factor applied to
either dipole channel. The value of ρ = 1/2 or 1/3 for 2D-isotropic or 3D-isotropic noise,
respectively [31].
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Since the particles are reused in the bootstrap filter, only the likelihood function is
needed to update the particle weights. But in the more general particle filter approaches
shown in Figures 7 and 8, where the particles are not reused, we also need to generate
particles (samples) from an importance density. To generate a Gaussian importance
density, one of the techniques shown in Section 3 can be used, as long as it is assumed
that the noise in the dynamic and observation equations is additive and Gaussian. This
is permissible because we will be modifying the Gaussian density at the output of the
Kalman filter in the weight update portion of the filter. Thus, in the measurement update
we use

bθn|n−1 =
X

i

wih
³
x
(i)
n|n−1

´
=
X

i

wi tan
−1
(

r
x(i)
n|n−1 − xm

r
y(i)
n|n−1 − ym

)
, (117)

Pθθ
n|n−1 =

X

i

wi

Ã
tan−1

(
r
x(i)
n|n−1 − xm

r
y(i)
n|n−1 − ym

)!Ã
tan−1

(
r
x(i)
n|n−1 − xm

r
y(i)
n|n−1 − ym

)!|

−bθn|n−1bθ
|

n|n−1 +R, (118)

and

Pxθn|n−1 =
X

i

wix
(i)
n|n−1

Ã
tan−1

(
r
x(i)
n|n−1 − xm

r
y(i)
n|n−1 − ym

)!|
− bxn|n−1bθ

|

n|n−1. (119)

Here, x
(i)
n|n−1 are either Monte Carlo samples from N

³
bxn|n−1,Pxxn|n−1

´
or Gauss-Hermite

quadrature or unscented filter support points obtained using bxn|n−1 and Pxxn|n−1. The

quantities r
x(i)
n|n−1 and r

y(i)
n|n−1 are the x and y components of x

(i)
n|n−1, wi = 1/N for Monte

Carlo sampling, and R is the covariance matrix of the Gaussian observation noise model.
The outputs of Eq’s. 117-119 are then used as inputs to a Kalman filter. The outputs

of the Kalman filter are used to specify a Gaussian importance density N
³
µxn|n,Σ

xx
n|n

´

from which samples x
(i)
n|n, i = 1, 2, . . . , Ns are drawn. And then it is easy to calculate

N
³
x
(i)
n|n;µ

x
n|n,Σ

xx
n|n

´
for each particle in the weight update equation. In addition, since

we already know bxn|n−1 and Pxxn|n−1, we can calculateN
³
x
(i)
n|n; bxn|n−1,Pxxn|n−1

´
directly and

everything we need for the weight update equation has been specified. Substitution of the
above into figures 7 or 8 yields the appropriate fully realized particle filter for tracking a
vehicle through a field of DIFAR sensors.
For our DIFAR vehicle tracking example, we have implemented the Gauss-Hermite and

the unscented particle filters. The measurement covariance has been set to one, the time-
bandwidth product to 240 and the SNR was varied from -10 dB to +10 dB. A comparison
of the true tracks (black solid line) and the estimated tracks (blue dashed line) generated
by both trackers for the three different SNRs is shown in Fig. 14, along with the positions
of all five DIFAR sensors (green circles). In Fig. 14, the left column contains tracks for the
unscented particle filter (UPF) and the right column those of the Gauss-Hermite particle
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filter (GHPF), with SNR decreasing from bottom to top. Examination of the figure shows
that the tracks of the Gauss-Hermite particle filter are just a little closer to the true track
that those of the unscented particle filter at all SNRs. The run time for both trackers
was comparable. No results are shown for the Monte Carlo particle filter or the bootstrap
particle filter because of numerical instabilities in the tracker implementations.

7. Summary and Conclusions

The techniques presented above for Bayesian estimation of nonlinear processes with
non-Gaussian noise is applicable to a wide variety of problems. As we have shown, for
the special case where the noise is additive and Gaussian, estimation involves the numer-
ical solution of integrals with nonlinear arguments. Three techniques for this case were
developed, the Gauss-Hermite, unscented, and Monte Carlo Kalman filters. All three
were applied to the simulated problem of geo-tracking a constant-velocity target using
complex broadband sensor-level measurements from an array mounted on a maneuvering
observer. All three tracking algorithms successfully started tracking the target immedi-
ately following the first observer ship maneuver, with the Gauss-Hermite and unscented
Kalman filters performing identically, tracking very well, and the Monte Carlo Kalman
filter tracking with slightly less accuracy. From a numerical point of view, the unscented
Kalman filter had the shortest run time, followed closely by the Gauss-Hermite Kalman
filter, with the Monte Carlo Kalman filter having much longer run times. Based on these
results, the unscented Kalman filter would be the best choice for nonlinear estimation in
the presence of additive Gaussian noise.
For nonlinear processes in the presence of embedded non-Gaussian noise, we presented

four estimation techniques, the SIS (bootstrap), and three combination particle filters.
The three combination particle filters use a Gaussian particle filter combined with one of
the three nonlinear filters for additive Gaussian noise as an importance sample generator.
All four filters were applied to the problem of tracking a moving constant-velocity vehicle
through a field of acoustic DIFAR sensors. Several of the filters, specifically the bootstrap
and the Monte Carlo particle filters, were plagued by numerical instabilities and could
not track the vehicle. Both the Gauss-Hermite and the unscented particle filters tracked
the target at all SNRs, with the Gauss-Hermite particle filter having the best track per-
formance and the shortest run times. Based on these results, the Gauss-Hermite particle
filter would be the best choice for single target tracking in the presence of non-Gaussian
embedded noise.
Many other advances have recently taken place in the field of Bayesian estimation

that we have not addressed in this technical memorandum. Some of these advances
are contained in special issues of the IEEE Transactions on Signal Processing [33] and
the Proceedings of the IEEE [34]. Additional Ph.D. dissertations on various aspects of
nonlinear, non-Gaussian estimation and filtering are given in [35]-[37].
For many nonlinear estimation problems, there are slowly varying parameters that

must also be estimated. For example, in the geo-tracking example addressed above, we
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Figure 14: Comparison of GHPF and UPF Tracking Results for Three SNRs.
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assumed that the signal and the noise covariance were known. But in a real world problem,
they must be estimated simultaneously with the state vector. In addition, estimation of
the number of sources present at any given time in a multitarget tracking scenario is also
necessary. Several papers address these issues of joint parameter estimation and model
change detection [39]-[43].
In this paper, we have addressed nonlinear models with both additive Gaussian and

embedded non-Gaussian noise. Recently, the Kalman-Levy filter has been developed for
continuous linear models driven by Levy process noise [44]. A Levy process is a continuous
stochastic process with independent increments. Examples are Brownian motion, Poisson
processes, stable processes (such as Cauchy processes), and subordinators (such as Gamma
processes.) They can be used to represent infinitely divisible distributions, which find
applications in the analysis of signals associated with compexity theory. Such distributions
tend to follow a power-law with much longer tails than the Gaussian distribution and thus
give rise to impulse-like signals. Gordon, et. al., presented an extended Kalman-Levy filter
and applied it to the tracking of maneuvering targets [45]. Maneuvering targets, like a
fighter jet or an anti-ship missile, have trajectories that exhibit relatively long periods of
quiescent motion interspersed with high acceleration turns and should be well matched
to the heavy-tailed system noise models.
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Appendix

A. A Kalman Filter for Nonlinear and Complex Observation Processes

The posterior (conditional) density is the PDF of x (tn) , x (n) given the observations
y1:n , {y1,y2, . . . ,yn} . It can be written in terms of the joint density of x (n) and y1:n
as

p (x (n) |y1:n) =
p (x (n) ,y1:n)

p (y1:n)
. (A-1)

Since the left-hand side is a density defined in terms of the real variable x (n), the right-
hand side must also be written in terms of real variables. For the case were p (x (n) |y1:n) is
a normalized Gaussian PDF, if we define a normalized jointly Gaussian PDF p (x (n) ,y1:n)
such that the normalization constant p (y1:n) can be ignored, then

p (x (n) |y1:n) = p (x (n) ,y1:n) . (A-2)

We will approximate the joint density p (x (n) ,y1:n) by the predictive density, i.e.,

p (x (n) ,y1:n) ' p (x (n) ,y (n) |x (n− 1) ,y1:n−1) . (A-3)

Now, let
bx , bxn|n = E {x (n) |y1:n} , (A-4)

Pxx , Pxxn|n = E {[x (n)− bx] [x (n)− bx]| |y1:n} . (A-5)

The Gaussian posterior density can then be written as

p (x (n) |y1:n) = N
¡
bx,Pxx

¢

=
1

(2π)Nx/2 |Pxx|1/2
exp

½
−1
2
A

¾
, (A-6)

where Nx is the dimension of x, and

A , [x (n)− bx]|
¡
Pxx

¢−1
[x (n)− bx]

= x| (n)
¡
Pxx

¢−1
x (n)− x| (n)

¡
Pxx

¢−1 bx
−bx|

¡
Pxx

¢−1
x (n) + bx|

¡
Pxx

¢−1 bx. (A-7)

Returning to the joint density p (x (n) ,y (n)), we want to address the case where y (n)
is complex. Since the joint PDF must be written in terms of real variables, let

y (n) ,

∙
yI (n)
yQ (n)

¸
, (A-8)
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where yI (n) and yQ (n) are the in-phase and quadrature parts of y (n) , respectively. Now
define the joint vector

z (n) ,

∙
x (n)
y (n)

¸
. (A-9)

Assuming that the joint PDF is Gaussian,

p (z (n)) ∼ N (z (n) ,Pzz) , (A-10)

where

z (n) =

∙
x (n)
y (n)

¸
, E

½∙
x (n)
y (n)

¸
|x (n− 1) ,y1:n−1

¾
=

∙
bxn|n−1
byn|n−1

¸
, (A-11)

and

Pzz = E {[z (n)− z (n)] [z (n)− z (n)]| |x (n− 1) ,y1:n−1}

=

∙
Pxx Pxy

Pyx Pyy

¸
,

∙
Pxxn|n−1 P

xy

n|n−1
P
yx

n|n−1 P
yy

n|n−1

¸
. (A-12)

The inverse of Pzz is given by

(Pzz)−1 =

∙
C11 C12
C21 C22

¸
, (A-13)

with

C11 ,
¡
Pxx −Pxy (Pyy)−1Pyx

¢−1
, (A-14a)

C12 , −C11Pxy (Pyy)−1 , (A14b)

C21 , −C22Pyx (Pxx)−1 , (A-14c)

C22 ,
¡
Pyy −Pyx (Pxx)−1Pxy

¢−1
. (A-14d)

Thus, the joint PDF is

p (z (n)) =
1

(2π)(Nx+2Ny)/2 |Pzz|1/2
exp

½
−1
2
B

¾
, (A-15)

with

B ,

∙
(x (n)− x (n)) ... (y (n)− y (n))

¸|
(Pzz)−1

∙
(x (n)− x (n)) ... (y (n)− y (n))

¸

= [x (n)− x (n)]|C11 [x (n)− x (n)] + [x (n)− x (n)]|C12 [y (n)− y (n)]
+ [y (n)− y (n)]|C21 [x (n)− x (n)] + [y (n)− y (n)]|C21 [y (n)− y (n)]

= x| (n)C11x (n)

+x| (n) [−C11x (n) +C12 (y (n)− y (n))]
+ · · · . (A-16)
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Comparing the first term of Eq. A-7 with the first term of Eq. A-16 yields

¡
Pxx

¢−1
= C11 =

¡
Pxx −Pxy (Pyy)−1Pyx

¢−1
. (A-17)

Thus,
Pxx = Pxx −Pxy (Pyy)−1Pyx. (A-18)

Comparing the second term of Eq. A-7 with the second term of Eq. A-16 results in

¡
Pxx

¢−1 bx = C11x (n)−C12 (y (n)− y (n)) ,
=

¡
Pxx −Pxy (Pyy)−1Pyx

¢−1
x (n)

+
¡
Pxx −Pxy (Pyy)−1Pyx

¢−1
Pxy (Pyy)−1 (y (n)− y (n)) . (A-19)

Solving for bx and using Eq. A-18 yields

bx = x (n) +Pxy (Pyy)−1 [y (n)− y (n)] . (A-20)

Now, defining the Kalman Gain as

Kn , P
xy (Pyy)−1 , (A-21)

and using Eq’s. A-18, A-20, and A-21, the Kalman filter equations for complex observa-
tions are given by

bxn|n = bxn|n−1 +Kn

£
y (n)− byn|n−1

¤
(A-22)

Pxxn|n = Pxxn|n−1 −KnP
yy

n|n−1K
|
n, (A-23)

where

Pxxn|n−1 = E
©£
xn|n−1 − bxn|n−1

¤ £
xn|n−1 − bxn|n−1

¤|ª
(A-24)

P
xy

n|n−1 = E
©£
xn|n−1 − bxn|n−1

¤ £
yn|n−1 − byn|n−1

¤|ª
(A-25)

P
yy

n|n−1 = E
©£
yn|n−1 − byn|n−1

¤ £
yn|n−1 − byn|n−1

¤|ª
. (A-26)

B. Derivation of the Likelihood Function for a DIFAR Bearing Observation

We start by considering θ (t) = tan−1 (C2 (t) /C1 (t)) , with C1 (t) ∼ N (η1, σ
2
1) and

C2 (t) ∼ N (η2, σ
2
2) . C1 (t) and C2 (t) are defined by the time domain equivalent of Eq.

103b. We will first determine the probability density pz (z) when z = C2 (t) /C1 (t) and
then the likelihood function p

¡
θ (tn) |xn|n

¢
, where θ (tn) is the bearing output of the

DIFAR sensor at time tn and xn|n is the estimated vehicle position at time tn based on
all observations up to and including time tn.
Consider the case where C2 (t) /C1 (t) ≤ z. Then, it follows that:

C2 (t) ≤ zC1 (t) if C1 (t) ≥ 0
C2 (t) ≥ zC1 (t) if C1 (t) ≤ 0. (B-1)
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The distribution function Fz (z) can therefore be written as

Fz (z) =

Z ∞

0

Z C1z

−∞
p (C1, C2) dC2dC1 +

Z 0

−∞

Z ∞

C1z

p (C1, C2) dC2dC1. (B-2)

Then, the probability density function can be obtained from

pz (z) ,
d

dz
Fz (z) =

Z ∞

0

C1p (C1, C1z) dC1 −
Z 0

−∞
C1p (C1, C1z) dC1

=

Z ∞

0

C1p (C1, C1z) dC1 +

Z ∞

0

C1p (−C1,−C1z) dC1. (B-3)

Since C1 and C2 are jointly Gaussian

p (C1, C2) =
1

2πσ1σ2
√
1−r2

exp
n
− 1
2(1−r2)

h
(C1−η1)

2

σ2
1

− 2r(C1−η1)(C2−η2)
σ1σ2

+ (C2−η2)
2

σ2
2

io
, (B-4)

where r is the normalized correlation coefficient. If we note that C2 = C1z and expand
the exponential and complete the square, p (C1, C2) can be written as

p (C1, C1z) = B exp

(
− α1
2 (1− r2)

µ
C1 −

α2
α1

¶2)

× exp

½
− 1

2 (1− r2)

µ
α3 −

α22
α1

¶¾
, (B-5)

where

B ,
1

2πσ1σ2
√
1− r2

(B-6a)

α1 ,
1

σ21
− 2rz

σ1σ2
+

z2

σ22
, (B-6b)

α2 ,
η1
σ21
− r (η1z + η2)

σ1σ2
+

η2z

σ22
, (B-6c)

α3 ,
η21
σ21
− 2rη1η2

σ1σ2
+

η22
σ22

. (B-6d)

Now, the first half of Eq. B-3 becomes

Z ∞

0

C1p (C1, C1z) dC1 = B exp

½
− 1

2 (1− r2)

µ
α3 −

α22
α1

¶¾
I, (B-7)

where

I ,

Z ∞

0

C1 exp

(
− α1
2 (1− r2)

µ
C1 −

α2
α1

¶2)
dC1. (B-8)
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Now, we modify I in the following way:

I =

Z ∞

0

µ
C1 −

α2
α1

¶
exp

(
− α1
2 (1− r2)

µ
C1 −

α2
α1

¶2)
dC1

+

Z ∞

0

α2
α1
exp

(
− α1
2 (1− r2)

µ
C1 −

α2
α1

¶2)
dC1. (B-9)

Defining u , C1 − α2
α1
, this becomes

I =

Z ∞

−α2
α1

exp

½
− α1
2 (1− r2)

u2
¾

udu+
α2
α1

Z ∞

−α2
α1

exp

½
− α1
2 (1− r2)

u2
¾

du. (B-10)

The first integral can be evaluated directly to yield

Z ∞

−α2
α1

exp

½
− α1
2 (1− r2)

u2
¾

udu =
1− r2

α1
exp

½
− α22/α1
2 (1− r2)

¾
. (B-11)

If we let v ,
q

α1
(1−r2)

u, then the second integral in Eq. B-10 becomes

α2
α1

Z ∞

−α2
α1

exp

½
− α1
2 (1− r2)

u2
¾

du = δ (α2)

s
α22 (1− r2)

α31

Z ∞

δ(α2)
α2
2
/α1

1−r2

e−v2/2dv, (B-12)

where δ (x) , sign of x. Defining a function Φ (x) (related to the error function) as

Φ (x) ,
1√
2π

Z ∞

x

e−u2/2du, (B-13)

we can write Eq. B-12 as

α2
α1

Z ∞

−α2
α1

exp
n
− α1
2(1−r2)

u2
o
du = δ (α2)

r
2πα2

2(1−r2)
α3
1

Φ

µ
−δ (α2)

q
α2
2
/α1

1−r2

¶
. (B-14)

Substituting Eq’s. B-11 and B-14 into Eq. B-10 yields

I =
1− r2

α1
exp

n
− α2

2
/α1

2(1−r2)

o
+ δ (α2)

r
2πα2

2(1−r2)
α3
1

Φ

µ
−δ (α2)

h
α2
2
/α1

2(1−r2)

i1/2¶
, (B-15)

and Eq. B-7 becomes

Z ∞

0

C1p (C1, C1z) dC1 = B 1−r2

α1
exp

n
− α3
2(1−r2)

o
+ δ (α2)B

r
2πα2

2(1−r2)
α3
1

× exp
n
− 1
2(1−r2)

³
α3 − α2

2

α1

´o
Φ

µ
−δ (α2)

h
α2
2
/α1

2(1−r2)

i1/2¶
.(B-16)
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Define

α (σ1, σ2, η1, η2, r) ,
α3

2 (1− r2)
=

σ22η
2
1 − 2rσ1σ2η1η2 + σ21η

2
2

2σ21σ
2
2 (1− r2)

, (B-17)

β (z;σ1, σ2, η1, η2, r) ,
α22
α1
=
[(σ22η1 − rσ1σ2η2) + (σ

2
1η2 − rσ1σ2η1) z]

2

σ21σ
2
2 (σ

2
2 − 2rσ1σ2z + σ21z

2)
, (B-18)

γ (z;σ1, σ2, η1, η2, r) , 1
2(1−r2)

³
α3 − α2

2

α1

´
=

(η2 − η1z)
2

2 (σ22 − 2rσ1σ2z + σ21z
2)

, (B-19)

δ (z;σ1, σ2, η1, η2, r) = sign
£¡

σ22η1 − rσ1σ2η2
¢
+
¡
σ21η2 − rσ1σ2η1

¢
z
¤
. (B-20)

After extensive algebra, using the above definitions, we obtain

Z ∞

0

C1p (C1, C1z) dC1 =
(1−r2)

1/2
σ1σ2

2π(σ22−2rσ1σ2z+σ2
1
z2)

e−α(σ1,σ2,η1,η2,r)

+δ σ1σ2β(z;σ1,σ2,η1,η2,r)
1/2

√
2π(σ22−2rσ1σ2z+σ2

1
z2)

e−γ(z;σ1,σ2,η1,η2,r)

×Φ
³
−δ (z;σ1, σ2, η1, η2, r)

β(z;σ1,σ2,η1,η2,r)
1/2

(1−r2)

´
. (B-21)

Returning to Eq. B-7, we can note that
R∞
0

C1p (−C1,−C1z) dC1 is identical in form
to
R∞
0

C1p (C1, C1z) dC1 if we replace η1 by −η1 and η2 by −η2. Thus, we can finally write

pz (z) = σ1σ2

(σ22−2rσ1σ2z+σ2
1
z2)

(
(1− r2)

1/2

2π

£
e−α(σ1,σ2,η1,η2,r) + e−α(σ1,σ2,−η1,−η2,r)

¤

+
δ√
2π

β (z;σ1, σ2, η1, η2, r)
1/2 e−γ(z;σ1,σ2,η1,η2,r)

×Φ
³
−δ (z;σ1, σ2, η1, η2, r)

β(z;σ1,σ2,η1,η2,r)
1/2

(1−r2)

´

− δ√
2π

β (z;σ1, σ2,−η1,−η2, r)
1/2 e−γ(z;σ1,σ2−,η1,−η2,r)

× Φ
³
δ (z;σ1, σ2,−η1,−η2, r)

β(z;σ1,σ2,−η1,−η2,r)
1/2

(1−r2)

´o
, (B-22)

where we have used the fact that δ (z;σ1, σ2,−η1,−η2, r) = −δ (z;σ1, σ2, η1, η2, r).
The likelihood function of the form pθ

¡
θ (t) |θn|n

¢
is given by

pθ
¡
θ (t) |θn|n

¢
=

pz
¡
z (t) |θn|n

¢
¯̄
¯dθ(t)dz(t)

¯̄
¯

, (B-23)

where θ (t) is the output of the DIFAR sensor at time t, θn|n is the estimate of θ obtained
from xn|n using Eq. 107, and z = tan θ (t). In what follows, let θ (t)→ θ and θn|n → θ0.
Note that ηi, σi, and r are functions of θ0. It follows immediately that

pθ (θ|θ0) = pz (z|θ0)
¡
1 + z2

¢
, (B-24)
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where 0 ≤ θ ≤ 2π. We must now determine η1, η2, σ1, σ2, and r.
Examine the correlation output defined by

Ci =
1

T

Z T/2

−T/2

yi (t) y0 (t) dt; i = 1, 2, (B-25)

where

y0 (t) , s (t) + n0 (t) , (B.4a)

y1 (t) , s (t) cos θ0 + n1 (t) , (B.4b)

y2 (t) , s (t) sin θ0 + n2 (t) . (B-26)

Assume that s (t) , n0 (t) , n1 (t) , and n2 (t) are independent zero-mean Gaussian processes.
Now

η1 = E {C1} = E
©
s2 (t)

ª
cos θ0

= cos θ0

Z ∞

−∞
Ss (f) df, (B-27)

where Ss (f) is the source spectrum. Now examine

E
©
C2

i

ª
=
1

T 2

Z T/2

−T/2

Z T/2

−T/2

E {yi (t) yi (s) y0 (t) y0 (s)} dtds. (B-28)

But

E {yi (t) yi (s) y0 (t) y0 (s)} = cos2 θ0E
©
s2 (t) s2 (s)

ª
+ E {s (t) s (s)} E {ni (t)ni (s)}

+cos2 θ0E {s (t) s (s)} E {n0 (t)n0 (s)}

+E {n0 (t)n0 (s)} E {ni (t)ni (s)}

=
£
R2

s (0) + 2R
2
s (t− s)

¤
cos2 θ0

+Rs (t− s)Rni (t− s)

+Rs (t− s)Rn0 (t− s) cos2 θ0

+Rn0 (t− s)Rni (t− s) , (B-30)

where Rs (τ) and Rni (τ) are the signal and noise autocorrelation functions under a wide-
sense stationary assumption.
Examine

J =
1

T 2

Z T/2

−T/2

Z T/2

−T/2

R1 (t− s)R2 (t− s) dtds

=
1

T 2

Z T/2

−T/2

Z T/2−s

−T/2−s

R1 (u)R2 (u) duds. (B-31)
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Interchanging the order of integration, it follows that

J =
1

T 2

Z T

0

Z T/2−u

−T/2

R1 (u)R2 (u) du+
1

T 2

Z 0

−T

Z T/2

−T/2−u

R1 (u)R2 (u) du

=
1

T 2

Z T

−T

(T − |u|)R1 (u)R2 (u) du

=
1

T

Z T

−T

µ
1− |u|

T

¶
R1 (u)R2 (u) du. (B-32)

If the correlation time τ i ¿ T , implying that BT À 1, where B is the bandwidth, then

J =
1

T

Z ∞

−∞
R1 (u)R2 (u) du

=
1

T

Z ∞

−∞
S1 (f)S2 (f) df, (B-33)

where S1 (f) and S2 (f) are the corresponding spectra.
Using the above results, we conclude that

E
©
C2
1

ª
= R2

s (0) cos
2 θ0 +

2

T
cos2 θ0

Z ∞

−∞
S2s (f) df +

1

T
cos2 θ0

Z ∞

−∞
Ss (f)Sn0 (f) df

+
1

T

Z ∞

−∞
Sn1 (f)Ss (f) df +

1

T

Z ∞

−∞
Sn0 (f)Sn1 (f) df. (B-34)

Thus

σ21 =
1

T

Z ∞

−∞

©
2S2s (f) cos

2 θ0 + Ss (f)Sn0 (f) cos
2 θ0 + Ss (f)Sn1 (f) + Sn0 (f)Sn1

ª
df.

(B-35)
Similarly

σ22 =
1

T

Z ∞

−∞

©
2S2s (f) sin

2 θ0 + Ss (f)Sn0 (f) sin
2 θ0 + Ss (f)Sn2 (f) + Sn0 (f)Sn2

ª
df

(B-36)
In addition, it follows that

E {C1C2} = E {y1 (t) y0 (t) y2 (t) y0 (t)}

=
£
R2

s (0) + 2R
2
s (t− s) +Rs (t− s)Rn0 (t− s)

¤
cos θ0 sin θ0. (B-37)

Thus

E {(C1 − η1) (C2 − η2)} =
1

T

½Z ∞

−∞

£
2S2s (f) + Ss (f)Sn0 (f)

¤
df

¾
cos θ0 sin θ0, (B-38)

and now we can identify

r =
E {(C1 − η1) (C2 − η2)}

σ1σ2

=
1

Tσ1σ2

½Z ∞

−∞

£
2S2s (f) + Ss (f)Sn0 (f)

¤
df

¾
cos θ0 sin θ0. (B-39)
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Note that provided BT À 1, both C1 and C2 are approximately jointly Gaussian random
variables.
For computational purposes, we make some simplifying assumptions. Let

Sn0 (f) =
σ2N
2B

, (B-40a)

Sni (f) = ρSn0 (f) , (B-40b)

Ss (f) =
σ2S
2B

(B-40c)

which assumes that the noise has a bandlimited white spectrum. Note that this can be
modified for any given bandlimited spectra, requiring integration over the frequency of
the band. ρ is the dipole channel noise gain, which is 1/2 or 1/3 for 2-D or 3-D isotropic
noise, respectively [27]. Now we obtain

η1 = σ2S cos θ0, (B-41a)

η2 = σ2S sin θ0, (B-41b)

σ21 =
2B

T

∙
2σ4S
4B2

+
σ2Sσ

2
N

4B2

¸
cos2 θ0 + ρ

2B

T

∙
σ2Sσ

2
N

4B2
+
2σ4N
4B2

¸

=
σ4N
4BT

£
SNR (2SNR+ 1) cos2 θ0 + ρ (SNR+ 1)

¤
, (B-41c)

σ22 =
σ4N
4BT

£
SNR (2SNR+ 1) sin2 θ0 + ρ (SNR+ 1)

¤
, (B-41d)

where SNR = σ2S/σ
2
N . In addition,

E {(C1 − η1) (C2 − η2)} =
2B

T

∙
2σ4S
4B2

+
σ2Sσ

2
N

4B2

¸
cos θ0 sin θ0

=
σ4N
4BT

SNR (2SNR+ 1) cos θ0 sin θ0,

and, thus

r = SNR(2SNR+1) cos θ0 sin θ0

[SNR(2SNR+1) cos2 θ0+ρ(SNR+1)]1/2[SNR(2SNR+1) sin2 θ0+ρ(SNR+1)]
1/2 . (B-42)

Given the form of Eq’s. B-17 - B-20, we can normalize η1, η2, σ1, σ2 by σ2N/2BT such
that Eq. B-41d becomes

eη1 =
√
2BTSNR cos θ0, (B-43a)

eη2 =
√
2BTSNR sin θ0, (B-43b)

eσ21 = SNR (2SNR+ 1) cos2 θ0 + ρ (SNR+ 1) , (B-43c)

eσ22 = SNR (2SNR+ 1) sin2 θ0 + ρ (SNR+ 1) . (B-43d)

To summarize, for z = tan θ:
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pθ (θ|θ0) = (1 + z) pz (z|θ0) , (B-44)

pz (z|θ0) =
eσ1eσ2

eσ22 − 2reσ1eσ2z + eσ21z2

(
(1− r2)

1/2

2π
e−α(σ1,σ2,η1,η2,r)

+
δ (z; eσ1, eσ2,eη1,eη2, r)√

2π
β (z; eσ1, eσ2,eη1,eη2, r)1/2 e−γ(z;σ1,σ2,η1,η2,r)

×
h
Φ
³
−δ (z; eσ1, eσ2,eη1,eη2, r) β(z;σ1,σ2,η1,η2,r)

1/2

(1−r2)

´

− Φ
³
δ (z; eσ1, eσ2,eη1,eη2, r) β(z;σ1,σ2,η1,η2,r)

1/2

(1−r2)

´io
, (B-45)

with

α (eσ1, eσ2,eη1,eη2, r) ,
eσ22eη21 − 2reσ1eσ2eη1eη2 + eσ21eη22

2eσ21eσ22 (1− r2)
, (B-46a)

β (z; eσ1, eσ2,eη1,eη2, r) ,

£¡
eσ22eη1 − reσ1eσ2eη2

¢
+
¡
eσ21eη2 − reσ1eσ2eη1

¢
z
¤2

eσ21eσ22
¡
eσ22 − 2reσ1eσ2z + eσ21z2

¢ , (B-46b)

γ (z; eσ1, eσ2,eη1,eη2, r) ,
(eη2 − eη1z)2

2
¡
eσ22 − 2reσ1eσ2z + eσ21z2

¢ , (B-46c)

δ (z; eσ1, eσ2,eη1,eη2, r) = sign
£¡
eσ22eη1 − reσ1eσ2eη2

¢
+
¡
eσ21eη2 − reσ1eσ2eη1

¢
z
¤
, (B-46c)

and

Φ (x) ,
1√
2π

Z ∞

x

e−u2/2du. (B-47)

A plot of pθ (θ|θ0) as a function of SNR and bearing for a target vehicle at 20o is shown
in Figure B1.
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