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Abstract

Energy-Based Models (EBMs) capture dependencies between variables by as-

sociating a scalar energy to each configuration of the variables. Inference consists

in clamping the value of observed variables and finding configurations of the re-

maining variables that minimize the energy. Learning consists in finding an energy

function in which observed configurations of the variables are given lower energies

than unobserved ones. The EBM approach provides a common theoretical frame-

work for many learning models, including traditional discriminative and genera-

tive approaches, as well as graph-transformer networks, conditional random fields,

maximum margin Markov networks, and several manifold learning methods.

Probabilistic models must be properly normalized, which sometimes requires

evaluating intractable integrals over the space of all possible variable configura-

tions. Since EBMs have no requirement for proper normalization, this problem is

naturally circumvented. EBMs can be viewed as a form of non-probabilistic factor

graphs, and they provide considerably more flexibility in the design of architec-

tures and training criteria than probabilistic approaches.

1 Introduction: Energy-Based Models

The main purpose of statistical modeling and machine learning is to encode depen-

dencies between variables. By capturing those dependencies, a model can be used to

answer questions about the values of unknown variables given the values of known

variables.

Energy-Based Models (EBMs) capture dependencies by associating a scalar en-

ergy (a measure of compatibility) to each configuration of the variables. Inference,

i.e., making a prediction or decision, consists in setting the value of observed variables
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and finding values of the remaining variables that minimize the energy. Learning con-

sists in finding an energy function that associates low energies to correct values of the

remaining variables, and higher energies to incorrect values. A loss functional, mini-

mized during learning, is used to measure the quality of the available energy functions.

Within this common inference/learning framework, the wide choice of energy func-

tions and loss functionals allows for the design of many types of statistical models,

both probabilistic and non-probabilistic.

Energy-based learning provides a unified framework for many probabilistic and

non-probabilistic approaches to learning, particularly for non-probabilistic training of

graphical models and other structured models. Energy-based learning can be seen as an

alternative to probabilistic estimation for prediction, classification, or decision-making

tasks. Because there is no requirement for proper normalization, energy-based ap-

proaches avoid the problems associated with estimating the normalization constant in

probabilistic models. Furthermore, the absence of the normalization condition allows

for much more flexibility in the design of learning machines. Most probabilistic mod-

els can be viewed as special types of energy-based models in which the energy function

satisfies certain normalizability conditions, and in which the loss function, optimized

by learning, has a particular form.

This chapter presents a tutorial on energy-based models, with an emphasis on their

use for structured output problems and sequence labeling problems. Section 1 intro-

duces energy-based models and describes deterministic inference through energy min-

imization. Section 2 introduces energy-based learning and the concept of the loss func-

tion. A number of standard and non-standard loss functions are described, including

the perceptron loss, several margin-based losses, and the negative log-likelihood loss.

The negative log-likelihood loss can be used to train a model to produce conditional

probability estimates. Section 3 shows how simple regression and classification mod-

els can be formulated in the EBM framework. Section 4 concerns models that contain

latent variables. Section 5 analyzes the various loss functions in detail and gives suf-

ficient conditions that a loss function must satisfy so that its minimization will cause

the model to approach the desired behavior. A list of “good” and “bad” loss functions

is given. Section 6 introduces the concept of non-probabilistic factor graphs and infor-

mally discusses efficient inference algorithms. Section 7 focuses on sequence labeling

and structured output models. Linear models such as max-margin Markov networks

and conditional random fields are re-formulated in the EBM framework. The liter-

ature on discriminative learning for speech and handwriting recognition, going back

to the late 80’s and early 90’s, is reviewed. This includes globally trained systems

that integrate non-linear discriminant functions, such as neural networks, and sequence

alignment methods, such as dynamic time warping and hidden Markov models. Hier-

archical models such as the graph transformer network architecture are also reviewed.

Finally, the differences, commonalities, and relative advantages of energy-based ap-

proaches, probabilistic approaches, and sampling-based approximate methods such as

contrastive divergence are discussed in Section 8.
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Figure 1: A model measures the compatibility between observed variables X and variables to

be predicted Y using an energy function E(Y,X). For example, X could be the pixels of an

image, and Y a discrete label describing the object in the image. Given X, the model produces

the answer Y that minimizes the energy E.

1.1 Energy-Based Inference

Let us consider a model with two sets of variables, X and Y , as represented in Fig-

ure 1. Variable X could be a vector containing the pixels from an image of an object.

Variable Y could be a discrete variable that represents the possible category of the ob-

ject. For example, Y could take six possible values: animal, human figure, airplane,

truck, car, and “none of the above”. The model is viewed as an energy function which

measures the “goodness” (or badness) of each possible configuration of X and Y . The

output number can be interpreted as the degree of compatibility between the values of

X and Y . In the following, we use the convention that small energy values correspond

to highly compatible configurations of the variables, while large energy values corre-

spond to highly incompatible configurations of the variables. Functions of this type are

given different names in different technical communities; they may be called contrast

functions, value functions, or negative log-likelihood functions. In the following, we

will use the term energy function and denote it E(Y, X). A distinction should be made

between the energy function, which is minimized by the inference process, and the loss

functional (introduced in Section 2), which is minimized by the learning process.

In the most common use of a model, the input X is given (observed from the world),

and the model produces the answer Y that is most compatible with the observed X .

More precisely, the model must produce the value Y ∗, chosen from a set Y , for which

E(Y, X) is the smallest:

Y ∗ = argminY ∈YE(Y, X). (1)

When the size of the set Y is small, we can simply compute E(Y, X) for all possible

values of Y ∈ Y and pick the smallest.
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Figure 2: Several applications of EBMs: (a) face recognition: Y is a high-cardinality discrete

variable; (b) face detection and pose estimation: Y is a collection of vectors with location

and pose of each possible face; (c) image segmentation: Y is an image in which each pixel

is a discrete label; (d-e) handwriting recognition and sequence labeling: Y is a sequence of

symbols from a highly structured but potentially infinite set (the set of English sentences). The

situation is similar for many applications in natural language processing and computational

biology; (f) image restoration: Y is a high-dimensional continuous variable (an image).
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In general, however, picking the best Y may not be simple. Figure 2 depicts sev-

eral situations in which Y may be too large to make exhaustive search practical. In

Figure 2(a), the model is used to recognize a face. In this case, the set Y is discrete

and finite, but its cardinality may be tens of thousands [Chopra et al., 2005]. In Fig-

ure 2(b), the model is used to find the faces in an image and estimate their poses. The

set Y contains a binary variable for each location indicating whether a face is present

at that location, and a set of continuous variables representing the size and orienta-

tion of the face [Osadchy et al., 2005]. In Figure 2(c), the model is used to segment

a biological image: each pixel must be classified into one of five categories (cell nu-

cleus, nuclear membrane, cytoplasm, cell membrane, external medium). In this case,

Y contains all the consistent label images, i.e. the ones for which the nuclear mem-

branes are encircling the nuclei, the nuclei and cytoplasm are inside the cells walls,

etc. The set is discrete, but intractably large. More importantly, members of the set

must satisfy complicated consistency constraints [Ning et al., 2005]. In Figure 2(d),

the model is used to recognize a handwritten sentence. Here Y contains all possible

sentences of the English language, which is a discrete but infinite set of sequences of

symbols [LeCun et al., 1998a]. In Figure 2(f), the model is used to restore an image

(by cleaning the noise, enhancing the resolution, or removing scratches). The set Y
contains all possible images (all possible pixel combinations). It is a continuous and

high-dimensional set.

For each of the above situations, a specific strategy, called the inference procedure,

must be employed to find the Y that minimizes E(Y, X). In many real situations, the

inference procedure will produce an approximate result, which may or may not be the

global minimum of E(Y, X) for a given X . In fact, there may be situations where

E(Y, X) has several equivalent minima. The best inference procedure to use often

depends on the internal structure of the model. For example, if Y is continuous and

E(Y, X) is smooth and well-behaved with respect to Y , one may use a gradient-based

optimization algorithm. If Y is a collection of discrete variables and the energy func-

tion can be expressed as a factor graph, i.e. a sum of energy functions (factors) that

depend on different subsets of variables, efficient inference procedures for factor graphs

can be used (see Section 6) [Kschischang et al., 2001, MacKay, 2003]. A popular ex-

ample of such a procedure is the min-sum algorithm. When each element of Y can be

represented as a path in a weighted directed acyclic graph, then the energy for a partic-

ular Y is the sum of values on the edges and nodes along a particular path. In this case,

the best Y can be found efficiently using dynamic programming (e.g with the Viterbi

algorithm or A∗). This situation often occurs in sequence labeling problems such as

speech recognition, handwriting recognition, natural language processing, and biolog-

ical sequence analysis (e.g. gene finding, protein folding prediction, etc). Different

situations may call for the use of other optimization procedures, including continuous

optimization methods such as linear programming, quadratic programming, non-linear

optimization methods, or discrete optimization methods such as simulated annealing,

graph cuts, or graph matching. In many cases, exact optimization is impractical, and

one must resort to approximate methods, including methods that use surrogate energy

functions (such as variational methods).
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1.2 What Questions Can a Model Answer?

In the preceding discussion, we have implied that the question to be answered by the

model is “What is the Y that is most compatible with this X?”, a situation that occurs

in prediction, classification or decision-making tasks. However, a model may be used

to answer questions of several types:

1. Prediction, classification, and decision-making: “Which value of Y is most com-

patible with this X?’ This situation occurs when the model is used to make hard

decisions or to produce an action. For example, if the model is used to drive a

robot and avoid obstacles, it must produce a single best decision such as “steer

left”, “steer right”, or “go straight”.

2. Ranking: “Is Y1 or Y2 more compatible with this X?” This is a more complex

task than classification because the system must be trained to produce a complete

ranking of all the answers, instead of merely producing the best one. This situ-

ation occurs in many data mining applications where the model is used to select

multiple samples that best satisfy a given criterion.

3. Detection: “Is this value of Y compatible with X?” Typically, detection tasks,

such as detecting faces in images, are performed by comparing the energy of a

face label with a threshold. Since the threshold is generally unknown when the

system is built, the system must be trained to produce energy values that increase

as the image looks less like a face.

4. Conditional density estimation: “What is the conditional probability distribution

over Y given X?” This case occurs when the output of the system is not used

directly to produce actions, but is given to a human decision maker or is fed to

the input of another, separately built system.

We often think of X as a high-dimensional variable (e.g. an image) and Y as a

discrete variable (e.g. a label), but the converse case is also common. This occurs

when the model is used for such applications as image restoration, computer graphics,

speech and language production, etc. The most complex case is when both X and Y
are high-dimensional.

1.3 Decision Making versus Probabilistic Modeling

For decision-making tasks, such as steering a robot, it is merely necessary that the sys-

tem give the lowest energy to the correct answer. The energies of other answers are

irrelevant, as long as they are larger. However, the output of a system must sometimes

be combined with that of another system, or fed to the input of another system (or to a

human decision maker). Because energies are uncalibrated (i.e. measured in arbitrary

units), combining two, separately trained energy-based models is not straightforward:

there is no a priori guarantee that their energy scales are commensurate. Calibrating

energies so as to permit such combinations can be done in a number of ways. However,

the only consistent way involves turning the collection of energies for all possible out-

puts into a normalized probability distribution. The simplest and most common method
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for turning a collection of arbitrary energies into a collection of numbers between 0 and

1 whose sum (or integral) is 1 is through the Gibbs distribution:

P (Y |X) =
e−βE(Y,X)

∫

y∈Y
e−βE(y,X)

, (2)

where β is an arbitrary positive constant akin to an inverse temperature, and the denom-

inator is called the partition function (by analogy with similar concepts in statistical

physics). The choice of the Gibbs distribution may seem arbitrary, but other proba-

bility distributions can be obtained (or approximated) through a suitable re-definition

of the energy function. Whether the numbers obtained this way are good probability

estimates does not depend on how energies are turned into probabilities, but on how

E(Y, X) is estimated from data.

It should be noted that the above transformation of energies into probabilities is

only possible if the integral
∫

y∈Y
e−βE(y,X) converges. This somewhat restricts the

energy functions and domains Y that can be used. More importantly, there are many

practical situations where computing the partition function is intractable (e.g. when

Y has high cardinality), or outright impossible (e.g. when Y is a high dimensional

variable and the integral has no analytical solution). Hence probabilistic modeling

comes with a high price, and should be avoided when the application does not require

it.

2 Energy-Based Training: Architecture and Loss Func-

tion

Training an EBM consists in finding an energy function that produces the best Y for

any X . The search for the best energy function is performed within a family of energy

functions E indexed by a parameter W

E = {E(W, Y, X) : W ∈ W}. (3)

The architecture of the EBM is the internal structure of the parameterized energy func-

tion E(W, Y, X). At this point, we put no particular restriction on the nature of X ,

Y , W , and E . When X and Y are real vectors, E could be as simple as a linear com-

bination of basis functions (as in the case of kernel methods), or a set of neural net

architectures and weight values. Section gives examples of simple architectures for

common applications to classification and regression. When X and Y are variable-size

images, sequences of symbols or vectors, or more complex structured objects, E may

represent a considerably richer class of functions. Sections 4, 6 and 7 discuss several

examples of such architectures. One advantage of the energy-based approach is that it

puts very little restrictions on the nature of E .

To train the model for prediction, classification, or decision-making, we are given

a set of training samples S = {(X i, Y i) : i = 1 . . . P}, where X i is the input for

the i-th training sample, and Y i is the corresponding desired answer. In order to find

the best energy function in the family E , we need a way to assess the quality of any
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particular energy function, based solely on two elements: the training set, and our prior

knowledge about the task. This quality measure is called the loss functional (i.e. a

function of function) and denoted L(E,S). For simplicity, we often denote it L(W,S)
and simply call it the loss function. The learning problem is simply to find the W that

minimizes the loss:

W ∗ = min
W∈W

L(W,S). (4)

For most cases, the loss functional is defined as follows:

L(E,S) =
1

P

P
∑

i=1

L(Y i, E(W,Y, X i)) + R(W ). (5)

It is an average taken over the training set of a per-sample loss functional, denoted

L(Y i, E(W,Y, X i)), which depends on the desired answer Y i and on the energies

obtained by keeping the input sample fixed and varying the answer Y . Thus, for each

sample, we evaluate a “slice” of the energy surface. The term R(W ) is the regularizer,

and can be used to embed our prior knowledge about which energy functions in our

family are preferable to others (in the absence of training data). With this definition,

the loss is invariant under permutations of the training samples and under multiple

repetitions of the training set.

Naturally, the ultimate purpose of learning is to produce a model that will give

good answers for new input samples that are not seen during training. We can rely

on general results from statistical learning theory which guarantee that, under simple

interchangeability conditions on the samples and general conditions on the family of

energy functions (finite VC dimension), the deviation between the value of the loss

after minimization on the training set, and the loss on a large, separate set of test

samples is bounded by a quantity that converges to zero as the size of training set

increases [Vapnik, 1995].

2.1 Designing a Loss Functional

Intuitively, the per-sample loss functional should be designed in such a way that it

assigns a low loss to well-behaved energy functions: energy functions that give the

lowest energy to the correct answer and higher energy to all other (incorrect) answers.

Conversely, energy functions that do not assign the lowest energy to the correct answers

would have a high loss. Characterizing the appropriateness of loss functions (the ones

that select the best energy functions) is further discussed in following sections.

Considering only the task of training a model to answer questions of type 1 (pre-

diction, classification and decision-making), the main intuition of the energy-based ap-

proach is as follows. Training an EBM consists in shaping the energy function, so that

for any given X , the inference algorithm will produce the desired value for Y . Since

the inference algorithm selects the Y with the lowest energy, the learning procedure

must shape the energy surface so that the desired value of Y has lower energy than all

other (undesired) values. Figures 3 and 4 show examples of energy as a function of Y
for a given input sample X i in cases where Y is a discrete variable and a continuous

scalar variable. We note three types of answers:
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Figure 3: How training affects the energies of the possible answers in the discrete case: the

energy of the correct answer is decreased, and the energies of incorrect answers are increased,

particularly if they are lower than that of the correct answer.
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i

Y
i

(Y )

E
(W

,
·
,
X

i
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Figure 4: The effect of training on the energy surface as a function of the answer Y in the con-

tinuous case. After training, the energy of the correct answer Y i is lower than that of incorrect

answers.
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• Y i: the correct answer

• Y ∗i: the answer produced by the model, i.e. the answer with the lowest energy.

• Ȳ i: the most offending incorrect answer, i.e. the answer that has the lowest

energy among all the incorrect answers. To define this answer in the continuous

case, we can simply view all answers within a distance ǫ of Y i as correct, and all

answers beyond that distance as incorrect.

With a properly designed loss function, the learning process should have the effect

of “pushing down” on E(W, Y i, X i), and “pulling up” on the incorrect energies, par-

ticularly on E(W, Ȳ i, X i). Different loss functions do this in different ways. Section 5

gives sufficient conditions that the loss function must satisfy in order to be guaranteed

to shape the energy surface correctly. We show that some widely used loss functions

do not satisfy the conditions, while others do.

To summarize: given a training set S, building and training an energy-based model

involves designing four components:

1. The architecture: the internal structure of E(W, Y, X).

2. The inference algorithm: the method for finding a value of Y that minimizes

E(W, Y, X) for any given X .

3. The loss function: L(W,S) measures the quality of an energy function using the

training set.

4. The learning algorithm: the method for finding a W that minimizes the loss

functional over the family of energy functions E , given the training set.

Properly designing the architecture and the loss function is critical. Any prior knowl-

edge we may have about the task at hand is embedded into the architecture and into

the loss function (particularly the regularizer). Unfortunately, not all combinations of

architectures and loss functions are allowed. With some combinations, minimizing the

loss will not make the model produce the best answers. Choosing the combinations of

architecture and loss functions that can learn effectively and efficiently is critical to the

energy-based approach, and thus is a central theme of this tutorial.

2.2 Examples of Loss Functions

We now describe a number of standard loss functions that have been proposed and used

in the machine learning literature. We shall discuss them and classify them as “good”

or “bad” in an energy-based setting. For the time being, we set aside the regularization

term, and concentrate on the data-dependent part of the loss function.

2.2.1 Energy Loss

The simplest and the most straightforward of all the loss functions is the energy loss.

For a training sample (X i, Y i), the per-sample loss is defined simply as:

Lenergy(Y i, E(W,Y, X i)) = E(W, Y i, X i). (6)
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Figure 5: The hinge loss (left) and log loss (center) penalize E(W, Y i, Xi)−E(W, Ȳ i, Xi) lin-

early and logarithmically, respectively. The square-square loss (right) separately penalizes large

values of E(W,Y i, Xi) (solid line) and small values of E(W, Ȳ i, Xi) (dashed line) quadrati-

cally.

This loss function, although very popular for things like regression and neural network

training, cannot be used to train most architectures: while this loss will push down

on the energy of the desired answer, it will not pull up on any other energy. With

some architectures, this can lead to a collapsed solution in which the energy is con-

stant and equal to zero. The energy loss will only work with architectures that are

designed in such a way that pushing down on E(W, Y i, X i) will automatically make

the energies of the other answers larger. A simple example of such an architecture is

E(W, Y i, X i) = ||Y i − G(W, X i)||2, which corresponds to regression with mean-

squared error with G being the regression function.

2.2.2 Generalized Perceptron Loss

The generalized perceptron loss for a training sample (X i, Y i) is defined as

Lperceptron(Y i, E(W,Y, X i)) = E(W, Y i, X i)− min
Y ∈Y

E(W, Y, X i). (7)

This loss is always positive, since the second term is a lower bound on the first term.

Minimizing this loss has the effect of pushing down on E(W, Y i, X i), while pulling

up on the energy of the answer produced by the model.

While the perceptron loss has been widely used in many settings, including for

models with structured outputs such as handwriting recognition [LeCun et al., 1998a]

and parts of speech tagging [Collins, 2002], it has a major deficiency: there is no mech-

anism for creating an energy gap between the correct answer and the incorrect ones.

Hence, as with the energy loss, the perceptron loss may produce flat (or almost flat)

energy surfaces if the architecture allows it. Consequently, a meaningful, uncollapsed

result is only guaranteed with this loss if a model is used that cannot produce a flat

energy surface. For other models, one cannot guarantee anything.

2.2.3 Generalized Margin Losses

Several loss functions can be described as margin losses; the hinge loss, log loss, LVQ2

loss, minimum classification error loss, square-square loss, and square-exponential loss

all use some form of margin to create an energy gap between the correct answer and the
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incorrect answers. Before discussing the generalized margin loss we give the following

definitions.

Definition 1 Let Y be a discrete variable. Then for a training sample (X i, Y i), the

most offending incorrect answer Ȳ i is the answer that has the lowest energy among

all answers that are incorrect:

Ȳ i = argminY ∈YandY 6=Y iE(W, Y, X i). (8)

If Y is a continuous variable then the definition of the most offending incorrect answer

can be defined in a number of ways. The simplest definition is as follows.

Definition 2 Let Y be a continuous variable. Then for a training sample (X i, Y i), the

most offending incorrect answer Ȳ i is the answer that has the lowest energy among

all answers that are at least ǫ away from the correct answer:

Ȳ i = argminY ∈Y,‖Y −Y i‖>ǫE(W, Y, X i). (9)

The generalized margin loss is a more robust version of the generalized perceptron

loss. It directly uses the energy of the most offending incorrect answer in the contrastive

term:

Lmargin(W, Y i, X i) = Qm

(

E(W, Y i, X i), E(W, Ȳ i, X i)
)

. (10)

Here m is a positive parameter called the margin and Qm(e1, e2) is a convex function

whose gradient has a positive dot product with the vector [1,−1] in the region where

E(W, Y i, X i)+m > E(W, Ȳ i, X i). In other words, the loss surface is slanted toward

low values of E(W, Y i, X i) and high values of E(W, Ȳ i, X i) wherever E(W, Y i, X i)
is not smaller than E(W, Ȳ i, X i) by at least m. Two special cases of the generalized

margin loss are given below:

Hinge Loss: A particularly popular example of generalized margin loss is

the hinge loss, which is used in combination with linearly parameterized en-

ergies and a quadratic regularizer in support vector machines, support vector

Markov models [Altun and Hofmann, 2003], and maximum-margin Markov net-

works [Taskar et al., 2003]:

Lhinge(W, Y i, X i) = max
(

0, m + E(W, Y i, X i)− E(W, Ȳ i, X i)
)

, (11)

where m is the positive margin. The shape of this loss function is given in Figure 5. The

difference between the energies of the correct answer and the most offending incorrect

answer is penalized linearly when larger than −m. The hinge loss only depends on

energy differences, hence individual energies are not constrained to take any particular

value.

Log Loss: a common variation of the hinge loss is the log loss, which can be seen

as a “soft” version of the hinge loss with an infinite margin (see Figure 5, center):

Llog(W, Y i, X i) = log
(

1 + eE(W,Y i,Xi)−E(W,Ȳ i,Xi)
)

. (12)

LVQ2 Loss: One of the very first proposals for discriminatively train-

ing sequence labeling systems (particularly speech recognition systems)
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is a version of Kohonen’s LVQ2 loss. This loss has been advocated

by Driancourt and Bottou since the early 90’s [Driancourt et al., 1991a,

Driancourt and Gallinari, 1992b, Driancourt and Gallinari, 1992a, Driancourt, 1994,

McDermott, 1997, McDermott and Katagiri, 1992]:

Llvq2(W, Y i, X i) = min

(

1, max

(

0,
E(W, Y i, X i)− E(W, Ȳ i, X i)

δE(W, Ȳ i, X i)

))

, (13)

where δ is a positive parameter. LVQ2 is a zero-margin loss, but it has the peculiarity of

saturating the ratio between E(W, Y i, X i) and E(W, Ȳ i, X i) to 1 + δ. This mitigates

the effect of outliers by making them contribute a nominal cost M to the total loss.

This loss function is a continuous approximation of the number of classification errors.

Unlike generalized margin losses, the LVQ2 loss is non-convex in E(W, Y i, X i) and

E(W, Ȳ i, X i).
MCE Loss: The Minimum Classification Error loss was originally proposed by

Juang et al. in the context of discriminative training for speech recognition sys-

tems [Juang et al., 1997]. The motivation was to build a loss function that also ap-

proximately counts the number of classification errors, while being smooth and differ-

entiable. The number of classification errors can be written as:

θ
(

E(W, Y i, X i)− E(W, Ȳ i, X i)
)

, (14)

where θ is the step function (equal to zero for negative arguments, and 1 for positive

arguments). However, this function is not differentiable, and therefore very difficult to

optimize. The MCE Loss “softens” it with a sigmoid:

Lmce(W, Y i, X i) = σ
(

E(W, Y i, X i)− E(W, Ȳ i, X i)
)

, (15)

where σ is the logistic function σ(x) = (1 + e−x)−1. As with the LVQ2 loss, the satu-

ration ensures that mistakes contribute a nominal cost to the overall loss. Although the

MCE loss does not have an explicit margin, it does create a gap between E(W, Y i, X i)
and E(W, Ȳ i, X i). The MCE loss is non-convex.

Square-Square Loss: Unlike the hinge loss, the square-square loss treats

the energy of the correct answer and the most offending answer sepa-

rately [LeCun and Huang, 2005, Hadsell et al., 2006]:

Lsq−sq(W, Y i, X i) = E(W, Y i, X i)2 +
(

max(0, m− E(W, Ȳ i, X i))
)2

. (16)

Large values of E(W, Y i, X i) and small values of E(W, Ȳ i, X i) below the margin m
are both penalized quadratically (see Figure 5). Unlike the margin loss, the square-

square loss “pins down” the correct answer energy at zero and “pins down” the incor-

rect answer energies above m. Therefore, it is only suitable for energy functions that

are bounded below by zero, notably in architectures whose output module measures

some sort of distance.

Square-Exponential [LeCun and Huang, 2005, Chopra et al., 2005,

Osadchy et al., 2005]: The square-exponential loss is similar to the square-square

loss. It only differs in the contrastive term: instead of a quadratic term it has the

exponential of the negative energy of the most offending incorrect answer:

Lsq−exp(W, Y i, X i) = E(W, Y i, X i)2 + γe−E(W,Ȳ i,Xi), (17)
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where γ is a positive constant. Unlike the square-square loss, this loss has an infinite

margin and pushes the energy of the incorrect answers to infinity with exponentially

decreasing force.

2.2.4 Negative Log-Likelihood Loss

The motivation for the negative log-likelihood loss comes from probabilistic modeling.

It is defined as:

Lnll(W, Y i, X i) = E(W, Y i, X i) + Fβ(W,Y, X i). (18)

Where F is the free energy of the ensemble {E(W, y, X i), y ∈ Y}:

Fβ(W,Y, X i) =
1

β
log

(
∫

y∈Y

exp
(

−βE(W, y, X i)
)

)

. (19)

where β is a positive constant akin to an inverse temperature. This loss can only be

used if the exponential of the negative energy is integrable over Y , which may not be

the case for some choices of energy function or Y .

The form of the negative log-likelihood loss stems from a probabilistic formulation

of the learning problem in terms of the maximum conditional probability principle.

Given the training set S, we must find the value of the parameter that maximizes the

conditional probability of all the answers given all the inputs in the training set. Assum-

ing that the samples are independent, and denoting by P (Y i|X i, W ) the conditional

probability of Y i given X i that is produced by our model with parameter W , the condi-

tional probability of the training set under the model is a simple product over samples:

P (Y 1, . . . , Y P |X1, . . . , XP , W ) =

P
∏

i=1

P (Y i|X i, W ). (20)

Applying the maximum likelihood estimation principle, we seek the value of W that

maximizes the above product, or the one that minimizes the negative log of the above

product:

− log

P
∏

i=1

P (Y i|X i, W ) =

P
∑

i=1

− log P (Y i|X i, W ). (21)

Using the Gibbs distribution (Equation 2), we get:

− log

P
∏

i=1

P (Y i|X i, W ) =

P
∑

i=1

βE(W, Y i, X i) + log

∫

y∈Y

e−βE(W,y,Xi). (22)

The final form of the negative log-likelihood loss is obtained by dividing the above

expression by P and β (which has no effect on the position of the minimum):

Lnll(W,S) =
1

P

P
∑

i=1

(

E(W, Y i, X i) +
1

β
log

∫

y∈Y

e−βE(W,y,Xi)

)

. (23)
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While many of the previous loss functions involved only E(W, Ȳ i, X i) in their con-

trastive term, the negative log-likelihood loss combines all the energies for all val-

ues of Y in its contrastive term Fβ(W,Y, X i). This term can be interpreted as the

Helmholtz free energy (log partition function) of the ensemble of systems with ener-

gies E(W, Y, X i), Y ∈ Y . This contrastive term causes the energies of all the answers

to be pulled up. The energy of the correct answer is also pulled up, but not as hard as it

is pushed down by the first term. This can be seen in the expression of the gradient for

a single sample:

∂Lnll(W, Y i, X i)

∂W
=

∂E(W, Y i, X i)

∂W
−

∫

Y ∈Y

∂E(W, Y, X i)

∂W
P (Y |X i, W ), (24)

where P (Y |X i, W ) is obtained through the Gibbs distribution:

P (Y |X i, W ) =
e−βE(W,Y,Xi)

∫

y∈Y e−βE(W,y,Xi)
. (25)

Hence, the contrastive term pulls up on the energy of each answer with a force propor-

tional to the likelihood of that answer under the model. Unfortunately, there are many

interesting models for which computing the integral over Y is intractable. Evaluating

this integral is a major topic of research. Considerable efforts have been devoted to ap-

proximation methods, including clever organization of the calculations, Monte-Carlo

sampling methods, and variational methods. While these methods have been devised as

approximate ways of minimizing the NLL loss, they can be viewed in the energy-based

framework as different strategies for choosing the Y ’s whose energies will be pulled

up.

Interestingly, the NLL loss reduces to the generalized perceptron loss when β →∞
(zero temperature), and reduces to the log loss (Eq. 12) when Y has two elements (e.g.

binary classification).

The NLL loss has been used extensively by many authors under various

names. In the neural network classification literature, it is known as the cross-

entropy loss [Solla et al., 1988]. It was also used by Bengio et al. to train an

energy-based language model [Bengio et al., 2003]. It has been widely used un-

der the name maximum mutual information estimation for discriminatively train-

ing speech recognition systems since the late 80’s, including hidden Markov

models with mixtures of Gaussians [Bahl et al., 1986], and HMM-neural net hy-

brids [Bengio et al., 1990, Bengio et al., 1992, Haffner, 1993, Bengio, 1996]. It has

also been used extensively for global discriminative training of handwriting recog-

nition systems that integrate neural nets and hidden Markov models under the

names maximum mutual information [Bengio et al., 1993, LeCun and Bengio, 1994,

Bengio et al., 1995, LeCun et al., 1997, Bottou et al., 1997] and discriminative for-

ward training [LeCun et al., 1998a]. Finally, it is the loss function of choice for train-

ing other probabilistic discriminative sequence labeling models such as input/output

HMM [Bengio and Frasconi, 1996], conditional random fields [Lafferty et al., 2001],

and discriminative random fields [Kumar and Hebert, 2004].

Minimum Empirical Error Loss: Some authors have argued that the negative log

likelihood loss puts too much emphasis on mistakes: Eq. 20 is a product whose value

15



is dominated by its smallest term. Hence, Ljolje et al. [Ljolje et al., 1990] proposed

the minimum empirical error loss, which combines the conditional probabilities of the

samples additively instead of multiplicatively:

Lmee(W, Y i, X i) = 1− P (Y i|X i, W ). (26)

Substituting Equation 2 we get:

Lmee(W, Y i, X i) = 1−
e−βE(W,Y i,Xi)

∫

y∈Y
e−βE(W,y,Xi)

. (27)

As with the MCE loss and the LVQ2 loss, the MEE loss saturates the contribution

of any single error. This makes the system more robust to label noise and outliers,

which is of particular importance to such applications such as speech recognition, but

it makes the loss non-convex. As with the NLL loss, MEE requires evaluating the

partition function.

3 Simple Architectures

To substantiate the ideas presented thus far, this section demonstrates how simple mod-

els of classification and regression can be formulated as energy-based models. This sets

the stage for the discussion of good and bad loss functions, as well as for the discussion

of advanced architectures for structured prediction.

D(GW (X), Y )

X Y X Y

−Y · GW (X)

X Y

g0 g1 g2

E(W,Y, X)E(W,Y, X)

GW (X) GW (X) GW (X)

E(W,Y, X) =

3∑

k=1

δ(Y − k)gk

Figure 6: Simple learning models viewed as EBMs: (a) a regressor: The energy is the dis-

crepancy between the output of the regression function GW (X) and the answer Y . The best

inference is simply Y ∗ = GW (X); (b) a simple two-class classifier: The set of possible an-

swers is {−1, +1}. The best inference is Y ∗ = sign(GW (X)); (c) a multiclass classifier: The

discriminant function produces one value for each of the three categories. The answer, which

can take three values, controls the position of a “switch”, which connects one output of the dis-

criminant function to the energy function. The best inference is the index of the smallest output

component of GW (X).
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3.1 Regression

Figure 6(a) shows a simple architecture for regression or function approximation. The

energy function is the squared error between the output of a regression function GW (X)
and the variable to be predicted Y , which may be a scalar or a vector:

E(W, Y, X) =
1

2
||GW (X)− Y ||2. (28)

The inference problem is trivial: the value of Y that minimizes E is equal to GW (X).
The minimum energy is always equal to zero. When used with this architecture, the

energy loss, perceptron loss, and negative log-likelihood loss are all equivalent because

the contrastive term of the perceptron loss is zero, and that of the NLL loss is constant

(it is a Gaussian integral with a constant variance):

Lenergy(W,S) =
1

P

P
∑

i=1

E(W, Y i, X i) =
1

2P

P
∑

i=1

||GW (X i)− Y i||2. (29)

This corresponds to standard regression with mean-squared error.

A popular form of regression occurs when G is a linear function of the parameters:

GW (X) =

N
∑

k=1

wkφk(X) = WT Φ(X). (30)

The φk(X) are a set of N features, and wk are the components of an N -dimensional

parameter vector W . For concision, we use the vector notation WT Φ(X), where WT

denotes the transpose of W , and Φ(X) denotes the vector formed by each φk(X). With

this linear parameterization, training with the energy loss reduces to an easily solvable

least-squares minimization problem, which is convex:

W ∗ = argminW

[

1

2P

P
∑

i=1

||WT Φ(X i)− Y i||2

]

. (31)

In simple models, the feature functions are hand-crafted by the designer, or separately

trained from unlabeled data. In the dual form of kernel methods, they are defined as

φk(X) = K(X, Xk), k = 1 . . . P , where K is the kernel function. In more complex

models such as multilayer neural networks and others, the φ’s may themselves be pa-

rameterized and subject to learning, in which case the regression function is no longer

a linear function of the parameters and hence the loss function may not be convex in

the parameters.

3.2 Two-Class Classifier

Figure 6(b) shows a simple two-class classifier architecture. The variable to be pre-

dicted is binary: Y = {−1, +1}. The energy function can be defined as:

E(W, Y, X) = −Y GW (X), (32)
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where GW (X) is a scalar-valued discriminant function parameterized by W . Inference

is trivial:

Y ∗ = argminY ∈{−1,1} − Y GW (X) = sign(GW (X)). (33)

Learning can be done using a number of different loss functions, which include the

perceptron loss, hinge loss, and negative log-likelihood loss. Substituting Equations 32

and 33 into the perceptron loss (Eq. 7), we get:

Lperceptron(W,S) =
1

P

P
∑

i=1

(

sign(GW (X i))− Y i
)

GW (X i). (34)

The stochastic gradient descent update rule to minimize this loss is:

W ←W + η
(

Y i − sign(GW (X i)
) ∂GW (X i)

∂W
, (35)

where η is a positive step size. If we choose GW (X) in the family of linear models,

the energy function becomes E(W, Y, X) = −Y WT Φ(X) and the perceptron loss

becomes:

Lperceptron(W,S) =
1

P

P
∑

i=1

(

sign(WT Φ(X i))− Y i
)

WT Φ(X i), (36)

and the stochastic gradient descent update rule becomes the familiar perceptron learn-

ing rule: W ←W + η
(

Y i − sign(WT Φ(X i))
)

Φ(X i).
The hinge loss (Eq. 11) with the two-class classifier energy (Eq. 32) yields:

Lhinge(W,S) =
1

P

P
∑

i=1

max(0, m + 2Y iGW (X i)). (37)

Using this loss with GW (X) = WT X and a regularizer of the form ||W ||2 gives the

familiar linear support vector machine.

The negative log-likelihood loss (Eq. 23) with Equation 32 yields:

Lnll(W,S) =
1

P

P
∑

i=1

[

−Y iGW (X i) + log
(

eY iGW (Xi) + e−Y iGW (Xi)
)]

. (38)

Using the fact that Y = {−1, +1}, we obtain:

Lnll(W,S) =
1

P

P
∑

i=1

log
(

1 + e−2Y iGW (Xi)
)

, (39)

which is equivalent to the log loss (Eq. 12). Using a linear model as described above,

the loss function becomes:

Lnll(W,S) =
1

P

P
∑

i=1

log
(

1 + e−2Y iW T Φ(Xi)
)

. (40)

This particular combination of architecture and loss is the familiar logistic regression

method.
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3.3 Multiclass Classifier

Figure 6(c) shows an example of architecture for multiclass classification for 3 classes.

A discriminant function GW (X) produces an output vector [g1, g2, . . . , gC ] with one

component for each of the C categories. Each component gj can be interpreted as

a “penalty” for assigning X to the jth category. A discrete switch module selects

which of the components is connected to the output energy. The position of the switch

is controlled by the discrete variable Y ∈ {1, 2, . . . , C}, which is interpreted as the

category. The output energy is equal to E(W, Y, X) =
∑C

j=1 δ(Y − j)gj , where

δ(Y − j) is the Kronecker delta function: δ(u) = 1 for u = 0; δ(u) = 0 otherwise.

Inference consists in setting Y to the index of the smallest component of GW (X).
The perceptron loss, hinge loss, and negative log-likelihood loss can be directly

translated to the multiclass case.

3.4 Implicit Regression

E(W,Y, X)

X Y

GW (X)G1W1
(X) HW2

(X)

||G1W1
(X)−G2W2

(Y )||1

G2W2
(Y )

Figure 7: The implicit regression architecture. X and Y are passed through two functions

G1W1
and G2W2

. This architecture allows multiple values of Y to have low energies for a given

X.

The architectures described in the previous section are simple functions of Y with a

single minimum within the set Y . However, there are tasks for which multiple answers

are equally good. Examples include robot navigation, where turning left or right may

get around an obstacle equally well, or a language model in which the sentence segment

“the cat ate the” can be followed equally well by “mouse” or “bird”.

More generally, the dependency between X and Y sometimes cannot be expressed

as a function that maps X to Y (e.g., consider the constraint X2+Y 2 = 1). In this case,

which we call implicit regression, we model the constraint that X and Y must satisfy

and design the energy function such that it measures the violation of the constraint.

Both X and Y can be passed through functions, and the energy is a function of their

outputs. A simple example is:

E(W, Y, X) =
1

2
||GX(WX , X)−GY (WY , Y )||2. (41)
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For some problems, the function GX must be different from the function GY . In

other cases, GX and GY must be instances of the same function G. An interesting

example is the Siamese architecture [Bromley et al., 1993]: variables X1 and X2 are

passed through two instances of a function GW . A binary label Y determines the con-

straint on GW (X1) and GW (X2): if Y = 0, GW (X1) and GW (X2) should be equal,

and if Y = 1, GW (X1) and GW (X2) should be different. In this way, the regres-

sion on X1 and X2 is implicitly learned through the constraint Y rather than explicitly

learned through supervision. Siamese architectures are used to learn similarity metrics

with labeled examples. When two input samples X1 and X2 are known to be similar

(e.g. two pictures of the same person), Y = 0; when they are different, Y = 1.

Siamese architectures were originally designed for signature verification [Bromley et al., 1993].

More recently they have been used with the square-exponential loss (Eq. 17) to learn a

similarity metric with application to face recognition [Chopra et al., 2005]. They have

also been used with the square-square loss (Eq. 16) for unsupervised learning of mani-

folds [Hadsell et al., 2006].

In other applications, a single non-linear function combines X and Y . An example

of such architecture is the trainable language model of Bengio et al [Bengio et al., 2003].

Under this model, the input X is a sequence of a several successive words in a text, and

the answer Y is the the next word in the text. Since many different words can follow

a particular word sequence, the architecture must allow multiple values of Y to have

low energy. The authors used a multilayer neural net as the function G(W, X, Y ), and

chose to train it with the negative log-likelihood loss. Because of the high cardinal-

ity of Y (equal to the size of the English dictionary), they had to use approximations

(importance sampling) and had to train the system on a cluster machine.

The current section often referred to architectures in which the energy was linear or

quadratic in W , and the loss function was convex in W , but it is important to keep in

mind that much of the discussion applies equally well to more complex architectures,

as we will see later.

4 Latent Variable Architectures

Energy minimization is a convenient way to represent the general process of reasoning

and inference. In the usual scenario, the energy is minimized with respect to the vari-

ables to be predicted Y , given the observed variables X . During training, the correct

value of Y is given for each training sample. However there are numerous applications

where it is convenient to use energy functions that depend on a set of hidden variables

Z whose correct value is never (or rarely) given to us, even during training. For ex-

ample, we could imagine training the face detection system depicted in Figure 2(b)

with data for which the scale and pose information of the faces is not available. For

these architectures, the inference process for a given set of variables X and Y involves

minimizing over these unseen variables Z:

E(Y, X) = min
Z∈Z

E(Z, Y, X). (42)

Such hidden variables are called latent variables, by analogy with a similar concept in

probabilistic modeling. The fact that the evaluation of E(Y, X) involves a minimiza-
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tion over Z does not significantly impact the approach described so far, but the use of

latent variables is so ubiquitous that it deserves special treatment.

In particular, some insight can be gained by viewing the inference process in the

presence of latent variables as a simultaneous minimization over Y and Z:

Y ∗ = argminY ∈Y,Z∈ZE(Z, Y, X). (43)

Latent variables can be viewed as intermediate results on the way to finding the best

output Y . At this point, one could argue that there is no conceptual difference between

the Z and Y variables: Z could simply be folded into Y . The distinction arises during

training: we are given the correct value of Y for a number of training samples, but we

are never given the correct value of Z .

Latent variables are very useful in situations where a hidden characteristic of the

process being modeled can be inferred from observations, but cannot be predicted di-

rectly. One such example is in recognition problems. For example, in face recognition

the gender of a person or the orientation of the face could be a latent variable. Knowing

these values would make the recognition task much easier. Likewise in invariant object

recognition the pose parameters of the object (location, orientation, scale) or the illumi-

nation could be latent variables. They play a crucial role in problems where segmenta-

tion of the sequential data must be performed simultaneously with the recognition task.

A good example is speech recognition, in which the segmentation of sentences into

words and words into phonemes must take place simultaneously with recognition, yet

the correct segmentation into phonemes is rarely available during training. Similarly, in

handwriting recognition, the segmentation of words into characters should take place

simultaneously with the recognition. The use of latent variables in face recognition is

discussed in this section, and Section 7.3 describes a latent variable architecture for

handwriting recognition.

4.1 An Example of Latent Variable Architecture

To illustrate the concept of latent variables, we consider the task of face detection,

beginning with the simple problem of determining whether a face is present or not in

a small image. Imagine that we are provided with a face detecting function Gface(X)
which takes a small image window as input and produces a scalar output. It outputs

a small value when a human face fills the input image, and a large value if no face is

present (or if only a piece of a face or a tiny face is present). An energy-based face

detector built around this function is shown in Figure 8(a). The variable Y controls the

position of a binary switch (1 = “face”, 0 = “non-face”). The output energy is equal

to Gface(X) when Y = 1, and to a fixed threshold value T when Y = 0:

E(Y, X) = Y Gface(X) + (1− Y )T.

The value of Y that minimizes this energy function is 1 (face) if Gface(X) < T and 0
(non-face) otherwise.

Let us now consider the more complex task of detecting and locating a single face

in a large image. We can apply our Gface(X) function to multiple windows in the large

image, compute which window produces the lowest value of Gface(X), and detect a
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Gface(X)

X Y

" f a c e " ( = 1 )o r" n o f a c e " ( = 0 )
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E(W,Z, Y, X)

p o s i t i o no ff a c eGface(X) Gface(X) Gface(X) Gface(X)

(a) (b)

Figure 8: (a): Architecture of an energy-based face detector. Given an image, it outputs a

small value when the image is filled with a human face, and a high value equal to the threshold

T when there is no face in the image. (b): Architecture of an energy-based face detector that

simultaneously locates and detects a face in an input image by using the location of the face as

a latent variable.

face at that location if the value is lower than T . This process is implemented by

the energy-based architecture shown in Figure 8(b). The latent “location” variable Z
selects which of the K copies of the Gface function is routed to the output energy. The

energy function can be written as

E(Z, Y, X) = Y

[

K
∑

k=1

δ(Z − k)Gface(Xk)

]

+ (1 − Y )T, (44)

where the Xk’s are the image windows. Locating the best-scoring location in the image

consists in minimizing the energy with respect to Y and Z . The resulting value of Y
will indicate whether a face was found, and the resulting value of Z will indicate the

location.

4.2 Probabilistic Latent Variables

When the best value of the latent variable for a given X and Y is ambiguous, one may

consider combining the contributions of the various possible values by marginalizing

over the latent variables instead of minimizing with respect to those variables.

When latent variables are present, the joint conditional distribution over Y and Z
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given by the Gibbs distribution is:

P (Z, Y |X) =
e−βE(Z,Y,X)

∫

y∈Y, z∈Z e−βE(y,z,X)
. (45)

Marginalizing over Z gives:

P (Y |X) =

∫

z∈Z e−βE(Z,Y,X)

∫

y∈Y, z∈Z
e−βE(y,z,X)

. (46)

Finding the best Y after marginalizing over Z reduces to:

Y ∗ = argminY ∈Y −
1

β
log

∫

z∈Z

e−βE(z,Y,X). (47)

This is actually a conventional energy-based inference in which the energy function has

merely been redefined from E(Z, Y, X) to F(Z) = − 1
β

log
∫

z∈Z
e−βE(z,Y,X), which

is the free energy of the ensemble {E(z, Y, X), z ∈ Z}. The above inference formula

by marginalization reduces to the previous inference formula by minimization when

β →∞ (zero temperature).

5 Analysis of Loss Functions for Energy-Based Models

This section discusses the conditions that a loss function must satisfy so that its mini-

mization will result in a model that produces the correct answers. To give an intuition

of the problem, we first describe simple experiments in which certain combinations of

architectures and loss functions are used to learn a simple dataset, with varying results.

A more formal treatment follows in Section 5.2.

5.1 “Good” and “Bad” Loss Functions

Consider the problem of learning a function that computes the square of a number:

Y = f(X), where f(X) = X2. Though this is a trivial problem for a learning

machine, it is useful for demonstrating the issues involved in the design of an energy

function and loss function that work together. For the following experiments, we use

a training set of 200 samples (X i, Y i) where Y i = X i2, randomly sampled with a

uniform distribution between −1 and +1.

First, we use the architecture shown in Figure 9(a). The input X is passed through

a parametric function GW , which produces a scalar output. The output is compared

with the desired answer using the absolute value of the difference (L1 norm):

E(W, Y, X) = ||GW (X)− Y ||1. (48)

Any reasonable parameterized family of functions could be used for GW . For these

experiments, we chose a two-layer neural network with 1 input unit, 20 hidden units

(with sigmoids) and 1 output unit. Figure 10(a) shows the initial shape of the energy
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(a) (b)

Figure 9: (a): A simple architecture that can be trained with the energy loss. (b): An implicit

regression architecture where X and Y are passed through functions G1W1
and G2W2

respec-

tively. Training this architecture with the energy loss causes a collapse (a flat energy surface). A

loss function with a contrastive term corrects the problem.

function in the space of the variables X and Y , using a set of random initial parameters

W . The dark spheres mark the location of a few training samples.

First, the simple architecture is trained with the energy loss (Eq. 6):

Lenergy(W,S) =
1

P

P
∑

i=1

E(W, Y i, X i) =
1

P

P
∑

i=1

||GW (X)− Y ||1. (49)

This corresponds to a classical form of robust regression. The learning process can be

viewed as pulling down on the energy surface at the location of the training samples (the

spheres in Figure 10), without considering the rest of the points on the energy surface.

The energy surface as a function of Y for any X has the shape of a V with fixed slopes.

By changing the function GW (X), the apex of that V can move around for different

X i. The loss is minimized by placing the apex of the V at the position Y = X2 for

any value of X , and this has the effect of making the energies of all other answers

larger, because the V has a single minimum. Figure 10 shows the shape of the energy

surface at fixed intervals during training with simple stochastic gradient descent. The

energy surface takes the proper shape after a few iterations through the training set.

Using more sophisticated loss functions such as the NLL loss or the perceptron loss

would produce exactly the same result as the energy loss because, with this simple

architecture, their contrastive term is constant.

Consider a slightly more complicated architecture, shown in Figure 9(b), to learn

the same dataset. In this architecture X is passed through function G1W1
and Y is

passed through function G2W2
. For the experiment, both functions were two-layer

neural networks with 1 input unit, 10 hidden units and 10 output units. The energy is
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(a) (b) (c) (d)

Figure 10: The shape of the energy surface at four intervals while training the system in Fig-

ure 9(a) with stochastic gradient descent to minimize the energy loss. The X axis is the input,

and the Y axis the output. The energy surface is shown (a) at the start of training, (b) after 10

epochs through the training set, (c) after 25 epochs, and (d) after 39 epochs. The energy surface

has attained the desired shape where the energy around training samples (dark spheres) is low

and energy at all other points is high.

the L1 norm of the difference between their 10-dimensional outputs:

E(W, X, Y ) = ||G1W1
(X)−G2W2

(Y )||1, (50)

where W = [W1W2]. Training this architecture with the energy loss results in a col-

lapse of the energy surface. Figure 11 shows the shape of the energy surface during

training; the energy surface becomes essentially flat. What has happened? The shape

of the energy as a function of Y for a given X is no longer fixed. With the energy loss,

there is no mechanism to prevent G1 and G2 from ignoring their inputs and producing

identical output values. This results in the collapsed solution: the energy surface is flat

and equal to zero everywhere.

(a) (b) (c) (d)

Figure 11: The shape of the energy surface at four intervals while training the system in Fig-

ure 9(b) using the energy loss. Along the X axis is the input variable and along the Y axis is the

answer. The shape of the surface (a) at the start of the training, (b) after 3 epochs through the

training set, (c) after 6 epochs, and (d) after 9 epochs. Clearly the energy is collapsing to a flat

surface.

Now consider the same architecture, but trained with the square-square loss:

L(W, Y i, X i) = E(W, Y i, X i)2 −
(

max(0, m− E(W, Ȳ i, X i))
)2

. (51)

Here m is a positive margin, and Ȳ i is the most offending incorrect answer. The second

term in the loss explicitly prevents the collapse of the energy by pushing up on points
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whose energy threatens to go below that of the desired answer. Figure 12 shows the

shape of the energy function during training; the surface successfully attains the desired

shape.

(a) (b) (c) (d)

Figure 12: The shape of the energy surface at four intervals while training the system in Fig-

ure 9(b) using square-square loss. Along the x-axis is the variable X and along the y-axis is the

variable Y . The shape of the surface at (a) the start of the training, (b) after 15 epochs over the

training set, (c) after 25 epochs, and (d) after 34 epochs. The energy surface has attained the

desired shape: the energies around the training samples are low and energies at all other points

are high.

(a) (b) (c) (d)

Figure 13: The shape of the energy surface at four intervals while training the system in Fig-

ure 9(b) using the negative log-likelihood loss. Along the X axis is the input variable and along

the Y axis is the answer. The shape of the surface at (a) the start of training, (b) after 3 epochs

over the training set, (c) after 6 epochs, and (d) after 11 epochs. The energy surface has quickly

attained the desired shape.

Another loss function that works well with this architecture is the negative log-

likelihood loss:

L(W, Y i, X i) = E(W, Y i, X i) +
1

β
log

(
∫

y∈Y

e−βE(W,y,Xi)

)

. (52)

The first term pulls down on the energy of the desired answer, while the second term

pushes up on all answers, particularly those that have the lowest energy. Note that

the energy corresponding to the desired answer also appears in the second term. The

shape of the energy function at various intervals using the negative log-likelihood loss

is shown in Figure 13. The learning is much faster than the square-square loss. The

minimum is deeper because, unlike with the square-square loss, the energies of the in-

correct answers are pushed up to infinity (although with a decreasing force). However,
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each iteration of negative log-likelihood loss involves considerably more work because

pushing up every incorrect answer is computationally expensive when no analytical

expression for the derivative of the second term exists. In this experiment, a simple

sampling method was used: the integral is approximated by a sum of 20 points regu-

larly spaced between -1 and +1 in the Y direction. Each learning iteration thus requires

computing the gradient of the energy at 20 locations, versus 2 locations in the case

of the square-square loss. However, the cost of locating the most offending incorrect

answer must be taken into account for the square-square loss.

An important aspect of the NLL loss is that it is invariant to global shifts of energy

values, and only depends on differences between the energies of the Y s for a given X .

Hence, the desired answer may have different energies for different X , and may not be

zero. This has an important consequence: the quality of an answer cannot be measured

by the energy of that answer without considering the energies of all other answers.

In this section we have seen the results of training four combinations of architec-

tures and loss functions. In the first case we used a simple architecture along with a

simple energy loss, which was satisfactory. The constraints in the architecture of the

system automatically lead to the increase in energy of undesired answers while de-

creasing the energies of the desired answers. In the second case, a more complicated

architecture was used with the simple energy loss and the machine collapsed for lack

of a contrastive term in the loss. In the third and the fourth case the same architecture

was used as in the second case but with loss functions containing explicit contrastive

terms. In these cases the machine performed as expected and did not collapse.

5.2 Sufficient Conditions for Good Loss Functions

In the previous section we offered some intuitions about which loss functions are good

and which ones are bad with the help of illustrative experiments. In this section a more

formal treatment of the topic is given. First, a set of sufficient conditions are stated.

The energy function and the loss function must satisfy these conditions in order to be

guaranteed to work in an energy-based setting. Then we discuss the quality of the loss

functions introduced previously from the point of view of these conditions.

5.3 Conditions on the Energy

Generally in energy-based learning, the inference method chooses the answer with

minimum energy. Thus the condition for the correct inference on a sample (X i, Y i) is

as follows.

Condition 1 For sample (X i, Y i), the machine will give the correct answer for X i if

E(W, Y i, X i) < E(X, Y, X i), ∀Y ∈ Y and Y 6= Y i. (53)

In other words, the inference algorithm will give the correct answer if the energy of the

desired answer Y i is less than the energies of all the other answers Y .
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To ensure that the correct answer is robustly stable, we may choose to impose that

its energy be lower than energies of incorrect answers by a positive margin m. If Ȳ i

denotes the most offending incorrect answer, then the condition for the answer to be

correct by a margin m is as follows.

Condition 2 For a variable Y and sample (X i, Y i) and positive margin m, the infer-

ence algorithm will give the correct answer for X i if

E(W, Y i, X i) < E(W, Ȳ i, X i)−m. (54)

5.4 Sufficient Conditions on the Loss Functional

If the system is to produce the correct answers, the loss functional should be designed in

such a way that minimizing it will cause E(W, Y i, X i) to be lower than E(W, Ȳ i, X i)
by some margin m. Since only the relative values of those two energies matter, we only

need to consider the shape of a slice of the loss functional in the 2D space of those two

energies. For example, in the case where Y is the set of integers from 1 to k, the loss

functional can be written as:

L(W, Y i, X i) = L(Y i, E(W, 1, X i), . . . , E(W, k, X i)). (55)

The projection of this loss in the space of E(W, Y i, X i) and E(W, Ȳ i, X i) can be

viewed as a function Q parameterized by the other k − 2 energies:

L(W, Y i, X i) = Q[Ey](E(W, Y i, X i), E(W, Ȳ i, X i)), (56)

where the parameter [Ey ] contains the vector of energies for all values of Y except Y i

and Ȳ i.

We assume the existence of at least one set of parameters W for which condition 2

is satisfied for a single training sample (X i, Y i). Clearly, if such a W does not exist,

there cannot exist any loss function whose minimization would lead to condition 2. For

the purpose of notational simplicity let us denote the energy E(W, Y i, X i) associated

with the training sample (X i, Y i) by EC (as in “correct energy”) and E(W, Ȳ i, X i)
by EI (as in “incorrect energy”). Consider the plane formed by EC and EI . As an

illustration, Figure 17(a) shows a 3-dimensional plot of the square-square loss function

in which the abscissa is EC and the ordinate is EI . The third axis gives the value of

the loss for the corresponding values of EC and EI . In general, the loss function

is a family of 2D surfaces in this 3D space, where each surface corresponds to one

particular configuration of all the energies except EC and EI . The solid red line in the

figure corresponds to the points in the 2D plane for which EC = EI . The dashed blue

line correspond to the margin line EC+m = EI . Let the two half planes EC+m < EI

and EC + m ≥ EI be denoted by HP1 and HP2 respectively.

Let R be the feasible region, defined as the set of values (EC , EI) corresponding

to all possible values of W ∈ W . This region may be non-convex, discontinuous,

open, or one-dimensional and could lie anywhere in the plane. It is shown shaded in
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Figure 14: Figure showing the various regions in the plane of the two energies EC and EI . EC

are the (correct answer) energies associated with (Xi, Y i), and EI are the (incorrect answer)

energies associated with (Xi, Ȳ i).

Figure 14. As a consequence of our assumption that a solution exists which satisfies

conditions 2, R must intersect the half plane HP1.

Let two points (e1, e2) and (e′1, e
′
2) belong to the feasible region R, such that

(e1, e2) ∈ HP1 (that is, e1 + m < e2) and (e′1, e
′
2) ∈ HP2 (that is, e′1 + m ≥ e′2). We

are now ready to present the sufficient conditions on the loss function.

Condition 3 Let (X i, Y i) be the ith training example and m be a positive margin.

Minimizing the loss function L will satisfy conditions 1 or 2 if there exists at least one

point (e1, e2) with e1 + m < e2 such that for all points (e′1, e
′
2) with e′1 + m ≥ e′2, we

have

Q[Ey](e1, e2) < Q[Ey](e
′
1, e

′
2), (57)

where Q[Ey] is given by

L(W, Y i, X i) = Q[Ey](E(W, Y i, X i), E(W, Ȳ i, X i)). (58)

In other words, the surface of the loss function in the space of EC and EI should be

such that there exists at least one point in the part of the feasible region R intersecting

the half plane HP1 such that the value of the loss function at this point is less than its

value at all other points in the part of R intersecting the half plane HP2.

Note that this is only a sufficient condition and not a necessary condition. There

may be loss functions that do not satisfy this condition but whose minimization still

satisfies condition 2.
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Table 1: A list of loss functions, together with the margin which allows them to satisfy con-

dition 3. A margin > 0 indicates that the loss satisfies the condition for any strictly positive

margin, and “none” indicates that the loss does not satisfy the condition.

Loss (equation #) Formula Margin

energy loss (6) E(W, Y i, X i) none

perceptron (7) E(W, Y i, X i)−minY ∈Y E(W, Y, X i) 0

hinge (11) max
(

0, m + E(W, Y i, X i)− E(W, Ȳ i, X i)
)

m

log (12) log
(

1 + eE(W,Y i,Xi)−E(W,Ȳ i,Xi)
)

> 0

LVQ2 (13) min
(

M, max(0, E(W, Y i, X i)− E(W, Ȳ i, X i)
)

0

MCE (15)
(

1 + e−(E(W,Y i,Xi)−E(W,Ȳ i,Xi))
)−1

> 0

square-square (16) E(W, Y i, X i)2 −
(

max(0, m− E(W, Ȳ i, X i))
)2

m

square-exp (17) E(W, Y i, X i)2 + βe−E(W,Ȳ i,Xi) > 0

NLL/MMI (23) E(W, Y i, X i) + 1
β

log
∫

y∈Y e−βE(W,y,Xi) > 0

MEE (27) 1− e−βE(W,Y i,Xi)/
∫

y∈Y e−βE(W,y,Xi) > 0

5.5 Which Loss Functions are Good or Bad

Table 1 lists several loss functions, together with the value of the margin with which

they satisfy condition 3. The energy loss is marked “none” because it does not satisfy

condition 3 for a general architecture. The perceptron loss and the LVQ2 loss satisfy

it with a margin of zero. All others satisfy condition 3 with a strictly positive value of

the margin.

5.5.1 Energy Loss

The energy loss is a bad loss function in general, but there are certain forms of energies

for which it is a good loss function. For example consider an energy function of the

form

E(W, Y i, X i) =
K
∑

k=1

δ(Y i − k)||Uk −GW (X i)||2. (59)

This energy passes the output of the function GW through K radial basis functions

(one corresponding to each class) whose centers are the vectors Uk. If the centers Uk

are fixed and distinct then the energy loss satisfies condition 3 and hence is a good loss

function.

To see this, consider the two-class classification case (the reasoning for K > 2
follows along the same lines). The architecture of the system is shown in Figure 15.
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GW (X)
GW (X)

di = ||U i
−GW (X)||2

d1 d2

GW

E(W,Y, X) =

2∑

k=1

δ(Y − k) · ||Uk
−GW (X)||2

R B F U n i t s

Figure 15: The architecture of a system where two RBF units with centers U1 and U2 are

placed on top of the machine GW , to produce distances d1 and d2.

(a) (b)

Figure 16: (a): When using the RBF architecture with fixed and distinct RBF centers, only the

shaded region of the (EC , EI) plane is allowed. The non-shaded region is unattainable because

the energies of the two outputs cannot be small at the same time. The minimum of the energy

loss is at the intersection of the shaded region and vertical axis. (b): The 3-dimensional plot of

the energy loss when using the RBF architecture with fixed and distinct centers. Lighter shades

indicate higher loss values and darker shades indicate lower values.
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Let d = ||U1−U2||2, d1 = ||U1−GW (X i)||2, and d2 = ||U2−GW (X i)||2. Since

U1 and U2 are fixed and distinct, there is a strictly positive lower bound on d1 + d2

for all GW . Being only a two-class problem, EC and EI correspond directly to the

energies of the two classes. In the (EC , EI) plane no part of the loss function exists

in where EC + EI ≤ d. The region where the loss function is defined is shaded in

Figure 16(a). The exact shape of the loss function is shown in Figure 16(b). One can

see from the figure that as long as d ≥ m, the loss function satisfies condition 3. We

conclude that this is a good loss function.

However, when the RBF centers U1 and U2 are not fixed and are allowed to be

learned, then there is no guarantee that d1 + d2 ≥ d. Then the RBF centers could

become equal and the energy could become zero for all inputs, resulting in a collapsed

energy surface. Such a situation can be avoided by having a contrastive term in the loss

function.

5.5.2 Generalized Perceptron Loss

The generalized perceptron loss has a margin of zero. Therefore, it could lead to a col-

lapsed energy surface and is not generally suitable for training energy-based models.

However, the absence of a margin is not always fatal [LeCun et al., 1998a, Collins, 2002].

First, the set of collapsed solutions is a small piece of the parameter space. Second,

although nothing prevents the system from reaching the collapsed solutions, nothing

drives the system toward them either. Thus the probability of hitting a collapsed solu-

tion is quite small.

5.5.3 Generalized Margin Loss
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Figure 17: (a) The square-square loss in the space of energies EC and EI ). The value of

the loss monotonically decreases as we move from HP2 into HP1, indicating that it satisfies

condition 3. (b) The square-exponential loss in the space of energies EC and EI ). The value

of the loss monotonically decreases as we move from HP2 into HP1, indicating that it satisfies

condition 3.
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We now consider the square-square and square-exponential losses. For the two-

class case, the shape of the surface of the losses in the space of EC and EI is shown in

Figure 17. One can clearly see that there exists at least one point (e1, e2) in HP1 such

that

Q[Ey](e1, e2) < Q[Ey](e
′
1, e

′
2), (60)

for all points (e′1, e
′
2) in HP2. These loss functions satisfy condition 3.

5.5.4 Negative Log-Likelihood Loss

It is not obvious that the negative log-likelihood loss satisfies condition 3. The proof

follows.
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Figure 18: Figure showing the direction of gradient of the negative log-likelihood loss in the

feasible region R in the space defined by the two energies EC and EI .

For any fixed parameter W and a sample (X i, Y i) consider the gradient of the loss

with respect to the energy EC of the correct answer Y i and the energy EI of the most

offending incorrect answer Ȳ i. We have

gC =
∂L(W, Y i, X i)

∂EC

= 1−
e−E(W,Y i,Xi)

∑

Y ∈Y e−E(W,Y,Xi)
, (61)

and

gI =
∂L(W, Y i, X i)

∂EI

= −
e−E(W,Ȳ i,Xi)

∑

Y ∈Y e−E(W,Y,Xi)
. (62)

Clearly, for any value of the energies, gC > 0 and gI < 0. The overall direction of

the gradient at any point in the space of EC and EI is shown in Figure 18. One can

conclude that when going from HP2 to HP1, the loss decreases monotonically.

Now we need to show that there exists at least one point in HP1 at which the loss

is less than at all the points in HP2. Let A = (E∗
C , E∗

C + m) be a point on the margin
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line for which the loss is minimum. E∗
C is the value of the correct energy at this point.

That is,

E∗
C = argmin{Q[Ey](EC , EC + m)}. (63)

Since from the above discussion, the negative of the gradient of the loss Q[Ey] at all

points (and in particular on the margin line) is in the direction which is inside HP1, by

monotonicity of the loss we can conclude that

Q[Ey](E
∗
C , E∗

C + m) ≤ Q[Ey](EC , EI), (64)

where EC + m > EI .

Consider a point B at a distance ǫ away from the point (E∗
C , E∗

C + m), and inside

HP1 (see Figure 18). That is the point

(E∗
C − ǫ, E∗

C + m + ǫ). (65)

Using the first order Taylor’s expansion on the value of the loss at this point, we get

Q[Ey](E
∗
C − ǫ, E∗

C + m + ǫ)

= Q[Ey](E
∗
C , E∗

C + m)− ǫ
∂Q[Ey]

∂EC

+ ǫ
∂Q[Ey]

∂EI

+ O(ǫ2)

= Q[Ey](E
∗
C , E∗

C + m) + ǫ

[

∂Q[Ey]

∂EC

+
∂Q[Ey]

∂EI

]





−1

1



+ O(ǫ2). (66)

From the previous discussion the second term on the right hand side is negative. So for

sufficiently small ǫ we have

Q[Ey](E
∗
C − ǫ, E∗

C + m + ǫ) < Q[Ey](E
∗
C , E∗

C + m). (67)

Thus we conclude that there exists at least one point in HP1 at which the loss is less

than at all points in HP2.

Note that the energy of the most offending incorrect answer EI is bounded above

by the value of the energy of the next most offending incorrect answer. Thus we only

need to consider a finite range of EI ’s and the point B cannot be at infinity.

6 Efficient Inference: Non-Probabilistic Factor Graphs

This section addresses the important issue of efficient energy-based inference. Se-

quence labeling problems and other learning problem with structured outputs can often

be modeled using energy functions whose structure can be exploited for efficient infer-

ence algorithms.

Learning and inference with EBMs involves a minimization of the energy over the

set of answers Y and latent variables Z . When the cardinality of Y × Z is large, this

minimization can become intractable. One approach to the problem is to exploit the

structure of the energy function in order to perform the minimization efficiently. One

case where the structure can be exploited occurs when the energy can be expressed as a

34



Y1 Y2

+

Z2Z1X

E(Y, Z, X)

Eb(X, Z1, Z2) Ec(Z2, Y1) Ed(Y1, Y2)Ea(X, Z1)

Y1 Y2Z2Z1

0 0 0

0

1 1 1 1

2

E
a (X

, 0)

Ea

(X
, 1

)

Eb(X, 1, 1)

E
b (X

, 1, 0)

Eb(X, 0, 0)

E b
(X

, 0
, 1

)

0

0

0

Ec(1, 1)

E
c (1, 0)

E c
(0

, 1
)

Ec(0, 0) Ed(0, 0)

Ed
(0

, 1
)

Ed(1, 1)

Ed
(1, 2

)

E
d (1, 0)

E d
(0
, 2

)

Figure 19: Top: A log domain factor graph. The energy is a sum of factors that take differ-

ent subsets of variables as inputs. Bottom: Each possible configuration of Z and Y can be

represented by a path in a trellis. Here Z1, Z2, and Y1 are binary variables, while Y2 is ternary.
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sum of individual functions (called factors) that each depend on different subsets of the

variables in Y and Z . These dependencies are best expressed in the form of a factor

graph [Kschischang et al., 2001, MacKay, 2003]. Factor graphs are a general form of

graphical models, or belief networks.

Graphical models are normally used to represent probability distributions over vari-

ables by directly encoding the dependency relationships between variables. At first

glance, it is difficult to dissociate graphical models from probabilistic modeling (wit-

ness their original name: “Bayesian networks”). However, factor graphs can be studied

outside the context of probabilistic modeling, and EBM learning applies to them.

A simple example of a factor graph is shown in Figure 19 (top). The energy func-

tion is the sum of four factors:

E(Y, Z, X) = Ea(X, Z1) + Eb(X, Z1, Z2) + Ec(Z2, Y1) + Ed(Y1, Y2), (68)

where Y = [Y1, Y2] are the output variables and Z = [Z1, Z2] are the latent variables.

Each factor can be seen as representing soft constraints between the values of its input

variables. The inference problem consists in finding:

(Ȳ , Z̄) = argminy∈Y, z∈Z (Ea(X, z1) + Eb(X, z1, z2) + Ec(z2, y1) + Ed(y1, y2)) .
(69)

This factor graph represents a structured output problem, because the factor Ed en-

codes dependencies between Y 1 and Y 2 (perhaps by forbidding certain combinations

of values).

Let’s assume that Z1, Z2, and Y1 are discrete binary variables, and Y2 is a ternary

variable. The cardinality of the domain of X is immaterial since X is always observed.

The number of possible configurations of Z and Y given X is 2 × 2 × 2 × 3 = 24.

A naive minimization algorithm through exhaustive search would evaluate the entire

energy function 24 times (96 single factor evaluations). However, we notice that for a

given X , Ea only has two possible input configurations: Z1 = 0 and Z1 = 1. Sim-

ilarly, Eb and Ec only have 4 possible input configurations, and Ed has 6. Hence,

there is no need for more than 2 + 4 + 4 + 6 = 16 single factor evaluations. The set

of possible configurations can be represented by a graph (a trellis) as shown in Fig-

ure 19 (bottom). The nodes in each column represent the possible values of a single

variable. Each edge is weighted by the output energy of the factor for the correspond-

ing values of its input variables. With this representation, a single path from the start

node to the end node represents one possible configuration of all the variables. The

sum of the weights along a path is equal to the total energy for the corresponding con-

figuration. Hence, the inference problem can be reduced to searching for the shortest

path in this graph. This can be performed using a dynamic programming method such

as the Viterbi algorithm, or the A* algorithm. The cost is proportional to the number

of edges (16), which is exponentially smaller than the number of paths in general. To

compute E(Y, X) = minz∈Z E(Y, z, X), we follow the same procedure, but we re-

strict the graph to the subset of arcs that are compatible with the prescribed value of

Y .

The above procedure is sometimes called the min-sum algorithm, and it is the log

domain version of the traditional max-product for graphical models. The procedure can

easily be generalized to factor graphs where the factors take more than two variables

36



as inputs, and to factor graphs that have a tree structure instead of a chain structure.

However, it only applies to factor graphs that are bipartite trees (with no loops). When

loops are present in the graph, the min-sum algorithm may give an approximate solu-

tion when iterated, or may not converge at all. In this case, a descent algorithm such as

simulated annealing could be used.

As mentioned in Section 4, variables can be handled through minimization or

through marginalization. The computation is identical to the one required for comput-

ing the contrastive term of the negative log-likelihood loss (the log partition function),

hence we will make no distinctions. The contrastive term in the negative log-likelihood

loss function is:

−
1

β
log

∫

Y ∈Y, z∈Z

e−βE(Z,Y,X), (70)

or simply

−
1

β
log

∫

Y ∈Y

e−βE(Y,X), (71)

when no latent variables are present.

At first, this seems intractable, but the computation can be factorized just like with

the min-sum algorithm. The result is the so-called forward algorithm in the log domain.

Values are propagated forward, starting at the start node on the left, and following the

arrows in the trellis. Each node k computes a quantity αk:

αk = −
1

β
log
∑

j

e−β(Ekj+αj), (72)

where Ejk is the energy attached to the edge linking node j to node k. The final α at

the end node is the quantity in Eq. 70. The procedure reduces to the min-sum algorithm

for large values of β.

In a more complex factor graph with factors that take more than two variables as in-

put, or that have a tree structure, this procedure generalizes to a non-probabilistic form

of belief propagation in the log domain. For loopy graphs, the procedure can be iter-

ated, and may lead to an approximate value for Eq. 70, if it converges at all [Yedidia et al., 2005].

The above procedures are an essential component for constructing models with

structures and/or sequential output.

6.1 EBMs versus Internally Normalized Models

It is important to note that at no point in the above discussion did we need to manip-

ulate normalized probability distributions. The only quantities that are manipulated

are energies. This is in contrast with hidden Markov models and traditional Bayesian

nets. In HMMs, the outgoing transition probabilities of a node must sum to 1, and the

emission probabilities must be properly normalized. This ensures that the overall dis-

tribution over sequences is normalized. Similarly, in directed Bayesian nets, the rows

of the conditional probability tables are normalized.

EBMs manipulate energies, so no normalization is necessary. When energies are

transformed into probabilities, the normalization over Y occurs as the very last step
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in the process. This idea of late normalization solves several problems associated

with the internal normalization of HMMs and Bayesian nets. The first problem is the

so-called label bias problem, first pointed out by Bottou [Bottou, 1991]: transitions

leaving a given state compete with each other, but not with other transitions in the

model. Hence, paths whose states have few outgoing transitions tend to have higher

probability than paths whose states have many outgoing transitions. This seems like

an artificial constraint. To circumvent this problem, a late normalization scheme was

first proposed by Denker and Burges in the context of handwriting and speech recogni-

tion [Denker and Burges, 1995]. Another flavor of the label bias problem is the miss-

ing probability mass problem discussed by LeCun et al. in [LeCun et al., 1998a]. They

also make use of a late normalization scheme to solve this problem. Normalized mod-

els distribute the probability mass among all the answers that are explicitly modeled by

the system. To cope with “junk” or other unforeseen and un-modeled inputs, designers

must often add a so-called background model that takes some probability mass away

from the set of explicitly-modeled answers. This could be construed as a thinly dis-

guised way of removing the normalization constraint. To put it another way, since every

explicit normalization is another opportunity for mishandling unforeseen events, one

should strive to minimize the number of explicit normalizations in a model. A recent

demonstration of successful handling of the label bias problem through normalization

removal is the comparison between maximum entropy Markov models by McCallum,

Freitag and Pereira [McCallum et al., 2000], and conditional random fields by Lafferty,

McCallum and Pereira [Lafferty et al., 2001].

The second problem is controlling the relative importance of probability distribu-

tions of different natures. In HMMs, emission probabilities are often Gaussian mix-

tures in high dimensional spaces (typically 10 to 100), while transition probabilities

are discrete probabilities over a few transitions. The dynamic range of the former

is considerably larger than that of the latter. Hence transition probabilities count for

almost nothing in the overall likelihood. Practitioners often raise the transition prob-

abilities to some power in order to increase their influence. This trick is difficult to

justify in a probabilistic framework because it breaks the normalization. In the energy-

based framework, there is no need to make excuses for breaking the rules. Arbitrary

coefficients can be applied to any subset of energies in the model. The normalization

can always be performed at the end.

The third problem concerns discriminative learning. Discriminative training often

uses iterative gradient-based methods to optimize the loss. It is often complicated, ex-

pensive, and inefficient to perform a normalization step after each parameter update by

the gradient method. The EBM approach eliminates the problem [LeCun et al., 1998a].

More importantly, the very reason for internally normalizing HMMs and Bayesian nets

is somewhat contradictory with the idea of training them discriminatively. The normal-

ization is only necessary for generative models.
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7 EBMs for Sequence Labeling and Structured Out-

puts

The problem of classifying or labeling sequences of symbols or sequences of vec-

tors has long been a topic of great interest in several technical communities. The

earliest and most notable example is speech recognition. Discriminative learning

methods were proposed to train HMM-based speech recognition systems in the late

1980’s [Bahl et al., 1986, Ljolje et al., 1990]. These methods for HMMs brought about

a considerable improvement in the accuracy of speech recognition systems, and re-

mains an active topic of research to this day.

With the appearance of multi-layer neural network training procedures, several

groups proposed combining neural networks and time alignment methods for speech

recognition. The time alignment was implemented either through elastic template

matching (Dynamic Time Warping) with a set of reference words, or using a hidden

Markov model. One of the main challenges was to design an integrated training

method for simultaneously training the neural network and the time alignment module.

In the early 1990’s, several authors proposed such methods for combining neural nets

and dynamic time warping [Driancourt et al., 1991a, Driancourt et al., 1991b,

Driancourt and Gallinari, 1992b, Driancourt and Gallinari, 1992a,

Driancourt, 1994], as well as for combining neural net and HMM

[Bengio et al., 1990, Bourlard and Morgan, 1990, Bottou, 1991, Haffner et al., 1991,

Haffner and Waibel, 1991, Bengio et al., 1992, Haffner and Waibel, 1992,

Haffner, 1993, Driancourt, 1994, Morgan and Bourlard, 1995, Konig et al., 1996].

Extensive lists of references on the topic are available in [McDermott, 1997,

Bengio, 1996]. Most approaches used one dimensional convolutional net-

works (time-delay neural networks) to build robustness to variations of pitch,

voice timbre, and speed of speech. Earlier models combined discriminative

classifiers with time alignment, but without integrated sequence-level train-

ing [Sakoe et al., 1988, McDermott and Katagiri, 1992, Franzini et al., 1990].

Applying similar ideas to handwriting recognition proved more challenging, be-

cause the 2D nature of the signal made the segmentation problem considerably more

complicated. This task required the integration of image segmentation heuristics in

order to generate segmentation hypotheses. To classify the segments with robust-

ness to geometric distortions, 2D convolutional nets were used [Bengio et al., 1993,

LeCun and Bengio, 1994, Bengio et al., 1995]. A general formulation of integrated

learning of segmentation and recognition with late normalization resulted in the graph

transformer network architecture [LeCun et al., 1997, LeCun et al., 1998a].

Detailed descriptions of several sequence labeling models in the framework of

energy-based models are presented in the next three sections.

7.1 Linear Structured Models: CRF, SVMM, and MMMN

Outside of the discriminative training tradition in speech and handwriting recognition,

graphical models have traditionally been seen as probabilistic generative models, and

trained as such. However, in recent years, a resurgence of interest for discriminative
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Figure 20: A log domain factor graph for linear structured models, which include conditional

random fields, support vector Markov models, and maximum margin Markov networks.

training has emerged, largely motivated by sequence labeling problems in natural lan-

guage processing, notably conditional random fields [Lafferty et al., 2001], perceptron-

like models [Collins, 2002], support vector Markov models [Altun et al., 2003], and

maximum margin Markov networks [Taskar et al., 2003].

These models can be easily described in an EBM setting. The energy function in

these models is assumed to be a linear function of the parameters W :

E(W, Y, X) = WT F (X, Y ), (73)

where F (X, Y ) is a vector of feature functions that depend on X and Y . The answer

Y is a sequence of l individual labels (Y1, . . . , Yl), often interpreted as a temporal

sequence. The dependencies between individual labels in the sequence is captured by a

factor graph, such as the one represented in Figure 20. Each factor is a linear function

of the trainable parameters. It depends on the input X and on a pair of individual labels

(Ym, Yn). In general, each factor could depend on more than two individual labels, but

we will limit the discussion to pairwise factors to simplify the notation:

E(W, Y, X) =
∑

(m,n)∈F

WT
mnfmn(X, Ym, Yn). (74)

Here F denotes the set of factors (the set of pairs of individual labels that have a direct

inter-dependency), Wmn is the parameter vector for factor (m, n), and fmn(X, Ym, Yn)
is a (fixed) feature vector. The global parameter vector W is the concatenation of all

the Wmn. It is sometimes assumed that all the factors encode the same kind of interac-

tion between input and label pairs: the model is then called a homogeneous field. The
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factors share the same parameter vector and features, and the energy can be simplified

as:

E(W, Y, X) =
∑

(m,n)∈F

WT f(X, Ym, Yn). (75)

The linear parameterization of the energy ensures that the corresponding probability

distribution over W is in the exponential family:

P (W |Y, X) =
e−W T F (X,Y )

∫

w′∈W
e−wT F (X,Y )

. (76)

This model is called the linear structured model.

We now describe various versions of linear structured models that use different loss

functions. Sections 7.2 and 7.3 will describe non-linear and hierarchical models.

7.1.1 Perceptron Loss

The simplest way to train the linear structured model is with the perceptron loss. LeCun

et al. [LeCun et al., 1998a] proposed its use for general, non-linear energy functions

in sequence labeling (particularly handwriting recognition), calling it discriminative

Viterbi training. More recently, Collins [Collins, 2000, Collins, 2002] has advocated

its use for linear structured models in the context of NLP:

Lperceptron(W ) =
1

P

P
∑

i=1

E(W, Y i, X i)− E(W, Y ∗i, X i), (77)

where Y ∗i = argminy∈YE(W, y, X i) is the answer produced by the system. The

linear property gives a particularly simple expression for the loss:

Lperceptron(W ) =
1

P

P
∑

i=1

WT
(

F (X i, Y i)− F (X i, Y ∗i)
)

. (78)

Optimizing this loss with stochastic gradient descent leads to a simple form of the

perceptron learning rule:

W ←W − η
(

F (X i, Y i)− F (X i, Y ∗i)
)

. (79)

As stated before, the main problem with the perceptron loss is the absence of margin,

although this problem is not fatal when the energy is a linear function of the parameters,

as in Collins’ model. The lack of a margin, which theoretically may lead to stability

problems, was overlooked in [LeCun et al., 1998a].

7.1.2 Margin Loss: Max-Margin Markov Networks

The main idea behind margin-based Markov networks [Altun et al., 2003,

Altun and Hofmann, 2003, Taskar et al., 2003] is to use a margin loss to train
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the linearly parameterized factor graph of Figure 20, with the energy function of

Equation 73. The loss function is the simple hinge loss with an L2 regularizer:

Lhinge(W ) =
1

P

P
∑

i=1

max(0, m + E(W, Y i, X i)− E(W, Ȳ i, X i)) + γ||W ||2. (80)

Because the energy is linear in W , the loss becomes particularly simple:

Lhinge(W ) =
1

P

P
∑

i=1

max
(

0, m + WT ∆F (X i, Y i)
)

+ γ||W ||2, (81)

where ∆F (X i, Y i) = F (X i, Y i) − F (X i, Ȳ i). This loss function can be optimized

with a variety of techniques. The simplest method is stochastic gradient descent. How-

ever, the hinge loss and linear parameterization allow for the use of a dual formulation

as in the case of conventional support vector machines. The question of which op-

timization method is most suitable is not settled. As with neural net training, it is

not clear whether second order methods bring a significant speed improvement over

well tuned stochastic gradient methods. To our knowledge, no systematic experimental

study of this issue has been published.

Altun, Johnson, and Hofman [Altun et al., 2003] have studied several versions of

this model that use other loss functions, such as the exponential margin loss proposed

by Collins [Collins, 2000]:

Lhinge(W ) =
1

P

P
∑

i=1

exp(E(W, Y i, X i)− E(W, Ȳ i, X i)) + γ||W ||2. (82)

This loss function tends to push the energies E(W, Y i, X i) and E(W, Ȳ i, X i) as far

apart as possible, an effect which is moderated only by regularization.

7.1.3 Negative Log-Likelihood Loss: Conditional Random Fields

Conditional random fields (CRF) [Lafferty et al., 2001] use the negative log-likelihood

loss function to train a linear structured model:

Lnll(W ) =
1

P

P
∑

i=1

E(W, Y i, X i) +
1

β
log
∑

y∈Y

e−βE(W,y,Xi). (83)

The linear form of the energy (Eq. 75) gives the following expression:

Lnll(W ) =
1

P

P
∑

i=1

WT F (X i, Y i) +
1

β
log
∑

y∈Y

e−βW T F (Xi,y). (84)

Following Equation 24, the derivative of this loss with respect to W is:

∂Lnll(W )

∂W
=

1

P

P
∑

i=1

F (X i, Y i)−
∑

y∈Y

F (X i, y)P (y|X i, W ), (85)
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where

P (y|X i, W ) =
e−βW T F (Xi,y)

∑

y′∈Y e−βW T F (Xi,y′)
. (86)

The problem with this loss function is the need to sum over all possible label com-

binations, as there are an exponentially large number of such combinations (2l for a

sequence of l binary labels). However, one of the efficient inference algorithms men-

tioned in Section 6 can be used.

One of the alleged advantages of CRFs is that the loss function is convex with

respect to W . However, the convexity of the loss function, while mathematically sat-

isfying, does not seem to be a significant practical advantage. Although the original

optimization algorithm for CRF was based on iterative scaling, recent work indicates

that stochastic gradient methods may be more efficient [Vishwanathan et al., 2006].

7.2 Non-Linear Graph Based EBMs

The discriminative learning methods for graphical models developed in the speech

and handwriting communities in the 90’s allowed for non-linear parameterizations

of the factors, mainly mixtures of Gaussians and multi-layer neural nets. Non-linear

factors allow the modeling of highly complex dependencies between inputs and labels

(such as mapping the pixels of a handwritten word to the corresponding character

labels). One particularly important aspect is the use of architectures that are invariant

(or robust) to irrelevant transformations of the inputs, such as time dilation or pitch

variation in speech, and geometric variations in handwriting. This is best handled by

hierarchical, multi-layer architectures that can learn low level features and higher level

representations in an integrated fashion. Most authors have used one dimensional

convolutional nets (time-delay neural networks) for speech and pen-based handwrit-

ing [Bengio et al., 1990, Bottou, 1991, Haffner et al., 1991, Haffner and Waibel, 1991,

Driancourt et al., 1991a, Driancourt et al., 1991b, Driancourt and Gallinari, 1992b,

Driancourt and Gallinari, 1992a, Bengio et al., 1992, Haffner and Waibel, 1992,

Haffner, 1993, Driancourt, 1994, Bengio, 1996], and 2D convolutional nets for image-

based handwriting [Bengio et al., 1993, LeCun and Bengio, 1994, Bengio et al., 1995,

LeCun et al., 1997, LeCun et al., 1998a].

To some observers, the recent interest in the linear structured model looks like

somewhat of a throw-back to the past, and a regression on the complexity scale. One

apparent advantage of linearly parameterized energies is that they make the percep-

tron loss, hinge loss, and NLL loss convex. It is often argued that convex loss func-

tions are inherently better because they allow the use of efficient optimization algo-

rithms with guaranteed convergence to the global minimum. However, several au-

thors have recently argued that convex loss functions are no guarantee for good perfor-

mance, and that non-convex losses may in fact be easier to optimize than convex ones

in practice, even in the absence of theoretical guarantees [Huang and LeCun, 2006,

Collobert et al., 2006].

Furthermore, it has been argued that convex loss functions can be effi-

ciently optimized using sophisticated second-order optimization methods. How-

ever, it is a well-known but often overlooked fact that a carefully tuned stochas-
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tic gradient descent method is often considerably faster in practice than even

the most sophisticated second-order optimization methods (which appear bet-

ter on paper). This is because stochastic gradients can take advantage of

the redundancy between the samples by updating the parameters on the ba-

sis of a single sample, whereas “batch” optimization methods waste consider-

able resources to compute exact descent directions, often nullifying the theoretical

speed advantage [Becker and LeCun, 1989, LeCun et al., 1998a, LeCun et al., 1998b,

Bottou, 2004, Bottou and LeCun, 2004, Vishwanathan et al., 2006].

X Y

w o r d i nt h e l e x i c o n
Z

E(W,Z, Y, X)

P a t h( a c o u s t i c v e c t o r s )
w o r d t e m p l a t e s

f e a t u r e v e c t o r s

Figure 21: Figure showing the architecture of a speech recognition system using latent vari-

ables. An acoustic signal is passed through a time-delay neural network (TDNN) to produce

a high level feature vector. The feature vector is then compared to the word templates. Dy-

namic time warping (DTW) aligns the feature vector with the word templates so as to reduce the

sensitivity of the matching to variations in pronunciation.

Figure 21 shows an example of speech recognition system that integrates a time-

delay neural network (TDNN) and word matching using dynamic time warping (DTW).

The raw speech signal is first transformed into a sequence of acoustic vectors (typically

10 to 50 spectral or cepstral coefficients, every 10ms). The acoustic vector sequence

is fed to a TDNN that transforms it into a sequence of high level features. Temporal

subsampling in the TDNN can be used to reduce the temporal resolution of the fea-

ture vectors [Bottou, 1991]. The sequence of feature vectors is then compared to word

templates. In order to reduce the sensitivity of the matching to variations in speed of

pronunciation, dynamic time warping aligns the feature sequence with the template se-

quences. Intuitively, DTW consists in finding the best “elastic” warping that maps a

sequence of vectors (or symbols) to another. The solution can be found efficiently with

dynamic programming (e.g. the Viterbi algorithm or the A* algorithm).

DTW can be reduced to a search for the shortest path in a directed acyclic graph

in which the cost of each node is the mismatch between two items in the two in-
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put sequences. Hence, the overall system can be seen as a latent variable EBM in

which Y is the set of words in the lexicon, and Z represents the set of templates

for each word, and the set of paths for each alignment graph. The earliest proposal

for integrated training of neural nets and time alignment is by Driancourt and Bot-

tou [Driancourt et al., 1991a], who proposed using the LVQ2 loss (Eq. 13) to train this

system. It is a simple matter to back-propagate gradients through the DTW module

and further back-propagate gradients into the TDNN in order to update the weights.

Similarly, gradients can be back-propagated to the word templates in order to up-

date them as well. Excellent results were obtained for isolated word recognition,

despite the zero margin of the LVQ2 loss. A similar scheme was later used by Mc-

Dermott [McDermott, 1997].

A slightly more general method consists in combining neural networks (e.g.

TDNN) with hidden Markov models instead of DTW. Several authors proposed

integrated training procedures for such combinations during the 90’s. The

first proposals were by Bengio et al. [Bengio et al., 1991, Bengio et al., 1992,

Bengio, 1996] who used the NLL/MMI loss optimized with stochastic gradient de-

scent, and Bottou [Bottou, 1991] who proposed various loss functions. A simi-

lar method was subsequently proposed by Haffner et al. in his multi-state TDNN

model [Haffner and Waibel, 1992, Haffner, 1993]. Similar training methods were de-

vised for handwriting recognition. Bengio and LeCun described a neural net/HMM

hybrid with global training using the NLL/MMI loss optimized with stochastic gradi-

ent descent [Bengio et al., 1993, LeCun and Bengio, 1994]. Shortly thereafter, Konig

et al. proposed the REMAP method, which applies the expectation maximization algo-

rithm to the HMM in order to produce targets outputs for a neural net based acoustic

model [Konig et al., 1996].

The basic architecture of neural net/HMM hybrid systems is similar to the one

in Figure 21, except that the word (or language) models are probabilistic finite-state

machines instead of sequences. The emission probabilities at each node are generally

simple Gaussians operating on the output vector sequences produced by the neural net.

The only challenge is to compute the gradient of the loss with respect to the neural net

outputs by backpropagating gradients through the HMM trellis. Since the procedure is

very similar to the one used in graph transformer networks, we refer to the next section

for a description.

It should be noted that many authors had previously proposed methods that com-

bined a separately trained discriminative classifier and an alignment method for speech

and handwriting, but they did not use integrated training methods.

7.3 Hierarchical Graph-Based EBMs: Graph Transformer Net-

works

Sections 7.2 and 7.1 discussed models in which inference and learning involved marginal-

izing or minimizing over all configurations of variables of a dynamic factor graph.

These operations are performed efficiently by building a trellis in which each path cor-

responds to a particular configuration of those variables. Section 7.2 concentrated on

models where the factors are non-linear functions of the parameters, while Section 7.1
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Figure 22: The architecture of a graph transformer network for handwritten word recognition.

(a) The segmentation graph Grseg is generated from the input image, (b) the hierarchical multi-

modular architecture takes a set of graphs and outputs another set of graphs.

focused on simpler models where the factors are linearly parameterized.

The present section discusses a class of models called graph transformer networks

(GTN) [LeCun et al., 1998a]. GTNs are designed for situations where the sequential

structure is so complicated that the corresponding dynamical factor graph cannot be

explicitly represented, but must be represented procedurally. For example, the factor
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graph that must be built on-the-fly in order to recognize an entire handwritten sen-

tence in English is extremely large. The corresponding trellis contains a path for every

grammatically correct transcription of the sentence, for every possible segmentation of

the sentence into characters. Generating this trellis (or its associated factor graph) in

its entirety is impractical, hence the trellis must be represented procedurally. Instead

of representing the factor graph, the GTN approach views the trellis as the main data

structure being manipulated by the machine. A GTN can be seen as a multilayer archi-

tecture in which the states are trellises, just as a neural net is a multilayer architecture in

which the states are fixed-size vectors. A GTN can be viewed as a network of modules,

called graph transformers, that take one or more graphs as input and produces another

graph as output. The operation of most modules can be expressed as the composition

of the input graph with another graph, called a transducer, associated with the mod-

ule [Mohri, 1997]. The objects attached to the edges of the input graphs, which can be

numbers, labels, images, sequences, or any other entity, are fed to trainable functions

whose outputs are attached to edge of the output graphs. The resulting architecture

can be seen as a compositional hierarchy in which low level features and parts are

combined into higher level objects through graph composition.

For speech recognition, acoustic vectors are assembled into phones, phones into

triphones, triphones into words, and words into sentences. Similarly in handwriting

recognition, ink segments are assembled into characters, characters into words, and

words into sentences.

Figure 22 shows an example of GTN architecture for simultaneously segmenting

and recognizing handwritten words [LeCun et al., 1998a]. The first step involves over-

segmenting the image and generating a segmentation graph out of it (see Figure 22(a)).

The segmentation graph Grseg is a directed acyclic graph (DAG) in which each path

from the start node to the end node represents a particular way of segmenting the in-

put image into character candidates. Each internal node is associated with a candidate

cut produced by the segmentation. Every arc between a source and a destination node

is associated with the part of the image that lies between the two cuts. Hence every

piece of ink appears once and only once along each path. The next stage passes the

segmentation graph Grseg through the recognition transformer which produces the in-

terpretation graph Grint with the same number of nodes as Grseg . The recognition

transformer contains as many identical copies of the discriminant functions GW (X)
as there are arcs in the interpretation graph (this number changes for every new in-

put). Each copy of GW takes the image associated with one arc in the segmentation

graph and produces several arcs between the corresponding nodes in the interpretation

graph. Each output arc is labeled by a character category, and weighted by the energy

of assigning the image to that category. Hence, each path in the interpretation graph

represents one possible interpretation of the input for one possible segmentation, with

the sum of the weights along the path representing the combined energy of that inter-

pretation. The interpretation graph is then passed through a path selector module that

selects only those paths from the interpretation graph that have the same sequence of

labels as given by Y (the answer). The output of this module is another graph called

Grsel. Finally a so-called Viterbi transformer selects a single path in Grsel indexed by

the latent variable Z . Each value of Z corresponds to a different path in Grsel, and can

be interpreted as a particular segmentation of the input. The output energy is obtained
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either by minimizing or by marginalizing over Z . Minimizing over Z is achieved by

running a shortest path algorithm on the Grsel (e.g., the Viterbi algorithm, hence the

name Viterbi transformer). The output energy is then the sum of the arc energies along

the shortest path. Marginalizing over Z is achieved by running the forward algorithm

on Grsel, as indicated in Section 6, equation 72. The path selector and Viterbi trans-

former can be seen as particular types of “switch” modules that select paths in their

input graph.

In the handwriting recognition systems described in [LeCun et al., 1998a], the dis-

criminant function GW (X) was a 2D convolutional network. This class of function

is designed to learn low level features and high level representations in an integrated

manner, and is therefore highly non-linear in W . Hence the loss function is not convex

in W . The optimization method proposed is a refined version of stochastic gradient

descent.

In [LeCun et al., 1998a], two primary methods for training GTNs are proposed:

discriminative Viterbi training, which is equivalent to using the generalized percep-

tron loss (Eq. 7), and discriminative forward training, which is equivalent to using the

negative log-likelihood loss (Eq. 23). Any of the good losses in Table 1 could also be

used.

Training by minimizing the perceptron loss with stochastic gradient descent is per-

formed by applying the following update rule:

W ←W − η

(

∂E(W, Y i, X i)

∂W
−

∂E(W, Y ∗i, X i)

∂W

)

. (87)

How can the gradients of E(W, Y i, X i) and E(W, Y i, X i) be computed? The answer

is simply to back-propagate gradients through the entire structure, all the way back to

the discriminant functions GW (X). The overall energy can be written in the following

form:

E(W, Y, X) =
∑

kl

δkl(Y )Gkl(W, X), (88)

where the sum runs over all arcs in Grint, Gkl(W, X) is the l-th component of the

k copy of the discriminant function, and δkl(Y ) is a binary value equal to 1 if the

arc containing Gkl(W, X) is present in the final graph, and 0 otherwise. Hence, the

gradient is simply:

∂E(W, Y, X)

∂W
=
∑

kl

δkl(Y )
∂Gkl(W, X)

∂W
. (89)

One must simply keep track of the δkl(Y ).
In Section 5 we concluded that the generalized perceptron loss is not a good loss

function. While the zero margin may limit the robustness of the solution, the perceptron

loss seems appropriate as a way to refine a system that was pre-trained on segmented

characters as suggested in [LeCun et al., 1998a]. Nevertheless, the GTN-based bank

check reading system described in [LeCun et al., 1998a] that was deployed commer-

cially was trained with the negative log-likelihood loss.
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The second method for training GTNs uses the NLL loss function, with a marginal-

ization over Z using the forward algorithm of Equation 72 over Grsel , instead of a

minimization.

Training by minimizing the NLL loss with stochastic gradient descent is performed

by applying the following update rule:

W ←W − η

(

∂FZ(W, Y i, X i)

∂W
−

∂FY,Z(W, X i)

∂W

)

, (90)

where

FZ(W, Y i, X i) = −
1

β
log
∑

z∈Z

e−βE(W,Y i,z,Xi), (91)

is the free energy obtained by marginalizing over Z , keeping X i and Y i fixed, and

FY,Z(W, X i) = −
1

β
log

∑

y∈Y, z∈Z

e−βE(W,y,z,Xi), (92)

is the free energy obtained by marginalizing over Y and Z , keeping X i fixed. Com-

puting those gradients is slightly more complicated than in the minimization case. By

chain rule the gradients can be expressed as:

∂FY,Z(W, X i)

∂W
=
∑

kl

∂FY,Z(W, X i)

∂Gkl

∂Gkl(W, X)

∂W
, (93)

where the sum runs over all edges in the interpretation graph. The first factor is the

derivative of the quantity obtained through the forward algorithm (Eq. 72) with respect

to one particular edge in the interpretation graph. These quantities can be computed by

back-propagating gradients through the trellis, viewed as a feed-forward network with

node functions given by Equation 72. We refer to [LeCun et al., 1998a] for details.

Contrary to the claim in [Lafferty et al., 2001], the GTN system trained with the

NLL loss as described in [LeCun et al., 1998a] does assign a well-defined probability

distribution over possible label sequences. The probability of a particular interpretation

is given by Equation 46:

P (Y |X) =

∫

z∈Z
e−βE(Z,Y,X)

∫

y∈Y, z∈Z e−βE(y,z,X)
. (94)

It would seem natural to train GTNs with one of the generalized margin losses. To

our knowledge, this has never been done.

8 Discussion

There are still outstanding questions to be answered about energy-based and probabilis-

tic models. This section offers a relatively philosophical discussion of these questions,

including an energy-based discussion of approximate methods for inference and learn-

ing. Finally, a summary of the main ideas of this chapter is given.
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8.1 EBMs and Probabilistic Models

In Section 1.3, the transformation of energies to probabilities through the Gibbs distri-

bution was introduced:

P (Y |X, W ) =
e−βE(W,Y,X)

∫

y∈Y
e−βE(W,y,X)

. (95)

Any probability distribution over Y can be approximated arbitrarily closely by a dis-

tribution of that form. With finite energy values, distributions where the probability

of some Y is exactly zero can only be approximated. Estimating the parameters of a

probabilistic model can be performed in a number of different ways, including max-

imum likelihood estimation with Bayes inversion, maximum conditional likelihood

estimation, and (when possible) Bayesian averaging (possibly with variational approx-

imations). Maximizing the conditional likelihood of the training samples is equivalent

to minimizing what we called the negative log-likelihood loss.

Hence, at a high level, discriminative probabilistic models can be seen as a special

case of EBMs in which:

• The energy is such that the integral
∫

y∈Y e−βE(W,y,X) (partition function) con-

verges.

• The model is trained by minimizing the negative log-likelihood loss.

An important question concerns the relative advantages and disadvantages of prob-

abilistic models versus energy-based models. Probabilistic models have two major

disadvantages. First, the normalization requirement limits the choice of energy func-

tions we can use. For example, there is no reason to believe that the model in Figure 7

is normalizable over Y . In fact, if the function GW2
(Y ) is upper bounded, the integral

∫ +∞

−∞
e−βE(W,y,X)dy does not converge. A common fix is to include an additive term

Ry(Y ) to the energy, interpreted as a log prior on Y , whose negative exponential is

integrable. Second, computing the contrastive term in the negative log-likelihood loss

function (or its gradient with respect to W ) may be very complicated, expensive, or

even intractable. The various types of models can be divided into five rough categories

of increasing complexity:

• Trivial: When Y is discrete with a small cardinality, the partition function is

a sum with a small number of terms that can be computed simply. Another

trivial case is when the partition function does not depend on W , and hence can

be ignored for the purpose of learning. For example, this is the case when the

energy is a quadratic form in Y with a fixed matrix. These are cases were the

energy loss can be used without fear of collapse.

• Analytical: When the partition function and its derivative can be computed an-

alytically. For example, when the energy is a quadratic form in Y in which the

matrix depends on trainable parameters, the partition function is a Gaussian in-

tegral (with variable covariance matrix) and its derivative is an expectation under

a Gaussian distribution, both of which have closed-form expressions.
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• Computable: When the partition function is a sum over an exponential num-

ber of terms, but the computation can be factorized in such a way as to make it

tractable. The most notable case of this is when the partition function is a sum

over configurations of output variables and latent variables of a tree-type graph-

ical model. In this case, belief propagation can be used to compute the partition

function. When the graphical model is a simple chain graph (as in the case of

HMMs), the set of configurations can be represented by the paths of a weighted

trellis. Running the forward algorithm through this trellis yields the partition

function. A simple backpropagation-like procedure can be used to compute its

gradient (e.g., see [LeCun et al., 1998a] and reference therein).

• Approachable: When the partition function cannot be computed exactly, but can

be approximated reasonably well using various methods. One notable example

is when the partition function is a sum over configurations of a loopy graphi-

cal model. The sum cannot be computed exactly, but loopy belief propagation

or other variational methods may yield a suitable approximation. With those ap-

proximations, the energies of the various answers will still be pulled up, although

not as systematically and with the same force as if using the full partition func-

tion. In a sense, variational methods could be interpreted in the context of EBM

as a way to choose a subset of energies to pull up.

• Intractable: When the partition function is truly intractable with no satisfactory

variational approximation. In this case, one is reduced to using sampling meth-

ods. A sampling method is a policy for choosing suitable candidate answers

whose energy will be pulled up. The probabilistic approach to this is to sam-

ple answers according to their probability under the model, and to pull up their

energy. On average, each answer will be pulled up by the appropriate amount

according to the partition function.

In this context, using an energy-based loss function other than the negative log-likelihood

can be seen as a sampling method with a particular policy for picking the answers

whose energy will be pulled up. For example, the hinge loss systematically chooses

the most offending incorrect answer as the one whose energy should be pulled up. In

the end, using such strategies will produce energy surfaces with which differences of

energies cannot be interpreted as likelihood ratios (the same is true with variational

methods). We should emphasize again that this is inconsequential if the model is to be

used for prediction, classification, or decision-making.

Variational approximation methods can be interpreted in the EBM framework as

a particular choice of contrastive term for the loss function. A common approach is

to view variational methods and energy-based loss functions as approximations to the

probabilistic method. What we propose here is to view the probabilistic approach as

a special case of a much larger family of energy-based methods. Energy-based meth-

ods are equally well justified as probabilistic methods. They are merely designed for

training models to answer a different kind of question than probabilistic models.

An important open question is whether the variational methods that are commonly

used (e.g., mean field approximations with popular architectures) actually satisfy con-

dition 3 (see Section 5.2).
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8.2 Efficiency in Learning

The most important question that affects the efficiency of learning is: “How many en-

ergies of incorrect answers must be explicitly pulled up before the energy surface takes

the right shape?”. Energy-based loss functions that pull up the most offending incor-

rect answer only pull up on a single energy at each learning iteration. By contrast, the

negative log-likelihood loss pulls up on all incorrect answers at each iteration, includ-

ing those that are unlikely to produce a lower energy than the correct answer. Hence,

unless the NLL computation can be done at very low cost (as in the case of “trivial”

and “analytical” models), the energy-based approach is bound to be more efficient.

An important open question is whether alternative loss functions exist whose con-

trastive term and its derivative are considerably simpler to compute than that of the

negative log-likelihood loss, while preserving the nice property that they pull up a large

volume of incorrect answers whose energies are “threateningly low”. Perhaps, a figure

of merit for architectures and loss functions could be defined which would compare

the amount of computation required to evaluate the loss and its derivative relative to

the volume of incorrect answers whose energy is pulled up as a result.

For models in the “intractable” category, each individual energy that needs to be

pulled up or pushed down requires an evaluation of the energy and of its gradient

(if a gradient-based optimization method is used). Hence, finding parameterizations

of the energy surface that will cause the energy surface to take the right shape with

the minimum amount of pushing of pulling is of crucial importance. If Y is high-

dimensional, and the energy surface is infinitely malleable, then the energy surface

will have to be pulled up in many places to make it take a suitable shape. Conversely,

more “rigid” energy surfaces may take a suitable shape with less pulling, but are less

likely to approach the correct shape. There seems to be a bias-variance dilemma similar

to the one that influences the generalization performance.

8.3 Learning with Approximate Inference

Very often, the inference algorithm can only give us an approximate answer, or is not

guaranteed to give us the global minimum of the energy. Can energy-based learning

work in this case? The theory for this does not yet exist, but a few intuitions may shed

light on the issue.

There may be certain answers in Y that our inference algorithm never finds, per-

haps because they reside in far-away regions of the space that the algorithm can never

reach. Our model may give low energy to wrong answers in these regions, but since the

inference algorithm cannot find them, they will never appear in the contrastive term,

and their energies will never be pulled up. Fortunately, since those answers are not

found by the inference algorithm, we do not need to worry about their energies.

It is an interesting advantage of energy-based learning that only the incorrect an-

swers whose energies are pulled up actually matter. This is in contrast with probabilis-

tic loss functions (e.g. NLL) in which the contrastive term must pull up the energy of

every single answer, including the ones that our inference algorithm will never find,

which can be wasteful.
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8.4 Approximate Contrastive Samples, Contrastive Divergence

Loss functions differ in how the contrastive sample is selected, and how hard its energy

is pulled up. One interesting suggestion is to pull up on answers that are always near the

correct answer, so as to make the correct answer a local minimum, but not necessarily a

global one. This idea is the basis of the contrastive divergence algorithm proposed by

Hinton [Hinton, 2002, Teh et al., 2003]. Contrastive divergence learning can be seen

as an approximation of NLL learning with two shortcuts. First, the contrastive term in

Equation 24 is approximated by drawing samples from the distribution P (Y |X i, W )
using a Markov chain Monte Carlo method. Second, the samples are picked by starting

the Markov chain at the desired answer, and by running only a few steps of the chain.

This produces a sample Ỹ i that is near the desired answer. Then, a simple gradient

update of the parameters is performed:

W ←W − η

(

∂E(W, Y i, X i)

∂W
−

∂E(W, Ỹ i, X i)

∂W

)

. (96)

Since the contrastive sample is always near the desired answer, one can hope that the

desired answer will become a local minimum of the energy. Running MCMC for just a

few steps limits computational expense. However, there is no guarantee that all incor-

rect answers with low energy will be pulled up.

8.5 Conclusion

This tutorial was written to introduce and explicate the following major ideas:

• Many existing learning models can be be expressed simply in the framework of

energy-based learning.

• Among the many loss functions proposed in the literature, some are good (with

a non-zero margin), and some can be bad.

• Probabilistic learning is a special case of energy-based learning where the loss

function is the negative log-likelihood, a.k.a. the maximum mutual information

criterion.

• Optimizing the loss function with stochastic gradient methods is often more ef-

ficient than black box convex optimization methods.

• Stochastic gradient methods can be applied to any loss function including non-

convex ones. Local minima are rarely a problem in practice because of the high

dimensionality of the space.

• Support vector Markov models, max-margin Markov networks, and conditional

random fields are all sequence modeling systems that use linearly parameterized

energy factors. Sequence modeling systems with non-linear parameterization for

speech and handwriting recognition have been a very active research area since

the early 1990’s. since the early 90’s.
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• Graph transformer networks are hierarchical sequence modeling systems in which

the objects that are manipulated are trellises containing all the alternative inter-

pretations at a given level. Global training can be performed using stochastic

gradient by using a form of back-propagation algorithm to compute the gradi-

ents of the loss with respect to all the parameters in the system.
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