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ARTICLE

A tutorial on how not to over-interpret
STRUCTURE and ADMIXTURE bar plots
Daniel J. Lawson 1, Lucy van Dorp2,3 & Daniel Falush4

Genetic clustering algorithms, implemented in programs such as STRUCTURE and ADMIX-

TURE, have been used extensively in the characterisation of individuals and populations

based on genetic data. A successful example is the reconstruction of the genetic history of

African Americans as a product of recent admixture between highly differentiated popula-

tions. Histories can also be reconstructed using the same procedure for groups that do not

have admixture in their recent history, where recent genetic drift is strong or that deviate in

other ways from the underlying inference model. Unfortunately, such histories can be mis-

leading. We have implemented an approach, badMIXTURE, to assess the goodness of fit of

the model using the ancestry “palettes” estimated by CHROMOPAINTER and apply it to both

simulated data and real case studies. Combining these complementary analyses with addi-

tional methods that are designed to test specific hypotheses allows a richer and more robust

analysis of recent demographic history.
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M
odel-based clustering has become a popular approach
to visualise the genetic ancestry of humans and other
organisms. Pritchard et al.1 introduced a Bayesian

algorithm STRUCTURE for defining populations and assigning
individuals to them. FRAPPE and ADMIXTURE were later
implemented based on a similar underlying inference model but
with algorithmic refinements that allow them to be run on data
sets with hundreds of thousands of genetic markers2,3. Following
many successful examples of inference4–6, the STRUCTURE
barplot has become a de-facto standard used as a non-parametric
description of genetic data7 alongside a Principle Components
Analysis8. However, some experienced researchers feel that
STRUCTURE has become “a victim of its own success” due to
frequent over-interpretation of the results7.

Experienced researchers, particularly those interested in
population structure and historical inference, typically present
STRUCTURE results alongside other methods that make differ-
ent modelling assumptions. These include TreeMix9, ADMIX-
TUREGRAPH10, fineSTRUCTURE11, GLOBETROTTER12, f3
and D statistics13, amongst many others. These models can be
used both to probe whether assumptions of the model are likely
to hold and to validate specific features of the results. Each also
comes with its own pitfalls and difficulties of interpretation. It is
not obvious that any single approach represents a direct repla-
cement as a data summary tool. Here we build more directly on
the results of STRUCTURE/ADMIXTURE by developing a new
approach, badMIXTURE, to examine which features of the data
are poorly fit by the model. Rather than intending to replace more
specific or sophisticated analyses, we hope to encourage their use
by making the limitations of the initial analysis clearer.

Results
The default interpretation protocol. Most researchers are cau-
tious but literal in their interpretation of STRUCTURE and

ADMIXTURE results, as caricatured in Fig. 1, as it is difficult to
interpret the results at all without making several of these
assumptions. Here we use simulated and real data to illustrate
how following this protocol can lead to inference of false histories,
and how badMIXTURE can be used to examine model fit and
avoid common pitfalls.

Case study 1: African Americans. In order to understand the
assumptions underlying the STRUCTURE model, it is helpful to
think about an example that was originally used to motivate it,
namely the ancestry and genetic history of African Americans.
The “admixture model” of STRUCTURE assumes that each
individual has ancestry from one or more of K genetically distinct
sources. In the case of African Americans, the most important
sources are West Africans, who were brought to the Americas as
slaves, and European settlers. The two groups are thought to have
been previously separated with minimal genetic contact for tens
of thousands of years. This means that their history can be
separated into two phases, a “divergence phase” lasting thousands
of years of largely independent evolution and an “admixture
phase”, in which large populations met and admixed within the
last few hundred years. Specifically, most of the ancestors of
African Americans that lived 500 years ago were either Africans
or Europeans. The goal of the algorithm is to reconstruct the gene
frequencies of these two distinct “ancestral” populations and to
estimate what proportion of their genome each African American
inherited from them.

When the STRUCTURE admixture model is applied to a data
set consisting of genetic markers from West Africans, African
Americans and Europeans it infers two ancestral populations1.
Each of the Europeans and Africans are assigned a great majority
of their ancestry from one of them. African–Americans are
inferred to have an average of 18% ancestry from the European
cluster but with substantial inter-individual variation14.

Fig. 1 A protocol for interpreting admixture estimates, based on the assumption that the model underlying the inference is correct. If these assumptions are

not validated, there is substantial danger of over-interpretation. The “Core protocol” describes the assumptions that are made by the admixture model itself

(Protocol 1, 3, 4), and inference for estimating K (Protocol 2). The “Algorithm input” protocol describes choices that can further bias results, while the

“Interpretation” protocol describes assumptions that can be made in interpreting the output that are not directly supported by model inference
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Assignment of clusters in this case is readily biologically
interpretable. There are of course genetic differences amongst
both the Africans and the Europeans who contributed to
African–American ancestry, e.g., reflecting genetic variation
between regions within Europe and Africa, but the divergence
between Europeans and Africans took place over millennia and is
of a different magnitude. These subtle differences are likely to
have a relatively minor effect on the amount of African and
European ancestry estimated for each individual. Therefore the
STRUCTURE admixture proportion is a reasonably accurate
estimate of the recent admixture fraction.

Different scenarios give indistinguishable ADMIXTURE plots.
Many real population histories are not neatly separable into

divergence and admixture phases but the methods can be applied
to any data set, producing ancestry bar plots. Figure 2 shows
admixture histories inferred by ADMIXTURE for three demo-
graphic scenarios. These simulations were performed with 13
populations (see “Methods” section)—which provides valuable
out-group information—but only results for the four most rele-
vant populations are shown. The “Recent Admixture” scenario
represents a history qualitatively similar to African Americans, in
which the admixture model holds. The true history is that P2 is
an admixture of P1, P3 and P4. ADMIXTURE, interpreted
according to the protocol, infers that this is what happened
and estimates approximately correct admixture proportions
(true admixture proportions are 35% light green and 15% light
pink).

a

b

c

e

d

Fig. 2 Three scenarios that give indistinguishable ADMIXTURE results. a Simplified schematic of each simulation scenario. b Inferred ADMIXTURE plots at

K= 11. c CHROMOPAINTER inferred painting palettes. d Painting residuals after fitting optimal ancestral palettes using badMIXTURE, on the residual scale

shown. e Ancestral palettes estimated by badMIXTURE. 13 populations in total were simulated, with grey populations all being outgroups to those shown

in colour
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In the “Ghost Admixture” scenario, P2 is instead formed by a
50–50% admixture between P1 and an unsampled “ghost”
population, which is most closely related to P3. In the “Recent
Bottleneck” scenario, P1 is a sister population to P2 that
underwent a strong recent bottleneck. The ADMIXTURE plots
are almost identical between the three scenarios. Since the “Ghost
Admixture” and “Recent Bottleneck” scenarios cannot be
represented using a simple admixture description, the model
cannot be historically correct. Nevertheless, the algorithm
attempts to fit the data as best it can by finding the combination
of admixture proportions and ancestral frequencies that best
explain the observed patterns.

To be specific, in the Ghost Admixture scenario of Fig. 2, the
ghost population is modelled as a mix of the sampled populations
it is most closely related to, rather than being given its own
ancestral population. For this scenario, the larger proportion of
ancestry inferred from the light green population rather than the
light pink one does not reflect a difference in admixture
proportions, since neither P3 nor P4 actually contributed genetic
material to P2. Rather, it reflects the fact that P3 is more closely
related to the unsampled ghost population, as seen in the
phylogeny.

In the Recent Bottleneck scenario, ADMIXTURE models the
genetic drift shared by P1 and P2 by assigning both populations
some ancestry from the light blue ancestral population. The
strong recent drift specific to P1 is approximately modelled by
assigning more light blue ancestry to P1 than to P2, thereby
making P1 more distinct from the other populations in the
sample. The remaining ancestries assigned to P2 are from the
most closely related of the remaining ancestry components, again
in proportions that reflect phylogenetic distance rather than
admixture fractions. An alternative outcome in both scenarios
would be for ADMIXTURE to infer a higher value of K and to
include an extra ancestral population for P2. The algorithm is
more likely to infer this solution if there was stronger genetic drift
specific to P2 or if members of the population made up a greater
overall proportion of the sample.

badMIXTURE results distinguish between scenarios. badMIX-
TURE uses patterns of DNA sharing to assess the goodness of fit
of a recent admixture model to the underlying the genetic data.
These sharing profiles are generated using CHROMO-
PAINTER11, which calculates, for each individual, which of the
other individual(s) in the sample are most closely related for each
stretch of genome, using either haplotype or allele matching. This
process is called “chromosome painting”, and can be thought of
in terms of “palettes” (Fig. 2c), which can also be visualised as bar
plots. The palette measures the proportion of the genome of each
individual that is most closely related to the individuals sampled
from each of the labelled populations. The painting palettes differ
for the three simulated scenarios (Fig. 2c), showing that there
should be information in the genetic data to distinguish between
them, even though they give almost identical ADMIXTURE
bar plots.

STRUCTURE and ADMIXTURE estimate both the ancestral
gene frequencies and the admixture proportions for each
individual in the sample. badMIXTURE assumes that the
admixture proportions estimated by STRUCTURE and ADMIX-
URE are correct and uses matrix factorisation to find the
combination of ancestral palettes that give the best overall fit
(evaluated using least squares) to the palettes of each individual.
Crucially, under a number of reasonable assumptions (see
Methods), in a recent admixture scenario, the palettes of admixed
individuals should be a mixture of the palettes of non-admixed
individuals according to the relevant admixture proportions.

In other words, if a simple admixture scenario is correct and
the proportions are correctly estimated by STRUCTURE/
ADMIXTURE, then it should be possible to use the N×K
admixture proportions of the N individuals in the sample and the
K × P palettes proportions for the K ancestral populations to
predict the N × P palette proportions for each individual. The fit
of the model can be examined by comparing the true palette
proportions for each individuals to the ones predicted by
badMIXTURE. An admixture model can only be a parsimonious
way of describing the data if there are more distinct ancestry
profiles than there are ancestral populations, since otherwise each
ancestry profile could simply be assigned its own ancestral
population. Therefore, badMIXTURE assumes there are more
distinct ancestry profiles P than there are populations K.

Figure 2d shows the residuals, representing the difference
between the observed palettes for each individual in the simulated
data and those reconstructed by badMIXTURE. Figure 2e shows
the corresponding palettes inferred for each ancestral population.
Under the Recent Admixture scenario, there is no systematic
pattern to the residuals. For the Ghost Admixture scenario, the
residuals show a systematic pattern, with the model substantially
underestimating the proportion of palette that individuals in P2
have from their own population and overestimating the
contributions from the other populations. For the Recent
Bottleneck model, the deviations are similar—the main qualita-
tive difference between the Ghost Admixture scenario and Recent
Bottleneck scenario are in the ancestral palettes. Ghost Admixture
produces a more uniform ancestral palette than either of the other
models, which both contain bottlenecks for P1.

badMIXTURE distinguishes the Recent Admixture scenario
from alternatives because the Recent Admixture model makes the
distinct prediction that admixed individuals are not particularly
related to each other, as shown by the small amount of black in
their palettes in Fig. 2c. Members of P2 get 50% of their genomes
from the light blue ancestral population, 35% from the light green
population and 15% from the light pink one, while P1 received all
of its ancestry from the light blue population. For any given locus,
a member of P2 will have the same ancestral source as a member
of P1 50% of the time. However, two members of P2 will have the
same ancestry source only 0.52+ 0.352+ 0.152= 0.395 of the
time. This means that paradoxically, members of P2 may
(depending on the exact details of population history) be more
related to members of P1 than they are to each other and have
relatively little of their palette from their own population. Under
the other scenarios, individuals from P2 receive more of their
palette from other members of their own population.

badMIXTURE is still informative without linkage information.
STRUCTURE/ADMIXTURE has been applied to thousands of
different species, most of which do not have the linkage maps
(either physical or genetic) usually required for chromosome
painting. The algorithm can also be applied to data sets with
relatively small numbers of markers. It would therefore be
advantageous to be able to apply a similar approach to these data
sets.

To evaluate fit using such types of data, chromosome painting
can be implemented using an unlinked model, as shown in Fig. 3,
to generate allele-sharing palettes. The results are qualitatively
similar to the CHROMOPAINTER analysis exploiting Linkage
Disequilibrium; however, because the palettes are closer to
uniform (Fig. 3b), the residuals contain more noise (Fig. 3c).
If few markers were available, there may be no interpretable
signal remaining making it impossible to distinguish
between different scenarios on the basis of limited genetic
information.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05257-7

4 NATURE COMMUNICATIONS |  (2018) 9:3258 | DOI: 10.1038/s41467-018-05257-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Case study 2: The Ari of Ethiopia. This case study highlights a
situation in which application of badMIXTURE could have pre-
vented a false history from being inferred. Three sets of
researchers15–17 investigated the relationships between the origins
of occupational groups (Blacksmiths and Cultivators) in the Ari
community of Ethiopia, all applying ADMIXTURE analyses
(Fig. 4a–c). The first two sets of researchers tentatively concluded
that the two groups were most likely to derive from different
ancestral sources.

First, Pagani et al.15 analysed the data and cautiously
interpreted the ADMIXTURE results:

“One insight provided by the ADMIXTURE plot (Fig. 4a)
concerns the origin of the Ari Blacksmiths. This population is one
of the occupational caste-like groups present in many Ethiopian
societies that have traditionally been explained as either remnants
of hunter-gatherer groups assimilated by the expansion of
farmers in the Neolithic period or as groups marginalised in
agriculturalist communities due to their craft skills. The
prevalence of an Ethiopian-specific cluster (yellow in Fig. 4a) in
the Ari Blacksmith sample could favour the former scenario; the
ancestors of this occupational group could have been part of a
population that inhabited the area before the spread of
agriculturalists.”

This interpretation was supported by a similar analysis by
Hodgson et al.17:

“As the Ari Blacksmiths have negligible EthioSomali ancestry,
it seems most likely that the Ari Cultivators are the descendants
of a more recent admixture between a population like the Ari
Blacksmiths and some other Horn Of African population (i.e., the
Ethio–Somali ancestry in the Ari Cultivators is likely to
substantially postdate the initial entry of this ancestry into the
region).”

van Dorp et al.16 found similar ADMIXTURE results.
Interpreted according to the protocol above, these analyses all
imply that the Blacksmiths are pure representatives of one
ancestral population (as shown by a homogeneous block of
colour), while Cultivators are recently admixed, receiving
ancestral contributions from neighbouring Ethiopian groups.
However, the results of the three studies have different sampling
and differ in how much of the ancestral population that
Blacksmiths purportedly represent has contributed to the
Cultivators or to other groups.

van Dorp et al.16 used additional analyses including Ghost and
Recent Bottleneck simulations, as in Fig. 2, together with
fineSTRUCTURE11, and GLOBETROTTER12 to show that this
history is false and the totality of evidence from the genetic data
supports that the true history is analogous to the Recent
Bottleneck scenario. The Blacksmiths and the Cultivators
diverged from each other, principally by a bottleneck in the
Blacksmiths, which was likely a consequence of their marginalised
status. Once this drift is accounted for the Blacksmiths and
Cultivators have almost identical inferred ancestry profiles and
admixture histories. In our analysis, a strong deviation from a
simple admixture model can be seen in the residual palettes,
which imply that the ancestral palettes estimated by badMIX-
TURE substantially underestimate drift in the Ari Blacksmiths
(Fig. 4e).

Case Study 3: Worldwide human data. An important con-
sideration in any STRUCTURE analysis is sample size. This is
vividly illustrated by the analyses of Friedlaender et al.18 who
augmented a pre-existing microsatellite data set from a worldwide
collection by a similar number of samples from Melanesia, in

a

b

c

Fig. 3 Unlinked badMIXTURE results for simulated data. Same scenario (a) and data as presented in Fig. 2 but assuming markers are unlinked. While the

palettes look dramatically more homogeneous without linkage information (b vs. Fig. 2c), the badMIXTURE residuals (c vs Fig. 2d) follow the same pattern,

i.e., they are unstructured in the Recent Admixture data (scale shown below main plots)
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order to study genetic relationships between Melanesians, for
which purpose their sample was excellent. For K= 2, their ana-
lysis infers Papua New Guinea (PNG) as one ancestral population
and Western Eurasia and Africa as the other, with East Asians
being represented as genetic mixtures (Fig. 5b). This analysis
differs from that of Rosenberg et al.19 for K= 2 who had only a
small number of Melanesians in their sample, and who found
Native Americans rather than Melanesians to be the unadmixed
group (Fig. 5f). For K= 6, both models distinguish between all 5
continental groups (Americans, Western Eurasians, Africans, East
Asians, and Oceanians). Rosenberg et al. split Native American
groups into two ancestral populations while Friedlaender et al.
infer that Melanesians have two ancestral populations (Fig. 5a).
Rosenberg et al.4 also found the Kalash, an isolated population in
Pakistan, to be the sixth cluster.

For K= 2 both sets of results, interpreted literally, imply a
continuous admixture cline. From almost any perspective, the
most important demographic event that has left a signature in the
data set is the out-of-Africa bottleneck. This is not taken by
STRUCTURE to be the event at K= 2 in either of the analyses, or
that of others with similar data sets, because sub-Saharan
Africans constitute only a small proportion of the sample.

Some even more peculiar results are obtained for an analysis
that focused on Melanesian populations, leaving in only East
Asian populations and a single European population, the French.
Friedlander et al.’s purpose in presenting this analysis was to
analyse the fine-scale relationships amongst the Melanesians
whilst accounting for admixture. Our purpose here is to ask what
the results imply, when interpreted literally, about the relation-
ships between Melanesians, East Asians and Europeans. For all

a

c

d

e

f

b

Fig. 4 Analysis of Ari ancestry. ADMIXTURE analyses of the Ari and neighbouring Ethiopian groups adapted from a Pagani et al.15, b Hodgson et al.17, and

c van Dorp et al.16 at K= 11. Somali (SOM) and Afar (AFAR), Ari Blacksmith (ARIb) and Ari Cultivator (ARIc) populations were used in all three of the

studies but the other populations differ substantially and the exact individuals differ slightly due to different quality control procedures and data set merges.

d CHROMOPAINTER inferred painting palettes based on c. e badMIXTURE palette residuals under the best fit ancestral population admixture model.

f Estimated ancestral palettes. Contributions from other populations are shown in grey
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values from K= 2 to K= 9, the French population is inferred to
be a mixture between an East Asian population and a Melanesian
one (Fig. 5d, e). Only for K= 10 do the French form their own

cluster and still have variable levels of admixture from East
Asians (Fig. 5c). Throughout, interpretation of the ancestral
populations based on where individuals are geographically today

a b c d e f

Fig. 5 STRUCTURE results for global human genetic data sets. Panels a–e reproduced from Friedlaender et al.18 and f from Rosenberg et al.19. g reproduces

the neighbour-joining Fst tree
18 coloured according to K= 6 STRUCTURE results in a
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(Interpretation Protocol of Fig. 1) would only make these results
more misleading, implying at K= 9 that the French are admixed
between East Asians and Papuan highlanders.

It is tempting to write these results off as being the product of
the sampling scheme, but the problem is fundamental to any
approach based on equally weighing samples. If we instead
imagine that there was an environmental catastrophe that spared
the people of Melanesia and a few lucky others, then the analysis
would become a faithful sampling of the people of the world. The
results would become the world’s genetic history but the literal
interpretation of the bar plots would clearly be misleading,
despite using sampling proportionate to extant humans.

The problem of sampling strategy affecting inference is
common to many methods. Principle Components Analysis
(PCA) is closely related to the STRUCTURE model in the
information that it uses, both in theory11 and in practice20 and
has also been shown theoretically to be affected by sample size8.
Similarly, the neighbour-joining tree based on Fst between
populations from Friedlaender et al. also exaggerates the effect
of drift, reproduced in Fig. 5.

The exercise highlighted by this case study is relevant in
particular because human history is in fact full of episodes in
which groups, such as the Bantu in Africa, the Han in Asia, and
the Northern Europeans in America have used technological,
cultural or military advantage or virgin territory to multiply until
they make up a substantial fraction of the world’s population. The
history of the world told by STRUCTURE or ADMIXTURE is
thus a tale that is skewed towards populations that are currently
large and that have grown from small numbers of founders, with
the bottlenecks that that implies.

Case study 4: Ancient Indian populations. In our final example,
we attempt to address the challenge of complex inference by
providing an overview of a demographic history in a single figure.

Basu et al.21 used an ADMIXTURE plot with K= 4 to
summarize variation amongst continental Indians from 19 labelled
groups. The four ancestral populations were labelled Ancestral
North Indian (ANI), Ancestral South Indian (ASI), Ancestral
Tibeto-Burman (ATB) and Ancestral Austro-Asiatic (AAA), as
shown in Fig. 6a. They argued that a major conclusion from their
analysis is that the structure of mainland India is best described by 4
ancestral components.

The overall fit of the ADMIXTURE results estimated by
badMIXTURE is poor (Fig. 6b). However, the large residuals are
primarily within ancestral components, i.e., structured in a block-
diagonal form, with blocks that correspond to the four ancestral
components estimated by ADMIXTURE. Furthermore, almost all
of the positive residuals are on the diagonal, i.e., specific to the
labelled group that the individual was assigned to. These residuals
vary substantially according to ancestral component, with ASI
populations having the highest on-diagonal residuals and the ANI
populations having the lowest ones. Within the KSH (Kharti)
population, there is a substantial variation amongst individuals,
presumably reflecting the presence of relatives or other strong
sub-structure within this labelled group.

The structure of these residuals suggests that they principally
reflect recent genetic drift that is specific to labelled groups, with
considerable variation amongst groups in how much drift has
occurred, presumably reflecting their recent demographic history.
However, the block-like form suggests that if this recent genetic
drift can be accounted for, the data might still be consistent with a
history of mixture of four ancestral components, as suggested by
the initial ADMIXTURE results.

We have implemented a simple procedure within badMIX-
TURE to estimate the composition of painting palettes in the

absence of group specific drift (see “Methods”), which for this data
set substantially reduces the residuals (not shown). Fig. 6c shows
the corrected individual palettes, and the ancestral palettes are
substantially altered by the removal of recent drift, particularly for
ASI and AAA populations (compare Fig. 6d, e). A more rigorous
but laborious approach to removing label-specific drift, namely to
remove individuals with the same label from the donor panel used
for chromosome painting, was implemented by van Dorp et al.16.

Examining the corrected palettes shown in Fig. 6c carefully, it
is possible to see evidence that there are indeed four distinct
ancestral components in the data, validating the major claim
made by Basu et al. in their original analysis. For example, the
three labelled groups with high ASI ancestry have similar palettes
that are clearly distinct from those of all other labelled groups,
with all of them having large amounts of green of three different
shades. However, comparison of these palettes with the
ADMIXTURE results also highlights the likely effect of recent
genetic drift on those results, which is analogous to, but less
dramatic than, that observed in the Ari case study. Specifically,
the PNY (Paniya) are inferred by ADMIXTURE to be the only
unadmixed representatives of the ASI population (Fig. 6a) but
also have the largest badMIXTURE residuals prior to correction,
which presumably reflects recent drift (Fig. 6b). After correction,
PNY actually receive a smaller proportion of their palette from
ASI groups than the other two ASI groups do (Fig. 6c).

This analysis highlights the fact that the mixture fractions
estimated by ADMIXTURE may be unreliable and that no
individual group can be safely assumed to be pure representatives
of the ancestral source. That said, the relative admixture fractions
are more plausible for the other three ancestry components, since
the labelled groups that are estimated as pure by ADMIXTURE,
i.e., BIR (Birhor), KSH and TRI (Tripuri)/JAM (Jamatia) also
have the highest contribution from ancestrally related groups
within their painting palettes.

Careful examination of these palettes also provide evidence of
sharing of ancestry between pairs of populations that is not
predicted based on the four ancestral palettes (shown above the
black line in Fig. 6c), providing further evidence of the importance
of recent demography, rather than ancestral population mixture,
in shaping diversity. These pairs of populations are TRI and JAM,
IRL (Irula) and KDR (Kadar), HO (Ho) and SAN (Santal) and
BIR and KOR (Korwa). This sharing is most likely to have arisen
during the divergence of the populations from each other. This
might be due to shared drift or recent patterns of migration.

Overall, this analysis provides evidence for demographic events at
multiple scales. At local and recent scales, there is evidence for
heterogeneity within groups, as shown by individuals within labelled
groups with atypical ADMIXTURE profiles (e.g., in TRI and JAM) or
badMIXTURE residuals (e.g., in KSH). This heterogeneity provides
evidence for recent migration between groups and substructure
within groups, respectively. However, with the exception of some of
the ANI populations, individuals in each group are distinguishable
according to their badMIXTURE residuals and also based on
fineSTRUCTURE clustering (see supplementary information of Basu
et al.). This shows that most of the labelled groups are samples from
populations that have been distinct from each other for long enough
to acquire distinct and distinguishable genetic identities.

At the largest and most ancient scale, there is evidence for four
ancestry components with clearly distinct painting palettes.
However, the analysis in itself provides little evidence about the
origin of these four ancestry components and the processes that
gave rise to them, which would be best elucidated by relating the
diversity found in India to that found in a global reference panel,
together with demographic modelling.

The greatest challenges in model interpretation occur at
intermediate scales. There is clear evidence for admixture between
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ancestry components in some of the populations, such as GND
(Gond) and MBR (Manipuri Brahmin). However, interpretation
is made harder by the effects of recent genetic drift on
ADMIXTURE estimates, seen most clearly for ASI populations.
A much more involved analysis would be necessary to elucidate
these migration patterns and to relate them to the overall
population structure.

Discussion
STRUCTURE and ADMIXTURE are popular because they give the
user a broad-brush view of variation in genetic data, while allowing
the possibility of zooming down on details about specific individuals

or labelled groups. Unfortunately it is rarely the case that sampled
data follows a simple history comprising a differentiation phase
followed by a mixture phase, as assumed in an ADMIXTURE
model and highlighted by case study 1. Naïve inferences based on
this model (the Protocol of Fig. 1) can be misleading if sampling
strategy or the inferred value of the number of populations K is
inappropriate, or if recent bottlenecks or unobserved ancient
structure appear in the data. It is therefore useful when interpreting
the results obtained from real data to think of STRUCTURE and
ADMIXTURE as algorithms that parsimoniously explain variation
between individuals rather than as parametric models of divergence
and admixture.

a

b

c

d e

Fig. 6 Comparison of ADMIXTURE with painting palettes for Indian genetic data originally presented in ref. 21. a ADMIXTURE profile at K= 4. b Residuals

palettes estimated by badMIXTURE. c Painting palettes after correcting within-population values as described in text. The part of the palette above the

black line is not predicted by badMIXTURE. d Ancestral palettes estimated by badMIXTURE. e Estimated ancestral palettes after correcting for within-

population values
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For example, if admixture events or genetic drift affect all
members of the sample equally, then there is no variation
between individuals for the model to explain. Non-African
humans have a few percent Neanderthal ancestry, but this is
invisible to STRUCTURE or ADMIXTURE since it does not
result in differences in ancestry profiles between individuals. The
same reasoning helps to explain why for most data sets—even in
species such as humans where mixing is commonplace—each of
the K populations is inferred by STRUCTURE/ADMIXTURE to
have non-admixed representatives in the sample. If every indi-
vidual in a group is in fact admixed, then (with some excep-
tions14) the model simply shifts the allele frequencies of the
inferred ancestral population to reflect the fraction of admixture
that is shared by all individuals.

Several methods have been developed to estimate K1,2,22, but
for real data, the assumption that there is a true value is always
incorrect; the question rather being whether the model is a good
enough approximation to be practically useful. First, there may be
close relatives in the sample which violates model assumptions23.
Second, there might be “isolation by distance”, meaning that there
are no discrete populations at all24. Third, population structure
may be hierarchical, with subtle subdivisions nested within
diverged groups. This kind of structure can be hard for the
algorithms to detect and can lead to underestimation of K25.
Fourth, population structure may be fluid between historical
epochs, with multiple events and structures leaving signals in the
data12. Many users examine the results of multiple K simulta-
neously but this makes interpretation more complex, especially
because it makes it easier for users to find support for pre-
conceptions about the data somewhere in the results.

In practice, the best that can be expected is that the algorithms
choose the smallest number of ancestral populations that can
explain the most salient variation in the data. Unless the demo-
graphic history of the sample is particularly simple, the value of K
inferred according to any statistically sensible criterion is likely to
be smaller than the number of distinct drift events that have
practically impacted the sample. The algorithm uses variation in
admixture proportions between individuals to approximately
mimic the effect of more than K distinct drift events without
estimating ancestral populations corresponding to each one. In
other words, an admixture model is almost always “wrong”
(Assumption 2 of the Core protocol, Fig. 1) and should not be
interpreted without examining whether this lack of fit matters for
a given question.

Because STRUCTURE/ADMIXTURE accounts for the most
salient variation, results are greatly affected by sample size26 in
common with other methods8,27. Specifically, groups that contain
fewer samples or have undergone little population-specific drift of
their own are likely to be fit as mixes of multiple drifted groups,
rather than assigned to their own ancestral population. Indeed, if
an ancient sample is put into a data set of modern individuals, the
ancient sample is typically represented as an admixture of the
modern populations (e.g., ref. 28,29), which can happen even if the
individual sample is older than the split date of the modern
populations and thus cannot be admixed.

Here, as well as highlighting the problems, we have intro-
duced a new tool, badMIXTURE which can be used to assess
the model fit of STRUCTURE/ADMIXTURE results for each
individual. The popularity of STRUCTURE and its descen-
dants as unsupervised clustering methods means that they will
be applied and interpreted, for which badMIXTURE provides
important assistance. However, these analyses should always be
followed up with tests of specific hypotheses, using other
approaches. Running STRUCTURE or ADMIXTURE is the
beginning of a detailed demographic and historical analysis,
not the end.

Methods
Simulations. Figure 2a illustrates the demographic histories behind three simu-
lation scenarios we name “Recent Admixture”, “Ghost Admixture” and “Recent
Bottleneck”.

These simulations comprise some of a subset of full simulations described in
ref.16, which aim to capture global human population genetic diversity across
13 simulated world-wide populations. Here, for tractability and motivated by Case
Study 2, we explore the impact of different demographic histories in a subset of
simulated groups: P1-P4. The simulation protocol used to generate the world-wide
out-group populations is described in full detail in Supplementary Note 1.

For the “Recent Bottleneck” and “Ghost Admixture” simulations 13 populations
were simulated using the approximate coalescence simulation software MaCS30

under histories that differ in how P2 relates to P1 (Fig. 2a). For “Recent
Bottleneck”, P1 splits from P2 20 generations ago followed immediately by a strong
bottleneck in P2. In “Ghost Admixture”, instead P1 splits from P2 1700 generations
ago, after which migrants from P1 form ~50% of P2 over a period of 200–300
generations. Although simulating 100 individuals in each population, we perform
subsequent ADMIXTURE and CHROMOPAINTER analyses on a subset of these
using only 35 individuals from P1, 25 individuals from P2, 70 individuals from P3
and 25 individuals from P4. This leaves an ‘excess’ of simulated individuals. For
ease of interpretation only P1-P4 are depicted in Fig. 2 with all out-group
populations coloured grey.

For the “Recent Admixture” scenario, we implement a simulation technique
adapted from that applied in31, related to that in32, which sub-samples
chromosomes from the ‘excess’ individuals simulated under the “Recent
Bottleneck” scenario. This method explicitly mixes chromosomes from different
populations based on a set of user-defined proportions, analogous to an
instantaneous admixture event. Importantly for our purposes, this allows direct
assessment of how well ADMIXTURE recapitulates these proportions. Using this
approach, we simulate admixed chromosomes of P2 by mixing chromosomes of 20
‘excess’ individuals from each of P1 (50%), P3 (35%) and P4 (15%) based on an
admixture event occurring λ= 15 generations ago. In particular, to simulate a
haploid admixed chromosome and as in Leslie et al31, we first sample a genetic
distance x from an exponential distribution with rate 0.15 (λ/100). The first x cM of
the simulated chromosome is composed of the first x cM of chromosomes selected
randomly, but without overlap, from ‘excess’ individuals of P1, P3, and P4
according to the defined proportions. This process is repeated using a new genetic
distance sampled from the same exponential distribution (rate= 0.15) and
continued until an entire simulated chromosome is generated. The method is then
re-employed to generate a set of 20 haploid chromosomes for a single individual
and then repeated 70 times to generate 70 haploid autosomes. Diploid individuals
are constructed by joining two full sets of haploid chromosomes, resulting in
35 simulated P2 individuals in total.

Estimation of ADMIXTURE bar plots and CHROMOPAINTER palettes. For
each simulation scenario we apply ADMIXTURE 2 to the sampled individuals from
every simulated group. SNPs were first pruned to remove those in high linkage
disequilibrium (LD) using PLINK v1.0733 so that no two SNPs within 250 kb have
a squared correlation coefficient (r2) greater than 0.1. ADMIXTURE was then run
with default values for multiple values of K, and the resultant admixture profiles
plotted, where K= 11 (Figs. 2b and 4c). In addition, for each scenario, we applied
CHROMOPAINTER to paint all individuals in relation to all others using default
values for the CHROMOPAINTER mutation/emission (“-M”) and switch (“-n”)
rates. When running CHROMOPAINTER ignoring information from Linkage
Disequilibrium we use the unlinked mode (“-u”). We sum the total proportion of
genome-wide DNA (linked) or matching chunk counts (unlinked) each recipient
individual is painted by each donor group and plot the inferred contributions for
each recipient as a painting palette.

Estimation of ancestral palettes. Define A as the N × k admixture proportion
matrix, where there are N individuals in the sample and K ancestral populations
used in the ADMIXTURE analysis. Let C be the N × P matrix of individual palettes
from the CHROMOPAINTER painting, and X be the K × P matrix of the palettes
for each ancestral population. Then we seek solutions for X that minimise the
squared prediction error of the form:

AX ¼ C:

We define B= (ATA)−1AT. Then, BAX= (ATA)−1AT AX= X, leading to the
solution

X ¼ ðATAÞ�1ATC:

Note that there is no guarantee that X will be positive. Negative elements would
imply a poor fit of the admixture model, and alternative minimisation strategies
might be employed to find X subject to the constraint. Further, if the matrix ATA is
rank deficient its inverse will not exist. This should only be the case if K is chosen
too large, or there are genuine symmetries in the data.
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For a recent admixture model, long haplotypes are inherited from each of the
donating populations in a given admixture proportion. If we assume that ancestral
boundaries can be inferred then, excluding drift in either SNP frequency or
haplotype structure, the palettes of admixed individuals are (by definition) a
mixture with the same ancestry proportions as the SNPS under which admixture is
inferred.

In this article, we use sampling labels to identify groups with distinct ancestry
profiles, but if these are not available or are not predictive of genetic relationships,
it is possible to use fineSTRUCTURE11 to cluster individuals into genetically
homogeneous groups based on their inferred palettes, thus generating labels.

Data availability. All materials used in this paper are available at github.com/
danjlawson/badMIXTURE. The R code badMIXTURE is licenced under a GPLv3
licence. mixPainter, which performs the chromosome painting, is free for academic
use only. The simulated data are also provided under GPLv3.
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