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Abstract

Analysis of variance (ANOVA) is the standard procedure for statistical
inference in factorial designs. Typically, ANOVAs are executed using fre-
quentist statistics, where p-values determine statistical significance in an
all-or-none fashion. In recent years, the Bayesian approach to statistics
is increasingly viewed as a legitimate alternative to the p-value. How-
ever, the broad adoption of Bayesian statistics –and Bayesian ANOVA
in particular– is frustrated by the fact that Bayesian concepts are rarely
taught in applied statistics courses. Consequently, practitioners may be
unsure how to conduct a Bayesian ANOVA and interpret the results. Here
we provide a guide for executing and interpreting a Bayesian ANOVA with
JASP, an open-source statistical software program with a graphical user
interface. We explain the key concepts of the Bayesian ANOVA using two
empirical examples.
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Ubiquitous across the empirical sciences, analysis of variance (ANOVA) al-
lows researchers to assess the effects of categorical predictors on a continuous
outcome variable. Consider for instance an experiment by Strack, Martin, and
Stepper (1988) designed to test the facial feedback hypothesis, that is, the hy-
pothesis that people’s affective responses can be influenced by their own facial
expression. Participants were randomly assigned to one of three conditions. In
the lips condition, participants were instructed to hold a pen with their lips,
inducing a pout. In the teeth condition, participants were instructed to hold
a pen between their teeth, inducing a smile. In the control condition, partic-
ipants were told to hold a pen in their nondominant hand. With the pen in
the instructed position, each participant then rated four cartoons for funniness.
The outcome variable was the average funniness rating across the four cartoons.
The ANOVA procedure may be used to test the null hypothesis that the pen
position does not result in different funniness ratings.

ANOVAs are typically conducted using frequentist statistics, where p-values
decide statistical significance in an all-or-none manner: if p < .05, the result is
deemed statistically significant and the null hypothesis is rejected; if p > .05,
the result is deemed statistically nonsignificant, and the null hypothesis is re-
tained. Such binary thinking has been critiqued extensively (e.g., Cohen, 1994;
Rouder, Engelhardt, McCabe, & Morey, 2016; Amrhein, Greenland, & Mc-
Shane, 2019), and some perceive it as a cause of the reproducibility crisis in
psychology (Cumming, 2014; but see Savalei & Dunn, 2015). In recent years,
several alternatives to p-values have been suggested, for example reporting con-
fidence intervals (Cumming, 2014; Gardner & Altman, 1986) or abandoning
null hypothesis testing altogether (McShane, Gal, Gelman, Robert, & Tackett,
2019).

Here we focus on another alternative: Bayesian inference. In the Bayesian
framework, knowledge about parameters and hypotheses is updated as a func-
tion of predictive success – hypotheses that predicted the observed data rel-
atively well receive a boost in credibility, whereas hypotheses that predicted
the data relatively poorly suffer a decline (Wagenmakers, Morey, & Lee, 2016).
A series of recent articles show how the Bayesian framework can supplement
or supplant the frequentist p-value (e.g., Burton, Gurrin, & Campbell, 1998;
Dienes & McLatchie, 2018; Jarosz & Wiley, 2014; Masson, 2011; Nathoo &
Masson, 2016; Rouder et al., 2016).

The advantages of the Bayesian paradigm over the frequentist p-value are
well documented (e.g., Wagenmakers et al., 2018); for instance, with Bayesian
inference researchers can incorporate prior knowledge and quantify support,
both in favor and against the null-hypothesis; furthermore, this support may
be monitored as the data accumulate (?, ?). Despite these and other advan-
tages, Bayesian analyses are still used only sparingly in the social sciences (van
der Schoot, Winter, Ryan, Zondervan Zwijnenburg, & Depaoli, 2017). The
broad adoption of Bayesian statistics –and Bayesian ANOVA in particular– is
hindered by the fact that Bayesian concepts are rarely taught in applied statis-
tics courses. Consequently, practitioners may be unsure of how to conduct a
Bayesian ANOVA and interpret the results.
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To help familiarize researchers with Bayesian inference for common experi-
mental designs, this article provides a guide for conducting and interpreting a
Bayesian ANOVA with JASP (JASP Team, 2019). JASP is a free, open-source
statistical software program with a graphical user interface that offers both
Bayesian and frequentist analyses. Below, we first provide a brief introduction
to Bayesian statistics. Subsequently, we use two data examples to explain the
key concepts of ANOVA.

Bayesian Foundations

This section explains some of the fundamentals of Bayesian inference. We fo-
cus on interpretation rather than mathematical detail; see the special issue on
Bayesian inference by Vandekerckhove, Rouder, and Kruschke (2018) for a set
of comprehensive, low-level introductions to Bayesian inference.

The central goal of Bayesian inference is learning, that is, using observations
to update knowledge. In an ANOVA we want to learn about the candidate
models M and their condition-effect parameters β. Returning to the exam-
ple of the facial feedback experiment, we commonly specify two models. The
null model describes the funniness ratings using a single grand average across
all three conditions, effectively stating that there is no effect of pen position.
The parameters of the null model are thus the average test score and the error
variance. The alternative model describes the funniness ratings using an overall
average and the effect of pen position; in other words, the means of the three
condition are allowed to differ. Therefore, the alternative model has five param-
eters: the average funniness ratings across participants, the error variance, and
for each of the three pen positions the magnitude of the effect.1

To start the learning process we need to specify prior beliefs about the
plausibility of each model, p(M), and about the plausible parameters values
β within each model, p(β |M).2 These prior beliefs are represented by prior
distributions. Observing data D drives an update of beliefs, transforming the
prior distribution over models and parameters to a joint posterior distribution,
denoted p(β,M | D).3 The updating factor –the change from prior to posterior
beliefs– is determined by relative predictive performance for the observed data
(Wagenmakers et al., 2016). As shown in Figure 1, the knowledge updating
process forms a learning cycle, such that the posterior distribution after the
first batch of data becomes the prior distribution for the next batch.

1Note that one of the four parameters, average funniness rating and the three condition
effects, is redundant. That is, we can make identical predictions even when we fix one of the
four parameters to zero.

2The symbol “ | ” may be read as “given the” or “conditional on”.
3The joint posterior distribution describes the posterior probabilities for each parameter

to take on values in a particular range. Simultaneously, it describes a discrete probability
distribution over the models considered, where models with a higher plausibility after seeing
the data have a higher probability. Furthermore, the joint posterior distribution also describes
any interaction between parameters and models. For example, in the full model containing all
covariates, the posterior distributions for the parameters estimates may be more concentrated
around zero.
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Figure 1: Bayesian learning can be conceptualized as a cyclical process of up-
dating knowledge in response to prediction errors. The prediction step is de-
ductive, and the updating step is inductive. For a detailed account see Jevons
(1874/1913, Chapters XI and XII). Figure available at BayesianSpectacles

.org under a CC-BY license.

Mathematically, the updating process is given by Bayes’ rule:

Joint posterior
distribution︷ ︸︸ ︷

p(β,M | D) =

Prior model
probability︷ ︸︸ ︷
p(M) ×

Prior param.
probability︷ ︸︸ ︷
p(β |M) ×

Updating factor︷ ︸︸ ︷
p(D | β,M)

p(D)
. (1)

This rule stipulates how knowledge about the relative plausibility of both models
and parameters ought to be updated in light of the observed data. When the
focus is on the comparison of two rival models, one generally considers only
the model updating term. This term, commonly known as the Bayes factor,
quantifies the relative predictive performance of the rival models, that is, the
change in relative model plausibility that is brought about by the data (Etz &
Wagenmakers, 2017; Jeffreys, 1939; Kass & Raftery, 1995; Wrinch & Jeffreys,
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1921):

p(M1 | D)

p(M0 | D)︸ ︷︷ ︸
Posterior model odds

=
p(M1)

p(M0)︸ ︷︷ ︸
Prior model odds

× p(D | M1)

p(D | M0)︸ ︷︷ ︸
Bayes factor

BF10

. (2)

When the Bayes factor BF10 equals 20, the observed data are twenty times more
likely to occur underM1 than underM0 (i.e., support forM1 versusM0); when
the Bayes factor BF10 equals 1/20, the observed data are twenty times more
likely to occur underM0 than underM1 (i.e., support forM0 versusM1); when
the Bayes factor BF10 equals 1, the observed data are equally likely to occur
under both models (i.e., neither model is supported over the other). Note that
the Bayes factor is a comparison of two models and hence it is always a relative
measure of evidence, that is, it quantifies the performance of one model relative
to another.4 Since the prior and posterior odds are both ratios of probabilities,
the Bayes factor can be seen as an odds ratio that quantifies the change in
belief from prior odds to posterior odds. The Bayes factor can be presented
as BF10, p(D|M1) divided by p(D|M0), or as its reciprocal BF01, p(D|M0)
over p(D|M1). Typically, BF10 > 1 is used to quantify evidence in favor of
the alternative hypothesis, whereas BF01 > 1 is used to quantify evidence in
favor of the null hypothesis. For instance, BF10 = 1/3 can be interpreted as
“the data are 1/3 times more likely underM1 than underM0”, but for a Bayes
factor lower than 1 it is more intuitive to switch numerator and denominator
and instead report the results as BF01 = 3, that is, “the data are 3 times more
likely under M0 than under M1”.

The Bayesian paradigm differs from the frequentist paradigm in at least four
key aspects. First, evidence in favor of a particular model, quantified by a Bayes
factor, is a continuous measure of support. Unlike the frequentist Neyman-
Pearson decision rule (usually p < 0.05), there is no need to impose all-or-none
Bayes factor cut-offs for accepting or rejecting a particular model. Moreover, the
Bayes factor can discriminate between “absence of evidence” (i.e., nondiagnostic
data that are predicted about equally well under both models, such that the
Bayes factor is close to 1) and “evidence of absence” (i.e., diagnostic data that
support the null hypothesis over the alternative hypothesis).

A second difference is that, in the Bayesian paradigm, knowledge about mod-
els M and parameters β is updated simultaneously. Consequently, it is natural
to account for model uncertainty by considering all models, but assigning more
weight to those models that predicted the data relatively well. This procedure
is known as Bayesian model averaging (BMA; Hinne, Gronau, van den Bergh,
& Wagenmakers, 2019; Hoeting, Madigan, Raftery, & Volinsky, 1999; Jevons,
1874/1913; Jeffreys, 1939, p. 296; Jeffreys, 1961, p. 365). In contrast, many
frequentist analyses first select a ‘best’ model and subsequently estimate its

4For a cartoon that explains the strength of evidence provided by a Bayes factor,
see https://www.bayesianspectacles.org/lets-poke-a-pizza-a-new-cartoon-to-explain

-the-strength-of-evidence-in-a-bayes-factor/
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parameters, thereby neglecting model uncertainty and producing overconfident
conclusions (Ch 7.4 Claeskens & Hjort, 2008).5 Another benefit of BMA is
that point estimates and uncertainty intervals can be derived without condi-
tioning on a specific model. This way, model uncertainty is accounted for in
point estimates and uncertainty intervals.

A third difference is that the Bayesian posterior distributions allow for direct
probabilistic statements about parameters. For example, based on the posterior
distribution of β we can state that we are 95% confident that the parameter
lies between x and y. This range of parameter values is commonly known as a
95% credible interval.6 Similarly, we can consider any interval from a to b and
quantify our confidence that the parameter falls in that specific range.

A fourth difference is that Bayesian inference automatically penalizes for
complexity and thus favors parsimony (e.g., Berger & Jefferys, 1992; Jeffreys,
1961; Myung & Pitt, 1997). For instance, a model with a redundant covariate
will make poor predictions. Consequently, the Bayes factor, which compares the
relative predictive performance of two models, will favor the model without the
redundant predictor over the model with the redundant predictor. Key is that,
as the words suggest, the predictive performance is assessed using parameter
values that are drawn from the prior distributions.

ANOVA

Traditionally, analysis of variance involves –as the name suggests– a comparison
of variances. In the frequentist framework, the variance between each level of
the categorical predictor is compared to the variance within the levels of the
categorical predictor.

When the categorical predictor has no effect, the population variances be-
tween the levels equals the population variances within the levels, and the sam-
ple ratio of these variances is distributed according to a central F-distribution.
Under the assumption that the null hypothesis is true, we may then calculate
the probability of encountering a sample ratio of variances that is at least as
large as the one observed – this then yields the much-maligned yet omnipresent
p-value.

Instead, the Bayesian ANOVA contrasts the predictive performance of com-
peting models (Rouder et al., 2016). In order to make predictions the model
parameters need to be assigned prior distributions. These prior distributions
could in principle be specified from subjective background knowledge, but here
we follow Rouder, Morey, Speckman, and Province (2012) and use a default spec-
ification inspired by linear regression models, designed to meet general desider-

5Although uncommon, it is possible to average over the models in the frequentist frame-
work. To do so, calculate for each model an information criterion such as AIC, and use a
transformed version as model weights (Burnham & Anderson, 2002).

6Note the difference in interpretation compared to the frequentist 95% confidence interval:
“if we repeat this experiment an infinite number of times and compute an infinite number of
confidence intervals, then 95% of these intervals contain the true parameter value.” See also
Morey, Hoekstra, Rouder, Lee, and Wagenmakers (2016).
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ata such as consistency and scale invariance (i.e., it does not matter whether
the outcome variable is measured in seconds or milliseconds; see also Bayarri,
Berger, Forte, & Garćıa-Donato, 2012; Liang, Paulo, Molina, Clyde, & Berger,
2008).

Assumptions

Before interpreting the results from an ANOVA, it is prudent to assess whether
its main assumption holds, namely that the residuals are normally distributed.
A common tool to assess the normality of the residuals is a Q-Q plot, which
visualizes the quantiles of the observed residuals against the quantiles expected
from a standard normal distribution. If the residuals are normally distributed
then all the points in a Q-Q plot fall on the red line in Figure 2. In contrast
to a frequentist ANOVA, where the residuals are point estimates, a Bayesian
ANOVA provides a probability distribution for each residual. The uncertainty
in the residuals can thus be summarized by 95% credible intervals. The left
panel of Figure 2 shows an example where the larger quantiles lie away from the
red line, displaying a substantial deviation from normality. The right panel of
Figure 2 shows residuals that are more consistent with what is expected under
a normal distribution.
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Figure 2: Q-Q plots of non-normally distributed residuals (left) and approxi-
mately normally distributed residuals (right). The vertical bars through each
point represent the 95% central credible interval. If the data are perfectly nor-
mally distributed, all points fall on the red line. Note that the y-axis of the two
panels has a different scale.

Introductory texts discuss additional ANOVA assumptions, most of which
follow directly from the normality of the residuals. For some of these assump-
tions, violations can be difficult to detect visually in a Q-Q plot. An example
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is sphericity, which is specific to repeated measures ANOVA. One definition of
sphericity is that the variance of all pairwise difference scores is equal. In the
frequentist paradigm, this assumption is usually assessed using Mauchly’s test
(but see Tijmstra, 2018). Another example is homogeneity of variances, which
implies that the residual variance is equal across all levels of the predictors.
Homogeneity of variances can be assessed using Levene’s test (Levene, 1961).

The following sections illustrate how to conduct and interpret a Bayesian
ANOVA with JASP. JASP can be freely downloaded from https://jasp-stats

.org/download/. Annotated .jasp files of the discussed analyses, data sets,
and a step-by-step guide on conducting a Bayesian ANOVA in JASP are avail-
able at https://osf.io/f8krs/. We should stress that the current implemen-
tation of Bayesian ANOVA in JASP is based on the R package BayesFactor
(Morey & Rouder, 2015) which is itself based on the statistical work by Rouder
et al. (2012).

Example I: A Robot’s Social Skills

Do people take longer to switch off a robot when it displays social skills? This
question was studied by Horstmann et al. (2018) and we use their data to
illustrate the key concepts of a Bayesian ANOVA. In the Horstmann et al.
(2018) study, 85 participants interacted with a robot. Participants were told
that the purpose of their interaction with the robot was to test a new algorithm.
After two dummy tasks were completed, the instructor told the participants
that they could switch off the robot if they wanted. The outcome variable
was the time it took participants to switch off the robot. Here we analyze
the log-transformed switch-off times since the Q-Q plot of the raw switch off
times showed a violation of normality. Horstmann et al. (2018) manipulated
two variables in a between-subjects design. First, they manipulated the robots’
verbal responses to be either social (e.g., “Oh yes, pizza is great. One time I
ate a pizza as big as me.”) or functional (e.g., “You prefer pizza. This worked
well. Let us continue.”). Second, either the robot protested to being turned
off (e.g., “No! Please do not switch me off! I am scared that it [sic] will not
brighten up again!”) or it did not. Therefore, the design of this study is a 2x2
between-subjects ANOVA. The data are shown in Figure 3.

Interpreting the Bayesian ANOVA

Model comparison The primary output from the JASP ANOVA is pre-
sented in Table 1, which shows the support that the data offer for each model
under consideration. The left-most column lists all models at hand: four alter-
native models and one null model. The models are ordered by their predictive
performance relative to the best model; this is indicated in the BF01 column,
which shows the Bayes factor relative to the best model which features only the
objection factor. For example, the data are about 73 times more likely under
the model with only the robot’s objection as a predictor than under the null
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Figure 3: Observed log switch-off times for the data of Horstmann et al. (2018).
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model. The prior model probability P (M) is 0.2 for all models and the resulting
posterior model probabilities are given by P (M|D). The BFM column shows
change from prior odds to posterior odds for each model. For example, for the
best model with only the robot’s objection as a predictor the change in odds is:
0.542/(1−0.542) × (1−0.2)/0.2 ≈ 4.734, which matches the output of Table 1. The
right-most column provides an error percentage indicating the precision of the
numerical approximations, which should not be too large.7

Table 1: Model comparison for all models under consideration for the data of
Horstmann et al. (2018). The abbreviations ‘O’ and ‘S’ stand for the robot’s
objection and social interaction type, respectively. The term ‘O * S’ stands for
the interaction between the two factors. The ‘Model’ column shows the predic-
tors included in each model, the P (M) column the prior model probability, the
P (M|D) column the posterior model probability, the BFM column the poste-
rior model odds, and the BF01 column the Bayes factors of all models compared
to the best model. The final column, ‘error’ is an estimate of the numerical
error in the computation of the Bayes factor. All models are compared to the
best model and are sorted from lowest Bayes factor to highest.

Model P (M) P (M|D) BFM BF01 error %

O 0.2 0.542 4.735 1.000
O + S + O * S 0.2 0.303 1.736 1.791 2.770
O + S 0.2 0.146 0.682 3.719 1.323
Null model 0.2 0.007 0.030 73.373 0.000
S 0.2 0.002 0.009 252.495 0.005

Bayes factors are transitive, which means that if the model with only the
robot’s objection outpredicts the null model by a factor of a, and the null model
outpredicts the model with only social interaction type by a factor of b, then the
model with only the robot’s objection will outpredict the model with only social
interaction type by a factor of a× b. Transitivity can be used to compute Bayes
factors that may be of interest but are missing from the table. For example, the
Bayes factor for the null model versus the model with only social interaction
type can be obtained by dividing their Bayes factors against the best model:
252.495/73.373 ≈ 3.441 in favor of the null model.

Note that the Bayes factor is represented as BF01 in Table 1; predictive
performance of the best model divided by the predictive performance for a
particular model. Had we shown BF10, we would have needed to take the
reciprocal of the previous calculation to obtain the same result.

7In many situations, error percentages below 20% are acceptable. If the error is 20%, then
a Bayes factor of 10 can fluctuate between 8 and 12. Because Bayes factors between 8 and 12
lead to the same qualitative conclusion, this amount of numerical error is not problematic (see
also Jeffreys, 1961, Appendix B). When the error percentage is deemed too high, the number
of samples can be increased to reduce the error percentage at the cost of longer computation
time. For more information, see van Doorn et al. (2019).
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Analysis of Effects The previous section compared all available models.
However, as the number of predictors increases, the number of models quickly
grows too large to consider each model individually.8 Rather than studying the
results for each model individually, it is possible to average the results from
Table 1 over all models, that is, compute the model-averaged results. This pro-
duces Table 2, which shows for each predictor the prior and posterior inclusion
probabilities, and the inclusion Bayes factor. A prior inclusion probability is the
probability that a predictor is included in the model before seeing the data and
is computed by summing up the prior model probabilities of all models which
contain that predictor. A posterior inclusion probability is the probability that
a predictor is included in the model after seeing the data and is computed by
summing up the posterior model probabilities of all models which contain that
predictor. The inclusion Bayes factor quantifies the change from prior inclusion
odds to posterior inclusion odds and can be interpreted as the evidence in the
data for including a predictor. For example, Table 2 shows that the data are
about 68.6 times more likely under the models that include the robot’s objection
than under the models without this predictor.

Table 2: Results from averaging over the models in Table 1. The abbreviations
‘O’ and ‘S’ stand for the robot’s objection and social interaction type respec-
tively. The first column denotes each predictor of interest, the column P (incl)
shows the prior inclusion probability, P (incl | D) shows the posterior inclusion
probability, and BFInclusion shows the inclusion Bayes factor.

Effects P (incl) P (incl | D) BFInclusion

O 0.6 0.990 68.558
S 0.6 0.445 0.535
O * S 0.2 0.293 1.659

Although model-averaged results are straightforward to obtain, their inter-
pretation requires special attention when interaction effects are concerned. In
JASP, models are excluded from consideration when they violate the principle
of marginality, that is, they feature an interaction effect but lack the constituent
main effects (for details see Nelder, 1977). This model exclusion rule means that
the active model set is not balanced. For example, in Table 2 the inclusion odds
for the interaction ‘O * S’ is obtained by comparing four models without the
interaction effect against the one model with the interaction effect. As an al-
ternative, Sebastiaan Mathôd has suggested to compute inclusion probabilities
for “matched” models only.9 What this means is that all models with the in-
teraction effect are compared to models with the same predictors except for the
interaction effect. For example, the model with an interaction effect between

8In general, given p predictors there are 2p models to consider. If interaction effects are
considered, the model space grows even faster.

9See also https://www.cogsci.nl/blog/interpreting-bayesian-repeated-measures-in

-jasp.
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‘O * S’ in Table 2 is compared against the model with the main effects of ‘O’
and ‘S’, but not against any other models. To compute inclusion probabilities
for main effects, models that feature interaction effects composed of these main
effects are not considered. These models are excluded because they cannot be
matched with models that include the interaction effect but not the main effect,
since those violate the principle of marginality. Note that without interaction
effects, the matched and not matched inclusion probabilities are the same.

Table 3 shows the inclusion probabilities and inclusion Bayes factor obtained
by only considering matched models. Comparing Table 3 to Table 2, the prior
inclusion probability of the main effects decreased because these are based on one
model fewer. The posterior inclusion probabilities of the main effects decreased
but that of the interaction effect increased. The inclusion Bayes factor, the
evidence in the data for including a predictor, provides slightly more evidence for
including the main effect of the robot’s objection and the interaction effect, and
somewhat more evidence for excluding the main effect of the social interaction
type.

Table 3: Results from averaging over the models in Table 1 but only considering
“matched” models (see text for details). The abbreviations ‘O’ and ‘S’ stand for
the robot’s objection and social interaction type respectively. The first column
denotes each predictor of interest, the column P (incl) shows the prior inclusion
probability, P (incl | D) shows the posterior inclusion probability, and BFInclusion

shows the inclusion Bayes factor.

Effects P (incl) P (incl | D) BFInclusion

O 0.4 0.6872 72.76
S 0.4 0.1524 0.28
O * S 0.2 0.3033 2.018

Parameter Estimates After establishing which predictors are relevant we
can investigate the magnitude of the relations by examining the posterior dis-
tributions. Table 4 summarizes the model-averaged posterior distributions of
each level (βj), using four statistics: the posterior mean, the posterior standard
deviation, and the lower and upper bound of the 95% central credible interval.
The symmetry in the estimates is a consequence of the sum-to-zero constraint,
that is, the posterior mean of O-Yes = −1 × the posterior mean of O-No =
0.265. Table 4 shows that the effect of objection is about 0.265 (95% CI [0.111,
0.418]). A posterior estimate for the observed log response time of a particular
group, say the condition where the robot did not object, can be obtained by
adding the posterior mean of the intercept (i.e., the grand mean), 1.724, to the
posterior mean of the no-objection condition, −0.265, which yields 1.459.10

10This calculation is valid only for the posterior means, not for the other posterior sum-
maries.
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Table 4: Summary of the marginal model averaged posterior distributions. Pos-
teriors are summarized using mean, standard deviation, and 95% central credible
intervals (CI).

95% CI
Predictor Level Mean SD Lower Upper

Intercept 1.724 0.077 1.569 1.877
O Yes 0.265 0.077 0.111 0.418

No −0.265 0.077 −0.420 −0.113
S Functional −0.044 0.071 −0.186 0.097

Social 0.044 0.071 −0.098 0.185
O * S Yes & Social −0.132 0.072 −0.278 0.008

Yes & Functional 0.132 0.072 −0.009 0.276
No & Social 0.132 0.072 −0.009 0.276
No & Functional −0.132 0.072 −0.278 0.008

To summarize, the Bayesian ANOVA revealed that the robot’s objection
almost certainly had an effect on switch-off time (BFInclusion = 68.558). We
also learned that the data are not sufficiently informative to allow a strong
conclusion about the effect of the robot’s social interaction type (BFInclusion =
0.535) or about an interaction effect between objection and social interaction
type (BFInclusion = 1.659).

Example II: Post Hoc Tests on the Houses of Hogwarts

After executing an ANOVA and finding strong evidence that a particular pre-
dictor relates to the outcome variable, a common question arises: “Which levels
of the predictor deviate from one another?”. As an illustration, consider the
data from Jakob, Garcia-Garzon, Jarke, and Dablander (2019) where 847 partic-
ipants filled out a ‘sorting hat’ questionnaire that determined their assignment
to one of the four Houses of Hogwarts from the Harry Potter books: Gryffindor,
Hufflepuff, Ravenclaw, or Slytherin.11 Subsequently, participants filled out the
dark triad questionnaire (Jones & Paulhus, 2014) that was used to derive the
outcome variable: Machiavellism.

In this example, there is only one categorical predictor: The House of Hog-
warts a participant was assigned to. If we compare the model with this pre-
dictor to the null model, we find overwhelming evidence for the alternative
(BF10 = 6.632 × 1018). This is a clear indication that Machiavellism differs
between the members of the four houses. However, this result does not indicate
the houses responsible for the difference. To address that question, we need a
post hoc test.

For ANOVA models, the main component of a post hoc test is a t-test on
all pairwise combinations of a predictor’s levels. For a Bayesian ANOVA, the

11The raw data and original analyses can be found at https://osf.io/rtf74/.
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Figure 4: Observed Machiavellism scores for each of the four Houses of Hog-
warts.

main component is the Bayesian t-test. Table 5 shows the Bayesian post hoc
tests for the sorting hat data. As with frequentist inference, Bayesian post hoc
tests are subject to a multiple comparison problem. To control for multiplicity,
we follow the approach discussed in Westfall (1997) which is an extension of the
approach of Jeffreys (1938); for an overview of Bayesian methods correcting for
multiplicity see for instance de Jong (2019).

Westfall’s approach relates the overall null hypothesis p(H0) that all condi-
tion means are equal to each comparison between two condition means. That
way, the prior probability of the overall null hypothesis can be adjusted to
correct for multiplicity and this influences each individual comparison. The
procedure to relate the overall null hypothesis to each comparison is described
below.

A condition mean µi is either equal to the grand mean µ with probability τ ,
or µi is drawn from a continuous distribution with probability 1 − τ . It is key
that this distribution is continuous because two values drawn from a continuous
distribution are never exactly equal. Thus, the probability that two condition
means µi and µj are equal is p(µi = µj) = p(µi = µ) × p(µj = µ) = τ2. From
this, the probability of the null hypothesis that all J condition means are equal
follows: p(H0) = p(µ1 = µ2 = · · · = µJ) = p(µ1 = µ)×p(µ2 = µ)×· · ·×p(µJ =
µ) = τJ . Solving for τ , we obtain τ = p(H0)1/J . Thus, the prior probability
that two specific magnitudes are equal can be expressed in terms of the prior
probability that all magnitudes are equal, that is p(µi = µj) = τ2 = p(H0)2/J .
For example, imagine there are four conditions (J = 4) and the prior probability
that all condition means are equal is 0.5. Then, the prior probability that two
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conditions means are equal is: p(µ1 = µ2) =
√

0.5. The prior odds are then
(1−
√
0.5)/

√
0.5 ≈ 0.414.

In sum, the Westfall approach involves, as a first step, Bayesian t-tests for
all pairwise comparisons, which provides the unadjusted Bayes factors. In the
next step, the prior model odds are adjusted by fixing the overall probability of
no effect to 0.5. The adjusted prior odds and the Bayes factor are then used to
calculate the adjusted posterior odds.

Table 5 shows the results for the post hoc tests of the sorting hat exam-
ple. The adjusted posterior odds show (1) evidence (i.e., odds of about 16)
that Machiavellism differs between Hufflepuff and Ravenclaw; (2) evidence (i.e.,
odds of about 27) that Machiavellism differs between Gryffindor and Hufflepuff;
(3) overwhelming evidence (i.e., odds of about 1.04× 109, 5.43× 1016, and
5.30× 109) that Machiavellism differs between Gryffindor and Slytherin, be-
tween Hufflepuff and Slytherin, and between Ravenclaw and Slytherin, respec-
tively; (4) evidence (i.e, odds of 1/0.0432 ≈ 23) that Machiavellism of Gryffindor
and Ravenclaw is the same.

Table 5: Post hoc test for the Sorting House data. The first two columns indicate
the houses being compared, the third and fourth column indicate the adjusted
prior model odds and posterior model odds respectively, and the fifth column
indicates the uncorrected Bayes factor in favor of the alternative hypothesis that
the magnitudes differ. The final column shows the numerical error of the Bayes
factor computation.

Level 1 Level 2 Prior Odds Posterior Odds BF10,U error %

Gryffindor Hufflepuff 0.414 27.2 65.6 5.73× 10−5

Gryffindor Ravenclaw 0.414 0.0432 0.104 9.56× 10−5

Gryffindor Slytherin 0.414 1.04× 109 2.50× 109 3.94× 10−16

Hufflepuff Ravenclaw 0.414 15.5 37.3 7.57× 10−8

Hufflepuff Slytherin 0.414 5.43× 1016 1.31× 1017 3.35× 10−23

Ravenclaw Slytherin 0.414 5.30× 109 1.28× 1010 6.36× 10−16

Now that we know which Houses differ, the next step is to assess the magni-
tude of each House of Hogwarts on Machiavellism score. Rather than examining
a table that summarizes the marginal posteriors, we plot the model averaged
posteriors for each house in Figure 5. Clearly, Slytherin scores higher on Machi-
avellism than the other Houses whereas Hufflepuff scores lower on Machiavellism
than the other Houses. Table 6 in the appendix shows the parameters estimates
of the marginal posterior effects for each house.

Concluding Comments

The goal of this paper was to provide guidance for practitioners on to conduct
a Bayesian ANOVA in JASP and interpret the results. Although the focus was

15



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

−6 −4 −2 0 2 4 6

Sorting House

D
en

si
ty Level

Gryffindor
Hufflepuff
Ravenclaw
Slytherin

Figure 5: Posterior distributions of the effect of each House of Hogwarts on
Machiavellism. Slytherin scores higher on Machiavellism than the other Houses
whereas Hufflepuff scores lower on Machiavellism than the other Houses. The
horizontal error bars above each density represent 95% credible intervals.

on ANOVAs with categorical predictors, JASP can also handle ANOVAs with
additional continuous predictors. The appropriate analysis then becomes an
analysis of covariance (ANCOVA) and all concepts explained here still apply.
For a general guide on reporting Bayesian analyses see van Doorn et al. (2019).

As with all statistical methods, the Bayesian ANOVA comes with limitations
and caveats. For instance, when the model is severely misspecified and the resid-
uals are non-normally distributed, the results from a standard ANOVA –whether
Bayesian or frequentist– are potentially misleading and should be interpreted
with care. In such cases, at least two alternatives may be considered. The first
alternative is to consider a rank-based ANOVA such as the Kruskal–Wallis test
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(Kruskal & Wallis, 1952). This test depends only on the ordinal information in
the data and hence does not make strong assumptions on how the data ought
to be distributed. The second alternative is to specify a different distribution
for the residuals. Using software for general Bayesian inference such as Stan
(Carpenter et al., 2017) or JAGS (Plummer, 2003), it is relatively straight-
forward to specify any distribution for the residuals. However, this approach
requires knowledge about programming and statistical modeling and is likely
to be computationally intensive. Another limitation of the Bayesian ANOVA is
that, especially in more complicated designs, it is not straightforward to intuit
what knowledge the prior distributions represent.

Some limitations are specific to JASP. Currently, it is not possible to use
post hoc tests to examine whether the contribution of a level differs from zero,
that is, to test whether a specific level deviates from the grand mean. It is also
not possible to handle missing values in any other way than list-wise deletion.
Another limitation relates to sample size planning. The typical planning process
involves a frequentist power analysis which provides the sample size needed
to achieve a certain rate of correctly detecting a true effect of a prespecified
magnitude. A Bayesian equivalent of power analysis is Bayes factor design
analysis (BFDA; e.g., Schönbrodt & Wagenmakers, 2018). In a sequential
design, BFDA produces the expected sample sizes required to reach a target level
of evidence (i.e., a target Bayes factor). In a fixed-n design, BFDA produces
the expected levels of evidence, given a specification of the magnitude of the
effect. At the moment of writing BFDA has not been implemented in JASP; an
accessible tutorial and a Shiny app are provided by Stefan, Gronau, Schönbrodt,
and Wagenmakers (2019).

We believe that the Bayesian ANOVA provides a perspective on the analy-
sis of factorial designs that can fruitfully supplement or even supplant the cur-
rently dominant frequentist ANOVA. The epistemic advantages of the Bayesian
paradigm are well known (e.g., Jeffreys, 1961; Wagenmakers et al., 2018) but in
order to be adopted in research practice it is essential for the methodology to be
implemented in an easy-to-use software package such as JASP. In addition to
the software, however, practitioners also require guidance on how to interpret
the results, which was the main purpose of this paper. In general, we hope
that the increased use of the Bayesian ANOVA will stimulate the methodolog-
ical diversity in the field, and that it will become more standard to examine
the robustness of frequentist conclusions by comparing them to the Bayesian
alternative.
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van Doorn, J., van den Bergh, D., Böhm, U., Dablander, F., Derks, K., Draws,
T., . . . Wagenmakers, E.-J. (2019). The JASP guidelines for conducting
and reporting a Bayesian analysis. manuscript submitted for publication.
Retrieved from psyarxiv.com/yqxfr

Wagenmakers, E.-J., Marsman, M., Jamil, T., Ly, A., Verhagen, A. J., Love,
J., . . . Morey, R. D. (2018). Bayesian inference for psychology. Part I:
Theoretical advantages and practical ramifications. Psychonomic Bulletin
& Review , 25 , 35–57.

Wagenmakers, E.-J., Morey, R. D., & Lee, M. D. (2016). Bayesian benefits for
the pragmatic researcher. Current Directions in Psychological Science,
25 , 169–176.

Westfall, P. H. (1997). Multiple testing of general contrasts using logical con-
straints and correlations. Journal of the American Statistical Association,

20

psyarxiv.com/yqxfr


92 (437), 299–306.
Wrinch, D., & Jeffreys, H. (1921). On certain fundamental principles of scientific

inquiry. Philosophical Magazine, 42 , 369–390.

21



Parameter Estimates for the Sorting Hat Data

Table 6: Parameter estimates for each of the houses in the data of Jakob et al.
(2019). The interpretation of each column is identical to that of Table 4.

95% CI
Predictor Level Mean SD Lower Upper

Intercept 26.923 0.215 26.46 27.337
Sorting house Gryffindor −0.568 0.357 −1.28 0.140

Hufflepuff −2.610 0.360 −3.34 −1.898
Ravenclaw −0.696 0.330 −1.36 −0.037
Slytherin 3.874 0.418 3.04 4.719

22


	References

