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Abstract

In almost no other field of computer science, the idea of using bio-inspired search paradigms has been so useful as in

solving multiobjective optimization problems. The idea of using a population of search agents that collectively approxi-

mate the Pareto front resonates well with processes in natural evolution, immune systems, and swarm intelligence. Methods

such as NSGA-II, SPEA2, SMS-EMOA, MOPSO, and MOEA/D became standard solvers when it comes to solving

multiobjective optimization problems. This tutorial will review some of the most important fundamentals in multiobjective

optimization and then introduce representative algorithms, illustrate their working principles, and discuss their application

scope. In addition, the tutorial will discuss statistical performance assessment. Finally, it highlights recent important trends

and closely related research fields. The tutorial is intended for readers, who want to acquire basic knowledge on the

mathematical foundations of multiobjective optimization and state-of-the-art methods in evolutionary multiobjective

optimization. The aim is to provide a starting point for researching in this active area, and it should also help the advanced

reader to identify open research topics.

Keywords Multiobjective optimization � Multiobjective evolutionary algorithms � Decomposition-based MOEAs �
Indicator-based MOEAs � Pareto-based MOEAs � Performance assessment

1 Introduction

Consider making investment choices for an industrial

process. On the one hand the profit should be maximized

and on the other hand environmental emissions should be

minimized. Another goal is to improve safety and quality

of life of employees. Even in the light of mere economical

decision making, just following the legal constraints and

minimizing production costs can take a turn for the worse.

Another application of multiobjective optimization can

be found in the medical field. When searching for new

therapeutic drugs, obviously the potency of the drug is to

be maximized. But also the minimization of synthesis costs

and the minimization of unwanted side effects are much-

needed objectives (van der Horst et al. 2012; Rosenthal and

Borschbach 2017).

There are countless other examples where multiobjec-

tive optimization has been applied or is recently considered

as a promising field of study. Think, for instance, of the

minimization of different types of error rates in machine

learning (false positives, false negatives) (Yevseyeva et al.

2013; Wang et al. 2015), the optimization of delivery costs

and inventory costs in logistics(Geiger and Sevaux 2011),

the optimization of building designs with respect to health,

energy efficiency, and cost criteria (Hopfe et al. 2012).

In the following, we consider a scenario where given the

solutions in some space of possible solutions, the so-called

decision space which can be evaluated using the so-called

objective functions. These are typically based on com-

putable equations but might also be the results of physical

experiments. Ultimately, the goal is to find a solution on

which the decision maker can agree, and that is optimal in

some sense.

When searching for such solutions, it can be interesting

to pre-compute or approximate a set of interesting solutions

& Michael T. M. Emmerich

m.t.m.emmerich@liacs.leidenuniv.nl
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that reveal the essential trade-offs between the objectives.

This strategy implies to avoid so-called Pareto dominated

solutions, that is solutions that can improve in one objec-

tive without deteriorating the performance in any other

objective. The Pareto dominance is named after Vilfredo

Pareto, an Italian economist. As it was earlier mentioned by

Francis Y.Edgeworth, it is also sometimes called Edge-

worth-Pareto dominance (see Ehrgott 2012 for some his-

torical background). To find or to approximate the set of

non-dominated solutions and make a selection among them

is the main topic of multiobjective optimization and multi-

criterion decision making. Moreover, in case the set of non-

dominated solutions is known in advance, to aid the deci-

sion maker in selecting solutions from this set is the realm

of decision analysis (aka decision aiding) which is also part

of multi-criterion decision making.

Definition 1 Multiobjective Optimization. Given m ob-

jective functions f1 : X ! R; . . .; fm : X ! R which map a

decision space X into R, a multiobjective optimization

problem (MOP) is given by the following problem

statement:

minimize f1ðxÞ; . . .; minimize fmðxÞ; x 2 X ð1Þ

Remark 1 In general, we would demand m[ 1 when we

talk about multiobjective optimization problems. More-

over, there is the convention to call problems with large m,

not multiobjective optimization problems but many-ob-

jective optimization problems (see Fleming et al. 2005; Li

et al. 2015). The latter problems form a special, albeit

important case of multiobjective optimization problems.

Remark 2 Definition 1 does not explicitly state constraint

functions. However, in practical applications constraints

have to be handled. Mathematical programming techniques

often use linear or quadratic approximations of the feasible

space to deal with constraints, whereas in evolutionary

multiobjective optimization constraints are handled by

penalties that increase the objective function values in

proportion to the constraint violation. Typically, penalized

objective function values are always higher than objective

function values of feasible solutions. As it distracts the

attention from particular techniques in MOP solving, we

will only consider unconstrained problems. For strategies

to handle constraints, see Coello Coello (2013).

Considering the point(s) in time when the decision

maker interacts or provides additional preference infor-

mation, one distinguishes three general approaches to

multiobjective optimization (Miettinen 2012):

1. A priori: A total order is defined on the objective

space, for instance by defining a utility function Rm !
R and the optimization algorithm finds a minimal point

(that is a point in X ) and minimum value concerning

this order. The decision maker has to state additional

preferences, e.g., weights of the objectives, prior to the

optimization.

2. A posteriori: A partial order is defined on the objective

space Rm, typically the Pareto order, and the algorithm

searches for the minimal set concerning this partial

order over the set of all feasible solutions. The user has

to state his/her preferences a posteriori, that is after

being informed about the trade-offs among non-

dominated solutions.

3. Interactive (aka Progressive): The objective functions

and constraints and their prioritization are refined by

requesting user feedback on preferences at multiple

points in time during the execution of an algorithm.

In the sequel, the focus will be on a posteriori approaches

to multiobjective optimization. The a priori approach is

often supported by classical single-objective optimization

algorithms, and we refer to the large body of the literature

that exists for such methods. The a posteriori approach,

however, requires interesting modifications of theorems

and optimization algorithms—in essence due to the use of

partial orders and the desire to compute a set of solutions

rather than a single solution. Interactive methods are highly

interesting in real-world applications, but they typically

rely upon algorithmic techniques used in a priori and a

posteriori approaches and combine them with intermediate

steps of preference elicitation. We will discuss this topic

briefly at the end of the tutorial.

2 Related work

There is a multiple of introductory articles that preceded

this tutorial:

• In Zitzler et al. (2004) a tutorial on state-of-the-art

evolutionary computation methods in 2004 is provided

including Strength Pareto Evolutionary Algorithm

Version 2 (SPEA2) (Zitzler et al. 2001), Non-domi-

nated Sorting Genetic Algorithm II (NSGA-II) (Deb

et al. 2002), Multiobjective Genetic Algorithm

(MOGA) (Fonseca and Fleming 1993) and Pareto-

Archived Evolution Strategy (PAES) (Knowles and

Corne 2000) method. Indicator-based methods and

modern variants of decomposition based methods, that

our tutorial includes, were not available at that time.

• In Deb (2008) an introduction to earlier multiobjective

optimization methods is provided, and also in the form

of a tutorial. The article contains references to early

books in this field and key articles and also discusses

applications.
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• Derivative-free methods for multiobjective optimiza-

tion, including evolutionary and direct search methods,

are discussed in Custódio et al. (2012).

• On conferences such as GECCO, PPSN, and EMO

there have been regularly tutorials and for some of

these slides are available. A very extensive tutorial

based on slides is the citable tutorial by Brockhoff

(2017).

Our tutorial is based on teaching material and a reader for a

course on Multiobjective Optimization and Decision

Analysis at Leiden University, The Netherlands (http://

moda.liacs.nl). Besides going into details of algorithm

design methodology, it also discusses foundations of mul-

tiobjective optimization and order theory. In the light of

recent developments on hybrid algorithms and links to

computational geometry, we considered it valuable to not

only cover evolutionary methods but also include the basic

principles from deterministic multiobjective optimization

and scalarization-based methods in our tutorial.

3 Order and dominance

For the notions we discuss in this section a good reference

is Ehrgott (2005).

The concept of Pareto dominance is of fundamental

importance to multiobjective optimization, as it allows to

compare two objective vectors in a precise sense. That is,

they can be compared without adding any additional

preference information to the problem definition as stated

in Definition 1.

In this section, we first discuss partial orders, pre-orders,

and cones. For partial orders on Rm there is an important

geometric way of specifying them with cones. We will

define the Pareto order (aka Edgeworth-Pareto order) on

R
m. The concept of Pareto dominance is of fundamental

importance for multiobjective optimization, as it allows to

compare two objective vectors in a precise sense (see

Definition 5 below). That is, comparisons do not require

adding any additional preference information to the prob-

lem definition as stated in Definition 1. This way of com-

parison establishes a pre-order (to be defined below) on the

set of possible solutions (i.e., the decision space), and it is

possible to search for the set of its minimal elements—the

efficient set.

As partial orders and pre-orders are special binary

relations, we digress with a discussion on binary relations,

orders, and pre-orders.

Definition 2 Properties of Binary Relations. Given a set X,

a binary relation on X—that is a set R with R � X � X—is

said to be

– reflexive, if and only if 8x 2 X : ðx; xÞ 2 R,

– irreflexive, if and only if 8x 2 X; ðx; xÞ 62 R,

– symmetric, if and only if 8x 2 X : 8y 2 X : ðx; yÞ
2 R , ðy; xÞ 2 R,

– asymmetric, if and only if 8x 2 X : 8y 2 X : ðx; yÞ
2 R ) ðy; xÞ 62 R,

– antisymmetric, if and only if 8x 2 X : 8y 2 X :

ðx; yÞ 2 R ^ ðy; xÞ 2 R ) x ¼ y,

– transitive, if and only if 8x 2 X : 8y 2 X : 8z 2 X :

ðx; yÞ 2 R ^ ðy; zÞ 2 R ) ðx; zÞ 2 R.

Remark 3 Sometimes we will also write xRy for

ðx; yÞ 2 R.

Now we can define different types of orders:

Definition 3 Pre-order, Partial Order, Strict Partial Order.

A binary relation R is said to be a

– pre-order (aka quasi-order), if and only if it is transitive

and reflexive,

– partial order, if and only if it is an antisymmetric pre-

order,

– strict partial order, if and only if it is irreflexive and

transitive

Remark 4 Note that a strict partial order is necessarily

asymmetric (and therefore also anti-symmetric).

Proposition 1 Let X be a set and D ¼ fðx; xÞjx 2 Xg be

the diagonal of X.

– If R is an anti-symmetric binary relation on X, then any

subset of R is also an anti-symmetric binary relation.

– If R is irreflexive, then (R is asymmetric if and only if

R is antisymmetric). Or: the relation R is asymmetric if

and only if R is anti-symmetric and irreflexive.

– If R is a pre-order on X, then

fðx; yÞ j ðx; yÞ 2 R and ðy; xÞ 62 Rg, denoted by Rstrict,

is transitive and irreflexive. In other words, Rstrict is a

strict partial order associated to the pre-order R.

– If R is a partial order on X, then R n D is irreflexive and

transitive. In other words, R n D is a strict partial

order. Moreover R n D is anti-symmetric (or

asymmetric).

– If R is a pre-order on X, then (R n D is a strict partial

order if and only if R is asymmetric).

Remark 5 In general, if R is a pre-order, then R n D does

not have to be transitive. Therefore, in general, R n D will

not be a strict partial order.

Definition 4 Minimal Element. A minimal element x 2 X

in a (strictly) partially ordered set (X, R) is an element for

which there does not exist an x0 2 X with x0Rx and x0 6¼ x.
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(In case, the order R is a strict partial order, x0Rx implies

x0 6¼ x).

Definition 5 Pareto Dominance. Given two vectors in the

objective space, that is yð1Þ 2 Rm and yð2Þ 2 Rm, then the

point yð1Þ 2 Rm is said to Pareto dominate the point yð2Þ (in

symbols yð1Þ �Pareto y
ð2ÞÞ, if and only if

8i 2 f1; . . .;mg : y
ð1Þ
i � y

ð2Þ
i and 9j 2 f1; . . .;mg : y

ð1Þ
j \y

ð2Þ
j :

In words, in case that yð1Þ �Pareto y
ð2Þ the first vector is not

worse in each of the objectives and better in at least one

objective than the second vector.

Proposition 2 The Pareto order �Pareto on the objective

space Rm is a strict partial order. Moreover ð�Pareto [DÞ
is a partial order. We denote this by �Pareto or also by � if

the context provides enough clarity.

In multiobjective optimization we have to deal with two

spaces: The decision space, which comprises all candidate

solutions, and the objective space which is identical to Rm

and it is the space in which the objective function vectors

are represented. The vector-valued function f ¼

ðf1; . . .; fmÞ
>

maps the decision space X to the objective

space Rm. This mapping and the Pareto order on Rm as

defined in Definition 5 can be used to define a pre-order on

the decision space X as follows.

Definition 6 Pre-order on Search Space. Let x1; x2 2 X .

The solution x1 is said to Pareto dominate the solution x2 if

and only if fðx1Þ �Pareto fðx2Þ. Notation: x1 Pareto domi-

nates x2 is denoted by x1 �f x2.

Remark 6 The binary relation �f on X is a strict partial

order on X and ð�f [fðx; xÞ j x 2 XgÞ is a partial order on

X . Note that the pre-order R associated to �Pareto via f (

i.e., x1Rx2 if and only if fðx1Þ �Pareto fðx2Þ ) is, in general,

not asymmetric and therefore, in general,

�f 6¼ R n fðx; xÞ j x 2 Xg.

Sometimes we need the notion of the so called strict

component order on Rm and its accompanying notion of

weak non-dominance.

Definition 7 Strict Component Order on R
m. Let

x; y 2 Rm. We say x is less than y in the strict component

order, denoted by x\y, if and only if xi\yi; i ¼ 1; . . .;m.

Definition 8 (Weakly) Efficient Point, Efficient Set, and

Pareto Front.

– The minimal elements of the Pareto order �f on X are

called efficient points.

– The subset XE of all efficient points in X is called the

efficient set.

– Let us denote the set of attainable objective vectors

with Y :¼ fðXÞ. Then the minimal elements of the

Pareto order on Y are called the non-dominated or

Pareto optimal objective vectors. The subset of all non-

dominated objective vectors in Y is called the Pareto

front. We denote it with YN .

– A point x 2 X is called weakly efficient if and only if

there does not exist u 2 X such that fðuÞ\fðxÞ.
Moreover, fðxÞ is called weakly non-dominated.

Remark 7 Clearly, fðXEÞ ¼ YN .

3.1 Cone orders

The Pareto order is a special case of a cone order, which

are orders defined on vector spaces. Defining the Pareto

order as a cone order gives rise to geometrical interpreta-

tions. We will introduce definitions for Rm, although cones

can be defined on more general vector spaces, too. The

binary relations in this subsection are subsets of Rm � Rm

and the cones are subsets of Rm.

Definition 9 Non-trivial Cone. A set C � R
m with ; 6¼

C 6¼ R
m is called a non-trivial cone, if and only if

8a 2 R; a[ 0; 8c 2 C : ac 2 C.

Remark 8 In the sequel when we say cone we mean non-

trivial cone.

Definition 10 Minkowski Sum. The Minkowski sum (aka

algebraic sum) of two sets A 2 Rm and B 2 Rm is defined

as A	 B :¼ faþ b j a 2 A ^ b 2 Bg. Moreover we define

aA ¼ faaj a 2 Ag.

f1

f2

1

1

2

2

(0, 0)

C

f1

f2

1

1

2

2

(0, 0)

y

y ⊕ C

f1

f2

1

1

2

2

(0, 0)

y

y ⊕ R
2

0

Fig. 1 Example of a cone C(left), Minkowski sum of a singleton fyg and C (middle), and Minkowski sum of fyg and the cone R2

0. The latter is

equal to the non-negative quadrant from which the origin is deleted, see also Definition 13
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Remark 9 For an illustration of the cone notion and

examples of Minkowski sums see Fig. 1.

Definition 11 The binary relation, RC, associated to the

cone C. Given a cone C the binary relation associated to this

cone, notation RC, is defined as follows: 8x 2 Rm
: 8y 2

R
m

: ðx; yÞ 2 RC if and only if y 2 fxg 	 C.

Remark 10 It is clear that for any cone C the associated

binary relation is translation invariant (i.e, if

8u 2 Rm
: ðx; yÞ 2 RC ) ðxþ u; yþ uÞ 2 RC) and also

multiplication invariant by any positive real (i.e.,

8a[ 0 : ðx; yÞ 2 RC ) ðax; ayÞ 2 RC). Conversely, given

a binary relation R which is translation invariant and

multiplication invariant by any positive real, the set CR :¼
fy� x j ðx; yÞ 2 Rg is a cone. The above two operations are
inverses of each other, i.e., to a cone C one associates a

binary relation RC which is translation invariant and mul-

tiplication invariant by any positive real, and the associated

cone of RC is C, and conversely starting from a binary

relation R which is translation invariant and multiplication

invariant by any positive real one obtains the cone CR and

the binary relation associated to this cone is R. In short,

there is a natural one to one correspondence between cones

and translation invariant and multiplication-invariant-by-

positive-reals binary relations on Rm.

Note that for a positive multiplication invariant relation

R the set CR ¼ fy� x j xRy g is a cone. We restrict our

attention to relations which are translation invariant as well

in order to get the above mentioned bijection between

cones and relations.

Also note if a positive multiplication invariant and

translation invariant relation R is such that

; 6¼ R 6¼ R
m � Rm, then the associated cone CR is non-

trivial. Relations associated to non-trivial cones are non-

empty and not equal to all of Rm � Rm.

Remark 11 In general the binary relation RC associated to

a cone is not reflexive nor transitive nor anti-symmetric.

For instance, the binary relation RC is reflexive if and only

if 0 2 C. The following definitions are needed in order to

state for which cones the associated binary relation is anti-

symmetric and/or transitive.

Definition 12 Pointed cone and convex cone. A cone C is

pointed if and only if C \ �C � f0g where �C ¼
f�c j c 2 Cg and C is convex if and only if 8c1 2 C; c2 2
C; 8a such that 0� a� 1 : ac1 þ ð1� aÞc2 2 C.

With these definitions we can specify for which cones

the associated relation is transitive and/or anti-symmetric:

Proposition 3 Let C be a cone and RC its associated

binary relation (i.e., RC ¼ fðx; yÞ j y� x 2 Cg) . Then the

following statements hold.

– RC is translation and positive multiplication invariant,

– RC is anti-symmetric if and only if C is pointed,

– RC is transitive if and only if C is convex, and moreover,

– RC is reflexive if and only if 0 2 C.

A similar statement can be made if we go in the other

direction, i.e.:

Proposition 4 Let R be a translation and positive multi-

plication invariant binary relation and the CR the associ-

ated cone (i.e., CR ¼ fy� x j ðx; yÞ 2 Rg). Then the

following statements hold.

– CR is a cone,

– R is anti-symmetric if and only if CR is pointed,

– R is transitive if and only if CR is convex, and moreover,

– R is reflexive if and only if 0 2 CR.

In the following definition some important subsets in

R
m;m� 1 are introduced.

Definition 13 Let m be a natural number bigger or equal

to 1. The non-negative orthant (aka hyperoctant) of Rm,

denoted by Rm
� 0 is the set of all elements in Rm whose

coordinates are non-negative. Furthermore, the zero-dom-

inated orthant, denoted by R
m

0, is the set Rm

� 0 n f0g.

Analogously we define the non-positive orthant of Rm,

denoted by R� 0, as the set of elements in Rm the coordi-

nates of which are non-positive. Furthermore, the set of

elements in Rm which dominate the zero vector 0, denoted

by Rm
�0, is the set Rm

� 0 n f0g. The set of positive reals is

denoted by R[ 0 and the set of non-negative reals is

denoted by R� 0.

Remark 12 The sets defined in the previous definition are

cones.

Proposition 5 The Pareto order �Pareto on R
m is given by

the cone order with cone Rm

0, also referred to as the

Pareto cone.

Remark 13 As Rm

0 is a pointed and convex cone, the

associated binary relation is irreflexive, anti-symmetric and

transitive (see Proposition 3). Of course, this can be veri-

fied more directly.

The reason to view the Pareto order as derived from a

cone is that it gives the opportunity to study this order more

geometrically. For instance, the definition and many of the

properties of the very important hypervolume indicator (to

be defined later) readily become intuitive. A reason for

deviating from the Pareto cone could be to add constraints

to the trade-off between solutions. Moreover, see later for a
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discussion, the more general cones turned out to be very

useful in generalizing the hypervolume indicator and

influence the distribution of points in the approximation set

to the Pareto front.

Alternatives to the standard Pareto order on Rm can be

easily imagined and constructed by using pointed, convex

cones. The alternatives can be used, for instance, in pref-

erence articulation.

3.2 Time complexity of basic operations
on ordered sets

Partial orders do not have cycles. Let R be a partial order. It

is easy to see that R does not have cycles. We show that the

associated strict partial order does not have cycles. That is,

there do not exist

ðb1; b2Þ 2 R n D; ðb2; b3Þ 2 R n D; � � � ; ðbt�1; b1Þ 2 R n D

where D is the diagonal. For suppose such bi; i ¼ 1; � � � ; t �
1 can be found with this property. Then by transitivity of

R n D (see Proposition 1), we get ðb1; bt�1Þ 2 R n D. By
assumption, we have ðbt�1; b1Þ 2 R n D. Again by transi-

tivity, we get ðb1; b1Þ 2 R n D which is a contradiction. In

other words, R does not have cycles. (The essence of the

above argument is, that any strict partial order does not

have cycles.) The absence of cycles for (strict) partial

orders gives rise to the following proposition.

Proposition 6 Let S be a (strict) partially ordered set.

Then any finite, non-empty subset of S has minimal ele-

ments (with respect to the partial order). In particular, any

finite, non-empty subset Y � R
m has minimal elements with

respect to the Pareto order �Pareto. Also any, finite non-

empty subset X � X has minimal elements with respect to

�f .

The question arises: How fast can the minimal elements

be obtained?

Proposition 7 Given a finite partially ordered set ðX;�Þ,

the set of minimal elements can be obtained in time Hðn2Þ.

Proof A double nested loop can check non-domination for

each element. For the lower bound consider the case that

all elements in X are incomparable. Only in this case is

X the minimal set. It requires time Xðn2Þ to compare all

pairs (Daskalakis et al. 2011). h

Fortunately, in case of the Pareto ordered set

ðX;�ParetoÞ, one can find the minimal set faster. The

algorithm suggested by Kung et al. (1975) combines a

dimension sweep algorithm with a divide and conquer

algorithm and finds the minimal set in time Oðnðlog nÞÞ for

d ¼ 2 and in time Oðnðlog nÞd�2Þ for d� 3. Hence, in case

of small finite decision spaces, efficient solutions can be

identified without much effort. In the case of large com-

binatorial or continuous search spaces, however, opti-

mization algorithms are needed to find them.

4 Scalarization techniques

Classically, multiobjective optimization problems are often

solved using scalarization techniques (see, for instance,

Miettinen 2012). Also in the theory and practice of evo-

lutionary multiobjective optimization scalarization plays an

important role, especially in the so-called decomposition

based approaches.

In brief, scalarization means that the objective functions

are aggregated (or reformulated as constraints), and then a

constrained single-objective problem is solved. By using

different parameters of the constraints and aggregation

function, it is possible to obtain different points on the

Pareto front. However, when using such techniques, certain

caveats have to be considered. In fact, one should always

ask the following two questions:

1. Does the optimization of scalarized problems result in

efficient points?

2. Can we obtain all efficient points or vectors on the

Pareto front by changing the parameters of the

scalarization function or constraints?

We will provide four representative examples of scalar-

ization approaches and analyze whether they have these

properties.

4.1 Linear weighting

A simple means to scalarize a problem is to attach non-

negative weights (at least one of them positive) to each

objective function and then to minimize the weighted sum

of objective functions. Hence, the multiobjective opti-

mization problem is reformulated to:

Definition 14 Linear Scalarization Problem. The linear

scalarization problem (LSP) of an MOP using a weight

vector w 2 Rm

0, is given by

minimize
X

m

i¼1

wifiðxÞ; x 2 X :

Proposition 8 The solution of an LSP is on the Pareto

front, no matter which weights in Rm

0 are chosen.

Proof We show that the solution of the LSP cannot be a

dominated point, and therefore, if it exists, it must neces-

sarily be a non-dominated point. Consider a solution of the

LSP against some weights w 2 Rm

0, say x
 and suppose
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this minimal point is dominated. Then there exists an

objective vector y 2 fðXÞ with 8i 2 f1; . . .;mg yi � fiðx

Þ

and for some index j 2 f1; . . .;mg it holds that yj\fjðx

Þ.

Hence, it must also hold that
Pm

i¼1 wiyi\
Pm

i¼1 wifiðx

Þ,

which contradicts the assumption that x
 is minimal. h

In the literature the notion of convexity (concavity) of

Pareto fronts is for the most part not defined formally.

Possible formal definitions for convexity and concavity are

as follows.

Definition 15 Convex Pareto front. A Pareto front is

convex if and only if YN 	 Rm
� 0 is convex.

Definition 16 Concave Pareto front. A Pareto front is

concave if and only if YN 	 Rm
� 0 is convex.

Proposition 9 In case of a convex Pareto front, for each

solution in YN there is a solution of a linear scalarization

problem for some weight vector w 2 Rm

0.

If the Pareto front is non-convex, then, in general, there

can be points on the Pareto front which are the solutions of

no LSP. Practically speaking, in the case of concave Pareto

fronts, the LSP will tend to give only extremal solutions,

that is, solutions that are optimal in one of the objectives.

This phenomenon is illustrated in Fig. 2, where the tan-

gential points of the dashed lines indicate the solution

obtained by minimizing an LSP for different weight choi-

ces (colors). In the case of the non-convex Pareto front

(Fig. 2, right), even equal weights (dark green) cannot lead

to a solution in the middle part of the Pareto front. Also, by

solving a series of LSPs with minimizing different

weighted aggregation functions, it is not possible to obtain

this interesting part of the Pareto front.

4.1.1 Chebychev scalarization

Another means of scalarization, that will also uncover

points in concave parts of the Pareto front, is to formulate

the weighted Chebychev distance to a reference point as an

objective function.

Definition 17 Chebychev Scalarization Problem. The

Chebychev scalarization problem (CSP) of an MOP using a

weight vector k 2 Rm

0, is given by

minimize max
i2f1;...;mg

kijfiðxÞ � z
i j; x 2 X ;

where z
 is a reference point, i.e., the ideal point defined as

z
i ¼ infx2X fiðxÞ with i ¼ 1; � � � ;m.

Proposition 10 Let us assume a given set of mutually non-

dominated solutions in Rm (e.g., a Pareto front). Then for

every non-dominated point p there exists a set of weights

for a CSP, that makes this point a minimizer of the CSP

provided the reference point z
 is properly chosen (i.e., the

vector p� z
 either lies in the positive or negative

orthant).

Practically speaking, Proposition 10 ensures that by

changing the weights, all points of the Pareto front can, in

principle, occur as minimizers of CSP. For the two

example Pareto fronts, the minimizers of the Chebychev

scalarization function are points on the iso-height lines of

the smallest CSP function value which still intersect with

the Pareto front. Clearly, such points are potentially found

in convex parts of Pareto fronts as illustrated in Fig. 3 (left)

as well as in concave parts (right).However, it is easy to

construct examples where a CSP obtains minimizers in

weakly dominated points (see Definition 8). Think for

instance of the case fðXÞ ¼ ½0; 1�2. In this case all points on

the line segment ð0; 0Þ>; ð0; 1Þ> and on the line segment

ð0; 0Þ>ð1; 0Þ> are solutions of some Chebychev scalariza-

tion. (The ideal point is 0 ¼ ð0; 0Þ>, one can take as

weights (0, 1) for the first scalarization, and (1, 0) for the

second scalarization; the Pareto front is equal to fð0; 0Þ>g).
In order to prevent this, the augmented Chebychev

scalarization provides a solution. It reads:
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y∗

y∗
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f1

f2
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Fig. 2 Linear scalarization

problems with different weights

for (1) convex Pareto fronts, and

(2) concave Pareto fronts
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minimize max
i2f1;...;mg

kifiðxÞ þ �
X

n

i¼1

fiðxÞ; x 2 X ; ð2Þ

where � is a sufficiently small, positive constant.

4.1.2 �-constraint method

A rather straightforward approach to turn a multiobjective

optimization problem into a constraint single-objective

optimization problem is the �-constraint method.

Definition 18 �–constraint Scalarization. Given a MOP,

the �–constraint scalarization is defined as follows. Given

m� 1 constants �1 2 R; . . .; �m�1 2 R,

minimize f1ðxÞ; subject to g1ðxÞ� �1; . . .; gm�1ðxÞ� �m�1;

where f1; g1; . . .; gm�1 constitute the m components of

vector function f of the multiobjective optimization prob-

lem (see Definition 1).

The method is illustrated in Fig. 4 (left) for �1 ¼ 2:5 for

a biobjective problem. Again, by varying the constants

�1 2 R; . . .; �m�1 2 R, one can obtain different points on

the Pareto front. And again, among the solutions weakly

dominated solutions may occur. It can, moreover, be

difficult to choose an appropriate range for the � values, if

there is no prior knowledge of the location of the Pareto

front in Rm.

4.1.3 Boundary intersection methods

Another often suggested way to find an optimizer is to

search for intersection points of rays with the attained

subset fðXÞ (Jaszkiewicz and Słowiński 1999). For this

method, one needs to choose a reference point in Rm, say r,

which, if possible, dominates all points in the Pareto front.

Alternatively, in the Normal Boundary Intersection method

(Das and Dennis 1998) the rays can emanate from a line (in

the bi-objective case) or an m� 1 dimensional hyperplane,

in which case lines originate from different evenly spaced

reference points (Das and Dennis 1998). Then the follow-

ing problem is solved:

Definition 19 Boundary Intersection Problem. Let d 2

R
m

0 denote a direction vector and r 2 Rm denote the ref-

erence vector. Then the boundary intersection problem is

formulated as:
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Fig. 3 Chebychev scalarization

problems with different weights

for (1) convex Pareto fronts, and

(2) concave Pareto fronts
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Fig. 4 Re-formulation of

multiobjective optimziation

problems as single-objective

constraint handling optimization

problems
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minimize t;

subject to

ðaÞ rþ td� fðxÞ ¼ 0;

ðbÞ x 2 X ; and

ðcÞ t 2 R� 0

Constraints (a) and (b) in the above problem formulation

enforce that the point is on the ray and also that there exists

a pre-image of the point in the decision space. Because t is

minimized, we obtain the point that is closest to the ref-

erence point in the direction of d. This method allows some

intuitive control on the position of resulting Pareto front

points. Excepting rare degenerate cases, it will obtain

points on the boundary of the attainable set fðXÞ. However,
it also requires an approximate knowledge of the position

of the Pareto front. Moreover, it might result in dominated

points if the Pareto front is not convex. The method is

illustrated in Fig. 4 (left) for a single direction and refer-

ence point.

5 Numerical algorithms

Many of the numerical algorithms for solving multiobjec-

tive optimization problems make use of scalarization with

varying parameters. It is then possible to use single-ob-

jective numerical optimization methods for finding differ-

ent points on the Pareto front.

Besides these, there are methods that focus on solving

the Karush-Kuhn-Tucker conditions. These methods aim

for covering all solutions to the typically underdetermined

nonlinear equation system given by these condition. Again,

for the sake of clarity and brevity, in the following treat-

ment, we will focus on the unconstrained case, noting that

the full Karush-Kuhn-Tucker and Fritz-John conditions

also feature equality and inequality constraints (Kuhn and

Tucker 1951).

Definition 20 Local Efficient Point. A point x 2 X is

locally efficient, if there exists � 2 R[ 0 such that

6 9y 2 B�ðxÞ : y �f x and x 6¼ y, where B�ðxÞ denotes the

open �-ball around x.

Theorem 1 Fritz–John Conditions. A neccessary condi-

tion for x 2 X to be locally efficient is given by

9k 
 0 :

X

m

i¼1

kirfiðxÞ ¼ 0 and
X

m

i¼1

ki ¼ 1:

Theorem 2 Karush–Kuhn–Tucker Conditions. A point

x 2 X is locally efficient, if it satisfies the Fritz–John

conditions and for which all objective functions are convex

in some open �-ball B�ðxÞ around x.

Remark 14 The equation in the Fritz–John Condition

typically does not result in a unique solution. For an n-

dimensional decision space X we have nþ 1 equations and

we have mþ n unknowns (including the k multipliers).

Hence, in a non-degenerate case, the solution set is of

dimension m� 1.

It is possible to use continuation and homotopy methods

to obtain all the solutions. The main idea of continuation

methods is to find a single solution of the equation system

and then to expand the solution set in the neighborhood of

this solution. To decide in which direction to expand, it is

necessary to maintain an archive, say A, of points that have

already been obtained. To obtain a new point xnew in the

neighborhood of a given point from the archive x 2 A the

homotopy method conducts the following steps:

1. Using the implicit function theorem a tangent space at

the current point is obtained. It yielded an m� 1

dimensional hyperplane that is tangential to fðxÞ and

used to obtain a predictor. See for the implicit function

theorem, for instance, Krantz and Parks (2003).

2. A point on the hyperplane in the desired direction is

obtained, thereby avoiding regions that are already

well covered in A.

3. A corrector is computed minimizing the residual

jj
P

kifiðxÞjj.
4. In case the corrector method succeeded to obtain a new

point in the desired neighborhood, the new point is

added to the archive. Otherwise, the direction is saved

(to avoid trying it a second time).

See Hillermeier (2001) and Schütze et al. (2005) for

examples and more detailed descriptions. The continuation

and homotopy methods require the efficient set to be

connected. Moreover, they require points to satisfy certain

regularity conditions (local convexity and differentiability).

Global multiobjective optimization research is still a

very active field of research. There are some promising

directions, such as subdivision techniques (Dellnitz et al.

2005), Bayesian global optimization (Emmerich et al.

2016), and Lipschitz optimization (Žilinskas 2013). How-

ever, these require the decision space to be of low

dimension.

Moreover, there is active research on derivative-free

methods for numerical multiobjective optimization. Direct

search techniques have been devised, for instance, Custó-

dio et al. (2011), and by Audet et al. (2010). For a sum-

mary of derivative-free methods, see Custódio et al.

(2012).
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6 Evolutionary multiobjective optimization

Evolutionary algorithms are a major branch of bio-inspired

search heuristics, which originated in the 1960ties and are

widely applied to solve combinatorial and non-convex

numerical optimization problems. In short, they use para-

digms from natural evolution, such as selection, recombi-

nation, and mutation to steer a population (set) of

individuals (decision vectors) towards optimal or near-op-

timal solutions (Bäck 1996).

Multiobjective evolutionary algorithms (MOEAs) gen-

eralize this idea, and typically they are designed to grad-

ually approach sets of Pareto optimal solutions that are

well-distributed across the Pareto front. As there are—in

general—no single-best solutions in multiobjective opti-

mization, the selection schemes of such algorithms differ

from those used in single-objective optimization. First

MOEAs were developed in the 1990ties—see, e.g., Kur-

sawe (1990) and Fonseca and Fleming (1993), but since

around the year 2001, after the first book devoted exclu-

sively to this topic was published by Deb (2001), the

number of methods and results in this field grew rapidly.

With some exceptions, the distinction between different

classes of evolutionary multiobjective optimization algo-

rithms is mainly due to the differences in the paradigms

used to define the selection operators, whereas the choice

of the variation operators is generic and dependent on the

problem. As an example, one might consider NSGA-II (see

Deb et al. 2002) as a typical evolutionary multiobjective

optimization algorithm; NSGA-II can be applied to con-

tinuous search spaces as well as to combinatorial search

spaces. Whereas the selection operators stay the same, the

variation operators (mutation, recombination) must be

adapted to the representations of solutions in the decision

space.

There are currently three main paradigms for MOEA

designs. These are:

1. Pareto based MOEAs: The Pareto based MOEAs use a

two-level ranking scheme. The Pareto dominance

relation governs the first ranking and contributions of

points to diversity is the principle of the second level

ranking. The second level ranking applies to points that

share the same position in the first ranking. NSGA-II

(see Deb et al. 2002) and SPEA2 (see Zitzler and

Thiele 1999) are two popular algorithms that fall into

this category.

2. Indicator based MOEAs: These MOEAs are guided by

an indicator that measures the performance of a set, for

instance, the hypervolume indicator or the R2 indica-

tor. The MOEAs are designed in a way that improve-

ments concerning this indicator determine the selection

procedure or the ranking of individuals.

3. Decomposition based MOEAs: Here, the algorithm

decomposes the problem into several subproblems,

each one of them targeting different parts of the Pareto

front. For each subproblem, a different parametrization

(or weighting) of a scalarization method is used.

MOEA/D and NSGA-III are well-known methods in

this domain.

In this tutorial, we will introduce typical algorithms for

each of these paradigms: NSGA-II, SMS-EMOA, and

Algorithm 1 NSGA-II Algorithm
1: initialize population P0 ⊂ X µ

2: while not terminate do

3: {Begin variate}
4: Qt ← ∅
5: for all i ∈ {1, . . . , μ} do

6: (x(1),x(2)) ← select mates(Pt) {select two parent individuals x(1) ∈ Pt and x(2) ∈
Pt}

7: r
(i)
t ← recombine(x(1),x(2))

8: q
(i)
t ← mutate(r)

9: Qt ← Qt ∪ {q
(i)
t }

10: end for

11: {End variate}
12: {Selection step, select μ-”best” out of (Pt ∪ Qt) by a two step procedure:}
13: (R1, ..., R ) ← non-dom sort(f , Pt ∪ Qt)
14: Find the element of the partition, Riµ

, for which the sum of the cardinalities |R1| +

· · ·+|Riµ
| is for the first time ≥ μ. If |R1|+· · ·+|Riµ

| = μ, Pt+1 ← ∪
iµ

i=1Ri, otherwise
determine set H containing μ − (|R1| + · · · + |Riµ−1|) elements from Riµ

with the

highest crowding distance and Pt+1 ← (∪
iµ−1
i=1 Ri) ∪ H.

15: {End of selection step.}
16: t ← t + 1
17: end while

18: return Pt
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MOEA/D. We will discuss important design choices, and

how and why other, similar algorithms deviate in these

choices.

6.1 Pareto based algorithms: NSGA-II

The basic loop of NSGA-II (Deb et al. 2002) is given by

Algorithm 1.

Firstly, a population of points is initialized. Then the

following generational loop is repeated. This loop consists

of two parts. In the first, the population undergoes a vari-

ation. In the second part, a selection takes place which

results in the new generation-population. The generational

loop repeats until it meets some termination criterion,

which could be convergence detection criterion (cf. Wag-

ner et al. 2009) or the exceedance of a maximal compu-

tational budget.

In the variation part of the loop k offspring are gener-

ated. For each offspring, two parents are selected. Each one

of them is selected using binary tournament selection, that

is drawing randomly two individuals from Pt and selecting

the better one concerning its rank in the population. The

parents are then recombined using a standard recombina-

tion operator. For real-valued problems simulated binary

crossover (SBX) is used (see Deb and Argawal 1995).

Then the resulting individual is mutated. For real-valued

problem polynomial mutation (PM) is used (see Mateo and

Alberto 2012). This way, k individuals are created, which

are all combinations or modifications of individuals in Pt.

Then the parent and the offspring populations are merged

into Pt [ Qt.

In the second part, the selection part, the l best indi-

viduals of Pt [ Qt with respect to a multiobjective ranking

are selected as the new population Ptþ1.

Next we digress in order to explain the multiobjective

ranking which is used in NSGA-II. The key ingredient of

NSGA-II that distinguishes it from genetic algorithms for

single-objective optimization, is the way the individuals

are ranked. The ranking procedure of NSGA-II consists of

two levels. First, non-dominated sorting is performed. This

ranking solely depends on the Pareto order and does not

depend on diversity. Secondly, individuals which share the

same rank after the first ranking are then ranked according

to the crowding distance criterion which is a strong

reflection of the diversity.

Let NDðPÞ denote the non-dominated solutions in some

population. Non-dominated sorting partitions the popula-

tions into subsets (layers) based on Pareto non-dominance

and it can be specified through recursion as follows.

R1 ¼NDðPÞ ð3Þ

Rkþ1 ¼NDðP n [k
i¼1RiÞ; k ¼ 1; 2; . . . ð4Þ

As in each step of the recursion at least one solution is

removed from the population, the maximal number of

layers is |P|. We will use the index ‘ to denote the highest

non-empty layer. The rank of the solution after non-dom-

inated sorting is given by the subindex k of Rk. It is clear

that solutions in the same layer are mutually incomparable.

The non-dominated sorting procedure is illustrated in

Fig. 5 (upper left). The solutions are ranked as follows

R1 ¼ fyð1Þ; yð2Þ; yð3Þ; yð4Þg, R2 ¼ fyð5Þ; yð6Þ; yð7Þg, R3 ¼

fyð8Þ; yð9Þg.
Now, if there is more than one solution in a layer, say R,

a secondary ranking procedure is used to rank solutions

within that layer. This procedure applies the crowding

distance criterion. The crowding distance of a solution x 2
R is computed by a sum over contributions ci of the i-th

objective function:

liðxÞ :¼maxðffiðyÞjy 2 R n fxg ^ fiðyÞ� fiðxÞg [ f�1gÞ

ð5Þ

uiðxÞ :¼minðffiðyÞjy 2 R n fxg ^ fiðyÞ� fiðxÞg [ f1gÞ

ð6Þ

ciðxÞ :¼ui � li; i ¼ 1; . . .;m ð7Þ

The crowding distance is now given as:
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Fig. 5 Illustration of non-

dominated sorting (left) and

crowding distance (right)
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cðxÞ :¼
1

m

X

m

i¼1

ciðxÞ; x 2 R ð8Þ

For m ¼ 2 the crowding distances of a set of mutually

non-dominated points are illustrated in Fig. 5 (upper right).

In this particular case, they are proportional to the

perimeter of a rectangle that just is intersecting with the

neighboring points (up to a factor of 1
4
). Practically

speaking, the value of li is determined by the nearest

neighbor of x to the left according to the i-coordinate, and

li is equal to the i-th coordinate of this nearest neighbor,

similarly the value of ui is determined by the nearest

neighbor of x to the right according to the i-coordinate,

and ui is equal to the i-th coordinate of this right nearest

neighbor. The more space there is around a solution, the

higher is the crowding distance. Therefore, solutions with a

high crowding distance should be ranked better than those

with a low crowding distance in order to maintain diversity

in the population. This way we establish a second order

ranking. If the crowding distance is the same for two

points, then it is randomly decided which point is ranked

higher.

Now we explain the non-dom_sort procedure in line 13

of Algorithm 1 the role of P is taken over by Pt \ Qt: In

order to select the l best members of Pt [ Qt according to

the above described two level ranking, we proceed as

follows. Create the partition R1;R2; � � � ;R‘ of Pt [ Qt as

described above. For this partition one finds the first index

il for which the sum of the cardinalities jR1j þ � � � þ jRil j is

for the first time � l. If jR1j þ � � � þ jRil j ¼ l, then set

Ptþ1 to [
il
i¼1Ri, otherwise determine the set H containing

l� ðjR1j þ � � � þ jRil�1jÞ elements from Ril with the

highest crowding distance and set the next generation-

population, Ptþ1, to ð[
il�1

i¼1 RiÞ [ H.

Pareto-based Algorithms are probably the largest class

of MOEAs. They have in common that they combine a

ranking criterion based on Pareto dominance with a

diversity based secondary ranking. Other common algo-

rithms that belong to this class are as follows. The Mul-

tiobjective Genetic Algorithm (MOGA) (Fonseca and

Fleming 1993), which was one of the first MOEAs. The

PAES (Knowles and Corne 2000), which uses a grid par-

titioning of the objective space in order to make sure that

certain regions of the objective space do not get too

crowded. Within a single grid cell, only one solution is

selected. The Strength Pareto Evolutionary Algorithm

(SPEA) (Zitzler and Thiele 1999) uses a different criterion

for ranking based on Pareto dominance. The strength of an

individual depends on how many other individuals it

dominates and by how many other individuals dominate it.

Moreover, clustering serves as a secondary ranking crite-

rion. Both operators have been refined in SPEA2 (Zitzler

et al. 2001), and also it features a strategy to maintain an

archive of non-dominated solutions. The Multiobjective

Micro GA.

Coello and Pulido (2001) is an algorithm that uses a very

small population size in conjunction with an archive.

Finally, the Differential Evolution Multiobjective Opti-

mization (DEMO) (Robic and Filipic 2005) algorithm

combines concepts from Pareto-based MOEAs with a

variation operator from differential evolution, which leads

to improved efficiency and more precise results in partic-

ular for continuous problems.

6.2 Indicator-based algorithms: SMS-EMOA

A second algorithm that we will discuss is a classical

algorithm following the paradigm of indicator-based mul-

tiobjective optimization. In the context of MOEAs, by a

performance indicator (or just indicator), we denote a

scalar measure of the quality of a Pareto front approxi-

mation. Indicators can be unary, meaning that they yield an

absolute measure of the quality of a Pareto front approxi-

mation. They are called binary, whenever they measure

how much better one Pareto front approximation is con-

cerning another Pareto front approximation.

The SMS-EMOA (Emmerich et al. 2005) uses the

hypervolume indicator as a performance indicator. Theo-

retical analysis attests that this indicator has some favor-

able properties, as the maximization of it yields

approximations of the Pareto front with points located on

the Pareto front and well distributed across the Pareto front.

The hypervolume indicator measures the size of the dom-

inated space, bound from above by a reference point.

For an approximation set A � R
m it is defined as

follows:

HIðAÞ ¼ Volðfy 2 Rm : y�Pareto r^9a 2 A : a�Pareto ygÞ

ð9Þ

Here, Vol ð:Þ denotes the Lebesgue measure of a set in

dimension m. This is length for m ¼ 1, area for m ¼ 2,

volume for m ¼ 3, and hypervolume for m� 4. Practically

speaking, the hypervolume indicator of A measures the size

of the space that is dominated by A. The closer points move

to the Pareto front, and the more they distribute along the

Pareto front, the more space gets dominated. As the size of
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the dominated space is infinite, it is necessary to bound it.

For this reason, the reference point r is introduced.

The SMS-EMOA seeks to maximize the hypervolume

indicator of a population which serves as an approximation

set. This is achieved by considering the contribution of

points to the hypervolume indicator in the selection pro-

cedure. Algorithm 2 describes the basic loop of the stan-

dard implementation of the SMS-EMOA.

The algorithm starts with the initialization of a popula-

tion in the search space. Then it creates only one offspring

individual by recombination and mutation. This new indi-

vidual enters the population, which has now size lþ 1. To

reduce the population size again to the size of l, a subset of

size l with maximal hypervolume is selected. This way as

long as the reference point for computing the hypervolume

remains unchanged, the hypervolume indicator of Pt can

only grow or stay equal with an increasing number of

iterations t.

Next, the details of the selection procedure will be dis-

cussed. If all solutions in Pt are non-dominated, the

selection of a subset of maximal hypervolume is equivalent

to deleting the point with the smallest (exclusive) hyper-

volume contribution. The hypervolume contribution is

defined as:

DHIðy; YÞ ¼ HIðYÞ � HIðY n fygÞ

An illustration of the hypervolume indicator and

hypervolume contributions for m ¼ 2 and, respectively,

m ¼ 3 is given in Fig. 6. Efficient computation of all

hypervolume contributions of a population can be achieved

Algorithm 2 SMS-EMOA
initialize P0 ⊂ X µ

while not terminate do

{Begin variate}
(x(1),x(2)) ← select mates(Pt) {select two parent individuals x(1) ∈ Pt and x(2) ∈ Pt}
ct ← recombine(x(1),x(2))
qt ← mutate(ct)
{End variate}
{Begin selection}
Pt+1 ← selectf (Pt ∪{qt}) {Select subset of size μ with maximal hypervolume indicator
from P ∪ {qt}}
{End selection}
t ← t + 1

end while

return Pt
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(bottom left), and 3-D

hypervolume contributions

(bottom right)
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in time Hðl log lÞ for m ¼ 2 and m ¼ 3 (Emmerich and

Fonseca 2011). For m ¼ 3 or 4, fast implementations are

described in Guerreiro and Fonseca (2017). Moreover, for

fast logarithmic-time incremental updates for 2-D an

algorithm is described in Hupkens and Emmerich (2013).

For achieving logarithmic time updates in SMS-EMOA,

the non-dominated sorting procedure was replaced by a

procedure, that sorts dominated solutions based on age. For

m[ 2, fast incremental updates of the hypervolume indi-

cator and its contributions were proposed in for more than

two dimensions (Guerreiro and Fonseca 2017).

In case dominated solutions appear the standard imple-

mentation of SMS-EMOA partitions the population into

layers of equal dominance ranks, just like in NSGA-II.

Subsequently, the solution with the smallest hypervolume

contribution on the worst ranked layer gets discarded.

SMS-EMOA typically converges to regularly spaced

Pareto front approximations. The density of these approx-

imations depends on the local curvature of the Pareto front.

For biobjective problems, it is highest at points where the

slope is equal to �45� (Auger et al. 2009). It is possible to

influence the distribution of the points in the approximation

set by using a generalized cone-based hypervolume indi-

cator. These indicators measure the hypervolume domi-

nated by a cone-order of a given cone, and the resulting

optimal distribution gets more uniform if the cones are

acute, and more concentrated when using obtuse cones (see

Emmerich et al. 2013).

Besides the SMS-EMOA, there are various other indi-

cator-based MOEAs. Some of them also use the hyper-

volume indicator. The original idea to use the hypervolume

indicator in an MOEA was proposed in the context of

archiving methods for non-dominated points. Here the

hypervolume indicator was used for keeping a bounded-

size archive (Knowles et al. 2003). Besides, in an early

work hypervolume-based selection which also introduced a

novel mutation scheme, which was the focus of the paper

(Huband et al. 2003). The term Indicator-based Evolu-

tionary Algorithms (IBEA) (Zitzler and Künzli 2004) was

introduced in a paper that proposed an algorithm design, in

which the choice of indicators is generic. The hypervol-

ume-based IBEA was discussed as one instance of this

class. Its design is however different to SMS-EMOA and

makes no specific use of the characteristics of the hyper-

volume indicator. The Hypervolume Estimation Algorithm

(HypE) (Bader and Zitzler 2011) uses a Monte Carlo

Estimation for the hypervolume in high dimensions and

thus it can be used for optimization with a high number of

objectives (so-called many-objective optimization prob-

lems). MO-CMA-ES (Igel et al. 2006) is another hyper-

volume-based MOEA. It uses the covariance-matrix

adaptation in its mutation operator, which enables it to

adapt its mutation distribution to the local curvature and

scaling of the objective functions. Although the hypervol-

ume indicator has been very prominent in IBEAs, there are

some algorithms using other indicators, notably this is the

R2 indicator (Trautmann et al. 2013), which features an

ideal point as a reference point, and the averaged Hausdorff

distance (Dp indicator) (Rudolph et al. 2016), which

requires an aspiration set or estimation of the Pareto front

which is dynamically updated and used as a reference. The

idea of aspiration sets for indicators that require knowledge

of the ‘true’ Pareto front also occurred in conjunction with

the a-indicator (Wagner et al. 2015), which generalizes the

approximation ratio in numerical single-objective opti-

mization. The Portfolio Selection Multiobjective Opti-

mization Algorithm (POSEA) (Yevseyeva et al. 2014) uses

the Sharpe Index from financial portfolio theory as an

indicator, which applies the hypervolume indicator of

singletons as a utility function and a definition of the

covariances based on their overlap. The Sharpe index

combines the cumulated performance of single individuals

with the covariance information (related to diversity), and

it has interesting theoretical properties.

6.3 Decomposition-based algorithm: MOEA/D

Decomposition-based algorithms divide the problem into

subproblems using scalarizations based on different

weights. Each scalarization defines a subproblem. The

subproblems are then solved simultaneously by dynami-

cally assigning and re-assigning points to subproblems and

exchanging information from solutions to neighboring sub-

problems.

The method defines neighborhoods on the set of these

subproblems based on the distances between their aggre-

gation coefficient vectors. When optimizing a subproblem,

information from neighboring subproblems can be

exchanged, thereby increasing the efficiency of the search

as compared to methods that independently solve the

subproblems.

MOEA/D (Zhang and Li 2007) is a very commonly used

decomposition based method, that succeeded a couple of

preceding algorithms based on the idea of combining

decomposition, scalarization and local search(Ishibuchi

and Murata 1996; Jin et al. 2001; Jaszkiewicz 2002). Note

that even the early proposed algorithms VEGA (Schaffer

1985) and the vector optimization approach of Kursawe

(see Kursawe 1990) can be considered as rudimentary

decomposition based approaches, where these algorithms

obtain a problem decomposition by assigning different

members of a population to different objective functions.

These early algorithmic designs used subpopulations to

solve different scalarized problems. In contrast, in MOEA/
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D one population with interacting neighboring individuals

is applied, which reduces the complexity of the algorithm.

Typically, MOEA/D works with Chebychev scalariza-

tions, but the authors also suggest other scalarization

methods, namely scalarization based on linear weighting—

which however has problems with approximating non-

convex Pareto fronts—and scalarization based on boundary

intersection methods—which requires additional parame-

ters and might also obtain strictly dominated points.

MOEA/D evolves a population of individuals, each

individual xðiÞ 2 Pt being associated with a weight vector

kðiÞ. The weight vectors kðiÞ are evenly distributed in the

search space, e.g., for two objectives a possible choice is:

kðiÞ ¼ ðk�i
k
; i
k
Þ>; i ¼ 0; . . .; l.

The i-th subproblem gðxjki; z
Þ is defined by the Che-

bychev scalarization function (see also Eq. 2):

gðxjkðiÞ; z
Þ ¼ max
j2f1;...;mg

fk
ðiÞ
j jfjðxÞ � z
j jg þ �

X

m

j¼1

fjðxÞ � z
j

� �

ð10Þ

The main idea is that in the creation of a new candidate

solution for the i-th individual the neighbors of this indi-

vidual are considered. A neighbor is an incumbent solution

of a subproblem with similar weight vectors. The neigh-

borhood of i-th individual is the set of k subproblems, for

so predefined constant k, that is closest to kðiÞ in the

Euclidean distance, including the i-th subproblem itself. It

is denoted with B(i). Given these preliminaries, the MOEA/

D algorithm—using Chebychev scalarization— reads as

described in Algorithm 3.

Note the following two remarks about MOEA/D: (1)

Many parts of the algorithm are kept generic. Here, generic

options are recombination, typically instantiated by stan-

dard recombination operators from genetic algorithms, and

local improvement heuristic. The local improvement

heuristic should find a solution in the vicinity of a given

solution that does not violate constraints and has a rela-

tively good performance concerning the objective function

values. (2) MOEA/D has additional statements to collect all

non-dominated solutions it generates during a run in an

external archive. Because this external archive is only used

in the final output and does not influence the search

dynamics, it can be seen as a generic feature of the algo-

rithm. In principle, an external archive can be used in all

EMOAs and could therefore also be done in SMS-EMOA

and NSGA-II. To make comparisons to NSGA-II and

SMS-EMOA easier, we omitted the archiving strategy in

the description.

Recently, decomposition-based MOEAs became very

popular, also because they scale well to problems with

many objective functions. The NSGA-III (Deb and Jain

2014) algorithm is specially designed for many-objective

optimization and uses a set of reference points that is

dynamically updated in its decomposition. Another

decomposition based technique is called Generalized

Decomposition (Giagkiozis et al. 2014). It uses a mathe-

matical programming solver to compute updates, and it was

shown to perform well on continuous problems. The

combination of mathematical programming and decom-

position techniques is also explored in other, more novel,

hybrid techniques, such as Directed Search (Schütze et al.

Algorithm 3 MOEA/D

input: Λ = {λ(1), ..., λ(µ)} {weight vectors}
input: z∗: reference point for Chebychev distance
initialize P0 ⊂ X µ

initialize neighborhoods B(i) by collecting k nearest weight vectors in Λ for each λ(i)

while not terminate do

for all i ∈ {1, ..., μ} do

Select randomly two solutions x(1), x(2) in the neighborhood B(i).
y ← Recombine x(1), x(2) by a problem specific recombination operator.
y ← Local problem specific, heuristic improvement of y, e.g. local search, based on
the scalarized objective function g(x|λ(i), z∗) .
if g(y |λ(i), z∗) < g(x(i)|λ(i), z∗) then

x(i) ← y

end if

Update z∗, if neccessary, i.e, one of its component is larger than one of the corre-
sponding components of f(x(i)).

end for

t ← t + 1
end while

return Pt
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2016), which utilizes the Jacobian matrix of the vector-

valued objective function (or approximations to it) to find

promising directions in the search space, based on desired

directions in the objective space.

7 Performance assessment

In order to make a judgement (that is, gain insight into the

advantages and disadvantages) of multiobjective evolu-

tionary (or for that matter also deterministic) optimizers we

need to take into account (1) the computational resources

used, and (2) the quality of the produced result(s).

The current state of the art of multiobjective optimiza-

tion approaches are mainly compared empirically though

theoretical analyses exist (see, for instance, the conver-

gence results described in Rudolph and Agapie (2000),

Beume et al. (2011) albeit for rather simple problems as

more realistic problems elude mathematical analysis.

The most commonly computational resource which is

taken into account is the computation time which is very

often measured implicitly by counting fitness function

evaluations—in this respect, there is no difference with

single-objective optimization. In contrast to single-objec-

tive optimization, in multiobjective optimization, a close

distance to a (Pareto) optimal solution is not the only thing

required but also good coverage of the entire Pareto front.

As the results of multiobjective optimization algorithms are

(finite) approximation sets to the Pareto front we need to be

able to say when one Pareto front approximation is better

than another. One good way to define when one approxi-

mation set is better than another is as in Definition 22 (see

Zitzler et al. 2003).

Definition 21 Approximation Set of a Pareto Front. A

finite subset A of Rm is an approximation set of a Pareto

front if and only if A consists of mutually (Pareto) non-

dominated points.

Definition 22 Comparing Approximation Sets of a Pareto

Front. Let A and B be approximation sets of a Pareto front

in Rm. We say that A is better than B if and only if every

b 2 B is weakly dominated by at least one element a 2 A

and A 6¼ B. Notation: A.B.

In Fig. 7 examples are given of the case of one set being

better than another and in Fig. 8 examples are given of the

case that a set is not better than another.

This relation on sets has been used in Zitzler et al.

(2003) to classify performance indicators for Pareto fronts.

To do so, they introduced the notion of completeness and

compatibility of these indicators with respect to the set

relation ‘is better than’.

Definition 23 Unary Set Indicator. A unary set indicator is

a mapping from finite subsets of the objective space to the

set of real numbers. It is used to compare (finite) approx-

imations to the Pareto front.

Definition 24 Compatibility of Unary Set Indicators

concerning the ‘is better than’ order on Approximation

Sets. A unary set indicator I is compatible concerning the

‘is better than’ or .-relation if and only if

IðAÞ[ IðBÞ ) A.B. A unary set indicator I is complete

with respect to the ‘is better than’ or .-relation if and only

if A.B ) IðAÞ[ IðBÞ. If in the last definition we replace[
by � then the indicator is called weakly-complete.

The hypervolume indicator and some of its variations

are complete. Other indicators compared in the paper

(Zitzler et al. 2003) are weakly-complete or not even

weakly-complete. It has been proven in the same paper that

no unary indicator exists that is complete and compatible at

the same time. Moreover for the hypervolume indicator

HI it has be shown that HI ðAÞ[ HI ðBÞ ) :ðB.AÞ.
The latter we call weakly-compatible.

In all the discussions of the hypervolume indicator, the

assumption is that all points of the approximation sets

under consideration dominate the reference point.

Recently, variations of the hypervolume indicator have

been proposed—the so-called free hypervolume indica-

tors—that do not require the definition of a reference point
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Fig. 7 In the left picture, the set

of points denoted by blue

squares is better than (.) the set

consisting of the red-circle

points. Also in the right picture

the set consisting of blue

squares is better than the set of

red-circle points—in this case

the intersection of the two sets is

non-empty
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and are complete and weakly-compatible for all approxi-

mation sets (Zitzler et al. 2003).

Besides unary indicators, one has introduced binary

indicators (see Riquelme et al. 2015). The most used ones

are unary indicators followed up by binary indicators. For

binary indicators, the input is a pair of approximation sets

and the output is again a real number. Here the goal is to

determine which of the two approximation sets is the better

one (and how much better it is)1. Binary indicators can also

be used, if the true Pareto front is known, e.g., in bench-

marking on test problems. A common binary indicator is

the binary �-indicator. In order to introduce this indicator

we first define for each d 2 R a binary relation on the

points in Rm.

Definition 25 d-domination. Let d 2 R and let a 2 Rm

and b 2 Rm. We say that a d-dominates b (notation:

a �d b) if and only if ai � bi þ d; i ¼ 1; . . .;m.

Next, we can define the binary indicator I�.

Definition 26 The Binary Indicator I�. Given two

approximation sets A and B, then

I�ðA;BÞ :¼ infd2Rf8b 2 B 9a 2 A such that a �d bg.

Clearly for a fixed B the smaller I�ðA;BÞ is the better the
approximation set A is relative to B. The following

properties hold: A.B ) I�ðB;AÞ[ 0, the second

notable property is as follows:

I�ðA;BÞ� 0 and I�ðB;AÞ[ 0 ) A.B. These two proper-

ties show that based on the binary �-indicator it is possible

to decide whether or not A is better than B. In contrast, the

knowledge of the hypervolume indicator on the sets A and

B does not allow to decide whether or not A is better than

B.

Some of indicators are useful in case there is knowledge

or complete knowledge about the Pareto front. For instance

(see Rudolph et al. 2016), it has been suggested to compute

the Hausdorff distance (or variations of it) of an approxi-

mation set to the Pareto front. Moreover, the binary �-

indicator can be transformed into a complete unary indi-

cator in case the second input is the known Pareto front—

note that this indicator needs to be minimized.

Another useful way to learn about the behavior of

evolutionary multiobjective algorithms is the attainment

curve approach (see da Fonseca et al. 2001). The idea is to

generalize the cumulative distribution function and for the

study of algorithms it is approximated empirically. The

distribution is defined on the set of (finite) approximation

sets of the Pareto front. For each point in the objective

space R
m it is the probability that the Pareto front

approximation attains this point (that is, it is either one

point in the approximation set, or it is dominated by some

point in the approximation set). Formally, it reads
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Fig. 8 In each of the pictures,

the set consisting of the blue

square points is not better than

the set consisting of the red

circle points. Clearly, in each of

the two pictures on the right the

set consisting of the red circle

points is better than the set

consisting of the blue square

points

1 Conceivably one can can introduce k-ary indicators. To our

knowledge, so far they have not been used in multiobjective

optimization.
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Pðað1Þ � z _ að2Þ � z _ . . . _ aðkÞ � zÞ;

where A ¼ fað1Þ; að2Þ; . . .; aðkÞg is the approximation set and

z 2 Rm. In other words P is the probability of an algorithm

to find at least one solution which attains the goal z in a

single run. We define the attainment function aA : R
m !

½0; 1� associated to the approximation set A as follows:

aAðzÞ :¼ Pðað1Þ � z _ að2Þ � z _ . . . _ aðkÞ � zÞ:

This function can be approximated by

asðzÞ :¼
1

s

X

s

i¼1

IðAi; zÞ;

where A1; . . .;As are the outcome approximation sets of an

algorithm in s runs of the algorithm and I :

ð set of approximation sets Þ � Rm ! f0; 1g is a func-

tion which associates to an approximation set and a vector

in Rm the value 1 in case the vector is a member of the

approximation set or if some element of the approximation

set dominates it, otherwise the value is 0. For m ¼ 2 or 3

we can plot the boundaries where this function changes its

value. These are the attainment curves (m ¼ 2Þ and

attainment surfaces (m ¼ 3). In particular the median

attainment curve/surface gives a good summary of the

behavior of the optimizer. It is the boundary where the

function changes from a level below 0.5 to a level higher

than 0.5. Alternatively one can look at lower and higher

levels than 0.5 in order to get an optimistic or respectively

a pessimistic assessment of the performance.

In Fig. 9 an example of the median attainment curve is

shown. We assume that the four approximation sets are

provided by some algorithm.

8 Recent topics in multiobjective
optimization

Recently, there are many new developments in the field of

multiobjective optimization. Next we will list some of the

most important trends.

8.1 Many-objective optimization

Optimization with more than 3 objectives is currently ter-

med many-objective optimization [see, for instance, the

survey (Li et al. 2015)]. This is to stress the challenges one

meets when dealing with more than 3 objectives. The main

reasons are:

1. problems with many objectives have a Pareto front

which cannot be visualized in conventional 2D or 3D

plots instead other approaches to deal with this are

needed;

2. the computation time for many indicators and selection

schemes become computationally hard, for instance,

time complexity of the hypervolume indicator compu-

tation grows super-polynomially with the number of

objectives, under the assumption that P 6¼ NP;

3. last but not least the ratio of non-dominated points

tends to increase rapidly with the number of objectives.

For instance, the probability that a point is non-

dominated in a uniformly distributed set of sample

points grows exponentially fast towards 1 with the

number of objectives.

In the field of many-objective optimization different tech-

niques are used to deal with these challenges. For the first

challenge, various visualization techniques are used such as

projection to lower dimensional spaces or parallel coordi-

nate diagrams. In practice, one can, if the dimension is only

slightly bigger than 3, express the coordinate values by

colors and shape in 3D plots.

Naturally, in many-objective optimization indicators

which scale well with the number of objectives (say

polynomially) are very much desired. Moreover, decom-

position based approaches are typically preferred to indi-

cator based approaches.

The last problem requires, however, more radical devi-

ations from standard approaches. In many cases, the

reduction of the search space achieved by reducing it to the

efficient set is not sufficiently adequate to allow for
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Fig. 9 The median attainment curve for the case of four approxima-

tion sets; one approximation set consists of the blue squares, the

second set consists of points denoted by brown triangles, the third

consists of the red circles, and the fourth consists of points denoted by

black crosses; the darker gray the region is the more approximation

sets dominate it. The median attainment curve is the black polygonal

line
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subsequent decision making because too many alternatives

remain. In such cases, a stricter order than the Pareto order

is required which requires additional preference knowl-

edge. To elicit preference knowledge, interactive methods

often come to the rescue. Moreover, in some cases,

objectives are correlated which allows for grouping of

objectives, and in turn, such groups can be aggregated to a

single objective. Dimensionality reduction and community

detection techniques have been proposed for identifying

meaningful aggregation of objective functions.

8.2 Preference modeling

The Pareto order is the most applied order in multiobjective

optimization. However, different ranking schemes and

partial orders have been proposed in the literature for

various reasons. Often additional knowledge of user pref-

erences is integrated. For instance, One distinguishes

preference modeling according to at what stage of the

optimization the preference information is collected (a

priori, interactively, and a posteriori). Secondly one can

distinguish the type of information requested from the

decision maker, for instance, constraints on the trade-offs,

relative importance of the objectives, and preferred regions

on the Pareto front. Another way to elicit preference

information is by ordinal regression; here the user is asked

for pairwise comparisons of some of the solutions. From

this data, the weights of utility functions are learned

(Branke et al. 2015). The interested reader is also referred

to interesting work on non-monotonic utility functions,

using the Choquet integral (Branke et al. 2016). Notably,

the topic of preference elicitation is one of the main topics

in Multiple Criteria Decision Analysis (MCDA). In recent

years collaboration between MCDA and multiobjective

optimization (MOO) brought forward many new useful

approaches. A recommended reference for MCDA is Bel-

ton and Stewart (2002). For a comprehensive overview of

preference modelling in multiobjective optimization we

refer to Li et al. (2017) and Hakanen et al. (2016). More-

over Greco et al. (2016) contains an updated collection of

state of the art surveys on MCDA. A good reference dis-

cussing the integration of MCDA into MOO is Branke

et al. (2008).

8.3 Optimization with costly function
evaluations

In industrial optimization very often the evaluation of (an)

objective function(s) is achieved by simulation or experi-

ments. Such evaluations are typically time-consuming and

expensive. Examples of such costly evaluations occur in

the optimization based on crash tests of automobiles,

chemical experiments, computational fluid dynamics

simulations, and finite element computations of mechanical

structures. To deal with such problems techniques that need

only a limited number of function evaluations have been

devised. A common approach is to learn a surrogate model

of the objective functions by using all available past

evaluations. This is called surrogate model assisted opti-

mization. One common approach is to optimize on the

surrogate model to predict promising locations for evalu-

ation and use these evaluations to further improve the

model. In such methods, it is also important to add points

for developing the model in under-explored regions of the

search space. Some criteria such as expected improvement

take both exploitation and exploration into account. Sec-

ondly, surrogate models can be used in pre-processing in

the selection phase of evolutionary algorithms. To save

time, less interesting points can be discarded before they

would be evaluated by the costly and precise evaluator.

Typically regression methods are used to construct surro-

gate models; Gaussian processes and neural networks are

standard choices. Surrogate modeling has in the last decade

been generalized to multiobjective optimization in various

ways. Some important early work in this field was on

surrogate assisted MOEAs (Emmerich et al. 2006) and

ParEGO algorithm (Knowles 2006). A state of the art

review can be found in Allmendinger et al. (2017).

8.4 New bio-inspired paradigms

Inspiration by nature has been a creative force for dealing

with optimization algorithm design. Apart from biological

evolution, many other natural phenomena have been con-

sidered. While many of these algorithmic ideas have so far

remained in a somewhat experimental and immature state,

some non-evolutionary bio-inspired optimization algo-

rithms have gained maturation and competitive perfor-

mance. Among others, this seems to hold for particle

swarm optimization (Reyes-Sierra and Coello Coello

2006), ant colony optimization (Barán and Schaerer 2003),

and artificial immune systems Coello Coello and Cortés

(2005). As with evolutionary algorithms, also these algo-

rithms have first been developed for single-objective opti-

mization, and subsequently, they have been generalized to

multiobjective optimization. Moreover, there is some

recent research on bio-inspired techniques that are specif-

ically developed for multiobjective optimization. An

example of such a development is the Predator-Prey Evo-

lutionary Algorithm, where different objectives are repre-

sented by different types of predators to which the prey

(solutions) have to adapt (Laumanns et al. 1998; Grimme

and Schmitt 2006).

In the field of natural computing, it is also investigated

whether algorithms can serve as models for nature. It is an

interesting new research direction to view aspects of
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natural evolution as a multiobjective optimization process,

and first such models have been explored in Rueffler

(2006) and Sterck et al. (2011).

8.5 Set-oriented numerical optimization

Traditionally, numerical techniques for multiobjective

optimization are single point techniques: They construct a

Pareto front by formulating a series of single-objective

optimization problems (with different weights or con-

straints) or by expanding a Pareto front from a single

solution point by point using continuation. In contrast, set-

oriented numerical multiobjective optimization operates on

the level of solution sets, the points of which are simulta-

neously improved, and that converge to a well-distributed

set on the Pareto front. Only very recently such methods

have been developed, and techniques that originated from

evolutionary multiobjective optimization have been trans-

ferred into deterministic methods. A notable example is the

hypervolume indicator gradient ascent method for multi-

objective optimization (HIGA-MO) (Wang et al. 2017). In

this method a set of say l points is represented as a single

vector of dimension ln, where n is the dimension of the

search space. In real-valued decision space the mapping

HI: Rld ! R from the such population vectors to the

hypervolume indicator has a well-defined derivative in

almost all points. The computation of such derivatives has

been described in Emmerich and Deutz (2014). Viewing

the vector of partial derivatives as a gradient, conventional

gradient methods can be used. It requires, however, some

specific adaptations in order to construct robust and prac-

tically usable methods for local optimization. On convex

Table 1 Table of (evolutionary) multiobjective optimization software

Libraries (evolutionary) multiobjective optimization

Name Scope Prog. Lang. url or ref

Public domain

ecr EA and EMO R Bossek (2017)

JMetal Metatheuristics/EMO Java Barba-González et al. (2017)

Liger MOO/Design Optim. C?? Giagkiozis et al. (2013)

MOEA framework EMO Java moeaframework.org/

Opt4J EMO Java opt4j.sourceforge.net

PISA EMO C?? Bleuler et al. (2003)

PyMOO EMO Python www.openhub.net/p/pymoo

RODEOlib Robust Optimization Matlab sourceforge.net/projects/rodeolib/

Shark Library Machine Learning C# image.diku.dk/shark/

SUMO Bayesian Optimization Matlab sumo.intec.ugent.be/SUMO

TEA classical EA and MOO C?? Emmerich and Hosenberg (2000)

vOptSolver (Linear) MOO Julia voptsolver.github.io/vOptSolver

Commercial software

EASY Design Optimization C?? velos0.ltt.mech.ntua.gr/EASY/

IND-NIMBUS Design Optimization N/A ind-nimbus.it.jyu.fi

ISight Design Optimization N/A www.simuleon.com

MODEfrontier Design Optimization N/A www.esteco.com

Optimus Design Optimization N/A www.noesissolutions.com

WWW-NIMBUS Design Optimization N/A Miettinen and Mäkelä (2000)

Performance assessment

Performance assessment test problems

BBOB/COCO Benchmarking Tool C?? coco.gforge.inria.fr/

WFG Test Suite C?? www.wfg.csse.uwa.edu.au/toolkit/

ZDT/DTLZ Test Suite C?? esa.github.io/pagmo2/

Performance assessment software

Attainment surfaces R/C lopez-ibanez.eu/eaftools

Hypervolume computation C lopez-ibanez.eu/hypervolume

Hypervolume computation Link Collection Various ls11-www.cs.tu-dortmund.de/rudolph/hypervolume/start

123

604 M. T. M. Emmerich , A. H. Deutz

http://moeaframework.org/
http://opt4j.sourceforge.net
http://www.openhub.net/p/pymoo
http://image.diku.dk/shark/
http://sumo.intec.ugent.be/SUMO
http://voptsolver.github.io/vOptSolver
http://velos0.ltt.mech.ntua.gr/EASY/
http://ind-nimbus.it.jyu.fi
http://www.simuleon.com
http://www.esteco.com
http://www.noesissolutions.com
http://coco.gforge.inria.fr/
http://www.wfg.csse.uwa.edu.au/toolkit/
http://esa.github.io/pagmo2/
http://lopez-ibanez.eu/eaftools
http://lopez-ibanez.eu/hypervolume
http://ls11-www.cs.tu-dortmund.de/rudolph/hypervolume/start


problems, fast linear convergence can be achieved. By

using second-order derivatives in a hypervolume-based

Newton-Raphson method, even quadratic convergence

speed has been demonstrated empirically on a set of con-

vex bi-objective problems. The theory of such second-

order methods is subject to ongoing research (Hernández

et al. 2014).

8.6 Advanced performance assessment

Despite significant progress on the topic of performance

assessment in recent years, there are still many unanswered

questions. A bigger field of research is on performance

assessment of interactive and many objective optimization.

Moreover, the dependency of performance measures on

parameters, such as the reference point of the hypervolume

indicator requires further investigation. Some promising

work in that direction was recently provided in Ishibuchi

et al. (2017).

9 How to get started?

In the following, we list some of the main resources for the

field of (Evolutionary) Multiobjective Optimization.

Introductory Books:

– Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen,

Roman Slowiński Multiobjective Optimization :

Interactive and evolutionary approaches, Springer,

2008

– Carlos Coello Coello et al. Evolutionary Algorithms

for Solving Multi-Objective Problems, 2007,

Springer

– Kalyanmoy Deb Multi-Objective Optimization using

Evolutionary Algorithms, Wiley, 2001

– Matthias Ehrgott Multicriteria Optimization,

Springer, 2005

– Joshua Knowles, David Corne, Kalyanmoy Deb

Multiobjective Problem Solving from Nature,

Springer, 2007

– Kaisa Miettinen Multiobjective Nonlinear Optimiza-

tion, Kluwer, 2012

Websites:

– EMOO Repository by Carlos Coello Coello http://

neo.lcc.uma.es/emoo/

– SIMCO Open Problems http://simco.gforge.inria.fr/

doku.php?id=openproblems; a collection of open

problems and theoretical results on indicator based

approaches and complexity theory.

There are many implementations of multiobjective

optimization algorithms available. Table 1 provides a

table of MOO Software, including also some packages

that include deterministic solvers.

Conferences and Journals:

– Conferences:

– Conference on Evolutionary Computation

(CEC), annual, published by IEEE

– Evolutionary Multi-criterion Optimization

(EMO) biannual conference, proceedings pub-

lished by Springer LNCS

– EVOLVE—a Bridge between Probability, Set

Oriented Numerics and Evolutionary Computa-

tion, annual until 2015, published by Springer

Studies in Computational Intelligence, continued

as NEO see below

– GECCO with EMO track, annual, published by

ACM

– Global Optimization Workshop (GO), biannual,

published by diverse publishers (as special

issues, and post-proceedings)

– MCDM with EMO track, biannual, published by

MCDM International Society

– Numerical and Evolutionary Optimiza-

tion(NEO), annual, published by Springer

Advances in Computational Intelligence

– and others

– Journals2: COAP, ECJ, EJOR, IEEE TEVC, JOGO,

MCDA Journal, and other Optimization, and Oper-

ations Research journals.

Aside from the resources mentioned above, there are many

research groups and labs which maintain a repository of

software accompanying their published research, e.g., the

MODA group at Leiden University http://moda.liacs.nl and

the research group of Carlos Fonseca at Coimbra Univer-

sity eden.dei.uc.pt/cmfonsec/software.html.

10 Summary and outlook

In this tutorial, we gave an introduction to the field of

multiobjective optimization. We covered the topics of

order-theoretical foundations, scalarization approaches,

and optimality conditions. As solution methods, we dis-

cussed homotopy and evolutionary methods. In the context

of Evolutionary methods, we discussed three state-of-the-

art techniques in detail, namely NSGA-II, SMS-EMOA,

and MOEA/D, each representing a key paradigm in evo-

lutionary multiobjective algorithm design. NSGA-II served

2 a selection of journals in which many articles are published on

(Evolutionary) Multiobjective Optimization.
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as a representative of Pareto based approaches, SMS-

EMOA as an example of Indicator-based approaches, and

MOEA/D as an example of decomposition based approa-

ches. These algorithms have some advantages and

disadvantages:

– Pareto-based approaches follow a straightforward

design principle, that is directly based on Pareto

dominance and diversity preservation (using, for

instance, crowding distance). Usually, these algorithms

require only a few parameters, and larger numbers of

objective functions do not cause problems. However, it

might be difficult to guarantee and measure conver-

gence and achieve a very regular spacing of solutions.

– Indicator-based approaches use an indicator for the

performance of an approximation set to guide the

search. It is possible to assess their convergence

behavior online, and they hold the promise to be more

amenable to theoretical analysis. However, the com-

putation time often increases rapidly with the number

of dimensions and the distribution of points in the

approximation sets might depend critically on the

settings of the reference point or other parameters of

the indicator.

– Decomposition-based methods provide a very flexible

framework for algorithm design, as they can incorpo-

rate various scalarization methods. A disadvantage is

that they require some a priori knowledge of the

position of the Pareto front in the objective space and

the number of weight vectors might grow exponentially

with the objective space size, even if the Pareto front is

of low dimension.

According to the above, choosing the right method depends

much on the dimension of the objective space, the number

of solutions one wants to output, the desired distribution of

the solutions (knee-point focused or uniformly spread) and

the a priori knowledge on the location and shape of the

Pareto front.

Due to space constraints, many advanced topics in

multiobjective optimization are not covered in depth. We

refer for these topics to the literature. For instance, con-

straint handling (Coello Coello 2013), multimodality

(Kerschke et al. 2016), non-convex global optimization

(Žilinskas 2013), and combinatorial optimization (Ehrgott

and Gandibleux 2000).

Multiobjective Optimization is a very active field of

research. There are still many open, challenging problems

in the area. For future development of the research field it

will be essential to provide EMO algorithms that are built

around a robust notion of performance and, ideally, also

can be analyzed more rigorously. Major topics for current

research are also uncertainty handling and robustness,

many-objective optimization, theoretical foundations and

computational complexity, generalizations, for instance,

level set approximation, diversity optimization, and set-

oriented optimization, customization and integration into

multidisciplinary workflows, and scalability to big data, or

expensive evaluations.
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Jaszkiewicz A, Słowiński R (1999) The ‘Light Beam Search’

approach-an overview of methodology applications. Eur J Oper

Res 113(2):300–314

Jin Y, Okabe T, Sendho B (2001) Adapting weighted aggregation for

multiobjective evolution strategies. In: Evolutionary multi-

criterion optimization, pp 96–110. Springer

Kerschke P, Wang H, Preuss M, Grimme C, Deutz A H, Trautmann

H, Emmerich M (2016) Towards analyzing multimodality of

continuous multiobjective landscapes. In: PPSN, volume 9921 of

lecture notes in computer science, pp 962–972. Springer

Knowles J (2006) Parego: a hybrid algorithm with on-line landscape

approximation for expensive multiobjective optimization prob-

lems. IEEE Trans Evol Comput 10(1):50–66

Knowles J, Corne D, Deb K (2007) Multiobjective problem solving

from nature. Springer, Berlin

Knowles JD, Corne DW (2000) Approximating the nondominated

front using the Pareto archived evolution strategy. Evol Comput

8(2):149–172

Knowles JD, Corne DW, Fleischer M (2003) Bounded archiving

using the Lebesgue measure. In: The 2003 congress on

evolutionary computation, 2003. CEC‘03. volume 4,

pp 2490–2497. IEEE

Krantz S, Parks H (2003) Implicit function theorem: history, theory,

and applications. Springer, New York

Kuhn HW, Tucker AW (1951) Nonlinear programming. In: Proceed-

ings of 2nd Berkeley symposium. Berkeley, Berkeley and Los

Angeles. University of California Press, pp 481–492

Kung H-T, Luccio F, Preparata FP (1975) On finding the maxima of a

set of vectors. J ACM (JACM) 22(4):469–476

Kursawe F (1990) A variant of evolution strategies for vector

optimization. In: PPSN, volume 496 of lecture notes in computer

science, pp 193–197. Springer

Laumanns M, Rudolph G, Schwefel H (1998) A spatial predator-prey

approach to multi-objective optimization: a preliminary study.

In: PPSN, volume 1498 of lecture notes in computer science,

pp 241–249. Springer

Li B, Li J, Tang K, Yao X (2015) Many-objective evolutionary

algorithms: a survey. ACM Comput Surv 48(1):13:1–13:35

Li L, Yevseyeva I, Fernandes V B, Trautmann H, Jing N, Emmerich

M (2017) Building and using an ontology of preference-based

multiobjective evolutionary algorithms. In EMO, volume 10173

of lecture notes in computer science, pp 406–421. Springer

Mateo P, Alberto I (2012) A mutation operator based on a Pareto

ranking for multi-objective evolutionary algorithms. J Heuristics

18(1):53–89

Miettinen K (2012) Nonlinear multiobjective optimization, vol 12.

Springer, Berlin
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