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Expert Tutorial

A tutorial on how to do a Mokken scale analysis on
your test and questionnaire data

Klaas Sijtsma1* and L. Andries van der Ark2

1Tilburg University, The Netherlands
2University of Amsterdam, The Netherlands

Over the past decade,Mokken scale analysis (MSA) has rapidly grown in popularity among

researchers frommany different research areas. This tutorial provides researchers with a

set of techniques and a procedure for their application, such that the construction of

scales that have superior measurement properties is further optimized, taking full

advantage of the properties of MSA. First, we define the conceptual context of MSA,

discuss the two item response theory (IRT) models that constitute the basis of MSA, and

discuss how these models differ from other IRT models. Second, we discuss dos and

don’ts for MSA; the don’ts include misunderstandings we have frequently encountered

with researchers in our three decades of experience with real-data MSA. Third, we

discuss a methodology for MSA on real data that consist of a sample of persons who have

provided scores on a set of items that, depending on the composition of the item set,

constitute the basis for one or more scales, and we use the methodology to analyse an

example real-data set.

1. Introduction

Mokken scale analysis (MSA) provides a set of statistical tools for constructing scales for

measuring persons and itemswith respect to attributes from the personality and cognitive

domain, health-related quality of life, sociology, marketing, and several other areas in

which multi-item scales are used. The method uses relatively liberal assumptions that

imply the ordering of persons on a scale bymeans of persons’ total scores on a set of items.
MSA has rapidly grown in popularity among applied researchers. The authors applaud the

widespread application of the method but are concerned about its applications to real

data. They devoted a modest literature search to substantiate their concern.

On 1 March 2016, using the date restriction 2015–present, the authors fed the search

term ‘Mokken scale’ intoGoogle Scholar to retrieve recent papers onMSA.Of the 176 hits,

85 (48%) were discarded because they were unavailable online, published before 2015,

not written in English, did not report data analysis, or reported MSA without numerical

results. Most selected articles (97%) reported scalability coefficients, but far fewer
reported results from other MSAmethods: the automated item selection procedure (AISP;

38%), monotonicity (32%), invariant item ordering (22%), and Mokken’s reliability

coefficient (22%). Other method results were rare or absent. The authors concluded that
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University, PO Box 90153, 5000 LE Tilburg, The Netherlands (email: k.sijtsma@uvt.nl).

DOI:10.1111/bmsp.12078

137



most researchers equatedMSAwith the computation of scalability coefficients and did not

perform additional analyses or did not report the results. By failing to do additional

analyses, researchers fail themselves; and by failing to report results, researchers fail their

colleagues.We provide this tutorial to help researchers further optimize the construction
of scales having desirable measurement properties, taking full advantage of MSA.

The outline of the tutorial is as follows. First, we define the conceptual context ofMSA,

discuss the two item response theory (IRT) models on which MSA is based, and discuss

how these models differ from other IRT models. Second, we discuss dos and don’ts for

MSA; the don’ts include misunderstandings we have frequently encountered with

researchers in our three decades of experience with real-data MSA. Third, we discuss a

methodology for MSA on real data that consist of a sample of persons who have provided

scores on a set of items that, depending on the composition of the item set, constitute the
basis for one or more scales. We use the methodology to analyse an example, real-data set

with respect to Type D personality (Denollet, 2005).When appropriate, we refer to other

measurement models but concentrate on MSA, which is the topic of this tutorial.

2. Theory of Mokken scale analysis

2.1. Conceptual context: Definitions and notation

A real-data set suited for MSA consists of a sample ofN persons who have provided scores

on a set of Jstart items. Items are indexed j, such that j ¼ 1; . . .; Jstart. For simplicity, we

assume that all items have the same scoring format, so that all items have equal weight. A

common scoring format is thewell-known Likert scoring, allowing persons to indicate for

each item how much they agree with a particular statement about, for example, their

personality, how they cope with a particular disease, how they experience their

religiosity, and their preferences as a consumer. Likert items frequently have five ordered
response categories, and the person chooses one category to express the degree towhich

they agreewith the statement. This results in scores that run from 0, indicating little or no

agreement, to 4, indicating high or perfect agreement; the labelling of response options

depends on choices the researchermakes. Researchersmay choose to have fewer ormore

ordered categories and item scores. Saris and Gallhofer (2007, chap. 5) discuss feasible

numbers of answer categories, but in practice one rarely encountersmore than, say, seven

ordered answer categories. The smallest number equals two, frequently encountered in

themeasurement ofmaximumperformance as in cognitive and educationalmeasurement
when answers are either incorrect or correct.

The description so far expresses preferences found in practice, but there is nothing in

principle that would prevent dichotomous disagree/agree scoring from replacing Likert

scoring, and ordered, polytomous scoring expressing the degree to which the solution a

person provided approaches the ideal solution from replacing incorrect/correct scoring.

Let the score on item j be denoted by random variable Xj with realization xj; then item

scores equal xj ¼ 0; . . .; M. By definition, a higher item score expresses a higher attribute

level.
Remarks
(1) In test and questionnaire construction, researchers sometimes use different scoring

formats for different items. This amounts to weighting the items differently. Two

justificationsmay be encountered. First, based on a theory about the attribute, itmay

be argued that one particular aspect of the attribute covered by item A may better

characterize the attribute than another aspect covered by, say, item B. This may
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justify giving a largerweight to itemA, for example, by assigning higher scores to the

answer categories or using more ordered answer categories, thus producing a

greater score range. To our knowledge, theories about attributes rarely provide this

level of detail, and thus provide little if any guidance for differential item weighting.
Second, one may estimate item weights from the data without the guidance of a

substantive theory. However, different samples for item analysis often come from

different populations that differ from each other and also across time, hence

rendering the sample used forweight estimation rather coincidental, also leaving the

weights coincidental and thus rather meaningless.

(2) Aprincipled argument against differential item scoring is that it producesmeaningless

total scores. For example, when a three-point Likert item is scored 0, 1, 2, and a five-

point Likert item is scored 0, 1, 2, 3, 4, then, assuming both items are positively
formulated, “agree” yields 2 credit points for the first item and 4 credit points for the

second item. Here, technical considerations about the numbers of answer categories

for different items determine differential weighing and cannot produce useful total

scores. Even if one scores the first item, say, 0, 2, 4, the absence of two scores (1 and 3)

still impairs total-score interpretation. The same problem appears when one col-

lapses sparse score categories ad hoc. For example, transforming a five-point Likert

item scored 0, 1, 2, 3, 4 to a dichotomously scored item raises the question whether

the scoring should be 0, 1 or 1, 4, or something else. No compelling logic exists for
how to do this and the result is arbitrary, not leading to well-justified total scores.

(3) Different item-score schemes are possible. For example, one may ask persons to

express their level of agreement on a line segment running from 0 to 100% (Saris &

Gallhofer, 2007, pp. 114–116). This may be a useful approach with other scaling

methods, but unless one divides the percentage scores into a limited number of

ordered categories, cross-tables are too sparse to be of practical use inMSA. Data such

as response times (Van der Linden, 2006), scores resulting from asking persons to

determine theirmental distance from a stimulus (i.e., preferences; Andrich, 1989), and
scores resulting from direct comparison of stimuli (i.e., paired comparisons; Cattelan,

2012) require different measurement models for constructing scales.

2.2. The models

MSA uses two different non-parametric IRT models to construct scales. Non-parametric

models employ less restrictive assumptions about the data than most other, often

parametric, IRT models, and they typically focus on detailed model fit investigation and
data exploration to understand the test, its items and the population of interest in more

depth (Junker & Sijtsma, 2001). The non-parametric models imply ordinal scales for

persons and items based on observable test scores, defined by Xþ ¼ PJ
j¼1 Xj, and item

mean scores, respectively. Ordinal scales limit the models’ use for equating and adaptive

testing that are more typical of parametric IRT, but the latter models often produceworse

model fit in particular applications, hence challenging their justification. For more

information about non-parametric IRT, see Ramsay (1997) and Stout (2002).

2.2.1. A model for ordering persons

The relevance of the monotone homogeneity model (Mokken, 1971; Mokken & Lewis,

1982; Sijtsma & Molenaar, 2002, 2016) is that it implies an ordinal scale for person
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measurement using the observable test score. The three assumptions of the model are as

follows:

(1) Unidimensionality. The single attribute that all items in a scale measure is

quantified by means of a latent variable denoted h.
(2) Monotonicity. As h increases, the probability of scoring at least xj on item j increases

or remains constant, but cannot decrease; that is, the more one possesses of the

attribute, the more likely one obtains scores representative of responses typical of

the higher attribute level. The relationship between the probability of obtaining at

least score xj and latent variable h, PðXj � xjjhÞ, is known as the item step response

function (ISRF), and is defined for xj ¼ 1; . . .; M. For xj ¼ 0, by definition

PðXj � 0jhÞ ¼ 1, which is uninformative about the relation between the item score

and the latent variable. If the item has two scores, one ISRF remains, then called the
item response function (IRF), PðXj ¼ 1jhÞ. Figure 1 shows monotone non-

decreasing ISRFs for two items j and k, each having four ordered scores, hence

three ISRFs (solid and dashed curves).

(3) Local independence. Items measuring the same attribute correlate positively when

people varywith respect to h. That is, because, compared to people lower on h, people
higher on h are expected to obtain higher item scores on each item measuring h, the
scores on different itemsmeasuring h covary and are positively related. However, if one

removes this source of variation, for example, by selecting a subgroup of people having
the same h value, the relationship between the items vanishes. If the scale is

unidimensional,h is theonly sourceof variation andconditioningonh renders the items

independent. Statistically, local independence means that

PðX1 ¼ x1; . . .; XJ ¼ xJ jhÞ ¼
YJ

j¼1

PðXj ¼ xjjhÞ;

meaning that the joint distribution of the J item scores equals the product of the J

marginal distributions of the separate item scores. This property implies that the

conditional covariance between items equals 0; for items j and k, CovðXj;XkjhÞ ¼ 0,

also known as weak local independence (Stout, 1990).

Figure 1. Three monotonically increasing ISRFs for item j (solid curves) and item k (dashed

curves).

140 Klaas Sijtsma and L. Andries van der Ark



Remarks
(1) Typical of themonotone homogeneitymodel is that it does not allow estimation of h

but that it justifies and uses test score Xþ to order persons on latent variable h
(Grayson, 1988; Hemker, Sijtsma,Molenaar, & Junker, 1997; Van der Ark&Bergsma,
2010). Hence, a monotone homogeneity model that fits the data enables ordering

people on h by means of their test scores Xþ.
(2) Unidimensionalitymakes sense becausemeasurement instruments in principle intend to

measureone attribute at a time, just as a thermometermeasures temperature andnothing

else. However, in social and behavioural science measurement multidimensionality

frequently appears in two ways. First, an attribute may consist of two or more sub-

attributes, rendering it necessary to distinguish scales for each of the sub-attributes. For

example, Denollet (2005) hypothesized that Type D personality consists of negative
affectivity and social inhibition. In this case, onemay investigate whether one needs one

or two scales; see the real-data example. Second, in addition to the intended attribute, sets

of unbidden attributes drive responses to items and threaten to dilute the targeted

single-attributemeasurement. For example, language skills influence responses to rating-

scale items for personality measurement. In this case, one may investigate whether one

scale suffices or whether some responses are so heavily laden with unwanted language

influences that the items involved should be deleted, or whether it makes sense, for

example, to distinguish two scales, onemeasuring the intended attribute relatively free of
language influencesandtheother includingsuch influences.MSAusesanAISP toseparate

items into different scales and identify deviating items.

(3) Figure 2 shows the three ISRFs of an item, two of which show non-monotonicities.

For function PðXj � 2jhÞ, the non-monotonicity extends along the high end of the

latent variable h scale, and deviations are shallow in the vertical direction. For

function PðXj � 1jhÞ, one non-monotonicity extends between h ¼ �1 and h ¼ 2

and is deep. The latter violation of the monotonicity assumption probably is more

damaging to the degree towhich the ordering of people bymeans ofXþ reflects their
ordering on h. MSA allows estimation of the ISRFs and assessment of the non-

monotonicities.

Figure 2. Three ISRFs: PðXj � 3jhÞ is monotonically non-decreasing in h, PðXj � 2jhÞ is slightly

decreasing for the extreme positive values of h, and PðXj � 1jhÞ shows a sharp decrease between

h ¼ �1 and h ¼ 2.
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(4) Given that measurement of attributes is not likely to be purely unidimensional,

conditioning on h is not enough to secure local independence because within

groups having the same h value peoplewill still vary on other latent variables, hence

producing covariation between items. Another source of local dependence is that
measurement quality often varies across different populations, meaning that scale

properties are often different for different gender, cultural, and education groups.

For example, for two persons having the same h level who are members of two

different groups, the same itemmay have different response probabilities. This is the

phenomenon of differential item functioning (Holland&Wainer, 1993). MSA allows

scale properties in different groups to be assessed.

2.2.2. A model for ordering persons and items

The double monotonicity model is a special case of the monotone homogeneity model. In

addition to being an ordinal person-measurement model, the double monotonicity model

implies the ordering of items by means of mean item scores. Several intelligence tests present

items by descending mean score, so that respondents start with the easiest items. Hence, they

can take some time to overcome possible test anxiety, whereas excessively difficult starting

items do not discourage other respondents. For this to work, one has to establish that the item

ordering is equal fordifferent-ability respondents.Thedoublemonotonicitymodel implies such
an invariant item ordering. It uses the same assumptions as themonotone homogeneitymodel,

and adds the fourth assumption of non-intersecting IRFs.

(4) Non-intersecting IRFs. We define the IRF as follows,

eðXjjhÞ ¼
XM

xj¼1

PðXj � xjjhÞ:

For M ¼ 1, we have eðXjjhÞ ¼ PðXj ¼ 1jhÞ. The double monotonicity model

assumes that the IRFs of the J items do not intersect. For three items, Figure 3

shows the non-intersecting IRFs, eðXjjhÞ. Items whose IRFs do not intersect have an

invariant item ordering (Sijtsma &Hemker, 1998; Sijtsma & Junker, 1996); that is, an

Figure 3. Three IRFs enumerated 1, 2, and 3, exhibiting an invariant item ordering.
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ordering that, except for possible ties, is same for each h value. Algebraically,

invariant item ordering is defined as follows:

(a) Let the mean item score be the expectation, eðXjÞ ¼
R
eðXjjhÞdGðhÞ, where GðhÞ is

the cumulative distribution of latent variable h. Based on a standard normal h, for the
three items in Figure 3 their means are eðX1Þ � 0:59, eðX2Þ � 1:28 and

eðX3Þ � 2:42.
(b) The items in Figure 3 have already been ordered such that item 1 has the smallest

mean and item 3 the greatest mean, but in real data one has to first order the J items

by their sample means and number the items such that (for simplicity, assuming

absence of ties)

�X1\ �X2\. . .\ �XJ ;

which estimates the unknown population ordering (which can be different, but we

use the same item indices for simplicity)

eðX1Þ\eðX2Þ\. . .\eðXJÞ:

(c) Assume that if, for any pair of items j\j þ 1, for at least one h value we know that

eðXjjhÞ\eðXjþ1jhÞ, then, assuming that IRFs do not intersect, for all J items it follows

that

eðX1jhÞ� eðX2jhÞ� . . .� eðXJ jhÞ, for all h.

In Figure 3, the three IRFs do not intersect but the IRFs of items 1 and 2 touch in

the interval �4\h\�3; hence, they exhibit an invariant item ordering.

Items having an invariant ordering facilitate the interpretation of the scale, because for

each h value item 1 has the smallest mean, depending on the measurement context

rendering it the least popular or themost difficult item, followed by item2, and so on, until
item J, which is the most popular or the easiest. Hence, the relation between total score

Xþ and the individual items lends the former more meaning.

Remarks
(1) IRFs for real data often do not exhibit an invariant item ordering. In fact, many

intersections may occur simply because J functions, even when they are monotone

non-decreasing, can cross one another in many ways, implying that item orderings

can vary greatly across different h values. Meijer and Egberink (2012) critically

discuss invariant item ordering for clinical scales covering a limited range of
symptoms.

(2) If, for each person, the same item is the least popular or the most difficult, the same

item is the second least popular or second most difficult, and so on, this greatly

facilitates the interpretation of the test scores. For example, for dichotomously

scored items (0/1 scoring), a higherXþ score implies that one not only expects that a

person answered the same items correctly as a person having a lower Xþ score, but

also one or more additional, more difficult items. For polytomously scored items

(e.g., 0/1/2/3/4 scoring), the higher the Xþ score, the more a person endorses the
individual items and endorsement is stronger as items are more popular. This logic

lends meaning to test performance in addition to only having more items correct or

more often having endorsed items as Xþ grows without knowing which items.

Typically, the monotone homogeneity model allows test-score interpretation of the
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latter, quantitative kind, while the double monotonicity model allows test score

interpretation of the former, more qualitatively interesting kind.

(3) Molenaar (1997) originally defined the double monotonicity model for non-

intersecting ISRFs rather than IRFs (Ligtvoet, Van der Ark, Te Marvelde, & Sijtsma,
2010).Onemaynotice that, bydefinition, theM ISRFsof an itemcannot intersect, but

the sets of M ISRFs of different items can intersect (Figure 1). Molenaar’s original

model thus required a total of J �M ISRFs not to intersect. However, in real data is it

likely that many ISRFs of different items intersect and, consequently, that the model

showsmisfit. More important, theoretically, a set of J �M non-intersecting ISRFs do

not implyan invariant itemordering; that is, an invariantorderingof the J IRFs,eðXjjhÞ
(Sijtsma, Meijer, & Van der Ark, 2011). Hence, requiring J �M ISRFs not to intersect

does not imply useful measurement properties and thus does not serve a useful
purpose. By definition, non-intersection of the J IRFs implies an invariant item

ordering, and we focus on IRFs.

2.3. A practical tool for selecting scales from item sets

2.3.1. IRT models and item quality

IRTmodels restrict the data distribution only partially, leavingmuchopportunity forweak

items to slip into a scale. This is the reason why one must make decisions about item

inclusion even if one has ascertained that the IRTmodel fits the data well. The issue is the

following. Focusing on non-parametric IRT approaches, these models require the IRF

slopes to be non-negative (see also Stout, 1990), which implies a non-negative correlation
between an item and the latent variable, but the correlation is allowed to freely range

between 0 and 1, the data determining themagnitude of the correlations. Non-parametric

model fit addresses IRF monotonicity, but not IRF steepness related to the test-score

distribution and expressed by an index that relates steepness to the test-score distribution.

This information bears directly on the item’s practical usefulness (Mokken, Lewis, &

Sijtsma, 1986). One may notice that the same issue exists in parametric IRT.

Focusing on non-parametric IRT, one thus needs a statistical tool that separates items

having low or high quality in relation to the test-score distribution. In MSA, the scalability
coefficients play this role. Scalability coefficients are used to assess item quality in a given

set of items or as an item selection tool in AISP (Sijtsma &Molenaar, 2002, chaps. 4 and 5).

2.3.2 Automated item selection procedure

The feature that probably has won MSA its popularity is the facility of AISP in the

accompanying software (Molenaar & Sijtsma, 2000; Van der Ark, 2007, 2012). Concep-

tually, depending on the composition of the item set, AISP identifies K scales, indexed
k ¼ 1; . . .;K ; then the number of items in scale k is denoted Jk. The initial item set the

researcher feeds to AISP is often experimental in the sense that the researcher has

assembled the item set based on theory about the attribute of interest and is not yet sure

whether all items have sufficient psychometric quality for selection in the final scales. For

example, some itemsmay not discriminatewell betweenpersons located lowandpersons

located high on the attribute scale. Theseweakly discriminating items donot contribute to

a reliable person ordering. AISP identifies such items and, depending on user-defined

choices, may exclude them from a final scale. In addition, different sub-attributes may be
distinguished or unbidden attributes different from the intended attribute may drive

144 Klaas Sijtsma and L. Andries van der Ark



responses to a subset of items or one or two items. AISP identifies subscales and deviating

items. In addition, badly targeted items not belonging to any of the scales may remain

behind; say, there are Junsc of such unscalable items. Finally, the researcher may define a

kernel of items that he considers key to the attribute and run AISP using the kernel as the
point of departure. By definition, the kernel is in the scale and additional items that scale

well with the kernel may complete the scale.

In its simplest form, AISP produces one scale that includes all the items from the initial

set; that is, K ¼ 1. A result found more often includes one or more scales and a couple of

unscalable items. Then the items distribute across scales and an unscalable category, such

that Jstart ¼
PK

k¼1 Jk þ Junsc, and in the simplest case (all items together constitute one

scale) Jstart ¼ J1 or simply Jstart ¼ J .
AISP uses scalability coefficients for pairs of items, denoted Hjk, and individual items,

denoted Hj (Mokken, 1971, pp. 148–153; Sijtsma & Molenaar, 2002, chap. 4). Let rjk
denote the covariance between items j and k, and let rmax

jk denote the maximum possible

covariance given the marginal distributions of the two item scores; then

Hjk ¼ rjk=r
max
jk :

To obtain Hj, we define the total score RðjÞ on J � 1 items except item j, and define

Hj ¼ rXjRðjÞ=r
max
XjRðjÞ :

Thus, the item scalability coefficient is a normed corrected item–test covariance, but
attains values much different from, for example, corrected item–test correlations.

The monotone homogeneity model implies that

0 ≤ Hjk ≤ 1 and 0 ≤ Hj ≤ 1;

hence, negative values logically contradict the model and positive values tend to support

the model, but especially smaller values do not rule out data that are multidimensional,

locally dependent or non-monotone (e.g., Mokken et al., 1986; Smits, Timmerman, &

Meijer, 2012).

Technically, AISP selects items from an available set into one or more scales using a
scale definition based onHjk andHj (Mokken, 1971, p. 184; Sijtsma&Molenaar, 2002, pp.

67–69). A set of items constitutes a scale if, for a suitable chosen positive constant c,

(a) for inter-item scalability coefficients Hjk [ 0, for all j; k; j 6¼ k; and

(b) for item scalability coefficients Hj � c[ 0, for all j.

Requirement (b) implies that the total-scalability coefficient, denoted H, and defined as

H ¼
PJ

j¼1 rXjRðjÞPJ
j¼1 r

max
XjRðjÞ

;

also equals at least c; that is, c�H � 1 (maximum value equals 1).

The monotone homogeneity model is related to the scale definition by implying

Hjk [ 0 and Hj [ 0, but not Hj � c[ 0. The latter additional requirement forces the

rejection of items discriminating weakly between different h values, which is reflected by

Hj values close to 0, and only accepts items that discriminate well, which is reflected by

higher Hj values. AISP allows the researcher to control the value of c, letting him decide
what he finds reasonable. As an aid, software packages use the default c ¼ :3. The
researcher may use the following rules of thumb: :3�H\:4 constitutes a weak scale;

How to do a Mokken scale analysis 145



:4�H\:5 a medium scale; and H � :5 a strong scale; a set of items for which H\:3 is

considered unscalable.

Although experience has shown that the default c ¼ :3 is useful in real-data analysis,

following Hemker, Sijtsma, and Molenaar (1995) we recommend running AISP 12 times
consecutively using c ¼ 0; :05; :10; . . .;: 55, and looking for one of the following two

typical outcome patterns:

(1) In unidimensional data, as c increases one subsequently finds

(a) most or all items in one scale;

(b) one smaller scale; and

(c) one or a few small scales and several unscalable items.

Take the result in stage (a) as final.

(2) In multidimensional data, as c increases one subsequently finds
(a) most or all items in one scale;

(b) two or more scales; and

(c) two or more smaller scales and several unscalable items.

Take the result in stage (b) as final.

The messy structure of real data may obscure these ideal outcome patterns, requiring

researchers to draw their own conclusion.

Remarks
(1) Van Abswoude, Vermunt, Hemker, and Van der Ark (2004) and Brusco, K€ohn, and

Steinley (2015) suggested alternative algorithms for item selection that are

interesting but have not been implemented in MSA software. The genetic algorithm

of Straat, Van der Ark, and Sijtsma (2013) is an explicit attempt to improve upon

AISP. The R package mokken (Van der Ark, 2007, 2012) includes the genetic

algorithm. Because of its close relationship to AISP,we used the genetic algorithm in

our real-data example and compared it to AISP.

(2) Researchers sometimes incorrectly assume that AISP selects scales that have an

invariant item ordering. In fact, the defining feature of the double monotonicity
model, non-intersecting IRFs, does not mathematically restrict H; that is, sets of

intersecting and non-intersecting IRFs can have the same H values (Sijtsma, et al.,

2011). Thismeans thatH values do not distinguish sets of intersecting IRFs from sets

of non-intersecting IRFs, and higherH values thus do not necessarily produce scales

having an invariant item ordering.

(3) Unscalable items have low quality in the context of the item set and the population

in which one collected the data, but, unless these items were badly constructed,

they may function well in other scales or different populations. For example, a
calculus item may show misfit in an arithmetic test but scale well in an advanced

algebra test. It will also be out of place in a primary-school population but may scale

well in a graduate population.

(4) For a priori defined scales that one wishes to keep intact as much as possible, one

might first compute Hjk,Hj, andH coefficients for the complete scales. If scalability

values are too low, one might run AISP on each scale or on the complete item set to

study its dimensionality and obtain evidence for a new scale structure.

2.4. Misunderstanding the two measurement models and AISP

During the past two decades in which MSA has become quite popular with scaling

practitioners, we have seenmany fascinating applications but also witnessed a number of
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regularly recurring misunderstandings that tend to lead researchers to make incorrect

decisions or use their scales for purposes for which they were not suited. We mention

three general misunderstandings, and then go one to describe a methodology for MSA.

2.4.1. Confusion of the two models

Several researchers do not seem to be aware that MSA includes two IRT models, both

implying a person ordering but only one, the double monotonicity model, implying an

(invariant) item ordering. We have noticed that researchers often take the latter model as

the default model and the only model. This would not really be a problem if researchers

adequately assessed the goodness of fit of the double monotonicity model to the data,

because the double monotonicity model is a special case of the monotone homogeneity
model and has both ordering properties. However, we have noticed that researchers

regularly do not even attempt to assess the double monotonicity model’s goodness of fit

but rather assess (aspects of) the monotone homogeneity model without seeming to

realize they do. This suggests that researchers often are unaware that they assess (aspects

of) thewrongmodel and assume they have assessed the othermodel.Wewill demonstrate

how to assess each model.

2.4.2. Limiting the analysis to automated item selection

If available, AISP selects the initial Jstart-item set intoK scales, using the formal definition of

a scale and default choices for some procedural features such asminimum item scalability

(Hj � c[ 0) and statistical significance level used for testing hypotheses about H

coefficients. We have noticed, also in our limited literature search, that the availability of

AISP makes life so easy for the researcher that as a rule they limit MSA to just running the

procedure and forgetting to assess the monotonicity of the IRFs of the items selected in

each scale, local independence and, if deemed desirable, whether items are invariantly
ordered. Three comments seem to be in order:

(1) AISPdoesnot assessmonotonicity, but if an IRF showsgross violationsofmonotonicity,

this will tend to lower the item’s scalability coefficientHj and AISPwill likely not select

the item in a scale. However, there is no guarantee that non-monotonicities always

produce Hj\c, because this also depends on the h distribution, and steep IRFs with

smaller violations may produce Hj � c and go unnoticed.

(2) AISP does not assess items based on statistical features of an invariant ordering.

Invariant item ordering is a characteristic of an item set that has to be assessed
separately (Sijtsma et al., 2011). We have already seen that researchers tend to

assume an invariant item ordering to hold without having checked the empirical

evidence.

(3) In non-parametric IRT, local independence has received attention at the theoretical

level (Ellis, 2014; Holland & Rosenbaum, 1986) and the data-analysis level (Stout,

Habing, Douglas, Kim, Roussos, & Zhang, 1996; Zhang & Stout, 1999). Straat, Van

der Ark, and Sijtsma (in press) proposed a method for investigating local

independence; see the next section.

2.4.3. Limiting the automated item selection to default choices

The availability of the user-friendly AISP, including default choices such as c ¼ :3,
unfortunately renders it a hit-and-run procedure, discouraging researchers from consid-

ering alternatives to the defaults, thus limiting the procedure’s possibilities and failing
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their goal. The real-data examplewill use the values c ¼ 0; :05; :10; . . .;:55, and take better
advantage of the possibilities of AISP and MSA.

3. Mokken scale analysis in practice

Ascale analysis is complex and canbedone inmanydifferentways, but herewepropose a three-

stage procedure, the stages being data examination, scale identification and scale properties,

consisting respectively of three, four, and three analysis steps. We describe the ten steps in

chronological analysis order and then illustrate the whole procedure using a real-data example.

3.1. Ten steps for doing a Mokken scale analysis

We describe the three stages containing ten steps for doing an MSA:

i. Data examination. Examine the data and take appropriatemeasureswhen particular

data problems occur (steps 1–3):
(1) Recoding. Recode scores of items that are negatively worded relative to the

attribute of interest, so that for all items higher scores mean a higher position on

the attribute scale.
(2) Inadmissible scores and missing data. Treat inadmissible scores as missing

values. Determine the total percentage of missing item scores in the data set, and

the respondents that left open an unreasonable number of answers. Ask yourself

why so many data are missing and why particular respondents produced so many

missing values. If, say, more than 10% of the total data are missing, was there

something wrong with the study design or the wording of particular items? If a

respondent left open, say, at least 30% of the answers, did they take the task

seriously?We imputemissing item scores using two-way imputation (Bernaards &
Sijtsma, 2000; Van Ginkel, Van der Ark, & Sijtsma, 2007), but many other

possibilities are feasible. For handling completed data sets resulting frommultiple

imputation, see Van der Ark and Sijtsma (2005).

(3) Outliers. Identify whether particular item-score patterns qualify as outliers, because

many unpopular or difficult items received high scores while many popular or easy

items received low scores. We advise performing the scale analysis separately on the

complete data and on the data without the identified outliers. If the removal of a small

number of outliers greatly influences the scaling results, removal seems to be justified,
as one cannot accept that only few observations greatly determine scaling results. We

usedthenumberofGuttmanerrors,denotedby indexGþ, incombinationwithTukey’s

fences for outlier detection (Zijlstra, Van der Ark, & Sijtsma, 2011).

ii. Scale identification. Identify one or more scales that satisfy either the model of

monotone homogeneity and, if deemed appropriate, check whether the scales also

satisfy the more demanding model of double monotonicity (steps 4–7):
(4) Scalability. If one wishes to assess a priori defined scales, computeHjk,Hj andH

coefficients for the complete scales. If one wishes to explore the item set for its
dimensionality, perform AISP using c ¼ 0; :05; :10; . . .;: 55, and use Hemker et al.

(1995) to look for relevant outcomepatterns. Depending on the data, the outcome

patterns may have become clear before the highest c values are reached. AISP

roughly sorts items in scales that order people using Xþ without making big

mistakes but may miss a couple of nuances needed for making finer-grained

decisions; see steps 5–7.
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(5) Local independence. Investigate local independence using the conditional

association procedure (Straat et al., in press). The conditional association

procedure involves two indicesW1 andW3 flagging locally dependent item pairs.

(6) Monotonicity. Investigatemonotonicity of IRFs using a non-parametric regression
method for an item score on the total score on the other J � 1 items in the same

scale (Junker & Sijtsma, 2000; Sijtsma &Molenaar, 2002, 2016). Graphical analysis

provides an impression of the degree to which an observed curve can be

considered monotone, and local deviations from monotonicity can be tested for

statistical significance.

(7) Invariant item ordering. Researchers only wishing to construct a scale that

orders persons on one dimension may skip this step. However, if one requires an

invariant item ordering, one may use the search procedure suggested by Ligtvoet
et al. (2010). The scalability coefficient HT expresses the degree to which

respondents order items invariantly (Ligtvoet et al., 2010; Sijtsma&Meijer, 1992).

iii. Scale properties. Determine scale properties of the scales identified in the second

stage (steps 8–10).
(8) Reliability.Use theMolenaar–Sijtsma (MS)method (Sijtsma&Molenaar, 1987) to

estimate test-score reliability. The MS method assumes the double monotonicity

model.

(9) Norms. Researchers requiring norm tables for the measurement of individuals
may estimate norms and confidence intervals for the norms using a regression

procedure (Oosterhuis, Van der Ark, & Sijtsma, 2016). In scientific research, one

does not need norms for interpreting individuals’ test performance; in this case,

one may skip step 9.

(10) Group comparison. If the sample contains meaningful subgroups, one may

investigate whether the composition of the scales and the scale properties (steps

4–9) can be generalized across the subgroups. If the scale composition and the

scale properties vary across groups, knowledge of this variation may be helpful
when interpreting individuals’ test performance and in research where group

characteristics such as mean scale scores and correlations of scale scores with

other variables are of interest.

3.2. The ten-step procedure in action: an MSA of the DS14 Type D Scale

We used a sample (N ¼ 541; 68 women and 473 men) of age ranging from 23 to 89 years

(M ¼ 58:7), also used by Denollet, Pedersen, Vrints, and Conraads (2013); see Straat, Van
der Ark, and Sijtsma (2014) for sample size recommendations for MSA. Respondents were

patients suffering from mild coronary disease, who were administered a battery of

questionnaires, among them the DS14, a 14-item questionnaire measuring Type D

personality (Denollet, 2005). Seven items measure negative affectivity (NA) and the other

seven items measure social inhibition (SI); see Figure 4. The sum of the 14 item scores,

referred to as the DS14 score, measures Type D personality. Items consist of a statement

followedbyafive-point rating scale, scoredx ¼ 0; . . .;4. For scale analysis,weusedRVersion

3.3.1 (R Core Team, 2016). The analysis script is available from the supplementary material
website. All steps were conducted using the R package mokken (Van der Ark, 2007, 2012).

(i) Data examination

Step 1. Recoding. Scores of items 1 and 3 were recoded as x� ¼ 4� x.

Step 2. Inadmissible scores andmissing data. Inadmissible scores were absent, all

scores on sex and age were present, but eight respondents had one missing item
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score, and one respondent had twomissing item scores (i.e., 0.13%missing in total).

Five of the tenmissing scores occurredwith item2,while othermissing scoreswere

scattered across items. We repeated two-way imputation (Bernaards & Sijtsma,

2000) 10,000 times, thus producing 10,000 completed data sets. Differences

between inter-item correlations did not exceed 0.01. Hence, we used one

completed data set for MSA.
Step 3. Outliers. Given the null situation in which outliers are absent and Gþ is

normally distributed, based on the criterion values derived from Tukey’s fences

(i.e., Gþ ¼ 202:5) we expected 0.35% outliers but we found 4.8% (i.e., 26 cases).

Given an extremely skew Gþ distribution (Figure 5), we computed the adjusted

boxplot (Hubert & Vandervieren, 2008) to accommodate the skewness. This

produced a criterion value Gþ ¼ 632:1, without suspicious item-score patterns.

IndexGþ correlated weakly positive with the DS14 score (.28), the NA score (.32),

and the SI score (.14).

(ii) Scale identification

Step 4. Scalability. Including the outlier had a negligible effect on the scalability

results; hence, it was included. For the NA items, for item pairs .41 < Hjk < .73

(.03 < SE < .05) and for items .49 < Hj < .62 (.02 < SE < .03) (Table 1). Hence,

the NA items formed a strong scale (H = .55, SE = .02). For the SI items, for item

pairs .40 < Hjk < .67 (.03 < SE < .05), and for items 0.45 < Hj < .57

(.02 < SE < .03) (Table 1). For the whole SI scale, H = .52 (SE = .02), but the

standard error was too large to conclude that in the population H > .5. Hence, the
SI scale had medium strength. For the 14 DS14 items, we foundH = .36 (SE = .02)

but the items did not constitute a weak Mokken scale because H2,3 and H3,5 were

negative; see requirement (b) of the scale definition. Several other item-pair

scalability coefficients were not significantly greater than 0. Taking standard errors

into account, item scalability coefficientsH2,H5, andH11 were significantly greater

than the conventional lower-bound value of .3 (Table 1, column 14).

Instruction:
Below are a number of statements that people often use to describe themselves. Please read each 
statement and then circle the appropriate number next to that statement to indicate your answer. 
There are no right or wrong answers: Your own impression is the only thing that matters.

0 = false, 1 = rather false, 2 = neutral, 3 = rather true, 4 = true

1. I make contact easily when I meet people 0 1 2 3 4
2. I often make a fuss about unimportant things 0 1 2 3 4
3. I often talk to strangers 0 1 2 3 4
4. I often feel unhappy 0 1 2 3 4
5. I am often irritated 0 1 2 3 4
6. I often feel inhibited in social interactions 0 1 2 3 4
7. I take a gloomy view of things 0 1 2 3 4
8. I find it hard to start a conversation 0 1 2 3 4
9. I am often in a bad mood 0 1 2 3 4
10. I am a closed kind of person 0 1 2 3 4
11. I would rather keep other people at a distance 0 1 2 3 4
12. I often find myself worrying about something 0 1 2 3 4
13. I am often down in the dumps 0 1 2 3 4
14. When socializing, I don’t find the right things 0 1 2 3 4

to talk about

Figure 4. Items from the DS14 Type D personality questionnaire. Text in italics refers to items

measuring NA, text in roman refers to items measuring SI. Items 1 and 3 need to be reverse-coded.
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We ran AISP for c ¼ 0; :05;:10;. . .;:30, and found one scale containing 13 items, all

except item 3. For c ¼ :35, items 2 and 5 fell out of the scale and together formed a

second scale. For c ¼ :40, we found the NA and SI scales. For c ¼ :45, item 3 was

unscalable, and c[ :45 produced more than two scales and several unscalable

items. For c� :35, the genetic algorithm version of AISP (Straat et al., 2013)

produced partitionings somewhat different and difficult to interpret. Thus, using

AISP, we found support for NA and SI scales. Had it not been for item 3, the DS14

scale would have had medium strength.
Step 5. Local independence. For NA, the conditional association procedure using

indicesW1 andW3 did not flag any item. For SI, a largeW1 index suggested that the

negatively worded items 1 and 3 were positively locally dependent. Index W3

flagged item pair (3, 6), suggesting the items may be negatively locally dependent.

Consistentwith steps 3 and 4, this result suggested item3might be revised.Without

item 3, index W1 flagged item pairs (8, 14) and (10, 14) as positively locally

dependent. For the whole DS14, the indices identified items 1 and 3 as positively

locally dependent, and present in several negatively locally dependent item pairs
with other items. Without items 1 and 3, the remaining data show no evidence of

local dependence.

Step 6.Monotonicity. For NA, data analysis supported manifest monotonicity. For

SI, one ISRF of item 6 showed one significant decrease, but the resulting IRFwas not

affected (Figure 6, top). For the whole DS14, the ISRFs of items 2 and 11 showed a

significant decrease, but the effect on the IRF (Figure 6, middle and bottom,

respectively) was minimal.

Step 7. Invariant item ordering. For NA, SI and DS14 items, visual inspection
suggested that several IRFs were almost identical, so that establishing an invariant

item ordering was difficult. The most rigorous method to investigate invariant item

ordering (called increasing in transposition; Ligtvoet, Van der Ark, Bergsma, &

Sijtsma, 2011) suggested that only four of the 14 items (NA: 4, 13; SI: 10, 14) did not

show signs of violating invariant itemordering. Hence, forDS14wedid not estimate

coefficient HT .

Figure 5. Distribution of item-pair based outlier score G+ and the criterion value according to

Tukey’s fences (solid, vertical line).
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Based on the scale identification stage, because the two negatively worded items 1

and 3 violated local independence and item 3 also appeared problematic in other

analyses, these items should probably be revised. In addition, the locally dependent

Figure 6. IRF of item 6 (Si6, SI; top) and items 2 (Na2, DS14; middle) and 11 (Si11, DS14; bottom).
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items 8 and 14 also may be candidates for further scrutiny. We advocate using NA
and SI scores both based on only seven items but leaving out item 3when using the

total score based on the longer DS14.

Figure 7. Percentile ranks for males (solid lines) and females (dashed lines) plus or minus one

standard error (vertical lines) for NA (top), SI (middle), and DS14 (bottom).

154 Klaas Sijtsma and L. Andries van der Ark



(iii) Scale properties

Step 8.Reliability. Table 1 (lower panel) shows theMSmethod reliability-estimate.

Table 1 also provides coefficients a (Cronbach, 1951) and k2 (Guttman, 1945). All

estimates are close to .9 and thus satisfactory. Reliability for DS14was a little higher
than forNA and SI.Without item3, reliability grewby .01 units. The corrected item–
test correlations (Table 1, upper panel, columns, 5, 15, and 20, citc) were

satisfactory for all items.

Step 9.Norms. Formen andwomen separately, Figure 7 shows rank percentiles for

NA (top), SI (middle) and DS14 (bottom). For NA and DS14, the same test score

results in a higher percentile rank for men than women. However, for DS14 the

overlapping confidence intervals suggest that most score differences betweenmen

and women are not significant. For SI, women have consistently higher percentile
scores but differences are not significant. Given the smaller sample size, women’s

confidence intervals are larger.

Step 10. Group comparison.We compared the scalability difference between men

and women using the sample item ordering. For NA, item 5 showed the largest

difference, being higher for men (H5 ¼ :50) than for women (H5 ¼ :44). Total
scalability was equal for both groups. For SI, item 3 showed the largest difference

(men:H3 ¼ :45, SE ¼ 0:03; women:H3 ¼ :19, SE ¼ 0:11). Total scalability was also

higher formen (men:H ¼ :52 (SE ¼ 0:02);women:H ¼ :42 (SE ¼ 0:07)). ForDS14,
except for items 9 and 13, item scalability was higher for men. For women,

H3 ¼ �:01 (SE ¼ 0:10) and for men H3 ¼ :22 (SE ¼ 0:03). Item 3 (“I often talk

to strangers”) seems to evoke a different response pattern in different gender groups.

4. Epilogue

We conclude with two take-away messages:

(1) Any scale analysis is complex, and so is MSA. In different analysis rounds, for varying

sets of items and individual items the researcher has to assess the assumptions of

measurement models, and provide quality indices such as scalability and reliability.

Only considering scalability coefficients provides an incomplete picture and must

be discouraged.

(2) The three-stage, ten-step procedure helps the researcher on his way but must be

appliedwith judgement; that is, decisions to include or leave out items and assemble
items in scales should not only be based on statistical considerations but also be

evident from the item’s content, preferably derived from theory or common

practice.
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