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Abstract—Interference is traditionally viewed as a perfor-
mance limiting factor in wireless communication systems, which
is to be minimized or mitigated. Nevertheless, a recent line of
work has shown that by manipulating the interfering signals
such that they add up constructively at the receiver side, known
interference can be made beneficial and further improve the
system performance in a variety of wireless scenarios, achieved
by symbol-level precoding (SLP). This paper aims to provide
a tutorial on interference exploitation techniques from the
perspective of precoding design in a multi-antenna wireless
communication system, by beginning with the classification of
constructive interference (CI) and destructive interference (DI).
The definition for CI is presented and the corresponding math-
ematical characterization is formulated for popular modulation
types, based on which optimization-based precoding techniques
are discussed. In addition, the extension of CI precoding to other
application scenarios as well as for hardware efficiency is also
described. Proof-of-concept testbeds are demonstrated for the
potential practical implementation of CI precoding, and finally
a list of open problems and practical challenges are presented to
inspire and motivate further research directions in this area.

Index Terms—MIMO, constructive interference, symbol-level
precoding, optimization, application, faster-than-Nyquist, hard-
ware efficiency, proof-of-concept testbed.

I. INTRODUCTION

PRECODING is able to support data transmissions to mul-

tiple receivers simultaneously in multi-antenna wireless

communication systems, which has attracted significant inter-

est in their development towards 5G [1]. The term ‘precoding’

usually refers to the transmit signal design that directs the

desired data symbols to the intended users while limiting

the inter-user interference, by exploiting the channel state
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information (CSI) and potentially the information of the data

symbols. In the literature, the dirty paper coding (DPC) tech-

nique is known to be capable of achieving the channel capacity

theoretically [2]. Despite its optimality, DPC is difficult to

implement in practical wireless communication systems, due

to (i) the impractical assumption of an infinite source alphabet

and (ii) the prohibitive computational complexity incurred

by sequential encoding. Therefore, linear precoding methods,

where the precoded signals are linear combinations of the

information symbols, have become appealing and attracted

more research attention because of their low complexity [3]-

[7]. In the literature, while the maximum ratio transmission

(MRT) precoding offers the lowest computational cost [3],

it does not fully eliminate the multi-user interference, which

leads to an error floor at medium-to-high signal-to-noise ratio

(SNR) regions. Zero-forcing (ZF) precoding is able to improve

the performance of MRT precoding by fully eliminating the

multi-user interference via inverting the channel [4], whose

performance can be further improved via the regularized ZF

(RZF) precoding by including a regularization factor in the

matrix inversion, which alleviates the noise amplification effect

that ZF precoding suffers [7].

In addition to these closed-form precoders, linear precoding

methods based on optimization have received increasing re-

search attention recently because of their flexibility to achieve

various performance targets, where the most two popular

design targets are power minimization (PM) and signal-to-

interference-plus-noise ratio (SINR) balancing (SB) [8]-[18].

For unicast applications where the base station (BS) trans-

mits individual information to each receiver, PM aims to

minimize the total transmit power at the BS subject to a

common minimum SINR target for all the receivers [8] or

an individual SINR target for each user [9], while SB targets

at maximizing the minimum SINR for each receiver while

satisfying a total transmit power requirement [10] or a per-

antenna power constraint [16] at the BS. Given the capability

of adaptation to various wireless communication scenarios,

optimization-based precoding schemes have been extended to

a variety of research areas such as cognitive radio (CR) [19]-

[40], simultaneous wireless information and power transfer

(SWIPT) [41]-[60], physical-layer (PHY) security [61]-[79],

full-duplex (FD) communications [80]-[103], etc., which will

be overviewed in the corresponding chapters in the following.

http://arxiv.org/abs/1907.05530v1
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Fig. 1: Various aspects of interference exploitation via symbol-level precoding

For both closed-form linear precoding methods [3]-[7] and

optimization-based schemes [8]-[16] described above, it is

observed that only the information of the channel is exploited

for the precoding design, and these precoding methods all

treat interference as a detrimental effect. Nevertheless, it has

already been observed in non-linear precoding methods such

as Tomlinson-Harashima precoding (THP) [104]-[106] and

vector perturbation (VP) precoding [107]-[114] that both the

CSI and the data symbols have been included in the symbol-

by-symbol precoding design, i.e., the information of the data

symbols is also exploited. However, the problem for non-

linear precoding schemes is that they are still difficult to be

implemented in practical wireless communication systems, due

to the complicated encoding and decoding process that leads

to unfavorable computational costs. Therefore, it is natural to

ask: Is it possible for linear precoding methods to potentially

exploit the information of the data symbols as well, or more

specifically exploit the interference based on the knowledge

of the data symbols to further improve the performance?

To answer the above question, this paper provides a tutorial

on a recently proposed concept termed ‘constructive interfer-

ence’ (CI) and the corresponding CI precoding techniques, as

well as their applications to a number of current and future

wireless communication scenarios, as illustrated in Fig. 1.

Compared with a previous survey paper [115] which focuses

on symbol-level precoding (SLP) and its comparison with

block-level and multicast precoding, the focus of this tutorial

paper is on the definition, characterization and exploitation

of the CI effect in a variety of wireless scenarios. We begin

with a brief introduction on CI, its potential benefits and

current limitations in Section I. Section II then introduces

the classification and mathematical characterization of CI for

various modulation types, based on which Section III formu-

lates the optimization problems for CI exploitation, whose

solution can be obtained via convex optimization tools. Section

IV describes the applications of CI exploitation techniques in

traditional small-scale multiple-input multiple-output (MIMO)

systems, and Section V extends the application to large-scale

antenna systems for hardware efficiency. Section VI describe

the proof-of-concept testbed for practical implementation of

CI exploitation via SLP, developed by University College

London and University of Luxembourg, respectively. Section

VII discusses some open problems and challenges to be

explored, followed by Section VIII that concludes the paper.

For clarity, the following notations are employed in the

following chapters of this paper: a, a, and A denote scalar, col-

umn vector and matrix, respectively. (·)∗, (·)T, (·)H, (·)−1, and

(·)+ denote conjugate, transposition, conjugate transposition,

inverse and pseudo-inverse of a matrix, respectively. diag (·) is

the transformation of a column vector into a diagonal matrix,

and ⊗ is the Kronecker product. |·| denotes the absolute value

of a real number or the modulus of a complex number, ‖·‖
2

denotes the ℓ2-norm, and ‖·‖∞ denotes the uniform norm.

ℜ{·} and ℑ{·} denote the real and imaginary part of a

complex scalar, vector or matrix, respectively. IK denotes the

K×K identity matrix, and j denotes the imaginary unit. Cn×n

and Rn×n represent the sets of n×n complex- and real-valued

matrices, respectively. card {·} denotes the cardinality of a set.

A. Interference in Wireless Communications - Is It All Harm-

ful?

Traditionally, interference is usually viewed as a perfor-

mance limiting factor in wireless communication systems. In a

typical multi-user transmission, the existence of interference is

based on the observation that the transmit signals for different

users are superimposed in wireless communication channels.

Precoding strategies are designed based on the fact that, with

CSI known at the BS and potentially with the information

of the data symbols as well, multi-user interference is able

to be predicted prior to transmission. In fact, information

theoretical analysis in [2] shows that when CSI is available at

the transmitter, known interference will not affect the capacity

of the broadcast channel. More specifically, the DPC method

implies that it is optimal to code along interference, instead

of attempting to mitigate or cancel interference. Neverthe-

less, the majority of existing linear precoding schemes still

aim to eliminate, avoid or limit the interference [3]-[14]. In

these traditional precoding schemes, the precoding matrix is

designed based on the CSI only and therefore operate on

a block level. In other words, the same precoding matrix

is applied across a block of symbols and is updated when

the channel changes. This means that only the power of the

interference can be controlled, which leads to the statistical



3

view that the effect of interference is similar to noise. On the

other hand, if we observe interference from an instantaneous

instead of statistical point of view, recent studies have shown

that CI precoding via SLP is able to control both the power

and the direction of the interfering signals on the received

complex plane on a symbol level, such that the interference

can act as an additional source of the desired signal power

and contribute to the symbol detection, which therefore further

improves the system performance [116]-[151]. Based on the

above description, interference exploitation techniques are

foreseen to be most useful in systems where interference can

be predicted and manipulated. To motivate the exploitation of

interference in precoding designs, we firstly present illustrative

examples to demonstrate how instantaneous interference can

be divided into CI and destructive interference (DI) below,

followed by the systematic CI characterization in Section II.

Let’s first consider a simple example where the desired

symbol u is from a nominal BPSK constellation, and without

loss of generality we assume u = 1 [152]. We express the

received signal as

y = u+ i+ n = r + n, (1)

where i is the interfering signal, r denotes the received signal

excluding noise, and n denotes the additive noise at the

receiver side. We consider two distinct cases: (i) i > 0 and

(ii) i < 0. When i > 0, the resulting noiseless received

signal r > 1, which means that the interference has pushed r
further away from the detection threshold of BPSK, compared

to the original data symbol u. In this case, the interfering

signal i contributes to the useful signal power and is in fact

‘constructive’. Given a fixed noise power, y = u + i + n
is more likely to be correctly detected than the interference-

free case ỹ = u + n, and an improved performance can be

expected. On the other hand, when i < 0, the interfering signal

causes the received signal r to move closer to the detection

threshold, where the interfering signal reduces the useful signal

power and is therefore ‘destructive’. In this case, the noiseless

received signal r = u + i is more vulnerable to noise than

r̃ = u.

The above examples have only considered the effect of

interfering symbols. To make the concept of interference

exploitation more explicit, in the following example we further

take the effect of wireless channels into account. In this

example, we consider a geometrical representation of an

interference scenario with random channels, as shown in Fig. 2

below, where for simplicity we still assume that u = 1 is

the desired data symbol, i = 1 is the data symbol from

Fig. 2: Geometrical representation of CI and DI

the interferer, hu denotes the wireless channel between the

transmitter and the receiver, while hi is the channel between

the interferer and the receiver, respectively. Accordingly, the

received signal can be expressed as

y = huu+ hii, (2)

where we have assumed a noiseless case to focus on the effect

of interference. In both subfigures of Fig. 2, ~OA = huu,
~OB = hii, the received signal is ~OC = y, and its projection

on the axis of hu is denoted by ~OD = du, whose amplitude

directly determines the detection performance. In Fig. 2 (a), we

can observe that the amplitude of the projection du is smaller

than that of the original transmit signal huu, and consequently

the interference is destructive since it reduces the useful signal

power. To take a closer look, we can project the interfering

signal ~OB onto the axis of hu, and it is then observed that the

direction of the effective interfering signal ~OE = ei is to the

opposite side of the desired data symbol, which is similar to

the case of (ii) i < 0 discussed in the previous example and

results in DI. In Fig. 2 (b), on the contrary, the interfering

signal is constructive for the desired data symbol u, since

they add up constructively and yield a received symbol whose

amplitude is larger than that of the original transmit signal.

The above observation implies that for a given data symbol

combination, some channel realizations may lead to CI while

some other channel realizations may yield DI.

Based on the above two simple examples, it is important to

note that the classification of interference into constructive or

destructive depends both on the data symbol combination and

the CSI, as will be mathematically shown in Section II.

B. CI Exploitation via Symbol-Level Precoding

With the two examples illustrated above, we are now able to

give the definition of CI: CI is the interference that pushes the

received signals away from all of their corresponding detection

thresholds of the modulated-symbol constellation, which thus

contributes to the useful signal power1. Moreover, to exploit

CI in the precoding design, firstly it should be highlighted

that CI-based precoding has to be shifted from block-level

operation to symbol-level operation, i.e., SLP is the method

to achieve the CI effect. It should be noted that SLP is not

limited as a method to exploit CI effects only, but also finds

its application in hardware-efficient BS architecture, as will be

discussed in Section V.

Early works on CI precoding techniques have focused on

the adaptation of simple linear precoding methods such as ZF

and RZF for CI exploitation [117], [118]. In [117], for the

first time the instantaneous interference in a MIMO system is

characterized and classified into CI and DI, and a selective

precoding is proposed where the CI is retained while the

DI is cancelled via ZF. A more advanced approach named

correlation-rotation precoding is proposed in [118], where the

DI is manipulated and further rotated to be aligned with the

desired data symbols such that DI becomes CI. Compared to

1Based on this definition, for multi-level modulations only the outer
constellation points can exploit CI, which will be discussed later in Section
II-B.
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the selective precoding that exploits interference only when

it is constructive, the correlation-rotation precoding directly

controls interference such that all the interference for each

user becomes constructive in the system.

The concept of CI has subsequently been applied to the non-

linear THP method in [105], [106] and VP precoding in [122].

The interference-optimized THP (IO-THP) proposed in [105]

introduces a complex scaling to the first user such that the

interfering signals are better aligned to the symbols of interest,

and by optimizing the complex scaling factor to minimize

the power of the modified transmit signals, IO-THP reduces

the power loss of the conventional THP schemes. As a step

further, the power-efficient THP (PE-THP) method proposed

in [106] allows complex scaling for a number of users, instead

of for the first user only as in [105]. Compared to IO-THP in

[105], the performance improvements come from the fact that

PE-THP allows a larger number of variables to be optimized

jointly within the constructive area and the signal-to-noise ratio

(SNR) threshold, which generally leads to a better and more

power-efficient THP solution. [122] proposes CI techniques in

the context of VP precoding by substituting the search for the

perturbation vectors with a linear scaling precoder, which is

the first optimization-based CI technique that involves a linear

symbol-scaling operation based on quadratic programming

(QP).

More recently, CI-based precoding techniques have been

widely combined with optimization to achieve further per-

formance improvements [124]-[135]. In [124] and [125], the

authors firstly propose a CI-MRT precoding method that

improves the performance of correlation-rotation precoding by

avoiding the ZF operation. In addition, PM optimization and

weighted SB optimization based on CI are further discussed

in [125]. It is worth mentioning that for CI precoding designs

in [124] and [125], the received signals are forced to be

strictly aligned to the desired data symbols with an increase in

the amplitude for achieving CI, which follows the CI metric

in [118] and is later shown to be sub-optimal and termed

‘strict phase rotation’ in [143] (Fig. 4a). A more advanced CI

metric is introduced in [126] and [127], where the concept of

‘constructive region’ is characterized for PSK constellations,

within which all the interference is shown to be constructive.

This relaxed CI metric reveals that it is no longer necessary for

the interfering signals to be strictly aligned to the symbols of

interest, which leads to further performance gains compared

to the ‘strict phase-rotation’ CI metric in [118], [124] and

[125]. This advanced CI metric is later termed ‘non-strict

phase rotation’ in [143] (Fig. 4b), and is widely adopted in the

subsequent precoding designs for CI exploitation [134], [139],

[143]-[149] and its applications. Meanwhile, a similar and sub-

optimal relaxed CI metric is also presented in [128], [129],

where the ‘relaxed detection region’ metric that is determined

by a phase margin related to the SNR target is introduced.

It should be noted that the above works [105], [106], [116]-

[118], and [124]-[129] have all focused on PSK constellations

for CI precoding, while the extension to multi-level modu-

lations such as QAM has recently been discussed in [130],

[131], [144], [145], [148] and [149], where the data symbols

for multi-level modulations are divided into outer symbols

that can exploit CI and inner symbols that cannot exploit CI.

Interestingly, in contrast to claims that CI precoding may not

be promising for higher-order QAM modulations since only

the outer constellation points benefit from CI, [145] shows

that substantial gains can still be observed even for a 64QAM

constellation, which will also be numerically shown in Section

III. This is because CI exploitation precoding not only allows

the outer constellation points to benefit from CI, but more

importantly also reduces the noise amplification effect, which

is more prominent for a high-order QAM modulation. CI

precoding has further been extended to generic two-dimension

constellations with any shape and size in [141], where the CI

metric is termed ‘distance preserving CI region’ (DPCIR).

Meanwhile, a similar concept coined as ‘directional mod-

ulation’ [153]-[155], which was studied in the past in the

context of analog RF and antenna components, has also

emerged as a promising hardware-efficient approach, where

the phase and amplitude of the transmitting signal on each

antenna are directly designed such that multiple interference-

free or interference-limited symbols can be transmitted to the

receiver, which will be discussed in more detail in Section V-

F. Additional studies on CI precoding, which include iterative

closed-form CI solutions, multi-group multicasting, symbol

error rate (SER) minimization, per-antenna power constraint,

non-linear channels, etc. can be found in [132]-[149], and

we summarize the major research outputs on CI precoding

in Table I.

C. Benefits of CI and Symbol-Level Precoding

With the ability to transform the power of the interfering

signals into useful signal power without the need of investing

additional transmit power, CI precoding has become an appeal-

ing technique for modern and future wireless system design,

where energy efficiency has become increasingly important.

Obviously, the most prominent advantage for CI precoding

over conventional precoding is the significant performance

improvements in terms of error rate performance and transmit

power savings. By carefully designing the precoding matrix

based on the CSI as well as information of the data symbols,

interference that is usually regarded as a detrimental effect

and needs to be mitigated now becomes beneficial and further

contributes to the increase in the useful signal power [127],

which has also been mathematically studied in [131] using an

equivalent PHY multicasting model.

In addition to the above most significant advantage, some

additional benefits that CI precoding enjoys should also be

highlighted in particular.
1) Instantaneous Constraints: Conventional precoding

methods operate on a block level, and the constraints such

as the SINR target for the PM problems or the transmit power

requirement for the SB optimizations are met averaged over a

transmission block. While these constraints are indeed satisfied

from a statistical point of view, during actual transmission

these constraints may be violated for some data symbol

combinations while over-satisfied for other data symbol com-

binations within each transmission block.

As a comparison, CI precoding does not have this issue and

guarantees that the constraint is strictly satisfied for each data
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TABLE I: A summary of major CI precoding outputs in the literature

Reference Considered Problem CI Metric Considered Modulation

[117] Selective CI Strict phase rotation PSK

[118] Correlation-rotation CI Strict phase rotation PSK

[122] CI-VP Symbol scaling PSK

[123] CI-based SB Non-strict phase rotation PSK + QAM

[124], [125] CI-MRT + PM + weighted SB Strict phase rotation PSK

[126], [127] CI-based PM + SB Non-strict phase rotation PSK

[128], [129] CI-based PM + weighted SB Relaxed detection region PSK

[130], [131] CI-based PM Symbol scaling QAM

[132] CI-based Per-antenna PM Strict phase rotation PSK

[133] CI-MMSE precoding Non-strict phase rotation PSK

[134], [139] CI-based PM + SB Noise-robust CI PSK

[135] CI-based weighted per-antenna PM Strict phase rotation APSK

[137], [138], [141], [142] CI-based PM + SB Distance preserving CI region Any constellation

[143], [144], [145] Closed-form CI solutions Non-strict phase rotation + Symbol scaling PSK + QAM

symbol combination during transmission, because CI precod-

ing works on a symbol level and accordingly the constraints

are enforced on a symbol level. This can be mathematically

observed in [127] as well as in Section III for optimization

problems formulated based on CI precoding, where the data

symbols have been included in the constraints.

2) Receiver Complexity: CI precoding provides additional

complexity reduction at the receiver side. When tradi-

tional block-level optimization-based PM or SB precoding is

adopted, since the optimization only focuses on the power

of the useful signals without considering the phase-rotation

effect, each receiver therefore needs to perform phase estima-

tion and compensate the phase-rotation effect of the channel,

before the symbols can be correctly decoded, which may suffer

from channel estimation errors [28].

In contrast to these traditional precoding strategies, the

received symbols for CI precoding are all located in the con-

structive area, and therefore the phase-compensation process is

not required any more, when PSK constellations are employed.

This means that the symbol decoding process does not require

the estimated CSI at the receivers, as only a simple decision

stage is sufficient, which therefore avoids the effect of CSI

estimation errors on the decoding process. This is particularly

important in the case of downlink transmission where the

receivers are typically computationally constrained mobile

devices. Accordingly, CI precoding approaches may further

lead to savings in the training time and overhead for signaling

the composite channels to the receivers, as demonstrated in

[28] and [152].

3) Data Stream Number Increase: In addition to the above

two benefits, another benefit that is recently revealed for CI-

based precoding over traditional precoding is the support for

an increased number of data symbols that can be simultane-

ously transmitted [127], [144], [145]. For traditional precoding

approaches, the number of data streams that can be supported

for simultaneous transmission is limited by the number of

transmit antennas at the BS in the downlink. While MRT

and RZF precoding can theoretically support a larger number

of data streams, the resulting uncoded bit error rate (BER)

performance is on the order of 10−1, which is not practically

useful. For CI precoding, on the contrary, it is shown in [144],

[145] that it can support a larger number of data streams

with a significantly improved BER performance. Specifically,

when there are Nt = 8 transmit antennas at the BS and a

total number of K = 9 users in the system, CI precoding

is able to achieve an uncoded BER that is lower than 10−4

when QPSK modulation is considered [144]. A similar result

can be observed in [145] for QAM constellations, while the

supported number of data streams becomes fewer compared

to PSK modulations.

In addition to the above general benefits, a number of

application-particular benefits have also been reported and will

be overviewed in the respective sections in the following.

D. Current Limitations of CI and Symbol-Level Precoding

In addition to various benefits CI precoding offers compared

to traditional channel-dependent precoders, CI precoding also

exhibits some limitations, as discussed below.

1) Complexity: The first and most obvious limitation for

CI precoding is its complexity, which also holds for other

SLP-based techniques. Compared to traditional block-level

precoders where the precoding matrix is updated whenever

the channel changes, CI precoding has to update the precoding

matrix on a symbol level, which leads to much higher com-

putational costs. Moreover, most CI precoding approaches in

the literature are based on optimizations, which means that an

optimization problem has to be solved to obtain the desired

precoding matrix on a symbol level, which is more demanding

than block-level precoders. Both of the above requirements

pose significant burden on the hardware components at the

BS, especially in practical wireless communication systems

that are required to operate on a real-time basis.
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Fig. 3: CI region characterization for PSK and QAM constellations

Nevertheless, thanks to recent developments in deriving

low-complexity solvers for CI precoding, it has been shown in

[143] and [145] that an optimal CI precoding structure exists

for the CI-based max-min fair optimization problem, while

[142] also presents a closed-form expression for CI-based PM

problem by following a similar approach, both of which can

greatly alleviate the computational costs for CI precoding. This

will be discussed in more detail in Section III-F.
2) CI based on Soft Detector: Another limitation for cur-

rent CI-based SLP schemes is that they are designed for un-

coded communication systems, and its superiority is therefore

only guaranteed for uncoded systems. In practical wireless

communication systems where channel coding is also adopted,

it is shown in [153] that CI precoding with existing channel

coding schemes is superior to traditional channel-coded pre-

coding schemes. However, it is still unknown whether this

is the optimal performance and whether a joint design of CI

precoding and channel coding can lead to further performance

improvements. To design the CI-optimal soft detector, the

priori probabilities of the input symbols producing a soft

output indicating the reliability of the decision should be

taken into account, which have not been fully addressed in

the literature.

As an initial attempt, [147] conducts performance analysis

of CI precoding when PSK signaling is considered, for the

first time in the literature, where the achievable rate for each

user and the total sum rate upper bound of CI transmission

are derived.
3) Adaptive Modulation and SINR Estimation: Current

CI precoding approaches are designed for either PSK or

QAM constellations, while the extension to a multiple mod-

ulation scenario has not been fully discussed. Importantly,

since practical wireless communication systems adopt adaptive

modulation based on SINR estimation, current CI precoding

algorithms designed for single modulation are not directly

applicable. Moreover, SINR estimation techniques currently

employed may not be suitable for CI-based precoding meth-

ods. This will be discussed in Section VII-C.

II. CONSTRUCTIVE INTERFERENCE CLASSIFICATION AND

CHARACTERIZATION

In this section, we characterize the CI condition for several

modulations that are typically considered in wireless com-

munication systems, which include PSK, QAM, and APSK

constellations. For each modulation type, we first illustrate

the CI condition geometrically, based on which we present

the mathematical condition for achieving CI. While there also

exist several alternative CI metrics in the literature [127],

[129], [137], and [141], in this paper we employ the CI metric

that is firstly introduced in [127] and widely adopted in the

subsequent studies for CI-based precoding.

For notational convenience, we consider a multi-user

multiple-input single-output (MU-MISO) system in the down-

link, and we express the received symbol for user k as

yk = hT
kWs+ nk, (3)

where yk is the received signal for user k, hk ∈ CNT×1

is the channel vector between the BS and user k, W =
[w1,w2, · · · ,wK ] ∈ CNT×K is the precoding matrix, s =
[s1, s2, · · · , sK ]

T ∈ CK×1 is the transmit data symbol vector

from a specific modulation constellation, and nk is the additive

Gaussian noise with zero mean and variance σ2. Throughout

this section, we consider unit-norm constellations to charac-

terize the CI condition for each modulation type.

Based on the definition of CI and following [127], [145],

the CI regions for PSK and QAM constellations are shown

as the green shaded areas in Fig. 3, where BPSK, QPSK,

8PSK and 16QAM constellations are depicted as representa-

tive examples, and their extensions to higher PSK and QAM

constellations are trivial. As can be seen, when the received

signal is located in the green ‘constructive region’, its distance

to all the detection thresholds is increased compared to the

nominal constellation point.

A. Constant-Envelope Constellations (PSK)

To derive the mathematical formulation of CI conditions

for constant-envelope PSK constellations, we consider the

‘phase-rotation’ metric introduced in [127], and without loss

of generality we focus on one quarter of a nominal QPSK

constellation, as depicted in Fig. 4a for ‘strict phase rotation’

and Fig. 4b for ‘non-strict phase rotation’, where ~OB denotes

the noiseless received signal, which leads to ~OB = hT
kWs.

~OA = t·sk represents the scaled data symbol, and t =
√
Γkσ2

for PM optimizations, where Γk is the corresponding SINR

target for user k [127]. For SB optimizations, t is the objective
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(a) QPSK, ‘strict’ (b) QPSK, ‘non-strict’ (c) QAM, ‘symbol-scaling’

Fig. 4: CI metric for PSK based on ‘strict/non-strict phase rotation’ and QAM based on ‘symbol-scaling’

function to be maximized [143]. Based on the observation that
~OB = ~OA + ~AB, we obtain that ~AB = hT

kWs − t · sk
is the interfering signals. Following [143], for notational

convenience we introduce a scalar λk for each data symbol

sk, which leads to

~OB = hT
kWs = λksk, (4)

and the value of λk fully represents the effect of multi-user

interference.

For the ‘strict phase-rotation’ CI metric, as considered in

[124], [125] and [143], it is obvious that each λk should be

purely real to guarantee that the phase of the noiseless received

signal for user k is exactly the same as that of sk. Furthermore,

the received signals should enhance the useful signal power to

achieve CI, and therefore the mathematical condition for the

‘strict phase-rotation’ metric can be expressed as

λk ≥ t, ∀k ∈ K, (5)

where K = {1, 2, · · · ,K}.

For the ‘non-strict phase-rotation’ metric proposed in [127],

λk can be complex as the phases of the received signals are

not necessarily constrained to be strictly aligned to the original

symbols of interest. As observed in Fig. 4b, as long as the

resulting signals are located in the ‘constructive region’, all the

interference is constructive and further benefits the detection

performance. Based on the geometry, to have the node ‘B’

located in the constructive area is equivalent to

θAB ≤ θth, (6)

where θth = π
M

for a M-PSK constellation. Following [127]

and [143], this CI condition in (6) can be further expressed as

a function of the complex scalar λk, given by

[ℜ (λk)− t] tan θth ≥ |ℑ (λk)| , ∀k ∈ K, (7)

which is widely employed in the literature of CI-based pre-

coding [126], [127], [134], [139], [143]-[149]. Specifically for

a BPSK constellation where M = 2, the CI condition in (7)

for the ‘non-strict phase-rotation’ metric is simplified into

ℜ (λk)− t ≥ 0, ∀k ∈ K. (8)

B. Multi-Level Constellations (QAM, APSK)

In this section, we describe the CI condition for multi-

level modulations, where we consider QAM and APSK as

two representative examples. The general observation of CI

characterization for multi-level modulations is that CI can be

exploited by the outer constellation points, while we consider

all the interference for the inner constellation points as destruc-

tive. Therefore, the CI condition for multi-level modulations is

formulated by decomposing the constellation points into outer

constellation points and inner constellation points, as detailed

below.

1) QAM: QAM modulation is a typical multi-level modula-

tion widely employed in wireless communication systems. CI-

based precoding for QAM constellations is firstly considered

in [130], [131], [148] and [149], and is also studied in [145]

more recently. For QAM modulation, since only the real (or

imaginary) part of some outer constellation points can be

scaled to exploit CI, as observed in Fig. 3 and Fig. 4c, the

‘phase-rotation’ metric in [124]-[127] is no longer applicable

to QAM.

Accordingly, the ‘symbol-scaling’ metric considered in

[131], [145] and [149] is presented here. To be more spe-

cific, this metric first performs a signal decomposition of the

constellation points as well as the noiseless received signals

along the detection thresholds, which mathematically leads to

sk = sAk + sBk , h
T
kWs = αA

k s
A
k + αB

k s
B
k = ΩT

ksk, ∀k ∈ K.
(9)

where sAk and sBk are parallel to the two detection thresholds

for the constellation point sk, Ωk =
[

αA
k , α

B
k

]T
and sk =

[

sAk , s
B
k

]T
. In (9), αA

k ≥ 0 and αB
k ≥ 0 are two real scalars

that jointly represent the effect of interference. Specifically for

QAM constellations, we can directly simplify the expression

for sAk and sBk into

sAk = ℜ{sk} , sBk = j · ℑ {sk} . (10)

For notational convenience, we introduce a set O that

consists of the real scalars corresponding to the real (or

imaginary) part of the outer constellation points that can be

scaled to exploit CI, and a set I that consists of the real

scalars that correspond to the real (or imaginary) part of the

constellation points that cannot be scaled [145], i.e., in Fig. 4c,
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TABLE II: A summary of mathematical CI conditions for PSK and multi-level modulation

Modulation CI Metric Signal Representation Mathematical CI Condition

PSK Strict Phase Rotation [125], [143] h
T
k
Ws = λksk λk ≥ t

PSK Non-Strict Phase Rotation [127], [143] hT
k
Ws = λksk [ℜ (λk) − t] tan θth ≥ |ℑ (λk)|

PSK Symbol Scaling [122], [156] hT
k
Ws = αA

k
sA
k

+ αB
k
sB
k

αA
k

≥ t, αB
k
≥ t

QAM Symbol Scaling [145] h
T
k
Ws = α

A
k
s
A
k

+ α
B
k
s
B
k

α
O
m ≥ t, αI

n = t

APSK Non-Strict Phase Rotation hT
k
Ws = λksk

[

ℜ
(

λO
m

)

− t
]

tan θth ≥
∣

∣ℑ
(

λO
m

)
∣

∣, λI
n = t

the set O includes the scalars for both the real and imaginary

part of the constellation point type ‘D’, the real part of ‘B’,

and the imaginary part of ‘C’. Similarly, the set I includes the

scalars for both the real and imaginary part of the constellation

point type ‘A’, the real part of ‘C’, and the imaginary part of

‘B’. Accordingly, the set O∪I includes all the scaling factors

αU
k , U ∈ {A,B}, ∀k ∈ K, and the CI condition for QAM

constellations can be expressed as

αO
m ≥ t, αI

n = t, ∀αO
m ∈ O, ∀αI

n ∈ I. (11)

Similar to the case of PSK modulation, t is the objective

function for SB optimizations, while t =
√
Γkσ2 if a PM

problem is considered.

It should be noted that while the ‘symbol-scaling’ metric is

primarily considered for QAM constellations, it is applicable

to PSK modulation as well, as firstly studied in [122] in the

context of VP precoding. Nevertheless, for a generic PSK

constellation, the expression for sAk and sBk is no longer in

the form in (10), and the corresponding derivations can be

found in [156] in detail.

2) APSK: APSK is another representative example of

multi-level modulation, which has been widely considered

in satellite communications [157], [158]. Compared to QAM

constellations, the advantage for APSK modulation lies in its

low peak-to-average power ratio (PAPR) and is therefore more

robust against nonlinear channel effects. The constellation

of APSK can be viewed as a combination of several PSK

constellations with different amplitudes [157].

Similar to the case of QAM, CI can be exploited by the outer

constellation points of APSK, while the inner constellation

points should not be scaled. Since the outer constellation of

APSK can be regarded as a typical PSK constellation, by

following (4), (6) and (7), the CI condition for APSK can

be readily expressed as

[

ℜ
(

λO
m

)

− t
]

tan θth ≥
∣

∣ℑ
(

λO
m

)∣

∣ , λI
n = t, (12)

where θth = π
N

when the outer ring of the APSK constellation

adopts N -PSK, λO
m ∈ O, and λI

n ∈ I. In the case of

APSK, the set O includes the complex scalars corresponding

to the outer constellation points of APSK, while I includes

the complex scalars corresponding to the inner constellation

points, respectively, and we have O ∪ I = {λ1, λ2, · · · , λK}.

We summarize the mathematical CI formulation for the

discussed modulation types in Table II.

III. SYMBOL-LEVEL PRECODING BASED ON

OPTIMIZATION

In this section, we introduce several optimization-based CI

precoding designs in the downlink of a MU-MISO system,

which includes CI-based VP precoding, CI-based PM, CI-

based SB2, etc., as a foundation for the description of the

applications of interference exploitation in Section IV and V.

In each subsection, we begin with a brief literature review

on these precoding approaches and their corresponding math-

ematical formulations, followed by their adaptations to CI-

based designs.

A. CI-VP based on Symbol Scaling

Traditional non-linear VP approaches apply a perturbation

to the data symbols upon the ZF precoding [107], such that the

resulting transmit signals are better aligned to the eigenvectors

of the channel inverse matrix, which leads to a significant

decrease in the noise amplification effect. Accordingly, a sig-

nificantly improved performance is observed for VP precoding

over ZF precoding in the high SNR regimes. Meanwhile,

since VP approach is highly computationally expensive due

to the inclusion of the sphere-search process, a number of

studies on VP precoding have focused on the reduction in

the computational costs [108]-[110], [159]-[162]. Specifically,

this includes the thresholded VP method where the sphere-

search process is terminated when a SNR target is met [108],

[109], and the selective VP approach that only perturbs part of

the data symbols for maximizing the energy efficiency [110].

Several studies have also paid their attention to the modulo

loss reduction for VP precoding [163]-[165]. An additional

problem for conventional VP precoding in [107] is that it does

not apply to multi-modulation scenarios, since the perturbation

basis is modulation dependent [107]. To overcome this, sev-

eral studies have considered multi-modulation VP precoding,

which includes the block-diagonalized VP method in [111],

the user-grouping VP method in [112], and the constellation

scaling approach in [113], [114].

The precoded signal vector for a traditional VP precoding

can be expressed as

xVP =

√
P0

βVP

·HH
(

HHH
)−1

(s+ τ · l) , (13)

2The optimization for the sum-rate maximization is not considered, since
the Shannon sum-rate expression is not applicable to CI precoding. This will
be discussed in Section VII-A.
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where P0 is the transmit power, τ is the modulation-dependent

modulo basis, l is the complex-integer perturbation vector, and

βVP =
∥

∥

∥H
H
(

HHH
)−1

(s+ τ · l)
∥

∥

∥

2
(14)

is the scaling factor for power normalization, which is also

known as the noise amplification factor. For conventional

VP precoding, the perturbation vector l is found by the

sphere-search algorithm in the whole complex-integer space to

minimize the power normalization factor βVP, and a modulo

operation with basis τ is also required at the receiver side to

remove the perturbation effect.

CI-based VP approach is proposed in the context of com-

plexity reduction for VP precoding [122]. To extend the

concept of CI exploitation to VP precoding, it is natural to

constrain the search for the optimal perturbation vectors within

the constructive area for each constellation point. This then

removes the necessity for the modulo operation at the receiver

side, since the perturbation vectors are all constructive and

contribute to the original data symbols. Moreover, since the

perturbation vectors are enforced in the constructive area,

their values can be relaxed into complex continuous and are

no longer needed to be complex integers. Accordingly, by

introducing a diagonal scaling matrix Φ with complex entries,

the transmit signal vector for constructive VP (CVP) can be

transformed into a linear scaling operation, expressed as

xCVP =

√
P0

βCVP

·HH
(

HHH
)−1

Φs, (15)

where the power scaling factor βCVP is obtained as

βCVP =
∥

∥

∥
HH
(

HHH
)−1

Φs

∥

∥

∥

2
. (16)

By following the decomposition in (9), we transform Φs into

Φs = Tdiag {ΦE} sE (17)

such that the scalars in ΦE are real, where T ∈ RK×2K ,

ΦE ∈ R2K×1 and sE ∈ C2K×1 are given by

T =













1 1 0 0 · · · · · · 0 0

0 0 1 1
. . .

. . . 0 0
...

...
. . .

. . .
. . .

. . .
...

...

0 0 · · · · · · 0 0 1 1













= IK ⊗ [1, 1] ,

ΦE =
[

αA
1 , α

B
1 , α

A
2 , α

B
2 , · · · , αA

K , αB
K

]T
,

sE =
[

sA1 , s
B
1 , s

A
2 , s

B
2 , · · · , sAK , sBK

]T
.

(18)

Accordingly, the optimization problem that minimizes the

power scaling factor βCVP based on CI exploitation is given

by [122]

PCVP : min
ΦE

∥

∥

∥H
H
(

HHH
)−1

Tdiag {ΦE} sE
∥

∥

∥

2

2

s.t. C1 : αU
k ≥ α0, U ∈ {A,B} , ∀k ∈ K

(19)

which can be further transformed into a QP and solved

efficiently. In PCVP, α0 > 0 is a lower threshold, whose

value will not affect the final solution, and it is convenient

to select α0 = 1. Compared to traditional VP precoding, the

CVP method requires less than 10% the complexity when

the number of antennas is larger than K = NT = 6, by

substituting the sophisticated sphere-search process with a

linear scaling operation [122].

In addition to the formulation in (15), an alternative CI-VP

approach has recently been presented in [166], where the data

symbol vector s is replaced with an equivalent symbol vector

s̃ = [1, 1, · · · , 1] ∈ RK×1, and the precoded signal vector is

given by

xCI-VP =

√
P0

βCI-VP

HH(HHH)−1B(s̃+ ũ), (20)

where ũ is the real non-negative perturbation vector and B is

a rotation matrix defined as

B =















s1 0 0 · · · 0
0 s2 0 · · · 0
0 0 s3 · · · 0
...

...
...

. . .
...

0 · · · 0 0 sK















. (21)

The equivalent symbol vector s̃ is real-valued rotated ver-

sions of the original complex data symbols. The rotation is

accounted accordingly in (21) so that users still receive the

correct symbols, since Bs̃ = s. The power scaling factor is

calculated as

βCI-VP =
∥

∥HH(HHH)−1B(s̃ + ũ)
∥

∥

2
. (22)

Consequently, the optimization problem can be constructed as

PCI-VP : min
ũ

‖HH(HHH)−1B(s̃+ ũ)‖2
s.t. C1 : ũk ≥ 0, ∀k ∈ K

(23)

The above optimization problem (23) is a non-negative least

squares (NNLS) problem and can be solved directly using the

Fast NNLS [167] or the closed-form algorithm given by [168],

[169]. The introduction of the equivalent real symbol vector

in this CI-VP approach allows to reduce the search space

in the optimization problem and decrease its computational

complexity by searching only for real-valued and non-negative

perturbation vector.

B. Power Minimization

Traditional optimization-based PM problems aim to mini-

mize the total transmit power subject to a minimum received

SINR target at each receiver side [8]-[10], [12]-[14]. An

uplink-downlink duality has been revealed in [9] and [10],

based on which an efficient algorithm is proposed to solve the

downlink precoding optimization. Another method to solve

PM optimizations is to transform the PM optimization into

a semi-definite programming (SDP). Using the semi-definite

relaxation (SDR) approach [12]-[14], the rank-relaxed SDP

becomes a convex optimization that can be conveniently

solved, and it has been proven that a rank-1 solution always

exists when the problem is feasible [12]. A rank-reduction

algorithm is further developed in [12] and [13] to effectively

reduce the rank of the solution to the relaxed SDP problem,

when additional shaping constraints are further included in

the PM optimizations. It is further shown in [14] that the

exploitation of real-valued orthogonal space time block coding
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(OSTBC) can effectively increase the degree of freedom in the

optimization design, which leads an improved performance.

Mathematically, from a statistical point of view and treating

interference as harmful, the SINR expression for user k can

be expressed as [8]

γk =

∣

∣hT
kwk

∣

∣

2

∑

i6=k

∣

∣hT
kwi

∣

∣

2
+ σ2

, (24)

which is obtained based on E
{

ssH
}

= I. Given (24), a typical

PM problem that targets at minimizing the average transmit

power subject to the SINR threshold Γk for user k can be

formulated as

PPM : min
wk

K
∑

k=1

‖wk‖22

s.t. C1 : γk ≥ Γk, ∀k ∈ K
(25)

The above power minimization problem PPM can be efficiently

solved either via SDR or via uplink power allocation algo-

rithms by exploiting the uplink-downlink duality [8].

To apply the concept of CI exploitation to PM problems,

firstly it should be noted that the SINR expression in (24)

is no longer valid, since (i) the instantaneous symbol-level

interference is related to not only the CSI but also the data

symbols, and (ii) the interfering signals become constructive

and contribute to the useful signal power. Following the dis-

cussion in Section II and recalling (4) and (7), the constructive

PM (CPM) optimization for M-PSK modulation based on the

‘non-strict phase-rotation’ metric can be expressed as

PPSK
CPM : min

x
‖x‖2

2

s.t. C1 : hT
kx = λksk, ∀k ∈ K

C2 :
[

ℜ (λk)−
√

Γkσ2

]

tan
π

M ≥ |ℑ (λk)| , ∀k ∈ K
(26)

where for convenience we have introduced x = Ws since Ws

can be viewed as a single vector for CI-based PM problems,

and Γk is the SINR target for the k-th receiver. We further

note that since the precoding matrix is symbol-dependent,

the objective function also includes the data symbol vector

s, which guarantees that the transmit power is minimized on

the symbol level, as discussed in Section I-C. Compared to

traditional PM optimization PPM which is non-convex and

has to resort to algorithms such as SDR, we observe that

the constraints in PPSK
CPM are linear and the constructed CPM

is convex in nature, which can be efficiently solved via off-

the-shelf optimization tools [170]. By following a similar

procedure, the CPM formulation for QAM constellations can

be constructed as

PQAM
CPM : min

x
‖x‖2

2

s.t. C1 : hT
kx = ΩT

ksk, ∀k ∈ K
C2 : αO

m ≥
√

Γkσ2, ∀αO
m ∈ O

C3 : αI
n =

√

Γkσ2, ∀αI
n ∈ I

(27)

Similar to PPSK
CPM for PSK constellations, the CPM problem for

QAM constellations is also convex and can be readily solved.
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Fig. 5: Transmit power v.s. SINR threshold Γ0, Γk = Γ0, ∀k,

K = Nt = 4, σ2 = 1

To validate the significant transmit power savings that CI

precoding exhibits, below in Fig. 5 we present a numerical

example for CPM optimizations PCPM versus traditional PM

formulation PPM that is solved via the SDR approach for

several PSK constellations in a 4 × 4 MU-MISO system.

Significant performance improvements can be observed for CI-

based PM results over the data-independent PM result, with

power savings up to 60% for QPSK, 40% for 8PSK, and

20% for 16PSK, which reveals the superiority of interference

exploitation in PM problems.

C. SINR Balancing

A typical SB optimization aims to improve the fairness

in the wireless communication systems, by maximizing the

minimum received SINR among the users subject to a total

available transmit power budget at the BS [9], [10]. A unified

analytical framework is developed in [9], with which the

optimal solution to the downlink SB optimization is shown

to be equivalent to the optimum of a dual uplink problem.

An efficient iterative algorithm that enjoys a fast convergence

speed is also developed [9] to obtain this optimal solution.

[10] employs the conic optimization approaches to solve the

downlink SB optimization, where an inverse problem property

is discovered. Based on this property, it is shown in [10] that

the SB optimization can be optimally solved by solving a set of

PM problems via bisection search. When a per-antenna power

constraint instead of the sum-power constraint is considered,

it is shown in [16] that the bisection-search framework is still

effective to find the globally optimal solution by solving a set

of dual per-antenna power balancing problems.

Based on the SINR expression in (24), a traditional SB

optimization problem subject to a sum-power constraint can

be formulated as

PSB : max
wk

min
k

γk

s.t. C1 :
K
∑

k=1

‖wk‖22 ≤ P0

(28)

where P0 is the transmit power allowance. Compared to

PM optimizations, SB problems are more difficult to solve.

Fortunately, the optimal solution to the SB problems can be
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Fig. 6: Uncoded and coded BER v.s. SNR, K = Nt = 12, P0 = 1, LDPC, code rate 1/4

obtained either through an iterative algorithm introduced in

[9], or via a bisection-search method proposed in [10] based

on the inverse problem property.

To extend CI exploitation to SB optimizations, we follow a

similar procedure as done for PM optimizations and formulate

a constructive SB (CSB) optimization problem for M-PSK

constellations, given by

PPSK
CSB : max

x
t

s.t. C1 : hT
kx = λksk, ∀k ∈ K

C2 : [ℜ (λk)− t] tan
π

M ≥ |ℑ (λk)| , ∀k ∈ K

C3 : ‖x‖2
2
≤ P0

(29)

as demonstrated in [143], [144]. Recalling Fig. 5, an in-

teresting geometrical observation for PPSK
CSB in (29) is that

the optimization aims to maximize the distance between the

‘constructive region’ and the detection thresholds, such that the

received signals that lie in the ‘constructive region’ are pushed

as far away from the thresholds as possible. Moreover, an

important observation for CPM and CSB optimizations is also

revealed in ‘Corollary 2’ of [139], where it is shown that these

two problems are inverse problems as well, which is similar to

the case for conventional PM and SB optimizations. Based on

this property, efficient algorithms based on the barrier method

have been presented in [139], which are shown to be superior

over the gradient descent algorithm that suffers from a low

convergence speed.

The extension of CI-based SB problems to multi-level mod-

ulations is trivial, by incorporating the CI conditions for the

corresponding multi-level constellations discussed in Section

II-B in the formulated optimizations. For example, when QAM

constellations are considered, the CSB optimization can be

formulated as [145]

PQAM
CSB : max

x
t

s.t. C1 : hT
kx = ΩT

ksk, ∀k ∈ K
C2 : t ≤ αO

m, ∀αO
m ∈ O

C3 : t = αI
n, ∀αI

n ∈ I
C4 : ‖x‖2

2
≤ P0

(30)

The optimization problem formulation for APSK can be

obtained in a similar way and is omitted for brevity.

Compared to traditional SB optimizations that are in gen-

eral difficult to handle, the CI-based SB optimization PPSK
CSB

and PQAM
CSB are both convex and can be readily solved via

convex optimization tools to obtain their optimal solutions.

Moreover, compared to traditional SB optimizations where an

average transmit power is maintained, the symbol-level CSB

optimization guarantees that the transmit power constraint is

strictly met on a symbol-by-symbol basis, as observed in the

power constraint which is on a symbol level. In addition, a

closer look shows that PCVP that follows the symbol-scaling

CI metric in Section III-A and PPSK/QAM
CSB in Section III-C

are indeed equivalent problems and return the same precoded

signals, based on the observation that the objective function t
in the CSB optimization is equal to the inverse of the power

scaling factor βCVP, and therefore maximizing t is equivalent

to minimizing the power scaling factor.

To validate the superior performance of interference ex-

ploitation, we present a representative numerical BER result

of CI precoding in Fig. 6 for a 12 × 12 MU-MISO system,

where symbol-level ZF precoding and RZF precoding are

employed as benchmarks for fairness of comparison. For PSK

modulations, we depict the results for both the ‘strict phase

rotation’ and ‘non-strict phase rotation’ CI metric, while we

employ the ‘symbol scaling’ metric for QAM constellations.

In Fig. 6a, we observe that the SNR gain for CI precoding

based on ‘non-strict phase rotation’ is more than 10dB for

both QPSK and 8PSK, when compared to the RZF precoding.

When the QAM constellation is employed instead, as shown

in Fig. 6b, the SNR gain for CI precoding can still be up to

4.5dB for 16QAM and 2.5dB for 64QAM compared to RZF

precoding. Additional numerical results presented in [145]

show that the SNR gains can become more prominent when

the system scales up. It is also observed that the performance

gains extend to the case of coded BER results.

D. Physical-Layer (PHY) Multicast Reformulation

CI precoding has an interesting interpretation from the

perspective of PHY multicasting [125], [127], [131] and [135].
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PHY multicasting refers to the transmission where a common

message is transmitted to all the receivers in the network,

where no multi-user interference is observed since a single

data stream is sent to all receivers [171]-[177]. The typical

PM and SB problem for PHY multicasting is studied in [171],

where both problems can be transformed into SDP forms and

solved via SDR. To circumvent the drawback that SDR-based

PHY multicasting is only effective when there are not too

many users, as demonstrated in [172], a stochastic precoding

is proposed in [172], which is irrespective of the number of

users in the system, and the case with finite-alphabet inputs

is further studied in [173]. Precoding for multiple co-channel

multicast groups has been considered in [174]-[176], where

a total transmit power constraint and a per-antenna power

constraint is considered, respectively. The extension of PHY

multicasting to a multi-cell network is investigated in [177].

From the interference point of view, as firstly revealed in

[124], CI precoding considered in this paper resembles PHY

multicasting precoding in a way that there exists no multi-user

interference, where we note that CI precoding requires symbol-

level operation, whereas multicasting does not. For PHY mul-

ticasting this is inherent because of single-stream transmission,

while for CI precoding this is achieved by manipulating the

interfering signals such that the resulting received signals lie

in the constructive area and all the interference contributes to

the useful signal power.

Mathematically, it has been shown in [127] and [135] that

CPM optimization can be transformed and reformulated into

a virtual PHY multicasting optimization. To be more specific,

for the PPSK
CPM problem shown in (26), by introducing a modified

channel vector h̃k = hk

sk
and with the introduced x = Ws,

PPSK
CPM is equivalent to the following multicast problem:

PPHY-M
CPM : min

x
‖x‖2

2

s.t. C1 :
[

ℜ
(

h̃T
kx
)

−
√

Γkσ2

]

tan θth ≥
∣

∣

∣
ℑ
(

h̃T
kx
)∣

∣

∣
, ∀k ∈ K

(31)

and it has been revealed in [127] that the optimal solution to

PPSK
CPM in (26) and PPHY-M

CPM in (44) has the following connection:

w∗
ksk =

x∗

K
⇒ w∗

k =
x∗

K · sk
. (32)

Again, compared to traditional PHY multicasting [11] that

is non-convex and needs to be solved via SDR methods,

the virtual PHY multicasting formulation for CI precoding

is convex and can be readily solved. In addition to the

above multicasting reformulation for the CI metric employed

in [127], some similar multicast reformulations can also be

found in [125] and [131] for the CI metric considered in the

corresponding works.

E. Symbol Error Probability (SEP) Optimization

It should be noted that many CI-based precoding works

[122]-[131] have constructed their CI formulations based on

the noiseless received signal hT
kWs, as observed in (4) where

the effect of noise is not taken into account, which may lead

to sub-optimal solutions. To fill in this gap, [134], [139],

[153] and [155] consider the noise-robust CI condition, where

Fig. 7: Characterization for noise-robust CI condition

given a pre-defined noise variance, the received symbol still

falls into the correct detection region of the constellation. As

shown in Fig. 7, for a given noiseless received signal ~OB, the

noise uncertainty region (denoted by the brown zone) needs

to be incorporated into the precoding design, such that the

received signal including noise still satisfies the SNR target

Γk. Specifically, [139] aims to design the precoding matrix

such that when the noise is located in the noise uncertainty

region, the received signal including noise still falls into

the constructive region of the constellations, which can be

correctly decoded. Based on the geometry in Fig. 7, the

updated noise-robust CI condition for a M-PSK constellation

can be mathematically expressed as [139]

ℜ (λk) tan
π

M − Γkσ

cos π
M

≥ |ℑ (λk)| , ∀k ∈ K. (33)

By incorporating the noise-robust CI condition (33) into the

precoding design, the corresponding CPM and CSB can be

formulated as

PPSK
NR-CPM : min

x
‖x‖2

2

s.t. C1 : hT
kx = λksk, ∀k ∈ K

C2 : ℜ (λk) tan
π

M − Γkσ

cos π
M

≥ |ℑ (λk)| , ∀k ∈ K
(34)

and

PPSK
NR-CSB : max

x
t

s.t. C1 : hT
kx = λksk, ∀k ∈ K

C2 : ℜ (λk) tan
π

M − tσ

cos π
M

≥ |ℑ (λk)| , ∀k ∈ K

C3 : ‖x‖2
2
≤ P0

(35)

respectively. Moreover, a closer observation shows that PPSK
CSB

in (29) and PPSK
NR-CSB are indeed equivalent problems and return
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the same solution, based on the fact that

ℜ (λk) tan
π

M − tσ

cos π
M

≥ |ℑ (λk)|

⇒
[

ℜ (λk)−
tσ

sin π
M

]

tan
π

M ≥ |ℑ (λk)|
(36)

and maximizing tσ
sin π

M

is equivalent to maximizing t itself.

[139] also presents an alternative SEP-based CI precoding,

where the detection-region based CI constraint in (33) is

replaced by a probabilistic constraint. By defining the SEP

as the probability when the received signals including noise

falls out of the decision region of a specific constellation point,

where incorrect detection occurs, the SEP-based CI condition

for a M-PSK constellation can be derived as [139]

ℜ (λk) tan
π

M − erf−1 (1− 2p)σ

cos π
M

≥ |ℑ (λk)| , ∀k ∈ K,

(37)

where erf−1 (·) is the Gaussian error function. p is the target

SEP for a PM optimization, while p becomes the objective

function when a SB optimization is considered. By incorpo-

rating (37) into the problem formulation, the corresponding

SEP-based CPM and CSB optimizations can be constructed

accordingly, which is omitted for brevity. The connection

between CI precoding based on the noise-robust design in (33)

and CI precoding based on SEP in (37) is also revealed in

[139].

F. Closed-Form Iterative Precoding

Compared to traditional block-level precoding approaches

that are optimized when the channel changes, it should be

noted that CI precoding has to perform optimizations on

a symbol level, and the resulting computational complexity

becomes an important issue for all CI-based precoding ap-

proaches. Therefore, low-complexity solutions and efficient al-

gorithms have become an indispensable part for the realization

of CI precoding. In the literature, several efficient algorithms

have already been proposed for CI precoding, as detailed in

[125], [127], [139], [141].

Thanks to the simple structures of the objective function

as well as the linear constraints for CI-based PM and SB

optimizations in Section III-B and Section III-C, recently it

has been shown in [143]-[145] that there exist an optimal

precoding structure for CI precoding. Based on the introduc-

tion of x = Ws and the observation that how the power

is distributed among wisi does not affect the solution, it is

therefore safe to assume that each wisi is identical, and the

power constraint for the CSB optimization in (29) and (30)

can be further transformed into [143]

‖x‖2
2
≤ P0 ⇒

K
∑

i=1

s∗iw
H
i wisi ≤

P0

K
. (38)

Based on this equivalent power constraint, by analyzing the

optimization problem PPSK
CSB via Karush-Kuhn-Tucker (KKT)

conditions and further formulating the dual problem, it is

shown in [143] that the optimal precoded signal x for PSK

modulation can be expressed as

x = HH
(

HHH
)−1

diag

(
√

P0

uTST−1STu
UT−1STu

)

s.

(39)

We refer the interested readers to [143] for a detailed deriva-

tion and the expressions for S, T, and U. Based on this closed-

form expression, it is observed in [143] that CI precoding

operates on a symbol level, as both T and u are dependent on

the data symbol s. Another interesting interpretation based on

(39) is that CI precoding can be viewed as the combination of

ZF precoding with a pre-scaling operation that is adaptive to

the data symbols. In fact, it has been shown in [143] that CI

precoding can be regarded as a generalization of ZF precoding,

and ZF precoding is a special case of CI precoding when the

scaling factors λk in (4) are all identical. u ∈ R2K×1 in (39)

needs to be optimized, which can be obtained via the following

optimization:

PPSK
u

: min
u

uT
(

ST−1ST
)

u

s.t. C1 : 1Tu = 1

C2 : ui ≥ 0, ∀i ∈ {1, 2, · · · , 2K}
(40)

which is a standard QP optimization over a simplex.

When a QAM constellation is considered instead, the opti-

mal precoded signal can be obtained in a similar way, which

is given by

x = HH
(

HHH
)−1

Udiag

(
√

P0

uTV−1u
F−1V−1u

)

sE.

(41)

The detailed derivations and notations can be found in [145].

The corresponding dual vector u can also be obtained via

a QP optimization, while in the case of QAM modulation

the QP is no longer optimized over a simplex, since only

um that corresponds to αO
m ∈ O needs to be constrained as

non-negative. By following the steps as in [143]-[145], the

optimal precoding structure for CPM optimizations and the

corresponding QP formulations can be derived in a similar

way. Meanwhile in the literature, an exact closed-form but

sub-optimal solution has also been derived for CPM problems

based on the DPCIR metric in [142].

We further note the complexity reduction with the derived

optimal precoding structure. Compared to the original CPM

and CSB optimizations that belong to second-order cone

programming (SOCP), the formulated optimizations for u are

QP problems, which can be more efficiently solved using

the interior-point methods, as widely acknowledged in the

literature [178]-[180]. Moreover, for both PSK and QAM

constellations, an efficient iterative algorithm is also developed

to solve the corresponding QP optimization, as detailed in

[143] and [145]. This proposed algorithm allows a closed-form

solution within each of its iteration, and obtains the optimal

QP solution within only a few iterations. Another important

feature for the iterative closed-form algorithm proposed in

[143] and [145] is that it returns a feasible precoding matrix

after each iteration, which is a great advantage over other
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efficient algorithms based on gradient descent method [125],

[127], [141] or barrier method [139]. To be more specific, the

iterative closed-form algorithm starts with ZF precoding, and

evolves to the optimal CI precoding with the iteration number

increasing, which offers a flexible performance-complexity

tradeoff compared to other algorithms and makes it most

appealing in practical systems, where performance has to be

compromised for complexity reduction.

In addition, it should be highlighted that the above optimal

precoding structure results and the corresponding QP formu-

lations are based on the conventional case where K ≤ Nt

and
(

HHH
)−1

is applicable. As already mentioned in Section

I-C, CI precoding also supports the case of K > Nt, and

the corresponding precoding structure for PSK and QAM

modulation has been derived in [144] and [145], respectively.

By exploiting the singular value decomposition (SVD), the

expression for W in the case of K > Nt immediately follows

(39) and (41) by substituting
(

HHH
)−1

with the pseudo-

inverse
(

HHH
)+

[181], while it should be noted that the

expression for T in (39) and V in (41) is different in the

case of K > Nt, which then leads to a different QP objective

function.

G. Robust CI Precoding

The above studies and results on CI precoding have been

derived based on the assumption that perfect CSI is known

at the transmitter side, which is however not achievable since

perfect CSI is not available in a practical wireless communi-

cation system. Therefore, it is important to consider a more

realistic scenario and design robust CI-based precoding, when

CSI is not perfect at the transmitter.

In the case of imperfect CSI, the actual channel is usually

modeled as

hk = ĥk + ek, (42)

where ĥk denotes the estimated CSI known at the BS, and ek
represents the CSI uncertainty. The additive channel estimation

errors can be modeled into two different forms, dependent on

the duplex mode of the communication system [182]. In the

time-division duplex (TDD) mode, the CSI can be directly

estimated at the BS using the uplink-downlink reciprocity and

is subject to estimation errors. In this case, the entry of ek can

be modeled as a zero-mean Gaussian random variable, whose

variance is inversely proportional to the transmit SNR. With

this statistical CSI error model, the robust design is usually

designed by optimizing the outage performance [183], [184].

On the other hand, when the frequency-division duplex (FDD)

mode is considered, the CSI error ek is usually modeled as

norm bounded to characterize the quantization errors incurred

by limited feedback [182]. In this case, the channel uncertainty

can be considered as bounded by a spherical region Vk =
{

ek | ‖ek‖22 ≤ δ2k

}

, and the robust precoding algorithms are

usually designed based on the worst-case received SINR [183],

[185]-[187]. The robust PM optimization in the case of norm-

bounded CSI errors can usually be formulated as

PR-PM : min
wk

K
∑

k=1

‖wk‖22

s.t. C1 : γk ≥ Γk, ∀ek ∈ Vk, ∀k ∈ K
C2 : hk = ĥk + ek, ∀k ∈ K

(43)

This conventional robust PM problem PR-PM can be trans-

formed into a SDP form and solved via the SDR approach

[188].

To date, several works have considered the robust design for

CI-based precoding [127], [189], [190]. In [127], the robust

version of CI precoding for both PM and SB optimization

against norm-bounded CSI errors is studied, where the worst-

case robust design for CI precoding is formulated based on

the multicast formulation. By expanding the complex repre-

sentation of the considered problem into its real equivalence,

the robust version of the CI condition for a generic PSK mod-

ulation is derived. Mathematically, this leads to the following

CI-based robust precoding design:

PPSK
R-CPM : min

t1,t2
‖t1‖22

s.t. C1 :
(

ĥE
k

)T

t1 −
(

ĥE
k

)T

t2 tan θth + δk ‖t1 − t2 tan θth‖2
+
√

Γkσ2 tan θth ≤ 0, ∀k ∈ K

C2 : −
(

ĥE
k

)T

t1 −
(

ĥE
k

)T

t2 tan θth + δk ‖t1 − t2 tan θth‖2
+
√

Γkσ2 tan θth ≤ 0, ∀k ∈ K
C3 : t1 = Πt2

(44)

where

t = Ws, t1 =
[

tT
ℑ, t

T
ℜ

]T
, t2 =

[

tT
ℜ,−tT

ℑ

]T
, (45)

and

ĥE
k =

[

(

ĥℜ
k

)T

,
(

ĥℑ
k

)T
]T

, Π =

[

0K IK
−IK 0K

]

. (46)

PPSK
R-CPM is a standard SOCP formulation and can be solved

efficiently [127]. It is shown that compared to traditional PM

and SB optimizations [8] and [9], the transmit power savings

for CI-based robust design can be as large as 3dB when

the error bound is δ2k = 0.0005, which can become more

prominent when the value of the error bound increases.

In addition, when only quantized CSI is available at the

transmitter, [189] divides the interference into predictable

interference that can be manipulated to be constructive, and

unpredictable interference caused by the quantization in the

CSI. Based on the quantized CSI error model, the proposed

method in [189] aims to enhance the useful signal power by

controlling the predictable interference, while minimizing the

effect of uncertainty from unpredictable interference. An upper

bound of the unpredictable interference is firstly derived, based

on which the formulated optimization problem is transformed

into a convex one and an iterative algorithm based on the

gradient descent method is further introduced.
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Alternative robust CPM optimizations have recently been

proposed in [190], where both the statistical and norm-

bounded CSI error model are considered. When a norm-

bounded CSI error model is assumed, the worst-case CI

constraint is firstly formulated and a robust CPM optimization

is proposed, which is similar to [127]. On the other hand, when

the statistical CSI errors are assumed, the robust approach is

designed based on the probabilistic CI constraints, which is

equivalent to designing the precoding matrix such that the

probability of violating the CI constraint is below a pre-

defined threshold. By applying a decorrelation transformation

and employing a lower bound instead, a linear inequality

constraint is derived in [127], based on which the robust CPM

optimization against statistical CSI errors can be formulated

as a convex optimization problem and solved efficiently.

IV. APPLICATIONS OF CI-BASED PRECODING

In the previous section, we have shown the CI formulation

of conventional PM and SB optimizations, and numerically

demonstrated significant performance improvements for CI

precoding in terms of error rate and transmit power savings in

Fig. 5 and Fig. 6. In this section, we discuss how CI precoding

can be adapted to other wireless scenarios and the potential

gains of exploiting interference in these scenarios.

A. Cognitive Radio (CR)

Compared to traditional fixed spectrum allocation strategy,

CR that enables dynamic spectrum access is an effective

way to increase the radio resource utilization and spectral

efficiency, which has been extensively studied [19]-[40]. De-

pendent on the priority of accessing the spectrum, the users are

divided into primary users (PUs) and secondary users (SUs) in

underlay CR networks, where PUs have the highest priority for

the spectrum resources without being aware of the existence of

the SUs in the network, while SUs can only access the network

under the premise that their interference to PUs is below a

certain threshold [22]. Accordingly, a fundamental challenge

for CR networks is to enable the opportunistic spectrum access

for SUs while guaranteeing PUs’ quality-of-service (QoS)

requirements, when the CSI of both PUs and SUs is available

at the BS.

The tradeoff between throughput maximization and inter-

ference minimization for SUs is studied in [23] from an

information-theoretic perspective, where the optimal transmis-

sion scheme that achieves the capacity of the secondary trans-

mission as well as some sub-optimal algorithms is presented.

In addition, precoding designs for CR networks are studied

in [24]-[31] for both perfect CSI and imperfect CSI, where

a precoding scheme termed MSLNR, which is a combination

of the optimal minimum-mean-squared-error (MMSE) receiver

and the signal-to-leakage-plus-noise ratio (SLNR) transmitter,

is proposed in [24]. A joint downlink precoding and power

control optimization is considered in [25] to maximize the

weighted sum rate. The formulated non-convex problem is

tackled by exploiting the non-negative matrix theory, where

a convex approximation as well as a single-input multiple-

output (SIMO)-MISO duality is further established. A robust

precoding design for a single-SU CR network is considered

in [26] in the presence of imperfect CSI, where the service

probability of the SU is maximized through an iterative

algorithm. Specifically, a closed-form solution can be obtained

in the case of only one PU. A robust linear precoding design

is further proposed in [27] for an underlay CR network with

multiple PUs, where the formulated optimization is trans-

formed into a convex-concave problem based on the uplink-

downlink duality, and an iterative SDP-based algorithm is

presented. Typically, a max-min fair problem in the CR Z-

channel that aims to maximize the minimum SINR subject

to average interference power to the PUs and total transmit

power constraint at the secondary BS can be formulated as

PCR-SB : max
wk

min
k

γk

s.t. C1 :
K
∑

i=1

∣

∣gT
l wi

∣

∣

2 ≤ εl, ∀l ∈ L

C2 :
K
∑

k=1

‖wk‖22 ≤ P0

(47)

where L = {1, 2, · · · , L}, gl denotes the channel vector

between the secondary BS and the l-th PU, and εl is the

maximum allowed interference power. C1 therefore guarantees

that the interference for the PUs from the secondary BS is

below the required threshold. The formulated problem PCR-SB

can be solved via the bisection-search method and sequential

QP [191]-[193]. Additional robust precoding designs for CR

networks against imperfect CSI can be found in [28]-[31], and

CR has also been combined with relay in [32]-[34].

CI-based precoding has shown to be effective in CR net-

works [35]-[40]. Early works include [35] and [36] based on

selective CI precoding and correlation-rotation CI precoding,

where a parallel transmission system aided with a cognitive

relay is considered in [35] while an overlay CR network is

investigated in [36]. The corresponding performance advan-

tages of CI precoding over ZF precoding have been shown

numerically in terms of SER, for both considered scenarios.

More recently, the optimization-based CI precoding method

proposed in [127] has been applied to the CR Z-channel in

[37], [38] and [194]. The considered optimization aims to

minimize the worst SU’s SER subject to the total transmit

power and the interference to the PUs constraints, formulated

as

PPSK
CI-CR : min

x, ρ
ρ

s.t. C1 : Pr {sk is incorrectly decoded | nk} ≤ ρ, ∀k ∈ K
C2 :

∣

∣gT
l x
∣

∣

2 ≤ εl, ∀k ∈ L
C3 : ‖x‖2

2
≤ P0

(48)

Particularly, [38] derives the condition under which the formu-

lated probabilistic precoding design PPSK
CI-CR can be transformed

into a convex deterministic optimization, based on which a

simple approximation method that allows a convenient SOCP

formulation is further introduced for additional reduction in

the computational costs. Compared to traditional interference-

reduction max-min fair optimizations, an SNR gain of 10dB



16

can be observed for the CI-based precoding for the underlay

CR Z-channel scenario in terms of SER, where the SBS is

equipped with 10 transmit antennas with a total number of 8

SUs and 2 PUs in the network, as illustrated in [38].

B. Simultaneous Wireless Information and Power Transfer

(SWIPT)

Energy harvesting (EH) and wireless power transfer

for wireless communication networks have become a new

paradigm that allows user equipments (UEs) to prolong the

battery life [41], [195]. In wireless communications, the emit-

ted RF signals carry both the information and energy at the

same time, and therefore SWIPT techniques that enable the

simultaneous transmission of information symbols and energy

to the UEs have become particularly appealing [42]-[55].

In [43], three types of SWIPT scenarios are introduced: (i)

separate UEs where each individual UE is acting as either

an EH receiver or an information decoding (ID) receiver; (ii)

time-switching UEs where the UEs are acting as EH receivers

within some symbol durations while as ID receivers within

other symbol durations; and (iii) power-splitting UEs where

UEs divide the power of the received signals into two parts,

one part for ID and the other part for EH.

Some precoding designs for MIMO SWIPT systems have

been studied in [44]-[47]. [44] and [45] consider the separate-

UE SWIPT scenario, where in [44] the ZF precoding method

is employed for MIMO SWIPT systems, and it is shown that

the harvested energy obtained by the EH receivers can be

increased at the cost of an SINR loss of the ID receivers.

[45] designs the precoding approaches which aim to maximize

the harvested energy for EH receivers while guaranteeing the

SINR target of the IDs, and the globally optimal solutions

are obtained via the SDR method. A power-splitting SWIPT

scenario is studied for a MISO multicasting system in [46]

and for a unicast system in [47], where the joint optimization

on the precoding vector and the receive power splitting ratio

is investigated. Based on [47], when power-splitting UEs are

considered, the typical PM formulation for a unicast SWIPT

system can be expressed as

PSWIPT : min
wk, ρk

K
∑

k=1

‖wk‖22

s.t. C1 :

∣

∣hT
kwk

∣

∣

2

∑

i6=k

∣

∣hT
kwi

∣

∣

2
+ σ2 +

σ2

C

ρk

≥ Γk, ∀k ∈ K

C2 : (1− ρk)

(

K
∑

i=1

∣

∣hT
kwi

∣

∣

2
+ σ2

)

≥ Ek, ∀k ∈ K

C3 : 0 ≤ ρk ≤ 1, ∀k ∈ K
(49)

where σ2
C is the additional noise power introduced in the RF

to baseband conversion, Ek is the harvested energy threshold

for UE k, ρk represents the fraction of power for ID, and

(1− ρk) is the fraction of power for EH. C1 and C2 are the

downlink received SINR and harvested energy requirements,

respectively. This formulated PM problem, as well as the

PM formulation for multicast case in [46], can be efficiently

solved via the SDR method, which is shown to be tight in

both scenarios. In addition to the above studies, the joint

information and energy precoding methods for SWIPT are

also investigated in MIMO interference channels in [48]-[51],

and SWIPT techniques have also been combined with PHY

security in [52]-[55] by considering the broadcast nature of

wireless communication systems.

The concept of CI exploitation has been applied to power-

splitting SWIPT systems in [56]-[58]. Compared to traditional

SWIPT systems that regard multi-user interference as harmful

in the ID process, CI-based SWIPT precoding methods take

advantages of the CI, which is inherent in the downlink

transmission, as an additional power source for both useful

information and wireless energy. A joint downlink precoding

and receive power splitting optimization is formulated as a

PM problem, subject to the QoS target for the ID receivers

and EH thresholds for the EH receivers, given by

PPSK
CI-SWIPT : min

x, ρk

‖x‖2
2

s.t. C1 : hT
kx = λksk, ∀k ∈ K

C2 :

[

ℜ (λk)−
√

Γk

(

σ2 +
σ2
C

ρk

)

]

tan θth ≥ |ℑ (λk)| , ∀k ∈ K

C3 :
∣

∣hT
kx
∣

∣ ≥
√

Ek

1− ρk
, ∀k ∈ K

C4 : 0 ≤ ρk ≤ 1, ∀k ∈ K
(50)

Compared to PM problems for interference-reduction MIMO

SWIPT systems where the PM problems can be transformed

and readily solved via SDR approaches, CI-based PM prob-

lems for MIMO SWIPT systems are more difficult to handle

due to the non-convex EH constraints. In [56], this is managed

by using difference of convex optimization and the successive

linear approximation method, which returns a local optimum

solution. In [57] and [58], SOCP-based and SDP-based al-

gorithms with polynomial complexity are further introduced,

which provide the upper and lower bounds to the optimal

solution. By further conducting the asymptotic analysis, the

optimality of these algorithms are established when the mod-

ulation order and SINR target go to infinity. By allowing a

SLP design for MIMO SWIPT systems, the CI-based approach

exhibits a transmit power saving as large as 8.6dBw when

Ek = −30dBm and 9.2dBw when Ek = −10dBm, compared

to traditional precoding designs based on SDR.

C. Physical-Layer (PHY) Security

Compared with wired communications, a wireless commu-

nication system is naturally more susceptible and vulnerable

to security threats due to its broadcast nature. Traditionally,

the security issues are handled at the network layer by key-

based cryptographic techniques. Nevertheless, PHY security

approaches, which artificially add structured redundancy in the

transmit signals in the physical layer such that the legitimate

users can correctly decode the confidential information while

the eavesdroppers (Eves) cannot, have drawn increasing re-

search attention in the information-theoretic society in recent
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years [61]-[77]. By employing PHY transmission schemes that

are specifically designed for security using multiple antennas,

PHY security techniques can improve the information security

and act as an additional security layer on top of the traditional

cryptographic approaches [61]-[64].

One possible approach for realizing PHY security is through

downlink precoding, which is able to direct the signals car-

rying confidential information to the legitimate users while

minimizing the power leakage to the Eves, as studied in [65]-

[67], where the secrecy rate maximization is discussed when

the BS has either perfect or imperfect CSI of the Eves. Another

promising approach for PHY security is to send generated

artificial noise (AN) signals to interfere the Eves deliberately,

as firstly proposed in [68] and further investigated in [69]-

[71]. The design for the AN-aided PHY security techniques is

largely dependent on whether the BS has the CSI of the Eves.

When no CSI of the Eves is available at the BS, a popular

design is to generate an isotropic AN that is uniformly spread

in the null space of the legitimate channel [68]. By doing so,

the communication for the legitimate users is not affected by

the AN while the reception of the Eves is degraded. If the

knowledge of the Eves’ CSI is known perfectly or partially at

the BS, this information can further be exploited to generate

spatially selective AN that is much more effectively than the

isotropic AN, as shown in [69]-[71]. Specifically, when the

BS aims to transmit confidential messages to a legitimate user

in the presence of K Eves with full CSI available, the AN-

aided secure PM optimization subject to QoS constraints can

be formulated as [76]

PPHY-S : min
w,z

‖w‖2
2
+ ‖z‖2

2

s.t. C1 :

∣

∣hT
Lw
∣

∣

2

∣

∣hT
Lz
∣

∣

2
+ σ2

≥ ΓL

C2 :

∣

∣

∣hT
E,kw

∣

∣

∣

2

∣

∣

∣hT
E,kz

∣

∣

∣

2

+ σ2

≤ ΓE,k, ∀k ∈ K

(51)

where hL is the channel between the legitimate user and the

BS, and hE,k is the channel between the k-th eavesdropper and

the BS. C1 guarantees that the received SINR for the legiti-

mate user meets a pre-defined threshold for correct detection,

while C2 ensures that the Eves cannot correctly decode the

confidential information. The above optimization PPHY-S can

readily be solved by the SDR method as shown in [69] and

[71]. Several other representative works on PHY security can

be found in [72]-[74] for two-way relay networks and [75] for

transmit antenna selection (AS).

CI-based precoding can be applied to PHY security tech-

niques for additional performance improvements from the

following two different perspectives [76]-[79]. On one hand,

when the CSI of the Eves is not known to the BS, the AN

design can be shifted from an isotropic null space based

method to a CI-based method for transmit power savings,

which is similar to the idea of conventional interference

exploitation, as shown in [78]. On the other hand, in the case

where partial/full CSI is available, it allows a more advanced

CI-based approach where the AN signals are designed to be

constructive to the legitimate users and destructive to the Eves

at the same time, which further reduces the required transmit

power at the BS while impeding the signal detection at the

Eves. The corresponding optimization problem employing

PSK modulations can be formulated as [78]

PPSK
CI-PHY-S : min

xL,z
‖xL + z‖2

2

s.t. C1 : hT
L (xL + z) = λLsL

C2 : hT
E,k (xL + z) = λE,ksL, ∀k ∈ K

C3 :
[

ℜ (λL)−
√

ΓLσ2

]

tan θth ≥ |ℑ (λL)|

C4 :

[

ℜ (λE,k)−
√

ΓE,kσ2

]

tan θth ≤ ℑ (λE,k) , ∀k ∈ K

C5 :

[

ℜ (λE,k)−
√

ΓE,kσ2

]

tan θth ≥ −ℑ (λE,k) , ∀k ∈ K
(52)

where C3 guarantees CI for the legitimate user, while C4 and

C5 ensure that the AN signals are destructive to the Eves.

PPSK
CI-PHY-S is a standard SOCP problem and can be efficiently

solved with interior-point based solvers. Similar benefits for

CI-based design over interference-reduction designs are also

observed when PHY security is combined with SWIPT, as

studied in [79].

D. Full-Duplex (FD) Communications

Traditional wireless communication systems work either

in FDD or TDD mode, with both being the half-duplex

(HD) model. To meet the high demand for spectral efficiency

and QoS requirement of the future wireless systems, FD

communications, which allow simultaneous transmission and

reception, have been considered as one of the solutions [80]-

[84]. While FD transmission can theoretically double the

spectral efficiency of the HD systems, the self interference

from the transmit antennas to the receive antennas of the

FD transceivers can severely affect the quality of commu-

nication in practical scenarios. Thanks to the recent major

breakthroughs for practical FD systems which allow a self

interference cancellation of up to 100dB with the use of

additional hardware, as illustrated in [85], [86], FD commu-

nications have received increasing research attention in recent

years [87]-[93].

In [87], a pricing-based precoding method specifically tai-

lored for the suppression of self interference is proposed,

which guarantees the linearity of the receiver and achieves

a spectral efficiency that is nearly 1.8 times of a HD system.

In [88], precoding approaches for a sum-rate maximization

in FD systems are designed based on the sequential convex

programming, and a joint consideration of forward precoding

and self interference cancellation is further studied in [89]. A

downlink precoding and uplink multi-user combining problem

for sum-rate maximization in FD systems is investigated in

[90]. The formulated non-convex optimization is handled by

exploiting the uplink-downlink duality, and a minorization-

maximization (MM) algorithm is proposed. The practical

deployment of a multi-user MIMO system with a FD BS and

HD UEs is considered in [91], where a joint optimization
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in precoding designs and uplink/downlink user selection is

proposed. A multi-objective optimization problem that aims

to jointly minimize the total downlink and uplink transmit

power for the considered FD system is studied in [92] and

[93], which can be formulated as

PFD : min
wk,Pj

max
a=1,2

{ηa (Q∗
a −Qa (wk, Pj))}

s.t. C1 :

∣

∣hT
kwk

∣

∣

2

∑

i6=k

∣

∣hT
kwi

∣

∣

2
+ σ2

≥ ΓDL
k , ∀k ∈ K

C2 :
Pj

∣

∣uT
jgj

∣

∣

2

∑

n6=j

Pn

∣

∣uT
jgn

∣

∣

2
+

K
∑

k=1

∣

∣uT
jHSIwk

∣

∣

2
+ σ2 ‖uj‖22

≥ ΓUL
j

∀j ∈ J
C3 : Pj ≥ 0, ∀j ∈ J

(53)

where C1 and C2 are to guarantee the downlink and uplink

SINR requirement, respectively. We refer the interested readers

to [92], [93], and [102] for a detailed explanation on the

notations in PFD, where it is also shown that the formulated

precoding design for FD communications can be solved via

the SDR approach. Additional studies on FD communications

include applications to PHY security in [94]-[96], and FD

relays in [97]-[100].

CI exploitation can also be applied to FD communications

for additional performance improvements, as recently studied

in [101]-[103] for both PSK and QAM constellations. The CI-

based PM problem in a multi-user FD system is considered

in [101] and [102], where a multi-objective optimization via

the weighted Chebycheff method is employed to study the

tradeoff between the two desirable design objectives, which

are the total downlink transmit power at the BS and the total

uplink power from the UEs. When PSK constellations are

considered, the corresponding CI-based optimization for FD

communications can be formulated as [102]

PPSK
CI-FD : min

x,Pj ,t
t

s.t. C1 : hT
kx = λksk, ∀k ∈ K

C2 :

[

ℜ (λk)−
√

ΓDL
k σ2

]

tan θth ≥ |ℑ (λk)| , ∀k ∈ K

C3 :
Pj

∣

∣uT
jgj

∣

∣

2

∑

n6=j

Pn

∣

∣uT
jgn

∣

∣

2
+
∣

∣uT
jHSIx

∣

∣

2
+ σ2 ‖uj‖22

≥ ΓUL
j

∀j ∈ J
C4 : ηa (Q

∗
a −Qa (x, Pj , t)) ≤ t, ∀a ∈ {1, 2}

C5 : Pj ≥ 0, ∀j ∈ J
(54)

where C2 is the CI-adapted SINR requirement for the down-

link transmission. PPSK
CI-FD is shown to be a convex problem

and can be readily solved. Numerical results have shown a

2dBw downlink transmit power saving and a 7dBw uplink

transmit power saving by exploiting the CI in a system where

FD BS is equipped with 8 antennas with a total number of

6 downlink users and 3 uplink users, which also leads to the

substantial reduction in the self interference. Importantly, the

multi-objective framework allows the flexible tradeoff between

the uplink power savings and the downlink power savings,

which further leads to an improvement in the overall energy

efficiency. In addition, CI-based FD communications have

also been considered in the presence of imperfect CSI in

[103], where a robust design for the joint minimization of

the uplink and downlink transmit power and maximization of

the harvested energy is studied subject to channel estimation

errors. It is shown by numerical results that the gain in the

harvested energy can be as large as 5dBm with an increase in

the downlink transmit power.

E. Multi-Cell Distributed Antennas (DAs)

A DA system is a wireless communication architecture

where multiple geographically DAs are connected to a central

processing unit through distributed remote radio heads (RRHs)

[196]-[203], where in the literature it is also referred to as

‘BS cooperation’, ‘network MIMO’ or ‘multi-cell processing’,

etc. While consuming an increased backhaul requirement

compared to traditional centralized multi-antenna BSs, DA

systems intuitively have the advantage of greatly reducing the

path loss of the communication links, thanks to the reduced

distance between the transmitting antennas and receiving UEs.

Therefore, the DA system is a promising architecture to reduce

the required transmit power of the BS for a fixed channel

quality and leads to a more uniform coverage inside the cell

[198], [199]. Due to these benefits, DA systems have received

considerable research attention, which includes the studies on

spectral efficiency, energy efficiency and their tradeoffs in

[200]-[202], power allocation schemes for energy efficiency

maximization in [203]-[205], precoding designs in [205]-

[208], and AS strategies in [209].

More recently, several DA systems have also been proposed

in the massive MIMO regime, for example the ‘cell-free mas-

sive MIMO’ in [210]-[214]. Cell-free massive MIMO systems

employ a large number of access points (APs) equipped with

single antenna or a few antennas geographically distributed

over a wide area, which exhibits significant throughput im-

provements compared to small-cell deployments [210]. In a

cell-free massive MIMO system, the concept of ‘cell’ does

not exist, since the entire area is covered by distributed APs

that cooperate phase-coherently via a backhaul network to the

central processing unit, which names this DA system [210].

One key feature of cell-free massive MIMO systems is that,

only local signal processing at each RRH is sufficient without

the need for centralized processing, when the MRT precoding

is employed [210]-[212]. In addition to the simple MRT

precoding, [213] and [214] investigate the cell-free massive

MIMO systems when ZF precoding is employed, where power

control algorithms are presented for SB optimization in [213]

and for energy efficiency maximization in [214]. In addition

to cell-free massive MIMO architectures, there is another

promising DA system termed ‘fog massive MIMO’ that has

recently been proposed in [215] and [216], which exploits a

small number of RRHs with each RRH deploying a large-scale

antenna array.

The concept of CI precoding has been extended to DA

systems in [217], where [217] focuses on the PHY security
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enhanced by CI precoding for a user-centric DA system. A

joint CI-based secure precoding and a DA selection method is

proposed for transmit PM problem, in which the AN signals

are designed to be constructive to the UEs while destructive

to the Eves. The formulated problems are discussed for the

case when only imperfect CSI is known as well as the

case when the CSI of the Eves is completely unknown. In

addition, CI precoding has also been extended to a multi-cell

scenario in [218] based on both deterministic optimization

and probabilistic optimization, where several coordination

schemes are proposed for downlink transmission. A fully-

coordinated strategy is firstly considered, where both the intra-

cell interference and the inter-cell interference are exploited

for performance improvements based on the CI formulation,

by sharing the information of both the channel and data

symbols among the BSs. A partially-coordinated scheme is

also introduced for coordination overhead reduction, where the

intra-cell interference is manipulated to be constructive while

the inter-cell interference is suppressed by only sharing the

CSI among the BSs. In a numerical example where 3 BSs

cooperate with 3 users in each cell, [218] shows a 4dBm

power saving gain based on the deterministic optimization

and a 6dBm power saving gain based on the probabilistic

optimization.

F. Spatio-Temporal CI: Faster-than-Nyquist Signaling

Faster-than-Nyquist (FTN) signaling [219]-[224] is a signal

processing scheme allowing a notable improvement of the

spectral efficiency of wireless communication systems. The

key idea of FTN signaling is a reduction of the time spacing

between two adjacent pulses (the symbol period) below the

one satisfying the Nyquist condition. In other words, in FTN

signaling the data rate is increased by accelerating the trans-

mitted pulses in the temporal dimension (time packing), thus

introducing controlled inter-symbol interference (ISI) which

needs to be handled. The main problem of FTN signaling

is the need to cope with the introduced ISI, which in turn

results in complex receivers relying on trellis decoders as well

as ad-hoc equalization schemes, whose computational costs

are often prohibitive in practical applications. In [225]-[227],

a novel transmission technique has been proposed, which

merges the aggressive frequency reuse relying on precoding,

in particular SLP, with FTN signaling. In a generic MU-

MISO system, these works extend the concept of SLP at the

transmitter side in order to tackle not only the interference in

the spatial dimension (the multi-user interference), but also the

interference in the temporal dimension (the ISI intentionally

introduced through FTN signaling). Such an extension allows

FTN signaling in a MU-MISO framework and, at the same

time, solves the problem of complex FTN receivers, as the

ISI is completely handled at the transmitter. This transmission

technique is referred to as spatio-temporal CI, as it enhances

the CI both in the temporal and in the spatial dimensions, thus

gleaning benefits from both the domains.

The application of SLP in the context of FTN signaling

relies on a new system model, which takes into account the

temporal variation of the transmitted streams at each antenna

Fig. 8: Block diagram of the SLP approach based on spatio-

temporal CI

by modeling the pulse shaping filters. Considering a MU-

MISO system with NT transmit antennas and K single-antenna

user terminals, the main idea is to split each data stream in

temporal blocks of S symbols. The data symbols for the dif-

ferent users, for a given block, can be represented in a matrix

S = [s1 . . . sK ]
T ∈ CK×S , while the precoded symbol streams

can be aggregated in a matrix D = [d1 . . .dNT
]T ∈ CNT×S .

Denoting T as the symbol period and µ as the oversampling

factor, the pulse-shaped transmitted waveform for the generic

n-th antenna can be represented through its discrete samples,

spaced by ts =
T
µ

, given by

xn[m] =
S
∑

j=1

dn[j]α[(m− 1)ts − (j − 1)T ], m = 1, . . . , µS,

(55)

where α(t) represents the considered unit energy pulse and

dn[j] is the j-th element of the symbol vector dn. The output

(oversampled) signals from all the antennas can be aggregated

in a matrix X = [x1 . . .xNT
]
T ∈ CNT×µS . With this definition,

a compact way to represent the pulse shaping operation is

X = DATX, with ATX ∈ RS×µS being a block Toeplitz

matrix including the filter taps.

By aggregating the received symbols at the K users in a

matrix Y ∈ CK×S , the spatio-temporal communication model

can be written as [225], [227]

Y = HXARX + Z̃ARX = HDA+ Z, (56)

with Z̃ being the noise in the oversampled domain, ARX ∈
RµS×S modeling the matched filtering and downsampling

operation performed at each receiver, and A = ATXARX ∈
RS×S representing the combination of the filters at the trans-

mitter and at the receiver. The overall spatio-temporal system

model, accounting for the ISI through A and the multi-user

interference through H, is represented in the block scheme

of Fig. 8. By vectorizing the introduced signal matrices over

the temporal dimension, the spatio-temporal communication

model can be expressed as

y =
(

H⊗AT
)

d+ z = Gd+ z, (57)

which is formally similar to the spatial model of (3) used

in the traditional SLP literature. The matrix G = H⊗AT ∈
CKS×NTS is an equivalent representation of the channel matrix

in this spatio-temporal model.

The above spatio-temporal communication model has been

used in [225] to formulate a CI-PM problem with QoS

constraints, which is mathematically equivalent to the PM
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(a) Constant-envelope precoding (b) Antenna selection (c) Hybrid precoding (d) Low-resolution DACs

Fig. 9: A variety of hardware-efficient BS architecture

problem of [228]. The related problem is convex and can be

solved resorting to CVX. Moreover, a sequential approach

has been proposed in [225] and [227], where the residual

ISI amongst the subsequent temporal blocks is also tackled.

Numerical results have shown that SLP schemes based on FTN

can outperform the Nyquist-based counterparts both in terms

of energy efficiency and achievable rate, with performance

gains up to 25%.

V. SYMBOL-LEVEL PRECODING FOR HARDWARE

EFFICIENCY

In this section, we further extend the concept of CI ex-

ploitation to hardware-constrained large-scale antenna systems

for hardware efficiency, which includes constant-envelope pre-

coding (CEP), AS, hybrid analog-digital (AD) precoding, low-

resolution digital-to-analog converters (DACs), non linearities,

and RF-domain SLP. Aimed at improving both the cost effi-

ciency and energy efficiency of the BS, these schemes attempt

to reduce the complexity of the BS architecture and the number

of some hardware components, as shown in Fig. 9 and Fig. 11,

respectively.

A. Constant-Envelope Precoding (CEP)

In recent years, the use of a large-scale antenna array at

the transmitter has been shown to offer remarkable benefits

compared to a small-scale MIMO system [229], [230]. Unlike

traditional small-scale MIMO systems that employ highly

linear and power-inefficient radio frequency (RF) amplifiers,

the practical implementation of large-scale MIMO systems

requires the RF amplifiers to be power efficient, otherwise

the consequent power consumption of the BS would be pro-

hibitively high. Unfortunately, power-efficient RF amplifiers

usually experience poor linearity characteristics and therefore

further require the input signals to have a low PAPR. Accord-

ingly, CE transmission, which enforces each antenna element

to emit CE signals and allows the use of the most power-

efficient and cheapest power amplifiers, as shown in Fig. 9a,

has become an active research direction [231]-[244], which

holds great potential for the practical implementation of large-

scale antenna systems.

In [231], a single-user single-stream CE transmission is

considered, where it is shown that in this case the noiseless

received signal region is doughnut shaped. Based on this ob-

servation, a near-optimal capacity-achieving input distribution

is derived. It is further revealed in [232] that the inner radius

of the doughnut-shaped region has a closed-form expression.

A joint optimization of CEP and antenna subset selection is

proposed in [233] from a geometric perspective for a single-

user MISO system. CEP has been further extended to a multi-

user case in [234], where the CEP problem is formulated as

a non-linear least-squares (NLS) optimization to minimize the

multi-user interference, given by

PCEP : min
θ

K
∑

k=1

∣

∣

∣

∣

∣

NT
∑

n=1

hk,ne
jθn −

√

Eksk

∣

∣

∣

∣

∣

2

s.t. C1 : |θn| ≤ π, ∀n ∈ {1, 2, · · · , NT}
(58)

where
√
Ek is the magnitude of user k’s data symbol sk,

hk,n is the n-th entry of hk, and θ = [θ1, θ2, · · · , θNT
]
T
. An

iterative algorithm is presented in [234] to efficiently obtain the

phases of the CE signals. Building upon this, a cross-entropy

optimization (CEO) method is introduced in [235] for PCEP,

which achieves an improved performance over [234]. Some

other works include CEP for frequency-selective channels in

[236], a joint transceiver design for CEP in a point-to-point

(P2P) MIMO system in [237], CEP for MISO multicasting in

[238], [239], and CEP with quantized phases in [240].

A closer look at the above studies reveals that CEP has to

operate on a symbol level, since the phases of the CE signals

are dependent on the information of the data symbols. From

this point of view, CI-based precoding that also requires a

symbol-level operation can be a perfect match with CEP. The

concept of CI exploitation has been applied to CEP firstly in

[241] and [242], where instead of minimizing the multi-user

interference, constructive CEP aims to maximize the CI effect

subject to transmitting CE signals at each antenna element,

which can be formulated as

PPSK
C-CEP : max

x
t

s.t. C1 : hT
kx = λksk, ∀k ∈ K

C2 : [ℜ (λk)− t] tan θth ≥ |ℑ (λk)| , ∀k ∈ K

C3 : |xn| =
√

P0

NT

, ∀n ∈ {1, 2, · · · , NT}

(59)

where x = [x1, x2, · · · , xNT
]
T
. PPSK

C-CEP is generally non-convex

because of the non-convex constraint C3. A CEO-based and a

two-step CVX-based approach are further introduced in [242]

for PPSK
C-CEP, both of which are shown to achieve significant

performance improvements over the traditional CEP methods

in [234] and [235] based on interference minimization. While

not explicitly mentioned, the CEP approach for MISO mul-

ticasting proposed in [238], which maximizes the minimum

scaling effect among the users, is also based on the concept
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of interference exploitation by employing the symbol-scaling

CI metric. In [243], the CEP problem is studied from a

Riemannian manifold perspective. By approximating the real

representation of the original problem and mapping it onto

a Riemannian manifold, an efficient Riemannian conjugate

gradient algorithm is proposed, and additional performance

improvements in terms of SER are observed compared to

the CEP methods in [242]. The above studies in [241]-[243]

show that the concept of interference exploitation can be

readily extended to CEP problems and significant performance

benefits are observed. When quantized phases are considered,

CI-based CEP problems are studied in [244] for both PSK and

QAM signaling.

Additionally, the SLP techniques proposed for hardware-

efficient architectures in [245] are also candidates for CE

transmission. While the proposed architectures include gain

control at the transmitter, as contrary to CEP, it is shown that

if the gain is kept constant regardless of the channel realization

or the transmitted symbols, the derived algorithm that is based

on the coordinate descent method is shown to be an efficient

solution for CE transmission, which is able to reduce multi-

user interference with much fewer transmit antennas than other

CEP techniques in the literature. The proposed solution is

suitable for PSK as well as multi-level constellations. A more

detailed explanation of this work will be presented in Section

V-F.

B. Antenna Selection (AS)

From the descriptions for CEP schemes, it is observed that

CE transmission attempts to reduce the hardware complexity

and the consequent power consumption at the BS by employ-

ing power-efficient and low-cost RF amplifiers. In addition to

the CE transmission, AS is also a low-cost and low-complexity

alternative for power-efficient and cost-efficient BSs with

large-scale antenna arrays, which has received continuous

research attention [246]-[262]. In AS techniques, only a subset

of the entire antenna array is activated for transmission or

reception, as shown in Fig. 9b, which allows for a reduction in

the number of active RF chains and consequently a reduction

in the power consumption. In addition, AS also benefits from

exploiting the degrees of freedom provided by the excess of

antennas, i.e., antenna diversity at the BS [246], [247].

AS techniques have already been a popular research topic

in small-scale MIMO systems [248]-[254], which exhibit

benefits in terms of power efficiency [248]. The initial AS

approach is based on the exhaustive search method [249],

whose computational cost could become impractically high

when the number of antennas scales up. A low-complexity

receive AS scheme that maximizes the channel capacity has

been introduced in [250], which is aimed at minimizing the

performance loss caused by reducing the number of active

antennas at the receiver side. Transmit AS methods have been

studied in [252]-[254], where it is shown in [252] that AS can

maximize the received SNR when a maximum ratio combining

(MRC) detector is considered at the receiver. [253] and [254]

further reveal that the error rate performance can be further

improved by transmit AS techniques. More recently, research

on AS has been extended to large-scale antenna arrays in

[255]-[257], where the energy efficiency benefits offered by

AS techniques are shown in [255] and [256]. Energy-efficient

AS schemes are studied in [257], where it is shown that

a simple random AS scheme can significantly improve the

energy efficiency performance of the BS with a large-scale

antenna array.

To extend the concept of CI exploitation to AS techniques,

a transmit AS scheme has been designed in [258] to minimize

the error rate, where a partial sub-channel orthogonalization

is employed to exploit the constructive part of the existing

interference while nullifying the destructive part. A more

advanced CI-driven AS technique is introduced in [259] and

[260], which maximizes the CI effect for the users by selecting

the antenna subset that achieves the highest CI effect. With the

proposed AS algorithms, it is shown that the combination of

CI-based AS with MRT precoding is able to outperform more

complicated ZF precoding with traditional computationally

expensive AS schemes. More recently, thanks to the develop-

ments of optimization-based CI precoding in [126] and [127],

a joint AS and precoding method based on interference ex-

ploitation is further proposed in [261] and [262]. A mix-integer

optimization problem is firstly formulated, which maximizes

the minimum CI effect among the users by jointly optimizing

the transmit AS decision and the precoded signals, given by

PPSK
C-AS : max

x,a
t

s.t. C1 : hT
kx = λksk, ∀k ∈ K

C2 : [ℜ (λk)− t] tan θth ≥ |ℑ (λk)| , ∀k ∈ K
C3 : ‖x‖2

2
≤ P0

C4 : |sgn (x)| = a

C5 :

NT
∑

n=1

an = NAC, an ∈ {0, 1} , ∀n

(60)

where sgn (·) is the sign function, and a = [a1, a2, · · · , aNT
]
T
.

C4 and C5 jointly guarantee that only NAC transmit antennas

are active and transmit precoded signals. In [262], three

sub-optimal methods are also introduced for the formulated

problem PPSK
C-AS to reduce the computational complexity of the

joint approach. Similarly, remarkable performance improve-

ments for this CI-based joint AS and precoding have been

observed through extensive numerical results in [262], which

demonstrates the superiority of interference exploitation in the

area of AS.

Another symbol-level AS scheme that aims to minimize the

multi-user interference can be mathematically formulated as

the following optimization problem [245], [263]

PAS : min
x

‖Hx−√
γ · s‖2

2

s.t. C1 : ||x||
0
= NAC

(61)

where γ is the SNR. PAS is a linear least-squares problem

with an ℓ0-norm constraint, which is generally non-convex

and requires an exhaustive search solution. To obtain a feasible

solution with a lower computational cost, PAS can be refor-

mulated into a regularized least-squares regression problem,

as detailed in [245] and [263].
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C. Hybrid Analog-Digital (AD) Precoding

Compared to AS techniques which reduce the hardware

complexity by reducing the number of active antennas and

accordingly reducing the number of active RF chains, another

potential technique that also employs a reduced number of

RF chains is the hybrid AD precoding, which has drawn

extensive research attention in the past few years [264]-[282].

Different from AS techniques, all the antennas are active in

hybrid AD structures, and the signal processing is divided

into analog part and digital part, as shown in Fig. 9c, where

the analog part usually consists of low-cost phase shifters

[266]. Hybrid AD structures have firstly been considered

for the future millimeter-wave (mmWave) communications

as a promising structure for practical implementation. For

mmWave communications, while the small wavelength of

mmWave signals allows the use of a large-scale antenna

array in a small form factor to combat the severe pathloss

[283], dedicating a single RF chain for each antenna element

becomes nearly infeasible for mmWave transceivers, since the

hardware components working at mmWave bands are costly

and power expensive [264]-[266]. By reducing the number of

RF chains employed at the transceivers, hybrid AD structures

are able to greatly reduce the hardware complexity and the

corresponding power consumption at the cost of only a slight

performance loss, thus achieving an improved balance between

performance, complexity and cost.

In [267], a single-user mmWave communication system has

been considered, and the hybrid precoding and combining are

joint designed to maximize the spectral efficiency, where an

orthogonal matching pursuit (OMP)-based algorithm is pro-

posed. A multi-user transmission has further been considered

in [269], where the analog precoder/combiner is designed to

maximize the effective channel gain while the digital precoder

is designed to mitigate the multi-user interference based on

ZF, constituting a two-stage hybrid precoding. The hybrid

precoding design for a single-user mmWave transmission in

[270] considers both the fully-connected and the partially-

connected AD structures, where a manifold optimization based

algorithm is proposed based on the alternating minimization

framework. An important proposition is established in [271],

where it is shown that hybrid precoding is able to realize

any fully-digital precoding when the number of RF chains

is twice the number of data streams. Meanwhile, [271] also

proposes a near-optimal hybrid precoding design for both

single-user and multi-user transmissions, when the number of

RF chains becomes fewer. [272] has focused on the partially-

connected structures in a multi-user scenario and proposed

hybrid precoding designs based on the concept of successive

interference cancellation (SIC). By assuming the digital pre-

coder to be a diagonal matrix, the total spectral efficiency

optimization problem is decomposed into a series of sim-

ple sub-rate optimization problems, which can be efficiently

solved by the power iteration algorithm. Additional works on

hybrid precoding include some low-complexity designs based

on MRT in [273], virtual path selection in [274], and SVD in

[275]. Mathematically, a common multi-user hybrid precoding

problem aimed at spectral efficiency maximization can be

formulated as

PHAD :

max
FRF,f

BB
k

,wk

K
∑

k=1

log2
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∣
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s.t. C1 : FRF ∈ F , wk ∈ W , ∀k ∈ K
C2 :

∥

∥FRF

[

fBB
1 , fBB

2 , · · · , fBB
K

]∥

∥

2

F
= P0

(62)

which assumes single-stream transmission for each user and

analog combining only at the receiver side. The constraint C1
is to ensure that the analog precoder FRF and analog combiner

wk implemented with phase shifters have constant-envelope

entries.

If we assume the analog precoder to be fixed when we

design the precoding methods for the digital part, hybrid AD

structures are equivalent to a fully-digital MIMO system trans-

mitting through an effective analog channel. From this point

of view, interference exploitation techniques can be readily

applied to hybrid AD structures for additional performance

improvements, as recently shown in [276]-[278]. In [276],

the digital part of hybrid precoding employs CI precoding,

and several analog precoding designs particularly tailored

for CI-based hybrid precoding are presented and compared.

It should be noted that since CI-based precoder is data-

dependent, the common spectral efficiency expression is not

applicable to CI-based hybrid precoding designs. Accordingly,

[276] considers the transmit power minimization for CI-based

hybrid precoding in a MU-MISO system, formulated as

PPSK
C-HAD : min

FRF,x
‖FRFx‖22

s.t. C1 : hT
kFRFx = λksk, ∀k ∈ K

C2 :
[

ℜ (λk)−
√

Γkσ2

]

tan θth ≥ |ℑ (λk)| , ∀k ∈ K
C3 : FRF ∈ F

(63)

where FRF is updated on a block level and x is updated

on a symbol level. This problem is generally non-convex

because of the constant-envelope constraint for the entries in

FRF. Therefore, [276] decomposes the joint design into the

analog precoding design, followed by the digital precoding

design. As a step further, a CI-based hybrid precoding that is

specifically designed to be robust against phase errors in the

phase shifters is proposed in [277], where the optimal robust

digital precoding is obtained based on the cutting plane method

and alternating procedure, when the analog part of the hybrid

precoder is fixed. Significant performance improvements in

terms of SER can be observed for CI-based hybrid designs

compared to traditional hybrid methods.

D. Low-Resolution DACs

In addition to the use of low-cost RF amplifiers as in CEP

and the activation of a reduced number of RF chains as in AS

and hybrid precoding, another potential technique to reduce

the cost and power consumption per RF chain at the BSs

is to employ low-resolution DACs [284]-[298], as shown in
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Fig. 9d. It is known that the power consumption of DACs

grows linearly with the bandwidth and exponentially with the

resolution [284], and each transmit signal is generated by a

pair of DACs connected to the RF chain. Given hundreds of

antenna elements at a large-scale antenna array, a large number

of DACs are also required, which poses a significant practical

challenge if high-resolution DACs are deployed. Therefore,

the use of low-resolution DACs, especially the extreme case

1-bit DACs, can greatly simplify the hardware cost and the

corresponding power consumption at the BS. In addition, the

output signals of 1-bit DACs are CE signals, which allows the

use of power-efficient amplifiers to further reduce the hardware

complexity.

There have been an increasing number of studies on

the downlink transmission design with low-resolution DACs

[285]-[296]. Linear precoding methods with few-bit DACs

for downlink MIMO systems have firstly been studied in

[285]-[287], where due to the coarse quantization, significant

performance degradation is observed compared to the ideally

unquantized case, especially when 1-bit DACs are consid-

ered. Nonlinear precoding designs, which directly design the

precoded signals based on the CSI and the data symbols,

have further been studied in [288]-[295], and the optimization

problem can be formulated as

PDAC : min
x

‖s − βDAC ·Hx‖2
2
+Kβ2

DACσ
2

s.t. C1 : x ∈ XDAC

C2 : βDAC > 0

(64)

which aims to minimize the MSE between the transmit data

symbols and the received symbols. XDAC is the set consisting

of the output signals for low-resolution DACs, and specifically

in the case of 1-bit DACs, XDAC =
{

±
√

P0

2NT
±
√

P0

2NT
· j
}

. In

[288], a non-linear precoding method based on the biconvex

relaxation framework is proposed for PDAC, which achieves

a promising performance with a low computational cost.

Its corresponding very large-scale integration (VLSI) design

architectures have further been illustrated in [289] to showcase

the efficacy. [290] proposes several 1-bit precoding schemes

based on SDR, sphere encoding, and squared ℓ∞-norm re-

laxation. Meanwhile, a 1-bit precoding method is described

in [291] based on the branch-and-bound framework, which

can theoretically achieve the optimal performance. Some other

downlink precoding designs for low-resolution DACs include

SER minimization in [292]-[294] and alternating minimization

in [295]. A general observation is that non-linear precoding

designs can achieve a significantly better performance than

the linear methods, when low-resolution DACs are employed

at the transmitter.

To achieve a promising error rate performance, the precod-

ing designs for 1-bit DACs have to be non-linear and exploit

the information of the data symbols, which creates the oppor-

tunity for interference exploitation, as recently studied in [156]

and [296]-[298]. [296] considers the transmit signal design for

1-bit massive MIMO system based on CI optimization, where

the CI effect is maximized subject to the output constraints

of DACs, and the corresponding optimization problem is

constructed as

PPSK
C-DAC : max

x
t

s.t. C1 : hT
kx = λksk, ∀k ∈ K

C2 : [ℜ (λk)− t] tan θth ≥ |ℑ (λk)| , ∀k ∈ K
C3 : x ∈ XDAC

(65)

In the case where 1-bit DACs are employed, by express-

ing PPSK
C-DAC into a real representation and relaxing the 1-

bit constraint, the formulated optimization problem is shown

to be a linear programming (LP), which can be efficiently

solved, and the final transmit signal is obtained by enforcing

an element-wise normalization. [156] and [297] focus on

the 1-bit precoding designs for PSK modulations based on

the symbol-scaling CI metric, and a refinement process that

is applicable upon any 1-bit schemes has been introduced,

where additional performance improvements can be observed.

The performance improvements are shown to be prominent

for low-complexity 1-bit schemes such as 1-bit ZF. A joint

consideration of hybrid AD precoding and 1-bit DACs based

on interference exploitation has further been studied in [298],

where it is shown that compared to hybrid AD structures with

ideal DACs, the number of RF chains in the presence of 1-bit

DACs has to be much larger than the number of data streams

to achieve a near-optimal performance.

In addition, [299] has discussed the extension from 1-bit

DACs to few-bit DACs, where the objective function adopts

(64). In the case when B-bits DACs are adopted at the BS,

the set XDAC can be expressed as

XDAC =

{

±
√

P0

2NT

, · · · ,±
√

P0

2B−2NT

±
√

P0

2B−1NT

}

,

(66)

which is obtained via normalizing the outputs of a uniform

quantizer such that the transmission power constraint is always

satisfied. Similar to the case of 1-bit DACs, the resulting opti-

mization problem in the presence of B-bits DACs is NP-hard,

and the optimal solution obtained via an exhaustive search

method is prohibitive in terms of computational complexity for

large-scale antenna arrays. To obtain a feasible solution, [299]

has developed a cyclic coordinate descent (CCD) algorithm

[300] with the effort to provide an efficient solution for this

problem. It has been shown in [299] that the complexity of

the proposed algorithm is only O
(

N2
T2

B
)

which is much

smaller compared to the O
(

NT2
BNT

)

of the exhaustive search

approach.

E. Non Linearities

As already mentioned in Section V-A, it is common to

employ power amplifiers characterized by severe non-linear

effects in practical systems relying on large-scale antenna

arrays at the transmitter. Therefore, good dynamic properties

of the per-antenna transmit power are required in order to limit

such effects. In this context, the discussed CEP schemes are an

effective strategy, since they achieve the best possible PAPR

(unit) at the symbol level. Meanwhile, alternative schemes

based on SLP have also been proposed in the literature for

non-linear channels in [135], [301]-[307], where the aim is not
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to attain a CE transmission, but rather to optimize the power

dynamics (such as the dynamic range and PAPR) following

an optimization framework in line with [125], [228] based on

per-user QoS constraints. The main idea of these schemes is

to control the instantaneous transmit power and to minimize

its peaks, both in the temporal dimension and in the spatial

one (i.e. among different antenna elements), so as to limit the

performance degradation due to the amplitude-to-amplitude

(AM-AM) and the amplitude-to-phase (AM-PM) distortion.

An example of AM-AM and AM-PM characteristics of a

non-linear amplifier [303] is shown in Figs. 10a and 10b,

respectively. In particular, Fig. 10a highlights how the temporal

variation of the power around the operating point enhances the

distortion. On the other hand, Fig. 10b shows that the spatial

variation of the instantaneous power (across different antennas)

also leads to signal deterioration through a differential phase

shift.

A SLP approach for non-linear systems, proposed in [135],

considers a weighted per-antenna PM problem, subject to QoS

constraints and a lower bound constraint on the per-antenna

transmit power. In this scheme, the imbalances between dif-

ferent RF chains are reduced by constraining the per-antenna

transmit power within a specific range. More specifically, the

goal is to minimize the maximum power among the different

antennas, and meanwhile put a lower bound constraint on such

power. The related optimization problem tailored for APSK
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Fig. 10: An example of the AM-AM/AM-PM characteristic of

a non-linear amplifier

modulations can be constructed as

PAPSK
NL : min

x
r

s.t. C1 : αr2 ≤ |xi|2
pi

≤ r2, ∀i ∈ {1, 2, · · · , Nt}

C2 :
∣

∣hT
kx
∣

∣

2 ≥ κ2
kγkσ

2, ∀k ∈ K
C3 : ∠hT

kx = ∠sk, ∀k ∈ K

(67)

where the parameter α, chosen such that 0 ≤ α ≤ 1,

determines the lower bound. The closer α is to 1, the more the

power variations will be limited. Nonetheless, the choice of a

higher value for α also results in a reduction of the degrees of

freedom of the optimization problem. This has been solved

through an iterative procedure based on successive convex

approximation (SCA). It shall be stressed that this scheme

optimizes the power dynamics in the spatial dimension (across

different antenna elements) only, while not in the temporal one,

as the optimization is performed symbol by symbol.

A second strategy to improve the spatial dynamics of the

transmitted signals is proposed in [135], [301], which performs

a minimization on the spatial PAPR, evaluated amongst the

transmitting antennas, under QoS constraints. The related

optimization problem is formulated as a non-linear fractional

programming, given by

PPAPR
NL : min

x

‖x‖2∞
‖x‖2

2

s.t. C1 :
∣

∣hT
kx
∣

∣

2 ≥ κ2
kγkσ

2, ∀k ∈ K
C2 : ∠hT

kx = ∠sk, ∀k ∈ K

(68)

which is tackled by resorting jointly to parametric program-

ming and SCA.

Both the introduced schemes above have been shown to

outperform the state-of-the-art SLP schemes based on QoS

constraints optimization, in terms of spatial PAPR, spatial

dynamic range, and SER over non-linear channels. While the

power minimization scheme with a lower bound constraint

has been shown to be more flexible than the spatial PAPR

minimization one, the latter is able to achieve a slightly lower

SER.

Finally, a spatio-temporal extension of the SLP PAPR

minimization approach has been proposed in [302], which is

based on the system model introduced in Section IV-F for

FTN signaling. This allows a minimization of the PAPR at

a waveform level, both in spatial domain and in temporal

domain. The associated optimization formulation is formally

similar to the one in (68), which is thus tackled analogously.

This spatio-temporal SLP scheme for non-linear channels has

been shown to achieve considerable performance gains with

respect to the previous ones, in terms of power distribution

and SER over non-linear channels.

F. Single-RF MIMO and RF-domain SLP

In addition to hardware-efficient structures mentioned in

the previous sections, more recently [245] has proposed two

new transmitter architectures, illustrated in Fig. 11a and Fig.

11b, respectively. These two hardware structures deal with
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(a) 1-PS per antenna at the transmitter
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(b) 2-PS per antenna at the transmitter

Fig. 11: Block diagram of the RF-domain SLP

the increased hardware complexity and power consumption

of existing techniques by eliminating the need for DACs

and replacing them with analog components. In the proposed

transmitter designs, which are referred to as RF-domain SLP,

the processing happens only in the RF domain, as the DACs

have been eliminated. The transmitted signals are modulated

directly on the antennas by analog phase shifters.

The first architecture in Fig. 11a includes a single variable

gain amplifier (VGA), which controls the amplitude α of the

signals that are driven to the transmit antennas, where each

antenna is driven by a dedicated phase shifter that changes

the phase of the RF signal before transmission. As a result,

the transmit signal can be expressed as

xn = αejθn , ∀n ∈ {1, 2, · · · , NT} . (69)

The purpose of the precoding is to find each phase shift θn and

the gain of the VGA α that minimize the Euclidean distance

between the received signal at the user side and the information

symbol. Accordingly, the problem can be formulated as

PVGA
DM : min

v,α
‖α ·Hv−√

γ · s‖2
2

s.t. C1 : |vn| = 1, ∀n ∈ {1, 2, · · · , NT}
(70)

where v is an auxiliary variable such that x = α · v. An

iterative solution based on the coordinate descent algorithm

has been developed in [245] to solve this non-convex problem,

which is shown via numerical results to converge to a local

minima. As already mentioned in Section V-A, the derived

solution for this architecture is also an efficient solution for

CEP, when the VGA gain α is kept constant regardless of the

channel realization H and the information symbols s.

Similar to [308], an alternative transmitter structure has also

been proposed in [245], as shown in Fig. 11b, where each

antenna element adopts a dual phase shifter structure. With the

joint effect of two phase shifters, the amplitude of the transmit

signal can also be altered by selecting suitable phases for the

two superimposing signals. Therefore, the transmit signal xn

on the n-th antenna port can be expressed as

xn = α
(

ejθn,1 + ejθn,2
)

, ∀n ∈ {1, 2, · · · , NT} . (71)

The objective of the precoder remains the same, while the

constraint has to adapt to the addition of the second phase

shifter. Subsequently, the precoding problem is formulated as

PDPS
DM : min

v,α
‖α ·Hv −√

γ · s‖2
2

s.t. C1 : ‖v‖∞ ≤ 2, ∀n ∈ {1, 2, · · · , NT}
(72)

This optimization problem can be solved using an iterative

solution based on the coordinate descent method, while with

a different update step compared to that of PVGA
DM , as detailed

in [245]. Numerical results show that the addition of a second

phase shifter provides an interesting tradeoff, as a small

increase in the power consumption is observed due to the

increased number of phase shifters, while a decrease in the

computational complexity of the solution is also observed,

since the set of constraints of the optimization problem now

becomes convex.

The proposed RF-domain systems, where DACs are re-

placed by analog components, are shown to outperform com-

peting fully-digital and hybrid AD structures when the number

of transmit antennas is much larger than that of users, thanks

to the low power consumption of the analog phase shifters.

More specifically, it has been shown in numerical results

that for a system with 100 transmit antennas and 10 single-

antenna users, the RF-domain SLP method with 1-PS and 2-

PSs can achieve 36% and 11% improvement in terms of power

efficiency over the hybrid AD precoding, and 135% and 83%
over the fully-digital SLP scheme, respectively.

VI. PROOF-OF-CONCEPT TESTBEDS

A. Multi-Carrier CI Testbed

A multi-carrier proof-of-concept hardware platform is

hosted in University College London (UCL), which employs

Fig. 12: System architecture of the real-time hardware platform
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Fig. 14: Frame and resource block structure for each antenna element [309]

real-time CI precoding. The platform combines CI precoding

with the spectral efficient frequency division multiplexing

(SEFDM) [310], [309]. Compared to orthogonal frequency

division multiplexing (OFDM), SEFDM breaks the orthogo-

nality by allowing closely-spaced non-orthogonal sub-carriers

such that the total occupied bandwidth is reduced, thereby

improving the effective spectral efficiency. Meanwhile, this ar-

tificial non-orthogonal setting creates inter-carrier interference

(ICI), which can be exploited by CI precoding, as studied in

[310].

1) Platform Description: The system architecture of the

real-time hardware platform is presented in Fig. 12, where the

experiment configurations follow the 3GPP NB-IoT standard

[311]. In this testbed, omni-directional antennas are used for

both the transmitter and receiver to validate the feasibility

of precoding. A total number of 6 transmit antennas are

configured for the purpose of demonstration, and accordingly

6 software defined ratio USRP-RIO 2953R devices are con-

nected as a 6-antenna BS. Each USRP has two separate and

independent RF chains, where one RF chain is for signal

transmission and the other one is for signal reception, as seen

in Fig. 12. The raw data stream is generated by the work

station, which are then sent to a cabled PCI-Express switch

box CPS-8910 via an NI MXI-Express Gen 2 × 8 cable that

supports a data rate up to 3.2Gb/s. The switch box separates

the raw data stream into 6 data streams, which are delivered

TABLE III: Parameters of the Experiment System

Parameter Value

Number of transmit antennas 6
Number of users 2
RF center frequency (GHz) 2.4
Sampling frequency (MHz) 1.92
FFT size 128
Number of guard band sub-carriers 58
Number of data sub-carriers 12
Number of cyclic prefix samples 10
Modulation QPSK
Bandwidth compression ratio (υ) [310] 0.85
Sub-carrier bandwidth (kHz) 15
Sub-carrier spacing 15×υ

Maximum spectral efficiency (bits/s/Hz) 2/υ

to 6 USRPs in parallel also via the NI MXI-Express cable.

For the purpose of synchronization, these USRPs are also

connected via SMA cables to a CDA-2990 8-channel clock

distribution OctoClock module, which can split and amplify a

10MHz reference signal and a pulse-per-second (PPS) signal

to support synchronization for a maximum of 8 USRPs.

This real-time platform operates at 2.4GHz, and the other

key parameters are shown in Table III, where the SEFDM

approach with a bandwidth compression ratio υ = 0.85 is

considered [310]. The experimental environment is an indoor

scenario, as shown in Fig. 13, there are a total number

of 2 single-antenna receivers that are deployed and placed

randomly, where the distance between the BS and the users

is flexible and can be up to 9 meters. Due to this limited

indoor space, in addition to the over-the-air experiments, a

commercialized channel emulator Spirent VR5 [312] is further

adopted in order to compare precoding techniques at different

SNR values. Assuming that the noise power mainly comes

from the receiver side, the VR5 is connected to the 2 users

via two separate cables. By configuring the VR5, the path loss

and the power of the additive Gaussian noise can be set for

each user. The receiver bandwidth is set to be 180kHz and the

bandwidth of the additive noise is set to be 1.5625MHz.

2) Frame Structure and CSI Estimation: The transmit sig-

nal is generated at the BS with a designed frame structure and

resource block structure [309], as shown in Fig. 14. The 10ms

frame is divided into 20 time slots with each occupying 0.5ms,

Fig. 13: Illustration of the indoor experimental environment
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(a) Unprecoded (b) ZF precoded (c) CI precoded

Fig. 15: Experimentally obtained received constellation pattern for unprecoded and precoded system

and each time slot consists of 7 OFDM/SEFDM symbols. The

first time slot is reserved for CSI estimation, while all the

other time slots are used for data transmission. In this real-

time platform, the BS obtains the downlink CSI by feedback

from the receivers. In order to obtain an accurate estimate

of the downlink spatial CSI for each antenna, time-domain

orthogonal sounding reference signals (SRSs) are used in the

1st time slot of each frame. Since the considered system is a

2 × 6 MU-MISO scenario, each user only needs to feedback

6 CSI coefficients, which is a reasonable overhead length.

To avoid interference between antennas during CSI esti-

mation, the overhead of CSI estimation for each antenna is

allocated at different symbol locations in time, as seen in

Fig. 14. More specifically, the overhead of CSI estimation for

the first antenna occupies the first OFDM/SEFDM symbol in

one resource block, while keeping blank for the following 5

OFDM/SEFDM symbols. With other 5 antennas following the

same principle, the overlapping interference can be avoided.

The last OFDM/SEFDM symbol in this time slot is reserved

for the downlink pilots, which are precoded and then sent

simultaneously. These pilot signals are used to compensate

for imperfect channel issues such as power normalization and

imperfect time and phase synchronization [313].

3) Experimental Validation: The received constellation

symbol results that are measured based on over-the-air trans-

mission using this hardware platform are shown in Fig. 15,

where the received symbols for the unprecoded system, ZF

precoded system and CI precoded system are presented in Fig.

15a, Fig. 15b, and Fig. 15c, respectively. Without precoding,

it is observed that the received symbols are scattered in

the constellation due to the existence of self-created ICI

by SEFDM signals. When ZF precoding is employed, the

distribution of the received symbols becomes more focused

at the four nominal QPSK points, as depicted in Fig. 15b,

which means that adopting ZF precoding can improve the

performance. When CI precoding is employed, as shown in

Fig. 15c, a special received symbol pattern is observed, where

we observe that the received symbols are pushed away from

the detection thresholds, which follows the design principle of

CI precoding. A significantly improved error rate performance

can therefore be expected for CI precoded scenario over the

unprecoded and ZF precoded case.

In Fig. 16, the experimental effective spectral efficiency is

depicted with an increasing SNR value, where the various SNR

values are obtained by tuning the noise power in the VR5

channel emulator. The considered metric, effective spectral

efficiency, is calculated as

SEeff =
1

υ
(1− BER) log2M (73)

for M-PSK. When QPSK is considered as in the experiment,

M = 4 and SEeff becomes SEeff = 2

υ
(1− BER). Based

on the result in Fig. 16, we observe that in low-to-medium

SNR region, the CI precoded SEFDM system achieves a

significantly better performance over the ZF precoded and

OFDM case. In the high SNR region, the OFDM case reaches

its maximum effective spectral efficiency 2bits/s/Hz, because

in this case the bandwidth compression ratio is 1. For the

precoding-aided SEFDM results, we observe that both ZF

precoded and CI precoded SEFDM approach can reach the

maximum effective spectral efficiency 2.35bits/s/Hz, both of

which outperform the OFDM case.

B. DVB Standard-based CI Testbed

1) Platform Description: A DVB standard fully-compatible

hardware platform is hosted in University of Luxembourg

(UL), which employs full frequency reuse in wireless commu-

nications named SERENADE [314]. The demonstrator uses

the DVB-S2X standard [315] for signal transmission and

reception, which includes a novel SLP technique in [168]

that optimizes the precoding vectors per every modulated
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Fig. 16: Experimental result for spectral efficiency, bandwidth

compression ratio υ = 0.85
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Fig. 17: Implementation platform of the hardware demonstra-

tor

symbol vector, and software defined radios are used to build

the testbed. This platform enables the design of a scalable

architecture of the transmitter, channel emulator and UEs,

as shown in Fig. 17. The commercially available software

defined radio platform developed by National Instruments (NI)

has been employed for this task. The platform consists of

two NI PXI (PCI EXtension for Instruments) 1085 chassis,

which allow centralized connection of the set of the NI USRP

(Universal Software Radio Peripheral) 2954R and FlexRIO

(Reconfigurable IO) 7976R. The NI USRP and FlexRIO have

integrated FPGA (Field-Programmable Gate Array) module

Kintex-7 from Xilinx.

The transmitter simultaneously transmits 6 precoded signals

towards 6 user terminals through a 6× 6 multi-beam channel

emulator. The channel emulator acquires the transmitted sig-

nals, applies the impairments of the communication channel,

Gaussian noise, and the multi-beam interference and transmits

the signals to the UEs. Each UE estimates hk based on

the orthogonal Walsh-Hadamard pilot sequences and reports

the estimated values to the transmitter through a dedicated

feedback channel over an Ethernet link. The transmitter uses

this CSI and modulated symbols to compute the precoding

matrix. In the full frequency reuse scenario, the multi-user

interference is mitigated by precoding techniques. Table IV

summarizes the operational parameters of the demonstrator.

The transmitter operates with a central NI FlexRIO FPGA

and three NI USRP nodes. Fig. 18 shows the logical con-

nections between the NI FlexRio, the NI USRP nodes and

the controller (NI PXI HOST), where the upper blue section

represents the processes implemented in the host computer and

TABLE IV: Parameters of the hardware demonstrator

Parameter Value

Transmitter IQ channels 6
Sampling frequency 1 MHz
Oversampling factor 4
Transmitter TX freq. 1.21 GHz
Channel Emulator RX freq. 1.21 GHz
Channel Emulator TX freq. 960 MHz
User Terminal RX freq. 960 MHz
Filter roll-off factor 0.2, 0.15, 0.1, 0.05
Forward Error Correction yes
LDPC code rate 1/2, 2/3, 3/4, 5/6

LabVIEW 

custom IP

LABVIEW 

default IP

Vivado HLS 

custom IP

2x

Virtual data 

stream

FIFO data 

stream

Parameter 

data

Xilinx Kintex-7 (410T)Xilinx Kintex-7 (410T)

PXI CHASSIS

Legend:

Fig. 18: Block diagram of the transmitter

the lower yellow section represents the blocks implemented

in the FPGA for fast processing. The transmitter transmits

symbols modulated according to the DVB-S2X standard [315],

[316], and the streams are jointly precoded by the PRECODE

FPGA block. The precoder block multiplies 6 symbols from

a single time slot with the precoding matrix W and sends

the streams to the NI USRP nodes. Subsequently, each node

oversamples the streams and transmits them through digital

up converted (DUC) to the RF domain at a desired carrier

frequency.

Fig. 19 shows an architectural block diagram of the UE

implementation. A single USRP RIO FPGA unit is capable to

simultaneously receive and process two information signals.

The processing includes frequency acquisition, matched filter-

ing, time synchronization, frame synchronization, fine phase

tracking and CSI estimation. All the frame fields and the

CSI information are passed to the host computer for further

processing, and the host computer reports the CSI information

to the transmitter using a custom feedback channel.

2) FPGA Accelerated Closed-Form SLP: A complete

FPGA accelerated design has been developed in [169] to

efficiently solve the SLP problem PCI-VP in (23). The design is

2x

Virtual data 

stream

FIFO data 

stream

Parameter 

data

Legend:

Fig. 19: Block diagram of the UE, where two input RF chains

are present in a single USRP
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TABLE V: HDL Core Resource Occupation on Kintex-7

(xc7k410TFFG-2)

K = Nt DSP48E Slices look-up tables Effective baud rate

2 16 479 216 166 MBd
6 72 2019 2488 498 MBd
12 288 9891 9938 996 MBd
16 512 11683 19010 1.33 GBd
20 800 21187 27602 1.66 GBd

Available 1540 508400 254200

built using Vivado High-Level Synthesis (HLS) to program a

closed-form algorithm into HDL core and integrate the design

into an FPGA. The estimations for the resource utilization

and symbol throughput of the FPGA core are demonstrated in

Table V.

The FPGA core hits the target of the symbol rate of 83

MSymbols per second per each beam. The motivation behind

the target is the new symbols rates, which are considered

in the DVB-S2X standard [315]. The estimated resource

consumption by the core design are calculated for various

numbers of transmitting antennas and UEs, where K = Nt =
2, 6, 12, 16 and 20. For all the scenarios, the core is

optimized to operate at a 166 MHz clock (≈ 6 ns per cycle)

with a cycle interval 2. The clock allows to operate at the

166 MHz/2 = 83 MSymbols per second symbol rate per

beam. For the case of a 20 × 20 MU-MISO case, the design

utilizes around 50 percent of the DSP blocks available at the

given FPGA model (xc7k410TFFG-2) and the effective baud

rate of the core reaches 1.66 GSymbols per second.

In Fig. 20, the energy efficiency is benchmarked as a

function of the energy per bit to noise power spectral den-

sity ratio (Eb/N0 = 10 log10(
1

3σ2 )) for the ZF, Fast NNLS

SLP and the closed-form SLP algorithm in [169] running in

MATLAB and on FPGA core. The benchmark is performed

on 8-PSK modulation symbols and averaged over 50 iterations

of 6 × 6 channel matrix with a condition number, defined

as κ2(H) = ‖H‖
2

∥

∥H−1
∥

∥

2
, fixed to 18. The difference

between the performance of the Fast NNLS and the closed-

form algorithm running on MATLAB is around 2.5dB due to

the approximation method used in the closed-form solution.

The additional 1dB difference can also be observed between

the MATLAB and FPGA implementations of the closed-form

algorithm, which is due to the losses in fixed-point arithmetic,

which are calculated on the hardware.

3) Experimental Validation: The experimental measure-

ments of the output power are conducted using the testbed,
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Fig. 21: Transmit/Received powers in the testbed [317]

as shown in Fig. 21a. It is evident that ZF technique generates

signals with a higher averaged total transmit power than the

SLP technique. The reduction in the transmit power by SLP

becomes more significant as the matrix condition number

increases compared to ZF.

In Fig. 21b, we can observe that the received power for

ZF precoding is not constant for a given channel condition

number. These variations come from the imperfections in the

actual hardware implementation. Some of these imperfections

are the limited accuracy in the CSI estimation, and its quanti-

zation error. Nevertheless, since these imperfections have the

same impact on the ZF and the SLP, we can observe that

the SLP approach still has gains in the received power. These

gains become more frequent as the matrix condition number

is increased. There are particular channel realizations in which

the SLP performs the same as ZF for both receivers, and others

realizations in which the perturbation vector for the optimal

symbols is not strong enough.

VII. OPEN PROBLEMS AND CHALLENGES

In this section, we discuss some remaining open problems

and challenges that are to be addressed to motivate further

research efforts in the field of CI exploitation and SLP

techniques.

A. Communication Theoretical Aspects

While CI-based precoding techniques have been extensively

studied based on optimization, the fundamental extent of

performance improvements from exploiting the CI effects is

unknown, since there still lack information-theoretic studies on

this topic to provide performance benchmarks. As discussed
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in this paper, since the precoding matrix for CI-based tech-

niques is modulation dependent, the Shannon channel capacity

expression based on the assumption of Gaussian inputs is

no longer valid. Instead, the capacity needs to be analyzed

based on the complex finite-constellation approaches [318]-

[320]. Therefore, one open problem is the development of

such an analytical framework that is able to offer a benchmark

performance, towards which optimization-based CI techniques

are designed in the future.

B. Adaptive Modulation

Another open problem is how CI approaches can be ex-

tended to adaptive modulation scenarios. In the current litera-

ture, it has been discussed how CI schemes currently available

can be tailored for different modulations, and particularly

how various techniques can enhance the CI effect based

on the specific modulation format of the data. Nonetheless,

typical communication systems in practice do not use a fixed

modulation format, but rely on adaptive modulation schemes

which adaptively adjust the modulation based on the estimated

SINR (SINR estimation is further discussed below). This is

eventually connected to the scheduling aspects of wireless

communication systems as well. Therefore, an open challenge

is to account for adaptive modulation schemes in the formu-

lation of CI problems, which would enhance their flexibility

and pave the way to practical applications.

C. SINR Estimation

It has been mentioned how typical communication systems

use adaptive modulation schemes based on the estimated

SINR. Thus, it is particularly important to use a reliable

SINR estimation scheme at the receivers [321], in order to

feed the information back to the transmitter and choose the

appropriate modulation type. However, the SINR estimation

is an additional challenge when CI schemes are employed. In

fact, as mentioned earlier, CI-based designs lead to distorted

received constellations, with the outer constellation points

pushed further away from their respective detection regions.

As a consequence, there is an imbalance between the instan-

taneous SINR of the outer constellation points (which can be

very high due to CI) and that of the inner constellation points.

Such imbalance is not taken into account by current SINR

estimation schemes, which only evaluates an average SINR.

Therefore, an open challenge in the context of CI precoding

is to propose novel SINR estimation methods that are able to

take into account the imbalance across different constellation

points.

D. Channel-Coded CI

Another remaining open challenge is related to the optimal

design of CI approaches accounting for channel coding, or

forward error correction (FEC) schemes. While the use of FEC

over symbol-level precoded waveforms has been assessed in

some works (e.g. [225]), it is well known that the channel cod-

ing optimality (specifically when soft detection is employed)

is directly related to the reference constellation considered

to calculate the log-likelihood ratios. Since CI precoding is

aimed at distorting the received constellation in order to gain

benefits from CI effects, CI precoding will not only affect the

performance of FEC, as extensively discussed, but also affect

the distribution of the received signals, which then requires

a redesign of the decoder. Therefore, an open problem is to

optimize the transmission by jointly accounting for the design

of CI precoding, modulation and FEC.

E. Synchronization in DA Systems

It is well known that DA systems require strict synchroniza-

tion between the distributed nodes to achieve the promised

performance [322], [323]. When SLP techniques instead of

traditional block-level precoders are applied at these DA

systems, which require accurate synchronization on a symbol

level, we conjecture that timing misalignment will have a much

more pronounced impact on symbol-level compared to block-

level approaches. Therefore, it is still unknown how current

synchronization approaches should be adapted to emerging

SLP techniques, which remains another open problem.

F. Waveform Design

Even though SLP has been applied in a wide range of

wireless systems, use cases and architectures, its impact on

waveform design is still not well understood. In principle,

SLP enables the management of interference between symbols

as long as we have an accurate information about the inter-

symbol channel. This entails that SLP can be applied for

a wide range and even a combination of interference types

such as ISI, adjacent-channel interference (ACI) and multi-

user interference. In some cases, the application becomes even

more straightforward, since the inter-symbol channel depends

on the digital transceiver (e.g. filtering, sampling) and is static

in contrast to dynamic propagation channels. The first study

in this direction looked at the combination of ISI and multi-

user interference in FTN systems [225], while SLP waveform

design is still an open question for multi-carrier transmission

schemes with ACI, time-frequency packing, channels with

memory, etc.

VIII. CONCLUSION

In this paper, we have provided an extensive tutorial on

interference exploitation techniques. The characterization of

interference shows that interference classification into con-

structive or destructive is dependent on the information of

both the channel and the data symbols, which implies that

interference exploitation techniques need to operate on a sym-

bol level. Moreover, the mathematical condition for achieving

CI obtained via the geometry of the constellation points leads

to convex formulations of PM and SB problems, which are

typically more difficult to handle in the interference-reduction

scenarios. The performance gains for interference exploitation

in terms of transmit power savings and error rate are presented

numerically. We have also discussed the extension of CI pre-

coding to a variety of wireless communication scenarios and

included the description of a proof-of-concept testbed, where

CI precoding also exhibits notable performance improvements.
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