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ABSTRACT

Analysis of variance (ANOVA) is the standard procedure for statistical 
inference in factorial designs. Typically, ANOVAs are executed using 
frequentist statistics, where p-values determine statistical signi�cance in 
an all-or-none fashion. In recent years, the Bayesian approach to statistics 
is increasingly viewed as a legitimate alternative to the p-value. However, 
the broad adoption of Bayesian statistics—and Bayesian ANOVA in 
particular—is frustrated by the fact that Bayesian concepts are rarely 
taught in applied statistics courses. Consequently, practitioners may be 
unsure how to conduct a Bayesian ANOVA and interpret the results. Here 
we provide a guide for executing and interpreting a Bayesian ANOVA with 
JASP, an open-source statistical so�ware program with a graphical user 
interface. We explain the key concepts of the Bayesian ANOVA using two 
empirical examples.
Keywords: Bayes Factor, Analysis of Variance, JASP, Posterior distribution, 
Hypothesis Test, Tutorial
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 Tutoriel pour réaliser et interpréter une analyse de variance 
bayésienne dans JASP

RESUME

L’analyse de variance (ANOVA) est la procédure standard utilisée pour l’inférence 
statistique dans les plans factoriels. En règle générale, les analyses de variance 
sont exécutées à l’aide de statistiques fréquentistes, où les valeurs p déterminent la 
signi�cativité statistique en termes de « tout ou rien ». Ces dernières années, l’approche 
bayésienne de la statistique inférentielle est de plus en plus considérée comme une 
alternative légitime à la valeur p. Toutefois, l’adoption généralisée des statistiques 
bayésiennes, et en particulier de l’ANOVA bayésienne, est limitée par le fait que les 
concepts bayésiens sont rarement enseignés dans les cours de statistiques appliquées. 
Par conséquent, les utilisateurs peuvent ne pas savoir comment e�ectuer une ANOVA 
bayésienne et en interpréter les résultats. Nous fournissons ici un guide pour réaliser et 
interpréter une ANOVA bayésienne avec JASP, un logiciel statistique open-source ayant 
une interface utilisateur graphique. Nous expliquons les concepts clés de l’ANOVA 
bayésienne à l’aide de deux exemples empiriques.

Mots-clés : Facteur de Bayes, Analyse de la variance, JASP, Distribution postérieure, Test 
d’hypothèse, Tutoriel

1. INTRODUCTION

Ubiquitous across the empirical sciences, analysis of variance 
(ANOVA) allows researchers to assess the e�ects of categorical predictors 
on a continuous outcome variable. Consider for instance an experiment 
by Strack, Martin, & Stepper (1988) designed to test the facial feedback 
hypothesis, that is, the hypothesis that people’s a�ective responses can be 
in�uenced by their own facial expression. Participants were randomly 
assigned to one of three conditions. In the lips condition, participants 
were instructed to hold a pen with their lips, inducing a pout. In the teeth 
condition, participants were instructed to hold a pen between their teeth, 
inducing a smile. In the control condition, participants were told to hold a 
pen in their nondominant hand. With the pen in the instructed position, 
each participant then rated four cartoons for funniness. �e outcome 
variable was the average funniness rating across the four cartoons. �e 
ANOVA procedure may be used to test the null hypothesis that the pen 
position does not result in di�erent funniness ratings.

ANOVAs are typically conducted using frequentist statistics, where 
p-values decide statistical signi�cance in an all-or-none manner: if p < .05, 
the result is deemed statistically signi�cant and the null hypothesis is 
rejected; if p > .05, the result is deemed statistically nonsigni�cant, and 
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the null hypothesis is retained. Such binary thinking has been critiqued 
extensively (e.g., Amrhein, Greenland, & McShane, 2019; Cohen, 1994; 
Rouder, Engelhardt, McCabe, & Morey, 2016), and some perceive it as a 
cause of the reproducibility crisis in psychology (Cumming, 2014; but see 
Savalei & Dunn, 2015). In recent years, several alternatives to p-values have 
been suggested, for example reporting con�dence intervals (Cumming, 
2014; Gardner & Altman, 1986) or abandoning null hypothesis testing 
altogether (B. B. McShane, Gal, Gelman, Robert, & Tackett, 2019).

Here we focus on another alternative: Bayesian inference. In the Bayesian 
framework, knowledge about parameters and hypotheses is updated as a 
function of predictive success—hypotheses that predicted the observed 
data relatively well receive a boost in credibility, whereas hypotheses that 
predicted the data relatively poorly su�er a decline (Wagenmakers, Morey, 
& Lee, 2016). A series of recent articles show how the Bayesian framework 
can supplement or supplant the frequentist p-value (e.g, Burton, Gurrin, & 
Campbell, 1998; Dienes & McLatchie, 2018; Jarosz & Wiley, 2014; Masson, 
2011; Nathoo & Masson, 2016; Rouder et al., 2016).

�e advantages of the Bayesian paradigm over the frequentist p-value 
are well documented (e.g., Wagenmakers et al., 2018); for instance, 
with Bayesian inference researchers can incorporate prior knowledge 
and quantify support, both in favor and against the null-hypothesis; 
furthermore, this support may be monitored as the data accumulate 
(Stefan, Gronau, Schönbrodt, & Wagenmakers, 2019). Despite these and 
other advantages, Bayesian analyses are still used only sparingly in the 
social sciences (van der Schoot, Winter, Ryan, Zondervan–Zwijnenburg, 
& Depaoli, 2017). �e broad adoption of Bayesian statistics—and Bayesian 
ANOVA in particular—is hindered by the fact that Bayesian concepts are 
rarely taught in applied statistics courses. Consequently, practitioners 
may be unsure of how to conduct a Bayesian ANOVA and interpret  
the results.

To help familiarize researchers with Bayesian inference for common 
experimental designs, this article provides a guide for conducting and 
interpreting a Bayesian ANOVA with JASP (JASP Team, 2019). JASP 
is a free, open-source statistical so�ware program with a graphical user 
interface that o�ers both Bayesian and frequentist analyses. Below, we �rst 
provide a brief introduction to Bayesian statistics. Subsequently, we use 
two data examples to explain the key concepts of ANOVA.
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2. BAYESIAN FOUNDATIONS

�is section explains some of the fundamentals of Bayesian inference. 
We focus on interpretation rather than mathematical detail; see the special 
issue on Bayesian inference by Vandekerckhove, Rouder, & Kruschke 
(2018) for a set of comprehensive, low-level introductions to Bayesian 
inference. �e central goal of Bayesian inference is learning, that is, 
using observations to update knowledge. In an ANOVA we want to learn 
about the candidate models M and their condition-e�ect parameters β. 
Returning to the example of the facial feedback experiment, we commonly 
specify two models. �e null model describes the funniness ratings using 
a single grand average across all three conditions, e�ectively stating that 
there is no e�ect of pen position. �e parameters of the null model are 
thus the average test score and the error variance. �e alternative model 
describes the funniness ratings using an overall average and the e�ect of 
pen position; in other words, the means of the three condition are allowed 
to di�er. �erefore, the alternative model has �ve parameters: the average 
funniness ratings across participants, the error variance, and for each of 
the three pen positions the magnitude of the e�ect.2

To start the learning process, we need to specify prior beliefs about the 
plausibility of each model, p(M), and about the plausible parameter values 
β within each model, p(β|M).3 �ese prior beliefs are represented by prior 
distributions. Observing data D drives an update of beliefs, transforming 
the prior distribution over models and parameters to a joint posterior 
distribution, denoted p(β, M|D).4 �e updating factor—the change from 
prior to posterior beliefs—is determined by relative predictive performance 
for the observed data (Wagenmakers et al., 2016). As shown in Figure 1, the 
knowledge updating process forms a learning cycle, such that the posterior 
distribution a�er the �rst batch of data becomes the prior distribution for 
the next batch.

2 Note that one of the four parameters, average funniness rating and the three condition e�ects, is redundant. 
�at is, we can make identical predictions even when we �x one of the four parameters to zero.
3 �e symbol “|” may be read as “given the” or “conditional on”.
4 �e joint posterior distribution describes the posterior probabilities for each parameter to take on values in 
a particular range. Simultaneously, it describes a discrete probability distribution over the models considered, 
where models with a higher plausibility a�er seeing the data have a higher probability. Furthermore, the joint 
posterior distribution also describes any interaction between parameters and models. For example, in the 
full model containing all covariates, the posterior distributions for the parameters estimates may be more 
concentrated around zero.
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Figure 1. Bayesian learning can be conceptualized as a cyclical process of up-dating 
knowledge in response to prediction errors. �e prediction step is deductive, and the 
updating step is inductive. For a detailed account see Jevons (1874/1913, Chapters XI 
and XII). Figure available at BayesianSpectacles.org under a CC-BY license.

Figure 1. L’apprentissage bayésien peut être conceptualisé comme un processus 
cyclique d’actualisation des connaissances en réponse à des erreurs de prédiction. 
L’étape de prédiction est déductive, et l’étape de mise à jour est inductive. Pour un 
compte rendu détaillé, voir Jevons (1874/1913, chapitres XI et XII). Figure disponible 
sur BayesianSpectacles.org sous une licence CC-BY.

Mathematically, the updating process is given by Bayes’ rule:

�is rule stipulates how knowledge about the relative plausibility of 
both models and parameters ought to be updated in light of the observed 
data. When the focus is on the comparison of two rival models, one 
generally considers only the model updating term. �is term, commonly 

���� �������������������������������������� � ����������������������������� × ����������������������.����������� × ������ ���������������������������� .
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known as the Bayes factor, quanti�es the relative predictive performance 
of the rival models, that is, the change in relative model plausibility that is 
brought about by the data (Etz & Wagenmakers, 2017; Je�reys, 1939; Kass 
& Ra�ery, 1995; Wrinch & Je�reys, 1921):

When the Bayes factor BF
10

 equals 20, the observed data are twenty 
times more likely to occur under M

1
 than under M

0
 (i.e., support for M

1
 

versus M
0
); when the Bayes factor BF

10
 equals 1/20, the observed data are 

twenty times more likely to occur under M
0
 than under M

1
 (i.e., support for 

M
0
 versus M

1
); when the Bayes factor BF

10
 equals 1, the observed data are 

equally likely to occur under both models (i.e., neither model is supported 
over the other). Note that the Bayes factor is a comparison of two models 
and hence it is always a relative measure of evidence, that is, it quanti�es 
the performance of one model relative to another.5

Since the prior and posterior odds are both ratios of probabilities, the 
Bayes factor can be seen as an odds ratio that quanti�es the change in belief 
from prior odds to posterior odds. �e Bayes factor can be presented as 
BF

10,
 p(D|M

1
), divided by p(D|M

0
), or as its reciprocal BF

01
, p(D|M

0
) over 

p(D|M
1
). Typically, BF

10
 > 1 is used to quantify evidence in favor of the 

alternative hypothesis, whereas BF
01

 > 1 is used to quantify evidence in 
favor of the null hypothesis. For instance, BF

10
 > 1/3 can be interpreted 

as “the data are 1/3 times more likely under M
1
 than under M

0
”, but for 

a Bayes factor lower than 1 it is more intuitive to switch numerator and 
denominator and instead report the results as BF

01
 = 3, that is, “the data are 

3 times more likely under M
0
 than under M

1
”.

�e Bayesian paradigm di�ers from the frequentist paradigm in 
at least four key aspects. First, evidence in favor of a particular model, 
quanti�ed by a Bayes factor, is a continuous measure of support. Unlike the 
frequentist Neyman-Pearson decision rule (usually p < 0.05), there is no 
need to impose all-or-none Bayes factor cut-o�s for accepting or rejecting 
a particular model. Moreover, the Bayes factor can discriminate between 
“absence of evidence” (i.e., nondiagnostic data that are predicted about 
equally well under both models, such that the Bayes factor is close to 1) and 

5 For a cartoon that explains the strength of evidence provided by a Bayes factor, see https://www.
bayesianspectacles.org/lets-poke-a-pizza-a-new-cartoon-to-explain-the-strength-of-evidence-in-a-bayes-
factor/

����������������������������������������
� �����������������������������

× ������������������������������������
.
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“evidence of absence” (i.e., diagnostic data that support the null hypothesis 
over the alternative hypothesis).

A second di�erence is that, in the Bayesian paradigm, knowledge about 
models M and parameters β is updated simultaneously. Consequently, it 
is natural to account for model uncertainty by considering all models, but 
assigning more weight to those models that predicted the data relatively 
well. �is procedure is known as Bayesian model averaging (BMA; Hinne, 
Gronau, van den Bergh, & Wagenmakers, 2019; Hoeting, Madigan, 
Ra�ery, & Volinsky, 1999; Jevons, 1874/1913; p. 296 Je�reys, 1939; p. 365 
Je�reys, 1961). In contrast, many frequentist analyses �rst select a ‘best’ 
model and subsequently estimate its parameters, thereby neglecting 
model uncertainty and producing overcon�dent conclusions (Claeskens & 
Hjort, 2008, Ch 7.4).6 Another bene�t of BMA is that point estimates and 
uncertainty intervals can be derived without conditioning on a speci�c 
model. �is way, model uncertainty is accounted for in point estimates 
and uncertainty intervals.

A third di�erence is that the Bayesian posterior distributions allow for 
direct probabilistic statements about parameters. For example, based on the 
posterior distribution of β we can state that we are 95% con�dent that the 
parameter lies between x and y. �is range of parameter values is commonly 
known as a 95% credible interval.7 Similarly, we can consider any interval 
from a to b and quantify our con�dence that the parameter falls in that 
speci�c range. A fourth di�erence is that Bayesian inference automatically 
penalizes for complexity and thus favors parsimony (e.g., Berger & Je�erys, 
1992; Je�reys, 1961; Myung & Pitt, 1997). For instance, a model with a 
redundant covariate will make poor predictions. Consequently, the Bayes 
factor, which compares the relative predictive performance of two models, 
will favor the model without the redundant predictor over the model with 
the redundant predictor. Key is that, as the words suggest, the predictive 
performance is assessed using parameter values that are drawn from the 
prior distributions.

6 Although uncommon, it is possible to average over the models in the frequentist framework. To do so, 
calculate for each model an information criterion such as AIC, and use a transformed version as model 
weights (Burnham & Anderson, 2002).
7 Note the di�erence in interpretation compared to the frequentist 95% con�dence interval: “if we repeat this 
experiment an in�nite number of times and compute an in�nite number of con�dence intervals, then 95% 
of these intervals contain the true parameter value.” See also Morey, Hoekstra, Rouder, Lee, & Wagenmakers 
(2016).
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3. ANOVA

Traditionally, analysis of variance involves—as the name suggests—a 
comparison of variances. In the frequentist framework, the variance 
between each level of the categorical predictor is compared to the variance 
within the levels of the categorical predictor. When the categorical 
predictor has no e�ect, the population variances between the levels equals 
the population variances within the levels, and the sample ratio of these 
variances is distributed according to a central F-distribution. Under the 
assumption that the null hypothesis is true, we may then calculate the 
probability of encountering a sample ratio of variances that is at least 
as large as the one observed—this then yields the much-maligned yet 
omnipresent p-value.

Instead, the Bayesian ANOVA contrasts the predictive performance 
of competing models (Rouder et al., 2016). In order to make predictions 
the model parameters need to be assigned prior distributions. �ese prior 
distributions could in principle be speci�ed from subjective background 
knowledge, but here we follow Rouder, Morey, Speckman, & Province 
(2012) and use a default speci�cation inspired by linear regression 
models, designed to meet general desiderata such as consistency and 
scale invariance (i.e., it does not matter whether the outcome variable is 
measured in seconds or milliseconds; see also Bayarri, Berger, Forte, & 
García-Donato, 2012; Liang, Paulo, Molina, Clyde, & Berger, 2008).

4. ASSUMPTIONS

Before interpreting the results from an ANOVA, it is prudent to assess 
whether its main assumption holds, namely that the residuals are normally 
distributed. A common tool to assess the normality of the residuals is a 
Q-Q plot, which visualizes the quantiles of the observed residuals against 
the quantiles expected from a standard normal distribution. If the residuals 
are normally distributed, then all the points in a Q-Q plot fall on the red 
line in Figure 2. In contrast to a frequentist ANOVA, where the residuals 
are point estimates, a Bayesian ANOVA provides a probability distribution 
for each residual. �e uncertainty in the residuals can thus be summarized 
by 95% credible intervals. �e le� panel of Figure 2 shows an example where 
the larger quantiles lie away from the red line, displaying a substantial 
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deviation from normality. �e right panel of Figure 2 shows residuals that 
are more consistent with what is expected under a normal distribution. 

Figure 2. Q-Q plots of non-normally distributed residuals (le�) and approximately 
normally distributed residuals (right). �e vertical bars through each point represent 
the 95% central credible interval. If the data are perfectly normally distributed, all 
points fall on the red line. Note that the y-axis of the two panels has a di�erent scale.

Figure 2. Tracés Q-Q des résidus non distribués normalement (à gauche) et des 
résidus distribués à peu près normalement (à droite). Les barres verticales à travers 
chaque point représentent l’intervalle central de crédibilité à 95%. Si les données sont 
parfaitement distribuées normalement, tous les points tombent sur la ligne rouge. 
Notez que l’axe des y des deux tracés a une échelle di�érente.

Introductory texts discuss additional ANOVA assumptions, most of 
which follow directly from the normality of the residuals. For some of these 
assumptions, violations can be di�cult to detect visually in a Q-Q plot. 
An example is sphericity, which is speci�c to repeated measures ANOVA. 
One de�nition of sphericity is that the variance of all pairwise di�erence 
scores is equal. In the frequentist paradigm, this assumption is usually 
assessed using Mauchly’s test (but see Tijmstra, 2018). Another example 
is homogeneity of variances, which implies that the residual variance is 
equal across all levels of the predictors. Homogeneity of variances can be 
assessed using Levene’s test (Levene, 1961).

�e following sections illustrate how to conduct and interpret a 
Bayesian ANOVA with JASP. JASP can be freely downloaded from https://
jasp-stats.org/download/. Annotated .jasp �les of the discussed analyses, 
data sets, and a step-by-step guide on conducting a Bayesian ANOVA in 
JASP are available at https://osf.io/f8krs/. We should stress that the current 
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implementation of Bayesian ANOVA in JASP is based on the R package 
BayesFactor (Morey & Rouder, 2015) which is itself based on the statistical 
work by Rouder et al. (2012).

5. EXAMPLE I: A ROBOT’S SOCIAL SKILLS

Do people take longer to switch o� a robot when it displays social 
skills? �is question was studied by Horstmann et al. (2018, see their 
publication for online access to the complete data set) and we use their data 

Figure 3. Observed log switch-o� times for the data of Horstmann et al. (2018).

Figure 3. Log des temps mis pour éteindre le robot, à partir des données de Horstmann 
et al. (2018).
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to illustrate the key concepts of a Bayesian ANOVA. In the Horstmann 
et al. (2018) study, 85 participants interacted with a robot. Participants 
were told that the purpose of their interaction with the robot was to test a 
new algorithm. A�er two dummy tasks were completed, the instructor told 
the participants that they could switch o� the robot if they wanted. �e 
outcome variable was the time it took participants to switch o� the robot. 
Here we analyze the log-transformed switch-o� times since the Q-Q plot 
of the raw switch o� times showed a violation of normality. Horstmann 
et al. (2018) manipulated two variables in a between-subjects design. First, 
they manipulated the robots’ verbal responses to be either social (e.g., “Oh 
yes, pizza is great. One time I ate a pizza as big as me.”) or functional (e.g., 
“You prefer pizza. �is worked well. Let us continue.”). Second, either the 
robot protested to being turned o� (e.g., “No! Please do not switch me o�! I 
am scared that it [sic] will not brighten up again!”) or it did not. �erefore, 
the design of this study is a 2x2 between-subjects ANOVA. �e data are 
shown in Figure 3.

5.1. Interpreting the Bayesian ANOVA

Model comparison

�e primary output from the JASP ANOVA is presented in Table 1, which 
shows the support that the data o�er for each model under consideration. 
�e le�-most column lists all models at hand: four alternative models and 
one null model. �e models are ordered by their predictive performance 
relative to the best model; this is indicated in the BF

01
 column, which shows 

the Bayes factor relative to the best model which features only the objection 
factor. For example, the data are about 73 times more likely under the model 
with only the robot’s objection as a predictor than under the null model. 
�e prior model probability P(M) is 0.2 for all models and the resulting 
posterior model probabilities are given by P(M|D). �e BF

M
 column shows 

change from prior odds to posterior odds for each model. For example, for 
the best model with only the robot’s objection as a predictor the change 
in odds is: 0.542/(1 – 0.542) × (1 – 0.2)/0.2 ≈ 4.734, which matches the 
output of Table 1. �e right-most column provides an error percentage 
indicating the precision of the numerical approximations, which should 
not be too large.8

8 In many situations, error percentages below 20% are acceptable. If the error is 20%, then a Bayes factor 
of 10 can �uctuate between 8 and 12. Because Bayes factors between 8 and 12 lead to the same qualitative 
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Table 1. Model comparison for all models under consideration for the 
data of Horstmann et al. (2018). 

Tableau 1. Comparaison de modèles pour tous les modèles considérés à 
partir des données de Horstmann et al. (2018).

Model P(M) P(M|D) BF
M

BF
01

error %

O 0.2 0.542 4.735 1.000

O + S + O * S 0.2 0.303 1.736 1.791 2.770

O + S 0.2 0.146 0.682 3.719 1.323

Null model 0.2 0.007 0.030 73.373 0.000

S 0.2 0.002 0.009 252.495 0.005

Note: �e abbreviations ‘O’ and ‘S’ stand for the robot’s objection and social interaction type, respectively. 
�e term ‘O * S’ stands for the interaction between the two factors. �e ‘Model’ column shows the predictors 
included in each model, the column the prior model probability, the column the posterior model probability, 
the column the posterior model odds, and the column the Bayes factors of all models compared to the best 
model. �e �nal column, ‘error’ is an estimate of the numerical error in the computation of the Bayes factor. 
All models are compared to the best model and are sorted from lowest Bayes factor to highest.

Bayes factors are transitive, which means that if the model with only the 
robot’s objection outpredicts the null model by a factor of a, and the null 
model outpredicts the model with only social interaction type by a factor 
of b, then the model with only the robot’s objection will outpredict the 
model with only social interaction type by a factor of a × b. Transitivity can 
be used to compute Bayes factors that may be of interest but are missing 
from the table. For example, the Bayes factor for the null model versus 
the model with only social interaction type can be obtained by dividing 
their Bayes factors against the best model: 252.495/73.373 ≈ 3.441 in favor 
of the null model. Note that the Bayes factor is represented as BF

01
 in 

Table 1; predictive performance of the best model divided by the predictive 
performance for a particular model. Had we shown BF

10
, we would have 

needed to take the reciprocal of the previous calculation to obtain the same 
result.

Analysis of Effects

�e previous section compared all available models. However, as the 
number of predictors increases, the number of models quickly grows too 

conclusion, this amount of numerical error is not problematic (see also Appendix B Je�reys, 1961). When the 
error percentage is deemed too high, the number of samples can be increased to reduce the error percentage at 
the cost of longer computation time. For more information, see van Doorn et al. (2019).
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large to consider each model individually.9 Rather than studying the results 
for each model individually, it is possible to average the results from Table 1 
over all models, that is, compute the model-averaged results. �is produces 
Table 2, which shows for each predictor the prior and posterior inclusion 
probabilities, and the inclusion Bayes factor. A prior inclusion probability 
is the probability that a predictor is included in the model before seeing 
the data and is computed by summing up the prior model probabilities of 
all models which contain that predictor. A posterior inclusion probability 
is the probability that a predictor is included in the model a�er seeing the 
data and is computed by summing up the posterior model probabilities 
of all models which contain that predictor. �e inclusion Bayes factor 
quanti�es the change from prior inclusion odds to posterior inclusion odds 
and can be interpreted as the evidence in the data for including a predictor. 
For example, Table 2 shows that the data are about 68.6 times more likely 
under the models that include the robot’s objection than under the models 
without this predictor.

Table 2. Results from averaging over the models in Table 1.

Tableau 2. Résultats obtenus à partir des modèles moyennés du Tableau 1.

E�ects P(incl) P(incl|D) BF
Inclusion

O 0.6 0.990 68.558

S 0.6 0.445 0.535

O * S 0.2 0.293 1.659

Note: �e abbreviations ‘O’ and ‘S’ stand for the robot’s objection and social interaction type respectively. �e 
�rst column denotes each predictor of interest, the column shows the prior inclusion probability, shows the 
posterior inclusion probability, and shows the inclusion Bayes factor.

Although model-averaged results are straightforward to obtain, their 
interpretation requires special attention when interaction e�ects are 
concerned. In JASP, models are excluded from consideration when they 
violate the principle of marginality, that is, they feature an interaction e�ect 
but lack the constituent main e�ects (for details see Nelder, 1977). �is 
model exclusion rule means that the active model set is not balanced. For 
example, in Table 2 the inclusion odds for the interaction ‘O * S’ is obtained 
by comparing four models without the interaction e�ect against the one 
model with the interaction e�ect. As an alternative, Sebastiaan Mathôd 

9 In general, given p predictors there are 2p models to consider. If interaction e�ects are considered, the model 
space grows even faster.
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has suggested to compute inclusion probabilities for “matched” models 
only.10 What this means is that all models with the interaction e�ect are 
compared to models with the same predictors except for the interaction 
e�ect. For example, the model with an interaction e�ect between ‘O * S’ 
in Table 2 is compared against the model with the main e�ects of ‘O’ and 
‘S’, but not against any other models. To compute inclusion probabilities 
for main e�ects, models that feature interaction e�ects composed of these 
main e�ects are not considered. �ese models are excluded because they 
cannot be matched with models that include the interaction e�ect but 
not the main e�ect, since those violate the principle of marginality. Note 
that without interaction e�ects, the matched and not matched inclusion 
probabilities are the same.

Table 3 shows the inclusion probabilities and inclusion Bayes factor 
obtained by only considering matched models. Comparing Table 3 to 
Table 2, the prior inclusion probability of the main e�ects decreased 
because these are based on one model fewer. �e posterior inclusion 
probabilities of the main e�ects decreased but that of the interaction e�ect 
increased. �e inclusion Bayes factor, the evidence in the data for including 
a predictor, provides slightly more evidence for including the main e�ect 
of the robot’s objection and the interaction e�ect, and somewhat more 
evidence for excluding the main e�ect of the social interaction type.

Table 3. Results from averaging over the models in Table 1 but only 
considering “matched” models (see text for details). 

Tableau 3. Résultats à partir des modèles moyennés du tableau 1 mais en 
considérant uniquement les modèles « appariés » (voir le texte pour plus 
de détails).

E�ects P(incl) P(incl|D) BF
Inclusion

O 0.4 0.6872 72.76

S 0.4 0.1524 0.28

O * S 0.2 0.3033 2.018

Note: �e abbreviations ‘O’ and ‘S’ stand for the robot’s objection and social interaction type respectively. �e 
�rst column denotes each predictor of interest, the column shows the prior inclusion probability, shows the 
posterior inclusion probability, and shows the inclusion Bayes factor.

10 See also https://www.cogsci.nl/blog/interpreting-bayesian-repeated-measures-in-jasp.
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Parameter Estimates

A�er establishing which predictors are relevant, we can investigate 
the magnitude of the relations by examining the posterior distributions. 
Table 4 summarizes the model-averaged posterior distributions of each 
level (β

j
), using four statistics: the posterior mean, the posterior standard 

deviation, and the lower and upper bound of the 95% central credible 
interval. �e symmetry in the estimates is a consequence of the sum-to-
zero constraint, that is, the posterior mean of O-Yes = –1 × the posterior 
mean of O-No = 0.265. Table 4 shows that the e�ect of objection is about 
0.265 (95% CI [0.111, 0.418]). A posterior estimate for the observed log 
response time of a particular group, say the condition where the robot did 
not object, can be obtained by adding the posterior mean of the intercept 
(i.e., the grand mean), 1.724, to the posterior mean of the no-objection 
condition, –0.265, which yields 1.459.11

Table 4. Summary of the marginal model averaged posterior distributions. 

Tableau 4. Résumé des distributions postérieures moyennées du modèle 
marginal. 

95% CI

Predictor Level Mean SD Lower Upper

Intercept 1.724 0.077 1.569 1.877

O Yes 0.265 0.077 0.111 0.418

No −0.265 0.077 −0.420 −0.113

S Functional −0.044 0.071 −0.186 0.097

Social 0.044 0.071 −0.098 0.185

O * S Yes & Social −0.132 0.072 −0.278 0.008

Yes & Functional 0.132 0.072 −0.009 0.276

No & Social 0.132 0.072 −0.009 0.276

No & Functional −0.132 0.072 −0.278 0.008

Note: Posteriors are summarized using mean, standard deviation, and 95% central credible intervals (CI).

11 �is calculation is valid only for the posterior means, not for the other posterior summaries.
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To summarize, the Bayesian ANOVA revealed that the robot’s objec-
tion almost certainly had an e�ect on switch-o� time (BF

Inclusion
 = 68.558). 

We also learned that the data are not su�ciently informative to allow a 
strong conclusion about the e�ect of the robot’s social interaction type 
(BF

Inclusion
 = 0.535) or about an interaction e�ect between objection and  

social interaction type (BF
Inclusion

 = 1.659).

6. EXAMPLE II: POST HOC TESTS ON THE HOUSES 
OF HOGWARTS

A�er executing an ANOVA and �nding strong evidence that a 
particular predictor relates to the outcome variable, a common question 
arises: “Which levels of the predictor deviate from one another?”. As 
an illustration, consider the data from Jakob, Garcia-Garzon, Jarke, 
& Dablander (2019) where 847 participants �lled out a ‘sorting hat’ 
questionnaire that determined their assignment to one of the four 
Houses of Hogwarts from the Harry Potter books: Gry�ndor, Hu�epu�, 
Ravenclaw, or Slytherin.12 Subsequently, participants �lled out the dark 
triad questionnaire (Jones & Paulhus, 2014) that was used to derive the 
outcome variable: Machiavellism.

In this example, there is only one categorical predictor: �e House of 
Hogwarts a participant was assigned to. If we compare the model with 
this predictor to the null model, we �nd overwhelming evidence for the 
alternative (BF

10 
= 6.632 × 1018). �is is a clear indication that Machiavellism 

di�ers between the members of the four houses. However, this result does 
not indicate the houses responsible for the di�erence. To address that 
question, we need a post hoc test.

12 �e raw data and original analyses can be found at https://osf.io/rtf74/
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Figure 4. Observed Machiavellism scores for each of the four Houses of Hogwarts.

Figure 4. Scores observés de Machiavélisme pour chacune des quatre maisons de 
Poudlard.

For ANOVA models, the main component of a post hoc test is a t-test on 
all pairwise combinations of a predictor’s levels. For a Bayesian ANOVA, 
the main component is the Bayesian t-test. Table 5 shows the Bayesian post 
hoc tests for the sorting hat data. As with frequentist inference, Bayesian 
post hoc tests are subject to a multiple comparison problem. To control 
for multiplicity, we follow the approach discussed in Westfall (1997) 
which is an extension of the approach of Je�reys (1938); for an overview 
of Bayesian methods correcting for multiplicity see for instance de Jong 
(2019). Westfall’s approach relates the overall null hypothesis p(H

0
) that 

all condition means are equal to each comparison between two condition 
means. �at way, the prior probability of the overall null hypothesis can 
be adjusted to correct for multiplicity, and this in�uences each individual 
comparison. �e procedure to relate the overall null hypothesis to each 
comparison is described below.

A condition mean μ
i
 is either equal to the grand mean μ with probability 

τ, or μ
i
 is drawn from a continuous distribution with probability 1 – τ. It 

is key that this distribution is continuous because two values drawn from 
a continuous distribution are never exactly equal. �us, the probability 
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that two condition means μ
i
 and μ

j
 are equal is p(μ

i
 = μ

j
) = p(μ

i
 = μ) × 

p(μ
j
 = μ) = τ2. From this, the probability of the null hypothesis that all J 

condition means are equal follows: p(H
0
) = p(µ

1
 = µ

2
 = … = µ

J
) = p(µ

1
 = µ) 

× p(µ
2
 = µ) × … × p(µ

J
 = µ) = τ J. Solving for τ, we obtain τ = p. �us, 

the prior probability that two speci�c magnitudes are equal can be 
expressed in terms of the prior probability that all magnitudes are equal, 
that is p(µ

i
 = µ

j
) = τ2 = p. For example, imagine there are four conditions 

(J = 4) and the prior probability that all condition means are equal is 
0.5. �en, the prior probability that two conditions means are equal is:  
p(µ

1
 = µ

2
) = 

1

���� � ��� � √0.5.  . �e prior odds are then 1 – 

1

���� � ��� � √0.5.  /

1

���� � ��� � √0.5.   ≈ 0.414. In 
sum, the Westfall approach involves, as a �rst step, Bayesian t-tests for 
all pairwise comparisons, which provides the unadjusted Bayes factors. 
In the next step, the prior model odds are adjusted by �xing the overall 
probability of no e�ect to 0.5. �e adjusted prior odds and the Bayes factor 
are then used to calculate the adjusted posterior odds.

Table 5 shows the results for the post hoc tests of the sorting hat example. 
�e adjusted posterior odds show (1) evidence (i.e., odds of about 16) that 
Machiavellism di�ers between Hu�epu� and Ravenclaw; (2) evidence 
(i.e., odds of about 27) that Machiavellism di�ers between Gry�ndor 
and Hu�epu�; (3) overwhelming evidence (i.e., odds of about 1.04 × 109, 
5.43 × 1016, and 5.30 × 109) that Machiavellism di�ers between Gry�ndor 
and Slytherin, between Hu�epu� and Slytherin, and between Ravenclaw 
and Slytherin, respectively; (4) evidence (i.e, odds of 1/0.0432 ≈ 23) that 
Machiavellism of Gry�ndor and Ravenclaw is the same.

Table 5. Post hoc test for the Sorting House data. 

Tableau 5. Test Post hoc selon l’affectation aux Maisons de Poudlard. 

Level 1 Level 2 Prior Odds Posterior Odds BF
10,U

error %

Gry�ndor Hu�epu� 0.414 27.2 65.6 5.73 × 10-5

Gry�ndor Ravenclaw 0.414 0.0432 0.104 9.56 × 10-5

Gry�ndor Slytherin 0.414 1.04 × 109 2.50 × 109 3.94 × 10-16

Hu�epu� Ravenclaw 0.414 15.5 37.3 7.57 × 10-8

Hu�epu� Slytherin 0.414 5.43 × 1016 1.31 × 1017 3.35 × 10-23

Ravenclaw Slytherin 0.414 5.30 × 109 1.28 × 1010 6.36 × 10-16

Note: �e �rst two columns indicate the houses being compared, the third and fourth column indicate 
the adjusted prior model odds and posterior model odds respectively, and the ��h column indicates the 
uncorrected Bayes factor in favor of the alternative hypothesis that the magnitudes di�er. �e �nal column 
shows the numerical error of the Bayes factor computation.
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Now that we know which Houses di�er, the next step is to assess the 
magnitude of each House of Hogwarts on Machiavellism score. Rather 
than examining a table that summarizes the marginal posteriors, we plot 
the model averaged posteriors for each house in Figure 5. Clearly, Slytherin 
scores higher on Machiavellism than the other Houses whereas Hu�epu� 
scores lower on Machiavellism than the other Houses. Table 6 in the 
appendix shows the parameters estimates of the marginal posterior e�ects 
for each house.

Figure 5. Posterior distributions of the e�ect of each House of Hogwarts on 
Machiavellism. Slytherin scores higher on Machiavellism than the other Houses 
whereas Hu�epu� scores lower on Machiavellism than the other Houses. �e 
horizontal error bars above each density represent 95% credible intervals.

Figure 5. Distributions postérieures de l’e�et de chaque maison de Poudlard sur le 
Machiavélisme. Serpentard obtient le plus haut score de Machiavélisme par rapport 
aux autres maisons, alors que Poufsou�e obtient le score de Machiavélisme le plus 
bas. Les barres d’erreur horizontales au-dessus de chaque densité représentent des 
intervalles de crédibilité à 95%.
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7. CONCLUDING COMMENTS

�e goal of this paper was to provide guidance for practitioners on to 
conduct a Bayesian ANOVA in JASP and interpret the results. Although the 
focus was on ANOVAs with categorical predictors, JASP can also handle 
ANOVAs with additional continuous predictors. �e appropriate analysis 
then becomes an analysis of covariance (ANCOVA) and all concepts 
explained here still apply. For a general guide on reporting Bayesian 
analyses see van Doorn et al. (2019).

As with all statistical methods, the Bayesian ANOVA comes with 
limitations and caveats. For instance, when the model is severely 
misspeci�ed and the residuals are non-normally distributed, the results 
from a standard ANOVA—whether Bayesian or frequentist—are 
potentially misleading and should be interpreted with care. In such cases, 
at least two alternatives may be considered. �e �rst alternative is to 
consider a rank-based ANOVA such as the Kruskal–Wallis test (Kruskal & 
Wallis, 1952). �is test depends only on the ordinal information in the data 
and hence does not make strong assumptions on how the data ought to 
be distributed. �e second alternative is to specify a di�erent distribution 
for the residuals. Using so�ware for general Bayesian inference such 
as Stan (Carpenter et al., 2017) or JAGS (Plummer, 2003), it is relatively 
straightforward to specify any distribution for the residuals. However, 
this approach requires knowledge about programming and statistical 
modeling and is likely to be computationally intensive. Another limitation 
of the Bayesian ANOVA is that, especially in more complicated designs, 
it is not straightforward to intuit what knowledge the prior distributions  
represent.

Some limitations are speci�c to JASP. Currently, it is not possible to use 
post hoc tests to examine whether the contribution of a level di�ers from 
zero, that is, to test whether a speci�c level deviates from the grand mean. It 
is also not possible to handle missing values in any other way than list-wise 
deletion. Another limitation relates to sample size planning. �e typical 
planning process involves a frequentist power analysis which provides the 
sample size needed to achieve a certain rate of correctly detecting a true 
e�ect of a prespeci�ed magnitude. A Bayesian equivalent of power analysis 
is Bayes factor design analysis (BFDA; e.g., Schönbrodt & Wagenmakers, 
2018). In a sequential design, BFDA produces the expected sample sizes 
required to reach a target level of evidence (i.e., a target Bayes factor). In 
a �xed-n design, BFDA produces the expected levels of evidence, given 
a speci�cation of the magnitude of the e�ect. At the moment of writing 
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BFDA has not been implemented in JASP; an accessible tutorial and a 
Shiny app are provided by Stefan et al. (2019).

We believe that the Bayesian ANOVA provides a perspective on the 
analysis of factorial designs that can fruitfully supplement or even supplant 
the currently dominant frequentist ANOVA. �e epistemic advantages of 
the Bayesian paradigm are well known (e.g., Je�reys, 1961; Wagenmakers 
et al., 2018) but in order to be adopted in research practice it is essential for 
the methodology to be implemented in an easy-to-use so�ware package 
such as JASP. In addition to the so�ware, however, practitioners also require 
guidance on how to interpret the results, which was the main purpose 
of this paper. In general, we hope that the increased use of the Bayesian 
ANOVA will stimulate the methodological diversity in the �eld, and that 
it will become more standard to examine the robustness of frequentist 
conclusions by comparing them to the Bayesian alternative.
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APPENDIX: PARAMETER ESTIMATES  
FOR THE SORTING HAT DATA

Table 6. Parameter estimates for each of the houses in the data of Jakob 
et al. (2019). 

Tableau 6. Estimations des paramètres pour chacune des maisons à partir 
des données de Jakob et al. (2019). 

95% CI

Predictor Level Mean SD Lower Upper

Intercept 26.923 0.215 26.46 27.337

Sorting house Gry�ndor −0.568 0.357 −1.28 0.140

Hu�epu� −2.610 0.360 −3.34 −1.898

Ravenclaw −0.696 0.330 −1.36 −0.037

Slytherin 3.874 0.418 3.04 4.719

Note: �e interpretation of each column is identical to that of Table 4.
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