
1

A Tutorial on Graph-Based SLAM
Giorgio Grisetti Rainer Kümmerle Cyrill Stachniss Wolfram Burgard

Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany

Abstract—Being able to build a map of the environment and
to simultaneously localize within this map is an essential skill for
mobile robots navigating in unknown environments in absence
of external referencing systems such as GPS. This so-called
simultaneous localization and mapping (SLAM) problem has
been one of the most popular research topics in mobile robotics
for the last two decades and efficient approaches for solving this
task have been proposed. One intuitive way of formulating SLAM
is to use a graph whose nodes correspond to the poses of the robot
at different points in time and whose edges represent constraints
between the poses. The latter are obtained from observations
of the environment or from movement actions carried out by
the robot. Once such a graph is constructed, the map can be
computed by finding the spatial configuration of the nodes that
is mostly consistent with the measurements modeled by the
edges. In this paper, we provide an introductory description
to the graph-based SLAM problem. Furthermore, we discuss
a state-of-the-art solution that is based on least-squares error
minimization and exploits the structure of the SLAM problems
during optimization. The goal of this tutorial is to enable the
reader to implement the proposed methods from scratch.

I. INTRODUCTION

To efficiently solve many tasks envisioned to be carried out

by mobile robots including transportation, search and rescue,

or automated vacuum cleaning robots need a map of the

environment. The availability of an accurate map allows for the

design of systems that can operate in complex environments

only based on their on-board sensors and without relying

on external reference system like, e.g., GPS. The acquisition

of maps of indoor environments, where typically no GPS is

available, has been a major research focus in the robotics

community over the last decades. Learning maps under pose

uncertainty is often referred to as the simultaneous localization

and mapping (SLAM) problem. In the literature, a large variety

of solutions to this problem is available. These approaches

can be classified either as filtering or smoothing. Filtering

approaches model the problem as an on-line state estimation

where the state of the system consists in the current robot po-

sition and the map. The estimate is augmented and refined by

incorporating the new measurements as they become available.

Popular techniques like Kalman and information filters [28],

[3], particle filters [22], [12], [9], or information filters [7],

[31] fall into this category. To highlight their incremental

nature, the filtering approaches are usually referred to as

on-line SLAM methods. Conversely, smoothing approaches

estimate the full trajectory of the robot from the full set of

measurements [21], [5], [27]. These approaches address the

so-called full SLAM problem, and they typically rely on least-

square error minimization techniques.

Figure 1 shows three examples of real robotic systems

that use SLAM technology: an autonomous car, a tour-guide

robot, and an industrial mobile manipulation robot. Image

(a) shows the autonomous car Junior as well as a model

of a parking garage that has been mapped with that car.

Thanks to the acquired model, the car is able to park itself

autonomously at user selected locations in the garage. Image

(b) shows the TPR-Robina robot developed by Toyota which

is also used in the context of guided tours in museums. This

robot uses SLAM technology to update its map whenever the

environment has been changed. Robot manufacturers such as

KUKA, recently presented mobile manipulators as shown in

Image (c). Here, SLAM technology is needed to operate such

devices in flexible way in changing industrial environments.

Figure 2 illustrates 2D and 3D maps that can be estimated by

the SLAM algorithm discussed in this paper.

An intuitive way to address the SLAM problem is via

its so-called graph-based formulation. Solving a graph-based

SLAM problem involves to construct a graph whose nodes

represent robot poses or landmarks and in which an edge

between two nodes encodes a sensor measurement that con-

strains the connected poses. Obviously, such constraints can be

contradictory since observations are always affected by noise.

Once such a graph is constructed, the crucial problem is to

find a configuration of the nodes that is maximally consistent

with the measurements. This involves solving a large error

minimization problem.

The graph-based formulation of the SLAM problem has

been proposed by Lu and Milios in 1997 [21]. However, it

took several years to make this formulation popular due to the

comparably high complexity of solving the error minimization

problem using standard techniques. Recent insights into the

structure of the SLAM problem and advancements in the fields

of sparse linear algebra resulted in efficient approaches to

the optimization problem at hand. Consequently, graph-based

SLAM methods have undergone a renaissance and currently

belong to the state-of-the-art techniques with respect to speed

and accuracy. The aim of this tutorial is to introduce the SLAM

problem in its probabilistic form and to guide the reader to

the synthesis of an effective and state-of-the-art graph-based

SLAM method. To understand this tutorial a good knowledge

of linear algebra, multivariate minimization, and probability

theory are required.

II. PROBABILISTIC FORMULATION OF SLAM

Solving the SLAM problem consists of estimating the robot

trajectory and the map of the environment as the robot moves

in it. Due to the inherent noise in the sensor measurements, a

SLAM problem is usually described by means of probabilistic

tools. The robot is assumed to move in an unknown environ-

ment, along a trajectory described by the sequence of random

2

(a) (b) (c)

Fig. 1. Applications of SLAM technology. (a) An autonomous instrumented car developed at Stanford. This car can acquire maps by utilizing only its
on-board sensors. These maps can be subsequently used for autonomous navigation. (b) The museum guide robot TPR-Robina developed by Toyota (picture
courtesy of Toyota Motor Company). This robot acquires a new map every time the museum is reconfigured. (c) The KUKA Concept robot “Omnirob”, a
mobile manipulator designed autonomously navigate and operate in the environment with the sole use of its on-board sensors (picture courtesy of KUKA
Roboter GmbH).

variables x1:T = {x1, . . . ,xT }. While moving, it acquires a

sequence of odometry measurements u1:T = {u1, . . . ,uT }
and perceptions of the environment z1:T = {z1, . . . , zT }.
Solving the full SLAM problem consists of estimating the

posterior probability of the robot’s trajectory x1:T and the

map m of the environment given all the measurements plus

an initial position x0:

p(x1:T ,m | z1:T ,u1:T ,x0). (1)

The initial position x0 defines the position of the map and

can be chosen arbitrarily. For convenience of notation, in the

remainder of this document we will omit x0. The poses x1:T

and the odometry u1:T are usually represented as 2D or 3D

transformations in SE(2) or in SE(3), while the map can be

represented in different ways. Maps can be parametrized as

a set of spatially located landmarks, by dense representations

like occupancy grids, surface maps, or by raw sensor measure-

ments. The choice of a particular map representation depends

on the sensors used, on the characteristics of the environment,

and on the estimation algorithm. Landmark maps [28], [22] are

often preferred in environments where locally distinguishable

features can be identified and especially when cameras are

used. In contrast, dense representations [33], [12], [9] are

usually used in conjunction with range sensors. Independently

of the type of the representation, the map is defined by the

measurements and the locations where these measurements

have been acquired [17], [18]. Figure 2 illustrates three typical

dense map representations for 3D and 2D: multilevel surface

maps, point clouds and occupancy grids. Figure 3 shows a

typical 2D landmark based map.

Estimating the posterior given in (1) involves operating in

high dimensional state spaces. This would not be tractable if

the SLAM problem would not have a well defined structure.

This structure arises from certain and commonly done assump-

tions, namely the static world assumption and the Markov

assumption. A convenient way to describe this structure is via

the dynamic Bayesian network (DBN) depicted in Figure 4.

A Bayesian network is a graphical model that describes a

stochastic process as a directed graph. The graph has one node

for each random variable in the process, and a directed edge (or

-20

-10

 0

 10

 20

 30

-50 -40 -30 -20 -10 0 10 20

landmarks
trajectory

Fig. 3. Landmark based maps acquired at the German Aerospace Center. In
this setup the landmarks consist in white circles painted on the ground that
are detected by the robot through vision, as shown in the left image. The right
image illustrates the trajectory of the robot and the estimated positions of the
landmarks. These images are courtesy of Udo Frese and Christoph Hertzberg.

x0 x1 xt−1 xt xT

u1 ut−1 ut uT

z1 zt−1 zt zT

m

Fig. 4. Dynamic Bayesian Network of the SLAM process.

arrow) between two nodes models a conditional dependence

between them.

In Figure 4, one can distinguish blue/gray nodes indicating

the observed variables (here z1:T and u1:T) and white nodes

which are the hidden variables. The hidden variables x1:T

and m model the robot’s trajectory and the map of the

environment. The connectivity of the DBN follows a recurrent

3

(a) (b) (c)

Fig. 2. (a) A 3D map of the Stanford parking garage acquired with an instrumented car (bottom), and the corresponding satellite view (top). This map has
been subsequently used to realize an autonomous parking behavior. (b) Point cloud map acquired at the university of Freiburg (courtesy of Kai. M. Wurm)
and relative satellite image. (c) Occupancy grid map acquired at the hospital of Freiburg. Top: a bird’s eye view of the area, bottom: the occupancy grid
representation. The gray areas represent unobserved regions, the white part represents traversable space while the black points indicate occupied regions.

pattern characterized by the state transition model and by the

observation model. The transition model p(xt | xt−1,ut) is

represented by the two edges leading to xt and represents the

probability that the robot at time t is in xt given that at time

t − 1 it was in xt and it acquired an odometry measurement

ut.

The observation model p(zt | xt,mt) models the probabil-

ity of performing the observation zt given that the robot is at

location xt in the map. It is represented by the arrows entering

in zt. The exteroceptive observation zt depends only on the

current location xt of the robot and on the (static) map m.

Expressing SLAM as a DBN highlights its temporal structure,

and therefore this formalism is well suited to describe filtering

processes that can be used to tackle the SLAM problem.

An alternative representation to the DBN is via the so-called

“graph-based” or “network-based” formulation of the SLAM

problem, that highlights the underlying spatial structure. In

graph-based SLAM, the poses of the robot are modeled by

nodes in a graph and labeled with their position in the

environment [21], [18]. Spatial constraints between poses that

result from observations zt or from odometry measurements

ut are encoded in the edges between the nodes. More in

detail, a graph-based SLAM algorithm constructs a graph out

of the raw sensor measurements. Each node in the graph

represents a robot position and a measurement acquired at

that position. An edge between two nodes represents a spatial

constraint relating the two robot poses. A constraint consists

in a probability distribution over the relative transformations

between the two poses. These transformations are either odom-

etry measurements between sequential robot positions or are

determined by aligning the observations acquired at the two

robot locations. Once the graph is constructed one seeks to

find the configuration of the robot poses that best satisfies

the constraints. Thus, in graph-based SLAM the problem

is decoupled in two tasks: constructing the graph from the

raw measurements (graph construction), determining the most

likely configuration of the poses given the edges of the graph

(graph optimization). The graph construction is usually called

Fig. 5. Pose-graph corresponding to a data-set recorded at MIT Killian
Court (courtesy of Mike Bosse and John Leonard) (left) and after (right)
optimization. The maps are obtained by rendering the laser scans according
to the robot positions in the graph.

front-end and it is heavily sensor dependent, while the second

part is called back-end and relies on an abstract representation

of the data which is sensor agnostic. A short example of a

front-end for 2D laser SLAM is described in Section V-A.

In this tutorial we will describe an easy-to-implement but

efficient back-end for graph-based SLAM. Figure 5 depicts an

uncorrected pose-graph and the corresponding corrected one.

III. RELATED WORK

There is a large variety of SLAM approaches available in

the robotics community. Throughout this tutorial we focus on

graph-based approaches and therefore will consider such ap-

proaches in the discussion of related work. Lu and Milios [21]

were the first to refine a map by globally optimizing the system

of equations to reduce the error introduced by constraints.

Gutmann and Konolige [11] proposed an effective way for

constructing such a network and for detecting loop closures

while running an incremental estimation algorithm. Since then,

many approaches for minimizing the error in the constraint

network have been proposed. For example, Howard et al. [15]

apply relaxation to localize the robot and build a map. Frese

4

et al. [8] propose a variant of Gauss-Seidel relaxation called

multi-level relaxation (MLR). It applies relaxation at different

resolutions. Dellaert and Kaess [5] were the first to exploit

sparse matrix factorizations to solve the linearized problem

in off-line SLAM. Subsequently Kaess et al. [16] presented

iSAM, an on-line version that exploits partial reorderings to

compute the sparse factorization.

Recently, Konolige et al. [19] proposed an open-source

implementation of a pose-graph method that constructs the

linearized system in an efficient way. Olson et al. [27] pre-

sented an efficient optimization approach which is based on

the stochastic gradient descent and can efficiently correct even

large pose-graphs. Grisetti et al. proposed an extension of

Olson’s approach that uses a tree parametrization of the nodes

in 2D and 3D. In this way, they increase the convergence

speed [10].

GraphSLAM [32] applies variable elimination techniques to

reduce the dimensionality of the optimization problem. The

ATLAS framework [2] constructs a two-level hierarchy of

graphs and employs a Kalman filter to construct the bottom

level. Then, a global optimization approach aligns the local

maps at the second level. Similar to ATLAS, Estrada et al.

proposed Hierarchical SLAM [6] as a technique for using

independent local maps.

Most optimization techniques focus on computing the best

map given the constraints and are called SLAM back-ends.

In contrast to that, SLAM front-ends seek to interpret the

sensor data to obtain the constraints that are the basis for

the optimization approaches. Olson [25], for example, pre-

sented a front-end with outlier rejection based on spectral

clustering. For making data associations in the SLAM front-

ends statistical tests such as the χ2 test or joint compatibility

test [23] are often applied. The work of Nüchter et al. [24]

aims at building an integrated SLAM system for 3D mapping.

The main focus lies on the SLAM front-end for finding

constraints. For optimization, a variant of the approach of

Lu and Milios [21] for 3D settings is applied. The methods

proposed in this paper can be effectively applied to all these

front-ends.

IV. GRAPH-BASED SLAM

A graph-based SLAM approach constructs a simplified esti-

mation problem by abstracting the raw sensor measurements.

These raw measurements are replaced by the edges in the

graph which can then be seen as “virtual measurements”.

More in detail an edge between two nodes is labeled with

a probability distribution over the relative locations of the two

poses, conditioned to their mutual measurements. In general,

the observation model p(zt | xt,mt) is multi-modal and

therefore the Gaussian assumption does not hold. This means

that a single observation zt might result in multiple potential

edges connecting different poses in the graph and the graph

connectivity needs itself to be described as a probability

distribution. Directly dealing with this multi-modality in the

estimation process would lead to a combinatorial explosion of

the complexity. As a result of that, most practical approaches

restrict the estimate to the most likely topology. Thus, one

x1

x2 x3

xixj

xt−1xt

xT

〈eij ,Ωij〉

Fig. 6. A pose-graph representation of a SLAM process. Every node in the
graph corresponds to a robot pose. Nearby poses are connected by edges that
model spatial constraints between robot poses arising from measurements.
Edges et−1 t between consecutive poses model odometry measurements,
while the other edges represent spatial constraints arising from multiple
observations of the same part of the environment.

needs to determine the most likely constraint resulting from

an observation. This decision depends on the probability

distribution over the robot poses. This problem is known

as data association and is usually addressed by the SLAM

front-end. To compute the correct data-association, a front-end

usually requires a consistent estimate of the conditional prior

over the robot trajectory p(x1:T | z1:T ,u1:T). This requires

to interleave the execution of the front-end and of the back-

end while the robot explores the environment. Therefore, the

accuracy and the efficiency of the back-end is crucial to the

design of a good SLAM system. In this tutorial, we will

not describe sophisticated approaches to the data association

problem. Such methods tackle association by means of spectral

clustering [27], joint compatibility branch and bound [23], or

backtracking [13]. We rather assume that the given front-end

provides consistent estimates.

If the observations are affected by (locally) Gaussian noise

and the data association is known, the goal of a graph-based

mapping algorithm is to compute a Gaussian approximation of

the posterior over the robot trajectory. This involves computing

the mean of this Gaussian as the configuration of the nodes

that maximizes the likelihood of the observations. Once this

mean is known the information matrix of the Gaussian can

be obtained in a straightforward fashion, as explained in

Section IV-B. In the following we will characterize the task of

finding this maximum as a constraint optimization problem.

We will also introduce parts of the notation illustrated in

Figure 6.

Let x = (x1, . . . ,xT)
T be a vector of parameters, where

xi describes the pose of node i. Let zij and Ωij be respectively

the mean and the information matrix of a virtual measurement

between the node i and the node j. This virtual measurement

is a transformation that makes the observations acquired from

i maximally overlap with the observation acquired from j. Let

ẑij(xi,xj) be the prediction of a virtual measurement given a

5

xi

xj

zij

ẑij

Ωij

eij(xi,xj)

Fig. 7. Aspects of an edge connecting the vertex xi and the vertex xj .
This edge originates from the measurement zij . From the relative position
of the two nodes, it is possible to compute the expected measurement ẑij

that represents xj seen in the frame of xi. The error eij(xi,xj) depends on
the displacement between the expected and the real measurement. An edge is
fully characterized by its error function eij(xi,xj) and by the information
matrix Ωij of the measurement that accounts for its uncertainty.

configuration of the nodes xi and xj . Usually this prediction

is the relative transformation between the two nodes. The log-

likelihood lij of a measurement zij is therefore

lij ∝ [zij − ẑij(xi,xj)]
TΩij [zij − ẑij(xi,xj)]. (2)

Let e(xi,xj , zij) be a function that computes a difference

between the expected observation ẑij and the real observation

zij gathered by the robot. For simplicity of notation, we will

encode the indices of the measurement in the indices of the

error function

eij(xi,xj) = zij − ẑij(xi,xj). (3)

Figure 7 illustrates the functions and the quantities that play

a role in defining an edge of the graph. Let C be the set of

pairs of indices for which a constraint (observation) z exists.

The goal of a maximum likelihood approach is to find the

configuration of the nodes x∗ that minimizes the negative log

likelihood F(x) of all the observations

F(x) =
∑

〈i,j〉∈C

eTijΩijeij
︸ ︷︷ ︸

Fij

, (4)

thus, it seeks to solve the following equation:

x∗ = argmin
x

F(x). (5)

In the remainder of this section we will describe an approach

to solve Eq. 5 and to compute a Gaussian approximation

of the posterior over the robot trajectory. Whereas the pro-

posed approach utilizes standard optimization methods, like

the Gauss-Newton or the Levenberg-Marquardt algorithms,

it is particularly efficient because it effectively exploits the

structure of the problem.

We first describe a direct implementation of traditional non-

linear least-squares optimization. Subsequently, we introduce

a workaround that allows to deal with the singularities in the

representation of the robot poses in an elegant manner.

A. Error Minimization via Iterative Local Linearizations

If a good initial guess x̆ of the robot’s poses is known, the

numerical solution of Eq. (5) can be obtained by using the

popular Gauss-Newton or Levenberg-Marquardt algorithms.

The idea is to approximate the error function by its first order

Taylor expansion around the current initial guess x̆

eij(x̆i +∆xi, x̆j +∆xj) = eij(x̆+∆x) (6)

≃ eij + Jij∆x. (7)

Here, Jij is the Jacobian of eij(x) computed in x̆ and eij
def.
=

eij(x̆). Substituting Eq. (7) in the error terms Fij of Eq. (4),
we obtain:

Fij(x̆+∆x)

= eij(x̆+∆x)TΩijeij(x̆+∆x) (8)

≃ (eij + Jij∆x)T Ωij (eij + Jij∆x) (9)

= e
T
ijΩijeij

︸ ︷︷ ︸

cij

+2 eT
ijΩijJij

︸ ︷︷ ︸

bij

∆x+∆x
T
J
T
ijΩijJij

︸ ︷︷ ︸

Hij

∆x(10)

= cij + 2bij∆x+∆x
T
Hij∆x (11)

With this local approximation, we can rewrite the function
F(x) in Eq. (4) as

F(x̆+∆x) =
∑

〈i,j〉∈C

Fij(x̆+∆x) (12)

≃
∑

〈i,j〉∈C

cij + 2bij∆x+∆x
T
Hij∆x (13)

= c + 2bT
∆x+∆x

T
H∆x. (14)

The quadratic form in Eq. (14) is obtained from Eq. (13) by

setting c =
∑

cij , b =
∑

bij , and H =
∑

Hij . It can be

minimized in ∆x by solving the linear system

H∆x∗ = −b. (15)

The matrix H is the information matrix of the system, since

it is obtained by projecting the measurement error in the

space of the trajectories via the Jacobians. It is sparse by

construction, having non-zeros between poses connected by a

constraint. Its number of non-zero blocks is twice the number

of constrains plus the number of nodes. This allows to solve

Eq. (15) by sparse Cholesky factorization. An efficient yet

compact implementation of sparse Cholesky factorization can

be found in the library CSparse [4].

The linearized solution is then obtained by adding to the

initial guess the computed increments

x∗ = x̆+∆x∗. (16)

The popular Gauss-Newton algorithm iterates the linearization

in Eq. (14), the solution in Eq. (15), and the update step in

Eq. (16). In every iteration, the previous solution is used as

the linearization point and the initial guess.

The procedure described above is a general approach to

multivariate function minimization, here derived for the special

case of the SLAM problem. The general approach, however,

assumes that the space of parameters x is Euclidean, which is

not valid for SLAM and may lead to sub-optimal solutions.

6

B. Considerations about the Structure of the Linearized Sys-

tem

According to Eq. (14), the matrix H and the vector b are

obtained by summing up a set of matrices and vectors, one for

every constraint. Every constraint will contribute to the system

with an addend term. The structure of this addend depends on

the Jacobian of the error function. Since the error function

of a constraint depends only on the values of two nodes, the

Jacobian in Eq. (7) has the following form:

Jij =




0 · · ·0 Aij

︸︷︷︸

node i

0 · · ·0 Bij
︸︷︷︸

node j

0 · · ·0




 . (17)

Here Aij and Bij are the derivatives of the error function with

respect to xi and xj . From Eq. (10) we obtain the following

structure for the block matrix Hij :

Hij =












. . .

AT
ijΩijAij · · · AT

ijΩijBij

...
. . .

...

BT
ijΩijAij · · · BT

ijΩijBij

. . .












(18)

bij =












...

AT
ijΩijeij

...

BT
ijΩijeij

...












(19)

For simplicity of notation we omitted the zero blocks.

Algorithm 1 summarizes an iterative Gauss-Newton proce-

dure to determine both the mean and the information matrix

of the posterior over the robot poses. Since most of the

structures in the system are sparse, we recommend to use

memory efficient representations to store the Hessian H of

the system. Since the structure of the Hessian is known in

advance from the connectivity of the graph, we recommend to

pre-allocate the Hessian once at the beginning of the iterations

and to update it in place by looping over all edges whenever

a new linearization is required. Each edge contributes to the

blocks H[ii], H[ij], H[ji], and H[jj] and to the blocks b[i]

and b[j] of the coefficient vector. An additional optimization

is to compute only the upper triangular part of H, since it

is symmetric. Note that the error of a constraint eij depends

only on the relative position of the connected poses xi and

xj . Accordingly, the error F(x) of a particular configuration

of the poses x is invariant under a rigid transformation of all

the poses. This results in Eq. 15 being under determined. To

numerically solve this system it is therefore common practice

to constrain one of the increments ∆xk to be zero. This can be

done by adding the identity matrix to the kth diagonal block

H[kk]. Without loss of generality in Algorithm 1 we fix the

first node x1. An alternative way to fix a particular node of

the pose-graph consists in suppressing the kth block row and

the kth block column of the linear system in Eq. 15.

Algorithm 1 Computes the mean x∗ and the information

matrix H∗ of the multivariate Gaussian approximation of the

robot pose posterior from a graph of constraints.

Require: x̆ = x̆1:T : initial guess. C = {〈eij(·),Ωij〉}:
constraints

Ensure: x∗ : new solution, H∗ new information matrix

// find the maximum likelihood solution

while ¬converged do

b← 0 H← 0

for all 〈eij ,Ωij〉 ∈ C do

// Compute the Jacobians Aij and Bij of the error

function

Aij ←
∂eij(x)
∂xi

∣
∣
∣
x=x̆

Bij ←
∂eij(x)
∂xj

∣
∣
∣
x=x̆

// compute the contribution of this constraint to the

linear system

H[ii] += AT
ijΩijAij H[ij] += AT

ijΩijBij

H[ji] += BT
ijΩijAij H[jj] += BT

ijΩijBij

// compute the coefficient vector

b[i] += AT
ijΩijeij b[j] += BT

ijΩijeij
end for

// keep the first node fixed

H[11] += I

// solve the linear system using sparse Cholesky factor-

ization

∆x← solve(H∆x = −b)
// update the parameters

x̆ += ∆x

end while

x∗ ← x̆

H∗ ← H

// release the first node

H∗
[11] −= I

return 〈x∗,H∗〉

C. Least Squares on a Manifold

A common approach in numeric to deal with non-Euclidean

spaces is to perform the optimization on a manifold. A mani-

fold is a mathematical space that is not necessarily Euclidean

on a global scale, but can be seen as Euclidean on a local

scale [20]. Note that the manifold-based approach described

here is similar to the way of minimizing functions in SO(3)
as described by Taylor and Kriegman [30].

In the context of the SLAM problem, each parameter

block xi consists of a translation vector ti and a rotational

component αi. The translation ti clearly forms a Euclidean

space, while the rotational components αi span over the non-

Euclidean 2D or 3D rotation group SO(2) or SO(3). To

avoid singularities, these spaces are usually described in an

over-parametrized way, e.g., by rotation matrices or quater-

nions. Directly applying Eq. (16) to these over-parametrized

representations breaks the constraints induced by the over-

parametrization. The over-parametrization results in additional

degrees of freedom and thus introduces errors in the solution.

To overcome this problem, one can use a minimal represen-

tation for the rotation (like, e.g., Euler angles in 3D). This,

however, is subject to singularities. The singularities in the

7

2D case can be easily recovered by normalizing the angle,

however in 3D this procedure is not straightforward.

An alternative idea is to consider the underlying space as

a manifold and to define an operator ⊞ that maps a local

variation ∆x in the Euclidean space to a variation on the

manifold, ∆x 7→ x⊞∆x. We refer the reader to the work of

Hertzberg [14] for the mathematical details. With this operator,

a new error function can be defined as

ĕij(∆x̃i,∆x̃j)
def.
= eij(x̆i ⊞∆x̃i, x̆j ⊞∆x̃j) (20)

= eij(x̆⊞∆x̃) ≃ ĕij + J̃ij∆x̃,(21)

where x̆ spans over the original over-parametrized space,

for instance quaternions. The term ∆x̃ is a small increment

around the original position x̆ and is expressed in a minimal

representation.

As an example, in 3D SLAM a good choice of the

parametrization of the rotations is the vector part of the unit

quaternion. In more detail, one can represent the increments

∆x̃ as 6D vectors ∆x̃
T = (∆t̃

T
q̃T), where ∆t̃ denotes

the translation and q̃T = (∆qx ∆qy ∆qz)
T is the vector

part of the unit quaternion representing the 3D rotation.

Conversely, x̆T = (t̆T q̆T) uses a quaternion q̆ to encode the

rotational part. Thus, the operator ⊞ can be expressed by first

converting ∆q̃ to a full quaternion ∆q and then applying the

transformation ∆xT = (∆tT ∆qT) to x̆. In the equations

describing the error minimization, these operations can nicely

be encapsulated by the ⊞ operator. The Jacobian J̃ij can be

expressed by

J̃ij =
∂eij(x̆⊞∆x̃)

∂∆x̃

∣
∣
∣
∣
∆x̃=0

. (22)

Since in the previous equation e depends only on ∆x̃i and
∆x̃j we can further expand it as follows:

J̃ij (23)

=









· · ·
∂eij(x̆⊞∆x̃)

∂∆x̃i

∣
∣
∣
∣
∆x̃=0

︸ ︷︷ ︸

Ãij

· · ·
∂eij(x̆⊞∆x̃)

∂∆x̃j

∣
∣
∣
∣
∆x̃=0

︸ ︷︷ ︸

B̃ij

· · ·









Using the rule for the partial derivatives and exploiting the

fact that the Jacobian is evaluated in ∆x̃ = 0, the non-zero

blocks become:

∂eij(x̆⊞∆x̃i)

∂∆x̃i

=
∂eij(x̆)

∂x̆i
︸ ︷︷ ︸

Aij

·
x̆i ⊞∆x̃i

∂∆x̃i

∣
∣
∣
∣
∆x̃=0

︸ ︷︷ ︸

Mi

(24)

∂eij(x̆⊞∆x̃j)

∂∆x̃j

=
∂eij(x̆)

∂x̆j
︸ ︷︷ ︸

Bij

·
x̆j ⊞∆x̃j

∂∆x̃j

∣
∣
∣
∣
∆x̃=0

︸ ︷︷ ︸

Mj

(25)

Accordingly, one can easily derive from the Jacobian not

defined on a manifold of Eq. 17 a Jacobian on a manifold

just by multiplying its non-zero blocks with the derivative of

the ⊞ operator computed in x̆i and x̆j .

Fig. 8. A typical robot used in 2D mapping experiments. The platform is a
standard ActivMedia Pioneer 2 equipped with a SICK-LMS range finder.

With a straightforward extension of the notation, we can

insert Eq. (21) in Eq. (9). This leads to the following linear

system:

H̃∆x̃
∗ = −b̃. (26)

Since the increments ∆x̃
∗ are computed in the local Euclidean

surroundings of the initial guess x̆, they need to be re-mapped

into the original over-parametrized space by the ⊞ operator.

Accordingly, the update rule of Eq. (16) becomes

x∗ = x̆⊞∆x̃
∗. (27)

Thus, formalizing the minimization problem on a manifold

consists of first computing a set of increments in a local

Euclidean approximation around the initial guess by Eq. (26),

and second accumulating the increments in the global non-

Euclidean space by Eq. (27). Note that the linear system

computed on a manifold representation has the same structure

of the linear system computed on an Euclidean space. One

can easily derive a manifold version of a graph minimization

from a non-manifold version, only by defining an ⊞ operator

and its Jacobian Mi w.r.t. the corresponding parameter block.

Algorithm 2 provides a manifold version of the Gauss-Newton

method for SLAM.

The Hessian H̃ of the manifold problem no longer rep-

resents the information matrix of the trajectories but of the

trajectory increments ∆x̃. To obtain the information matrix of

the trajectory Algorithm 2 computes H in the original space

of the poses x.

V. PRACTICAL APPLICATIONS

In this section we describe some applications of the pro-

posed methods. In the first scenario we describe a complete

2D mapping system, and in the second scenario we briefly de-

scribe a 3D mapping system and we highlight the advantages

of a manifold representation.

A. 2D Laser Based Mapping

We processed the data recorded with the mobile robot

equipped with a laser range finder illustrated in Figure 8 at

the Intel Research Laboratory in Seattle. This data consists

of odometry measurements describing 2D transformations

8

Algorithm 2 Manifold version of Algorithm 1. While this al-

gorithm has the same computational complexity, it is substan-

tially more robust than the non-manifold version, especially in

the 3D case.

Require: x̆ = x̆1:T : initial guess. C = {〈eij(·),Ωij〉}:
constraints

Ensure: x∗ : new solution, H̆∗ new information matrix

// find the maximum likelihood solution

while ¬converged do

// Compute the auxiliary Jacobians M1:T over the mani-

fold

for all x̆i ∈ x̆ do

Mi ←
x̆i⊞∆x̃i

∂∆x̃i

∣
∣
∣
∆x̃=0

end for

b̃← 0 H̃← 0

for all 〈eij ,Ωij〉 ∈ C do

// Compute the Jacobians Aij and Bij of the error

function

Aij ←
∂eij(x)
∂xi

∣
∣
∣
x=x̆

Bij ←
∂eij(x)
∂xj

∣
∣
∣
x=x̆

// Project the Jacobians through the manifold

Ãij ← AijMi B̃ij ← BijMj

// compute the nonzero Hessian blocks

H̃[ii] += ÃT
ijΩijÃij H̃[ij] += ÃT

ijΩijB̃ij

H̃[ji] += B̃T
ijΩijÃij H̃[jj] += B̃T

ijΩijB̃ij

// compute the coefficient vector

b̃[i] += ÃT
ijΩijeij b̃[j] += B̃T

ijΩijeij
end for

// keep the first node fixed

H[11] += I

// solve the linear system using sparse Cholesky factor-

ization

∆x̃← solve(H̃∆x̃ = −b̃)
// update the parameters

for all x̆i ∈ x̆ do

x̆i ← x̆i ⊞∆x̃i

end for

end while

x∗ ← x̆

// the maximum is found, now compute the Hessian in the

original space

H∗ ← 0

for all 〈eij ,Ωij〉 ∈ C do

H[ii] += AT
ijΩijAij H[ij] += AT

ijΩijBij

H[ji] += BT
ijΩijAij H[jj] += BT

ijΩijBij

end for

return 〈x∗,H∗〉

Fig. 9. Intel Research Lab. Left: Unoptimized pose graph overlayed on
top of the resulting map. Right: The optimized pose graph and the resulting
consistent map.

corresponding to the movements of the platform between

consecutive time frames, and 2D laser range data.

The graph is constructed in the following way:

• Whenever the robot moves more than 0.5 meters or

rotates more than 0.5 radians, the algorithm adds a new

vertex to the graph and labels it with the current laser

observation.

• This laser scan is matched with the previously acquired

one to improve the odometry estimate and the corre-

sponding edge is added to the graph. We use a variant of

the scan-matcher described by Olson [26].

• When the robot reenters a known area after traveling for a

long time in a previously unknown region, the algorithm

seeks for matches of the current scan with the past

measurements (loop closing). If a matching between the

current observation and the observation of another node

succeeds, the algorithm adds a new edge to the graph.

The edge is labeled with the relative transformation that

makes the two scans to overlap best. Matching the current

measurement with all previous scans would be extremely

inefficient and error prone, since it does not consider

the known prior about the robot location. Instead, the

algorithm selects the candidate nodes in the past as the

ones whose 3σ marginal covariances contains the current

robot pose. These covariances can be obtained as the

diagonal blocks of the inverse of a reduced Hessian Hred.

Hred is obtained from H by removing rows and the

columns of the newly inserted robot pose. Hred is the

information matrix of all the trajectory when assuming

fixed the current position.

• The algorithm performs the optimization whenever a loop

closure is detected.

At the end of the run, the graph consists of 1, 802 nodes

and 3, 546 edges. Even for this relatively large problem the

optimization can be carried on in 100 ms on a standard laptop

(Intel Core2@2.4 GHz). Since the robot travels at a velocity of

around 1 m/s the graph optimization could be executed after

adding every node instead of after detecting a loop closure.

Figure 9 shows the effect of the optimization process on the

trajectory, while Figure 10 illustrates the uncertainty ellipses.

The robot is located in the region where the ellipse become

small. Note that the poses in SE(2) do not need to be over

parameterized, so in this case there is no advantage in utilizing

9

Fig. 10. Pose uncertainty estimate for a real-world data set.

manifolds.

B. 3D Laser Based Mapping

Extending to 3D the SLAM algorithm presented in the

previous section is rather straightforward. One has only to

replace the 2D scan matching and loop closure detection

with their 3D counterparts that operate on 3D point clouds

instead than on single laser scans. In our implementation we

utilize the popular ICP algorithm [1] and for determining the

loop closures we use the algorithm by Steder et al. [29].

Additionally, each node of the graph and each constraint lives

in SE(3). Typical outputs of this algorithm are illustrated in

Figures 2(a) and (b).

The minimum number of parameters required to represent

an element of SE(3) is 6, a possible choice consists in a 3D

translation vector plus the three Euler angles. Utilizing this

parametrization leads to Algorithm 1. However, this minimal

representation is subject to singularities that can be avoided

by utilizing an over-parametrized state space. Alternatively,

one can describe the relative perturbations of the optimization

problem ∆x̃ in a minimal representation while leaving the

poses in the original over-parametrized space. This leads to

Algorithm 2. In this section we compare these two variants

of the optimization algorithm on a pose-graph obtained by a

simulated robot. Note that the sparsity pattern of the Hessian

is the same in both cases. Furthermore, the time to compute

the linear system is negligible compared to the time to solve it.

Accordingly, the choice of the parametrization mainly affects

the convergence speed, not the time required to perform one

iteration. To highlight this effect we show the evolution of the

error per iteration during one optimization run by using the

two algorithms.

We use a simulated 3D dataset of a robot traveling on

the surface of a sphere. The measurements were affected

by a significant error, and initializing the system by using

the odometry information resulted in the graph illustrated in

the left part of Figure 11. Starting from this initial guess

we executed the Gauss-Newton Algorithm with and without

the manifold linearization, i.e., here by using Euler angles.

Fig. 11. Pose-graph obtained by simulating a robot moving on a sphere.
Left: Initial configuration. Right: After optimizing the pose graph the sphere
has accurately been recovered by Algorithm 2.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 0 2 4 6 8 10 12

Iteration

Gauss-Newton (Euler)
Gauss-Newton (Manifold)

F
(x
)

Fig. 12. Evolution of the error F(x) for Gauss-Newton optimization with
Euler angles and with manifold linearization to the 3D sphere dataset.

Figure 12 shows the evolution of the error during the iterations

of the two approaches. First both approaches are able to

decrease the error. However, not appropriately considering

the singularities leads to a divergence of Algorithm 1 while

Algorithm 2 converges to the right solution.

VI. CONCLUSIONS

In this paper we presented a tutorial on graph-based SLAM.

Our aim was to provide the reader with sufficient details and

insights to allow for an easy implementation of the proposed

methods. The algorithms presented in this paper can be used

as a building blocks of more sophisticated methods, however

optimized implementations of these algorithms can deal with

surprisingly large problems.

REFERENCES

[1] Paul J. Besl and Neil D. McKay. A method for registration of
3-d shapes. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 14(2):239–256, 1992.

[2] M. Bosse, P. M. Newman, J. J. Leonard, and S. Teller. An ATLAS
framework for scalable mapping. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 1899–1906, 2003.

[3] J.A. Castellanos, J.M.M. Montiel, J. Neira, and J.D. Tardós. The SPmap:
A probabilistic framework for simultaneous localization and map build-
ing. IEEE Transactions on Robotics and Automation, 15(5):948–953,
1999.

[4] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM,
Philadelphia, 2006. Part of the SIAM Book Series on the Fundamentals
of Algorithms.

[5] F. Dellaert and M. Kaess. Square root SAM: Simultaneous location and
mapping via square root information smoothing. Int. Journal of Robotics

Research, 2006.

[6] C. Estrada, J. Neira, and J.D. Tardós. Hierachical SLAM: Real-
time accurate mapping of large environments. IEEE Transactions on

Robotics, 21(4):588–596, 2005.

10

[7] R. Eustice, H. Singh, and J.J. Leonard. Exactly sparse delayed-state
filters. In Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA),
pages 2428–2435, Barcelona, Spain, 2005.

[8] U. Frese, P. Larsson, and T. Duckett. A multilevel relaxation algorithm
for simultaneous localisation and mapping. IEEE Transactions on

Robotics, 21(2):1–12, 2005.

[9] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for grid
mapping with rao-blackwellized particle filters. IEEE Transactions on

Robotics, 23(1):34–46, 2007.

[10] G. Grisetti, C. Stachniss, and W. Burgard. Non-linear constraint network
optimization for efficient map learning. IEEE Transactions on Intelligent

Transportation Systems, 2009.

[11] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic
environments. In Proc. of the IEEE Int. Symposium on Computational

Intelligence in Robotics and Automation (CIRA), 1999.

[12] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. An efficient FastSLAM
algorithm for generating maps of large-scale cyclic environments from
raw laser range measurements. In Proc. of the IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems (IROS), pages 206–211, Las Vegas, NV,
USA, 2003.

[13] D. Hähnel, W. Burgard, B. Wegbreit, and S. Thrun. Towards lazy data
association in slam. In Proc. of the Int. Symposium of Robotics Research

(ISRR), pages 421–431, Siena, Italy, 2003.

[14] C. Hertzberg. A framework for sparse, non-linear least squares problems
on manifolds. Master’s thesis, Univ. Bremen, 2008.

[15] A. Howard, M.J. Matarić, and G. Sukhatme. Relaxation on a mesh:
a formalism for generalized localization. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2001.

[16] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Fast incremental
smoothing and mapping with efficient data association. In Proc. of the

IEEE Int. Conf. on Robotics & Automation (ICRA), Rome, Italy, 2007.

[17] K. Konolige. A gradient method for realtime robot control. In Proc. of

the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2000.

[18] K. Konolige, J. Bowman, J. D. Chen, P. Mihelich, M. Calonder,
V. Lepetit, and P. Fua. View-based maps. International Journal of

Robotics Research (IJRR), 29(10), 2010.

[19] K. Konolige, G. Grisetti, R. Kümmerle, W. Burgard, B. Limketkai, and
R. Vincent. Sparse pose adjustment for 2d mapping. In Proc. of the

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), 2010.

[20] J.M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate

Texts in Mathematics. Springer Verlag, 2003.

[21] F. Lu and E. Milios. Globally consistent range scan alignment for
environment mapping. Autonomous Robots, 4:333–349, 1997.

[22] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to simultaneous localization and mapping. In Proc. of

the National Conference on Artificial Intelligence (AAAI), pages 593–
598, Edmonton, Canada, 2002.

[23] J. Neira and J.D. Tardós. Data association in stochastic mapping
using the joint compatibility test. IEEE Transactions on Robotics and

Automation, 17(6):890–897, 2001.

[24] A. Nüchter, K. Lingemann, J. Hertzberg, and H. Surmann. 6D SLAM
with approximate data association. In Proc. of the Int. Conference on

Advanced Robotics (ICAR), pages 242–249, 2005.

[25] E. Olson. Robust and Efficient Robotic Mapping. PhD thesis, MIT,
Cambridge, MA, USA, June 2008.

[26] E. Olson. Real-time correlative scan matching. In Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), 2009.

[27] E. Olson, J. Leonard, and S. Teller. Fast iterative optimization of pose
graphs with poor initial estimates. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), pages 2262–2269, 2006.

[28] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial
realtionships in robotics. In I. Cox and G. Wilfong, editors, Autonomous

Robot Vehicles, pages 167–193. Springer Verlag, 1990.

[29] B. Steder, G. Grisetti, and W. Burgard. Robust place recognition for 3D
range data based on point features. In Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2010.

[30] C.J. Taylor and D.J. Kriegman. Minimization on the Lie group SO(3)
and related manifolds. Technical Report 9405, Yale University, 1994.

[31] S. Thrun, Y. Liu, D. Koller, A.Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte. Simultaneous localization and mapping with sparse extended
information filters. Int. Journal of Robotics Research, 23(7/8):693–716,
2004.

[32] S. Thrun and M. Montemerlo. The graph SLAM algorithm with
applications to large-scale mapping of urban structures. Int. Journal

of Robotics Research, 25(5-6):403, 2006.

[33] R. Triebel, P. Pfaff, and W. Burgard. Multi-level surface maps for
outdoor terrain mapping and loop closing. In Proc. of the IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS), 2006.

APPENDIX

In the following we will provide the definitions and the

derivations for the Jacobians to implement the suggested

algorithm. Due to space limitations we do not expand the

Jacobians in the 3D case. However, these Jacobians can either

be computed numerically or by using a computer algebra

system.

Error Functions and Jacobians for the 2D case

The basic entities in the 2D case are defined as

x⊤
i = (t⊤i , θi) (28)

z⊤ij = (t⊤ij , θij) (29)

where ti and tij are 2D vectors and θi and θij are rotation

angles which are normalized to [−π, π). The error function is

eij(x) =

(
R⊤

ij(R
⊤
i (tj − ti)− tij)

θj − θi − θij

)

, (30)

where Ri and Rij are the 2 × 2 rotation matrices of θi and

θij with the following structure

Ri =

(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)

. (31)

The Jacobians of the error function are

Aij =
∂eij(x)

∂xi

=

(

−R⊤
ijR

⊤
i R⊤

ij
∂R⊤

i

∂θi
(tj − ti)

0⊤ −1

)

(32)

Bij =
∂eij(x)

∂xj

=

(
R⊤

ijR
⊤
i 0

0⊤ 1

)

. (33)

The ⊞ operator is defined as

x⊞∆x̃ = x+∆x̃ (34)

The angles are normalized to [−π, π) after applying the

increments. The Jacobians of the manifold in the 2D case

evaluate to the identity matrix:

Mi =
xi ⊞∆x̃i

∂∆x̃i

∣
∣
∣
∣
∆x̃=0

= I3 (35)

Mj =
xj ⊞∆x̃j

∂∆x̃j

∣
∣
∣
∣
∆x̃=0

= I3 (36)

.

Error Functions for the 3D case

The basic entities in the 3D case are defined as

x⊤
i = (t⊤i ,q

⊤
i) (37)

z⊤ij = (t⊤ij ,q
⊤
ij), (38)

where q denotes the unit quaternion q⊤ = (qx, qy, qz, qw)
⊤,

i.e., ‖q‖ = 1. The error function is

eij(x) =
(
z−1
ij ⊕ (x−1

i ⊕ xj)
)

[1:6]
, (39)

11

where ⊕ is the motion composition operator

xi ⊕ xj =

(
qi(tj)
qi · qj

)

(40)

and the operator (·)[1:6] selects the first 6 elements of its vector

argument.

The Jacobians of the error function are:

Aij =
∂eij(x)

∂xi

(41)

Bij =
∂eij(x)

∂xj

. (42)

The ⊞ operator maps ∆x̃
⊤
i = (∆t̃

⊤

i ,∆q̃
⊤
i) to the original

space

xi ⊞∆x̃i = xi ⊕





∆t̃i
∆q̃i√

1− ‖∆q̃i‖
2



 , (43)

where ∆t̃i denotes the translation and ∆q̃⊤ =
(∆qx,∆qy,∆qz)

⊤ is the vector part of the unit quaternion

representing the 3D rotation and thus ‖∆q̃i‖ ≤ 1. The

Jacobians of the manifold in the 3D case are given by

Mi =
xi ⊞∆x̃i

∂∆x̃i

∣
∣
∣
∣
∆x̃=0

(44)

Mj =
xj ⊞∆x̃j

∂∆x̃j

∣
∣
∣
∣
∆x̃=0

. (45)

