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A Tutorial on Particle Filters for Online
Nonlinear/Non-Gaussian Bayesian Tracking

M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp

Abstract—Increasingly, for many application areas, it is
becoming important to include elements of nonlinearity and
non-Gaussianity in order to model accurately the underlying
dynamics of a physical system. Moreover, it is typically crucial
to process data on-line as it arrives, both from the point of view
of storage costs as well as for rapid adaptation to changing
signal characteristics. In this paper, we review both optimal and
suboptimal Bayesian algorithms for nonlinear/non-Gaussian
tracking problems, with a focus on particle filters. Particle filters
are sequential Monte Carlo methods based on point mass (or
“particle”) representations of probability densities, which can
be applied to any state-space model and which generalize the
traditional Kalman filtering methods. Several variants of the
particle filter such as SIR, ASIR, and RPF are introduced within
a generic framework of the sequential importance sampling (SIS)
algorithm. These are discussed and compared with the standard
EKF through an illustrative example.

Index Terms—Bayesian, nonlinear/non-Gaussian, particle
filters, sequential Monte Carlo, tracking.

I. INTRODUCTION

M
ANY problems in science require estimation of the state

of a system that changes over time using a sequence of

noisy measurements made on the system. In this paper, we will

concentrate on the state-space approach to modeling dynamic

systems, and the focus will be on the discrete-time formulation

of the problem. Thus, difference equations are used to model

the evolution of the system with time, and measurements are

assumed to be available at discrete times. For dynamic state es-

timation, the discrete-time approach is widespread and conve-

nient.

The state-space approach to time-series modeling focuses at-

tention on the state vector of a system. The state vector con-

tains all relevant information required to describe the system

under investigation. For example, in tracking problems, this in-

formation could be related to the kinematic characteristics of

the target. Alternatively, in an econometrics problem, it could be
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related to monetary flow, interest rates, inflation, etc. The mea-

surement vector represents (noisy) observations that are related

to the state vector. The measurement vector is generally (but not

necessarily) of lower dimension than the state vector. The state-

space approach is convenient for handling multivariate data and

nonlinear/non-Gaussian processes, and it provides a significant

advantage over traditional time-series techniques for these prob-

lems. A full description is provided in [41]. In addition, many

varied examples illustrating the application of nonlinear/non-

Gaussian state space models are given in [26].

In order to analyze and make inference about a dynamic

system, at least two models are required: First, a model de-

scribing the evolution of the state with time (the system model)

and, second, a model relating the noisy measurements to the

state (the measurement model). We will assume that these

models are available in a probabilistic form. The probabilistic

state-space formulation and the requirement for the updating of

information on receipt of new measurements are ideally suited

for the Bayesian approach. This provides a rigorous general

framework for dynamic state estimation problems.

In the Bayesian approach to dynamic state estimation, one

attempts to construct the posterior probability density function

(pdf) of the state based on all available information, including

the set of received measurements. Since this pdf embodies all

available statistical information, it may be said to be the com-

plete solution to the estimation problem. In principle, an optimal

(with respect to any criterion) estimate of the state may be ob-

tained from the pdf. A measure of the accuracy of the estimate

may also be obtained. For many problems, an estimate is re-

quired every time that a measurement is received. In this case, a

recursive filter is a convenient solution. A recursive filtering ap-

proach means that received data can be processed sequentially

rather than as a batch so that it is not necessary to store the com-

plete data set nor to reprocess existing data if a new measure-

ment becomes available.1 Such a filter consists of essentially

two stages: prediction and update. The prediction stage uses the

system model to predict the state pdf forward from one mea-

surement time to the next. Since the state is usually subject to

unknown disturbances (modeled as random noise), prediction

generally translates, deforms, and spreads the state pdf. The up-

date operation uses the latest measurement to modify the pre-

diction pdf. This is achieved using Bayes theorem, which is the

mechanism for updating knowledge about the target state in the

light of extra information from new data.

1In this paper, we assume no out-of-sequence measurements; in the presence
of out-of-sequence measurements, the order of times to which the measurements
relate can differ from the order in which the measurements are processed. For a
particle filter solution to the problem of relaxing this assumption, see [32].
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We begin in Section II with a description of the nonlinear

tracking problem and its optimal Bayesian solution. When

certain constraints hold, this optimal solution is tractable.

The Kalman filter and grid-based filter, which is described

in Section III, are two such solutions. Often, the optimal

solution is intractable. The methods outlined in Section IV

take several different approximation strategies to the optimal

solution. These approaches include the extended Kalman filter,

approximate grid-based filters, and particle filters. Finally, in

Section VI, we use a simple scalar example to illustrate some

points about the approaches discussed up to this point and

then draw conclusions in Section VII. This paper is a tutorial;

therefore, to facilitate easy implementation, the “pseudo-code”

for algorithms has been included at relevant points.

II. NONLINEAR BAYESIAN TRACKING

To define the problem of tracking, consider the evolution of

the state sequence of a target given by

(1)

where is a possibly nonlinear function

of the state , is an i.i.d. process noise se-

quence, are dimensions of the state and process noise

vectors, respectively, and is the set of natural numbers. The

objective of tracking is to recursively estimate from mea-

surements

(2)

where is a possibly nonlinear func-

tion, is an i.i.d. measurement noise sequence,

and are dimensions of the measurement and measure-

ment noise vectors, respectively. In particular, we seek filtered

estimates of based on the set of all available measurements

, up to time .

From a Bayesian perspective, the tracking problem is to re-

cursively calculate some degree of belief in the state at time

, taking different values, given the data up to time . Thus,

it is required to construct the pdf . It is assumed that

the initial pdf of the state vector, which is also

known as the prior, is available ( being the set of no measure-

ments). Then, in principle, the pdf may be obtained,

recursively, in two stages: prediction and update.

Suppose that the required pdf at time

is available. The prediction stage involves using the system

model (1) to obtain the prior pdf of the state at time via the

Chapman–Kolmogorov equation

(3)

Note that in (3), use has been made of the fact that ,

as (1) describes a Markov process

of order one. The probabilistic model of the state evolution

is defined by the system equation (1) and the

known statistics of .

At time step , a measurement becomes available, and this

may be used to update the prior (update stage) via Bayes’ rule

(4)

where the normalizing constant

(5)

depends on the likelihood function defined by the

measurement model (2) and the known statistics of . In the

update stage (4), the measurement is used to modify the

prior density to obtain the required posterior density of the

current state.

The recurrence relations (3) and (4) form the basis for the

optimal Bayesian solution.2 This recursive propagation of the

posterior density is only a conceptual solution in that in general,

it cannot be determined analytically. Solutions do exist in a re-

strictive set of cases, including the Kalman filter and grid-based

filters described in the next section. We also describe how, when

the analytic solution is intractable, extended Kalman filters, ap-

proximate grid-based filters, and particle filters approximate the

optimal Bayesian solution.

III. OPTIMAL ALGORITHMS

A. Kalman Filter

The Kalman filter assumes that the posterior density at every

time step is Gaussian and, hence, parameterized by a mean and

covariance.

If is Gaussian, it can be proved that

is also Gaussian, provided that certain assumptions

hold [21]:

• and are drawn from Gaussian distributions of

known parameters.

• is known and is a linear function of

and .

• is a known linear function of and .

That is, (1) and (2) can be rewritten as

(6)

(7)

and are known matrices defining the linear functions.

The covariances of and are, respectively, and

. Here, we consider the case when and have zero

mean and are statistically independent. Note that the system and

measurement matrices and , as well as noise parameters

and , are allowed to be time variant.

The Kalman filter algorithm, which was derived using (3) and

(4), can then be viewed as the following recursive relationship:

(8)

(9)

(10)

2For clarity, the optimal Bayesian solution solves the problem of recursively
calculating the exact posterior density. An optimal algorithm is a method for
deducing this solution.
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where

(11)

(12)

(13)

(14)

and where is a Gaussian density with argument ,

mean , and covariance , and

(15)

(16)

are the covariance of the innovation term , and

the Kalman gain, respectively. In the above equations, the trans-

pose of a matrix is denoted by .

This is the optimal solution to the tracking problem—if the

(highly restrictive) assumptions hold. The implication is that no

algorithm can ever do better than a Kalman filter in this linear

Gaussian environment. It should be noted that it is possible to

derive the same results using a least squares (LS) argument [22].

All the distributions are then described by their means and co-

variances, and the algorithm remains unaltered, but are not con-

strained to be Gaussian. Assuming the means and covariances

to be unbiased and consistent, the filter then optimally derives

the mean and covariance of the posterior. However, this poste-

rior is not necessarily Gaussian, and therefore, if optimality is

the ability of an algorithm to calculate the posterior, the filter is

then not certain to be optimal.

Similarly, if smoothed estimates of the states are required,

that is, estimates of , where ,3 then the

Kalman smoother is the optimal estimator of .

This holds if is fixed (fixed-lag smoothing, if a batch of data

are considered and (fixed-interval smoothing), or if

the state at a particular time is of interest is fixed (fixed-point

smoothing). The problem of calculating smoothed densities is

of interest because the densities at time are then conditional

not only on measurements up to and including time index but

also on future measurements. Since there is more information

on which to base the estimation, these smoothed densities are

typically tighter than the filtered densities.

Although this is true, there is an algorithmic issue that should

be highlighted here. It is possible to formulate a backward-time

Kalman filter that recurses through the data sequence from the

final data to the first and then combines the estimates from the

forward and backward passes to obtain overall smoothed es-

timates [20]. A different formulation implicitly calculates the

backward-time state estimates and covariances, recursively esti-

mating the smoothed quantities [38]. Both techniques are prone

to having to calculate matrix inverses that do not necessarily

exist. Instead, it is preferable to propagate different quantities

using an information filter when carrying out the backward-time

recursion [4].

3If ` = 0, then the problem reduces to the estimation of p(x jz ) consid-
ered up to this point.

B. Grid-Based Methods

Grid-based methods provide the optimal recursion of the fil-

tered density if the state space is discrete and consists

of a finite number of states. Suppose the state space at time

consists of discrete states , . For each state

, let the conditional probability of that state, given mea-

surements up to time be denoted by , that is,

. Then, the posterior pdf

at can be written as

(17)

where is the Dirac delta measure. Substitution of (17) into

(3) and (4) yields the prediction and update equations, respec-

tively

(18)

(19)

where

(20)

(21)

The above assumes that and are known

but does not constrain the particular form of these discrete densi-

ties. Again, this is the optimal solution if the assumptions made

hold.

IV. SUBOPTIMAL ALGORITHMS

In many situations of interest, the assumptions made above

do not hold. The Kalman filter and grid-based methods cannot,

therefore, be used as described—approximations are necessary.

In this section, we consider three approximate nonlinear

Bayesian filters:

a) extended Kalman filter (EKF);

b) approximate grid-based methods;

c) particle filters.

A. Extended Kalman Filter

If (1) and (2) cannot be rewritten in the form of (6) and (7)

because the functions are nonlinear, then a local linearization of

the equations may be a sufficient description of the nonlinearity.

The EKF is based on this approximation. is approx-

imated by a Gaussian

(22)

(23)

(24)
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where

(25)

(26)

(27)

(28)

and where now, and are nonlinear functions, and

and are local linearizations of these nonlinear functions (i.e.,

matrices)

(29)

(30)

(31)

(32)

The EKF as described above utilizes the first term in a Taylor

expansion of the nonlinear function. A higher order EKF that

retains further terms in the Taylor expansion exists, but the ad-

ditional complexity has prohibited its widespread use.

Recently, the unscented transform has been used in an EKF

framework [23], [42], [43]. The resulting filter, which is known

as the “unscented Kalman filter,” considers a set of points that

are deterministically selected from the Gaussian approximation

to . These points are all propagated through the true

nonlinearity, and the parameters of the Gaussian approximation

are then re-estimated. For some problems, this filter has been

shown to give better performance than a standard EKF since

it better approximates the nonlinearity; the parameters of the

Gaussian approximation are improved.

However, the EKF always approximates to

be Gaussian. If the true density is non-Gaussian (e.g., if it

is bimodal or heavily skewed), then a Gaussian can never

describe it well. In such cases, approximate grid-based filters

and particle filters will yield an improvement in performance

in comparison to that of an EKF [1].

B. Approximate Grid-Based Methods

If the state space is continuous but can be decomposed into

“cells,” : , then a grid-based method

can be used to approximate the posterior density. Specifically,

suppose the approximation to the posterior pdf at is given

by

(33)

Then, the prediction and update equations can be written as

(34)

(35)

where

(36)

(37)

Here, denotes the center of the th cell at time index .

The integrals in (36) and (37) arise due to the fact that the grid

points , , represent regions of continuous state

space, and thus, the probabilities must be integrated over these

regions. In practice, to simplify computation, a further approx-

imation is made in the evaluation of . Specifically, these

weights are computed at the center of the “cell” corresponding

to

(38)

(39)

The grid must be sufficiently dense to get a good approxi-

mation to the continuous state space. As the dimensionality of

the state space increases, the computational cost of the approach

therefore increases dramatically. If the state space is not finite in

extent, then using a grid-based approach necessitates some trun-

cation of the state space. Another disadvantage of grid-based

methods is that the state space must be predefined and, there-

fore, cannot be partitioned unevenly to give greater resolution

in high probability density regions, unless prior knowledge is

used.

Hidden Markov model (HMM) filters [30], [35], [36], [39]

are an application of such approximate grid-based methods in

a fixed-interval smoothing context and have been used exten-

sively in speech processing. In HMM-based tracking, a common

approach is to use the Viterbi algorithm [18] to calculate the

maximum a posteriori estimate of the path through the trellis,

that is, the sequence of discrete states that maximizes the prob-

ability of the state sequence given the data. Another approach,

due to Baum–Welch [35], is to calculate the probability of each

discrete state at each time epoch given the entire data sequence.4

V. PARTICLE FILTERING METHODS

A. Sequential Importance Sampling (SIS) Algorithm

The sequential importance sampling (SIS) algorithm is

a Monte Carlo (MC) method that forms the basis for most

sequential MC filters developed over the past decades; see [13],

4The Viterbi and Baum–Welch algorithms are frequently applied when the
state space is approximated to be discrete. The algorithms are optimal if and
only if the underlying state space is truly discrete in nature.
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[14]. This sequential MC (SMC) approach is known variously

as bootstrap filtering [17], the condensation algorithm [29],

particle filtering [6], interacting particle approximations [10],

[11], and survival of the fittest [24]. It is a technique for imple-

menting a recursive Bayesian filter by MC simulations. The key

idea is to represent the required posterior density function by a

set of random samples with associated weights and to compute

estimates based on these samples and weights. As the number

of samples becomes very large, this MC characterization

becomes an equivalent representation to the usual functional

description of the posterior pdf, and the SIS filter approaches

the optimal Bayesian estimate.

In order to develop the details of the algorithm, let

denote a random measure that characterizes the

posterior pdf , where , is a set

of support points with associated weights ,

and , is the set of all states up to time

. The weights are normalized such that . Then, the

posterior density at can be approximated as

(40)

We therefore have a discrete weighted approximation to the

true posterior, . The weights are chosen using the

principle of importance sampling [3], [12]. This principle relies

on the following. Suppose is a probability density

from which it is difficult to draw samples but for which can

be evaluated [as well as up to proportionality]. In addition,

let , be samples that are easily gener-

ated from a proposal called an importance density. Then, a

weighted approximation to the density is given by

(41)

where

(42)

is the normalized weight of the th particle.

Therefore, if the samples were drawn from an impor-

tance density , then the weights in (40) are defined

by (42) to be

(43)

Returning to the sequential case, at each iteration, one

could have samples constituting an approximation to

and want to approximate

with a new set of samples. If the importance density is chosen

to factorize such that

(44)

then one can obtain samples by augmenting

each of the existing samples with

the new state , . To derive the weight

update equation, is first expressed in terms of

, , and . Note that (4) can

be derived by integrating (45)

(45)

(46)

By substituting (44) and (46) into (43), the weight update

equation can then be shown to be

(47)

Furthermore, if , , , then

the importance density becomes only dependent on and

. This is particularly useful in the common case when only

a filtered estimate of is required at each time step.

From this point on, we will assume such a case, except when

explicitly stated otherwise. In such scenarios, only need be

stored; therefore, one can discard the path and history of

observations . The modified weight is then

(48)

and the posterior filtered density can be approxi-

mated as

(49)

where the weights are defined in (48). It can be shown that as

, the approximation (49) approaches the true posterior

density .

The SIS algorithm thus consists of recursive propagation of

the weights and support points as each measurement is received

sequentially. A pseudo-code description of this algorithm is

given by algorithm 1.

Algorithm 1: SIS Particle Filter

SIS

FOR

— Draw ,

— Assign the particle a weight, ,

according to (48)

END FOR

1) Degeneracy Problem: A common problem with the SIS

particle filter is the degeneracy phenomenon, where after a few

iterations, all but one particle will have negligible weight. It has
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been shown [12] that the variance of the importance weights can

only increase over time, and thus, it is impossible to avoid the

degeneracy phenomenon. This degeneracy implies that a large

computational effort is devoted to updating particles whose con-

tribution to the approximation to is almost zero. A

suitable measure of degeneracy of the algorithm is the effective

sample size introduced in [3] and [28] and defined as

Var
(50)

where , is referred to as the

“true weight.” This cannot be evaluated exactly, but an estimate

of can be obtained by

(51)

where is the normalized weight obtained using (47). Notice

that , and small indicates severe degeneracy.

Clearly, the degeneracy problem is an undesirable effect in par-

ticle filters. The brute force approach to reducing its effect is to

use a very large . This is often impractical; therefore, we rely

on two other methods: a) good choice of importance density and

b) use of resampling. These are described next.

2) Good Choice of Importance Density: The first method in-

volves choosing the importance density to min-

imize Var so that is maximized. The optimal impor-

tance density function that minimizes the variance of the true

weights conditioned on and has been shown [12]

to be

(52)

Substitution of (52) into (48) yields

(53)

This choice of importance density is optimal since for a given

, takes the same value, whatever sample is drawn from

, . Hence, conditional on , Var .

This is the variance of the different resulting from different

sampled .

This optimal importance density suffers from two

major drawbacks. It requires the ability to sample from

and to evaluate the integral over the new state.

In the general case, it may not be straightforward to do either

of these things. There are two cases when use of the optimal

importance density is possible.

The first case is when is a member of a finite set. In

such cases, the integral in (53) becomes a sum, and sampling

from is possible. An example of an application

when is a member of a finite set is a Jump–Markov linear

system for tracking maneuvering targets [15], whereby the dis-

crete modal state (defining the maneuver index) is tracked using

a particle filter, and (conditioned on the maneuver index) the

continuous base state is tracked using a Kalman filter.

Analytic evaluation is possible for a second class of models
for which is Gaussian [12], [9]. This can occur
if the dynamics are nonlinear and the measurements linear. Such
a system is given by

(54)

(55)

where

(56)

(57)

and : is a nonlinear function, is an
observation matrix, and and are mutually independent
i.i.d. Gaussian sequences with and . Defining

(58)

(59)

one obtains

(60)

and

(61)
For many other models, such analytic evaluations are not

possible. However, it is possible to construct suboptimal
approximations to the optimal importance density by using
local linearization techniques [12]. Such linearizations use
an importance density that is a Gaussian approximation to

. Another approach is to estimate a Gaussian ap-
proximation to using the unscented transform
[40]. The authors’ opinion is that the additional computational
cost of using such an importance density is often more than
offset by a reduction in the number of samples required to
achieve a certain level of performance.

Finally, it is often convenient to choose the importance den-
sity to be the prior

(62)

Substitution of (62) into (48) then yields

(63)

This would seem to be the most common choice of impor-
tance density since it is intuitive and simple to implement. How-
ever, there are a plethora of other densities that can be used, and
as illustrated by Section VI, the choice is the crucial design step
in the design of a particle filter.

3) Resampling: The second method by which the effects of
degeneracy can be reduced is to use resampling whenever a sig-
nificant degeneracy is observed (i.e., when falls below
some threshold ). The basic idea of resampling is to elimi-
nate particles that have small weights and to concentrate on par-
ticles with large weights. The resampling step involves gener-
ating a new set by resampling (with replacement)
times from an approximate discrete representation of
given by

(64)

so that . The resulting sample is in fact
an i.i.d. sample from the discrete density (64); therefore, the
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weights are now reset to . It is possible to imple-
ment this resampling procedure in operations by sam-
pling ordered uniforms using an algorithm based on order
statistics [6], [37]. Note that other efficient (in terms of reduced
MC variation) resampling schemes, such as stratified sampling
and residual sampling [28], may be applied as alternatives to this
algorithm. Systematic resampling [25] is the scheme preferred
by the authors [since it is simple to implement, takes
time, and minimizes the MC variation], and its operation is de-
scribed in Algorithm 2, where is the uniform distribution
on the interval (inclusive of the limits). For each resam-

pled particle , this resampling algorithm also stores the index
of its parent, which is denoted by . This may appear unneces-
sary here (and is), but it proves useful in Section V-B2.

A generic particle filter is then as described by Algorithm 3.
Although the resampling step reduces the effects of the de-

generacy problem, it introduces other practical problems. First,
it limits the opportunity to parallelize since all the particles must
be combined. Second, the particles that have high weights
are statistically selected many times. This leads to a loss of di-
versity among the particles as the resultant sample will contain
many repeated points. This problem, which is known as sample

impoverishment, is severe in the case of small process noise.
In fact, for the case of very small process noise, all particles
will collapse to a single point within a few iterations.5 Third,
since the diversity of the paths of the particles is reduced, any
smoothed estimates based on the particles’ paths degenerate.6

Schemes exist to counteract this effect. One approach considers
the states for the particles to be predetermined by the forward
filter and then obtains the smoothed estimates by recalculating
the particles’ weights via a recursion from the final to the first
time step [16]. Another approach is to use MCMC [5].

Algorithm 2: Resampling Algorithm

, RESAMPLE

Initialize the CDF:

FOR

— Construct CDF:

END FOR

Start at the bottom of the CDF:

Draw a starting point:

FOR

— Move along the CDF:

— WHILE

— END WHILE

— Assign sample:

— Assign weight:

— Assign parent:

END FOR

5If the process noise is zero, then using a particle filter is not entirely ap-
propriate. Particle filtering is a method well suited to the estimation of dynamic
states. If static states, which can be regarded as parameters, need to be estimated
then alternative approaches are necessary [7], [27].

6Since the particles actually represent paths through the state space, by storing
the trajectory taken by each particle, fixed-lag and fixed-point smoothed esti-
mates of the state can be obtained [4].

Algorithm 3: Generic Particle Filter

PF ,

FOR

— Draw

— Assign the particle a weight, ,

according to (48)

END FOR

Calculate total weight: SUM

FOR

— Normalize:

END FOR

Calculate using (51)

IF

— Resample using algorithm 2:

RESAMPLE

END IF

There have been some systematic techniques proposed

recently to solve the problem of sample impoverishment. One

such technique is the resample-move algorithm [19], which is

not be described in detail in this paper. Although this technique

draws conceptually on the same technologies of importance

sampling-resampling and MCMC sampling, it avoids sample

impoverishment. It does this in a rigorous manner that ensures

the particles asymtotically approximate samples from the

posterior and, therefore, is the method of choice of the authors.

An alternative solution to the same problem is regularization

[31], which is discussed in Section V-B3. This approach

is frequently found to improve performance, despite a less

rigorous derivation and is included here in preference to the

resample-move algorithm since its use is so widespread.

4) Techniques for Circumventing the Use of a Suboptimal Im-

portance Density: It is often the case that a good importance

density is not available. For example, if the prior is

used as the importance density and is a much broader distribu-

tion than the likelihood , then only a few particles will

have a high weight. Methods exist for encouraging the particles

to be in the right place; the use of bridging densities [8] and

progressive correction [33] both introduce intermediate distri-

butions between the prior and likelihood. The particles are then

reweighted according to these intermediate distributions and re-

sampled. This “herds” the particles into the right part of the state

space.

Another approach known as partitioned sampling [29] is

useful if the likelihood is very peaked but can be factorized

into a number of broader distributions. Typically, this occurs

because each of the partitioned distributions are functions of

some (not all) of the states. By treating each of these partitioned

distributions in turn and resampling on the basis of each such

partitioned distribution, the particles are again herded toward

the peaked likelihood.

B. Other Related Particle Filters

The sequential importance sampling algorithm presented in

Section V-A forms the basis for most particle filters that have
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been developed so far. The various versions of particle filters

proposed in the literature can be regarded as special cases of

this general SIS algorithm. These special cases can be derived

from the SIS algorithm by an appropriate choice of importance

sampling density and/or modification of the resampling step.

Below, we present three particle filters proposed in the literature

and show how these may be derived from the SIS algorithm. The

particle filters considered are

i) sampling importance resampling (SIR) filter;

ii) auxiliary sampling importance resampling (ASIR) filter;

iii) regularized particle filter (RPF).

1) Sampling Importance Resampling Filter: The SIR filter

proposed in [17] is an MC method that can be applied to recur-

sive Bayesian filtering problems. The assumptions required to

use the SIR filter are very weak. The state dynamics and mea-

surement functions and in (1) and (2), respec-

tively, need to be known, and it is required to be able to sample

realizations from the process noise distribution of and

from the prior. Finally, the likelihood function needs

to be available for pointwise evaluation (at least up to propor-

tionality). The SIR algorithm can be easily derived from the SIS

algorithm by an appropriate choice of i) the importance den-

sity, where is chosen to be the prior density

, and ii) the resampling step, which is to be applied

at every time index.

The above choice of importance density implies that we need

samples from . A sample can be

generated by first generating a process noise sample

and setting , , where is the

pdf of . For this particular choice of importance density, it

is evident that the weights are given by

(65)

However, noting that resampling is applied at every time index,

we have ; therefore

(66)

The weights given by the proportionality in (66) are normalized

before the resampling stage. An iteration of the algorithm is then

described by Algorithm 4.

As the importance sampling density for the SIR filter is inde-

pendent of measurement , the state space is explored without

any knowledge of the observations. Therefore, this filter can be

inefficient and is sensitive to outliers. Furthermore, as resam-

pling is applied at every iteration, this can result in rapid loss of

diversity in particles. However, the SIR method does have the

advantage that the importance weights are easily evaluated and

that the importance density can be easily sampled.

Algorithm 4: SIR Particle Filter

SIR

FOR

— Draw

— Calculate

END FOR

Calculate total weight: SUM

FOR

— Normalize:

END FOR

Resample using algorithm 2:

— RESAMPLE ,

2) Auxiliary Sampling Importance Resampling Filter: The

ASIR filter was introduced by Pitt and Shephard [34] as a variant

of the standard SIR filter. This filter can be derived from the SIS

framework by introducing an importance density ,

which samples the pair , where refers to the index

of the particle at .

By applying Bayes’ rule, a proportionality can be derived for

as

(67)

The ASIR filter operates by obtaining a sample from the joint

density and then omitting the indices in the pair

to produce a sample from the marginalized

density . The importance density used to draw the

sample is defined to satisfy the proportionality

(68)

where is some characterization of , given . This could

be the mean, in which case, or a sample

. By writing

(69)

and defining

(70)

it follows from (68) that

(71)

The sample is then assigned a weight propor-

tional to the ratio of the right-hand side of (67) to (68)

(72)

The algorithm then becomes that described by Algorithm 5.

Algorithm 5: Auxiliary Particle Filter

APF

FOR

— Calculate

— Calculate .

END FOR

Calculate total weight: SUM

FOR

— Normalize:

END FOR

Resample using algorithm 2:

— RESAMPLE

FOR

— Draw ,

as in the SIR filter.

— Assign weight using (72)
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END FOR

Calculate total weight: SUM

FOR

— Normalize:

END FOR

Although unnecessary, the original ASIR filter as proposed

in [34] consisted of one more step, namely, a resampling stage,

to produce an i.i.d. sample with equal weights.

Compared with the SIR filter, the advantage of the ASIR filter

is that it naturally generates points from the sample at ,

which, conditioned on the current measurement, are most likely

to be close to the true state. ASIR can be viewed as resampling

at the previous time step, based on some point estimates that

characterize . If the process noise is small so that

is well characterized by , then ASIR is often not

so sensitive to outliers as SIR, and the weights are more even.

However, if the process noise is large, a single point does not

characterize well, and ASIR resamples based on a

poor approximation of . In such scenarios, the use

of ASIR then degrades performance.

3) Regularized Particle Filter: Recall that resampling was

suggested in Section V-B1 as a method to reduce the degen-

eracy problem, which is prevalent in particle filters. However, it

was pointed out that resampling in turn introduced other prob-

lems and, in particular, the problem of loss of diversity among

the particles. This arises due to the fact that in the resampling

stage, samples are drawn from a discrete distribution rather than

a continuous one. If this problem is not addressed properly, it

may lead to “particle collapse,” which is a severe case of sample

impoverishment where all particles occupy the same point

in the state space, giving a poor representation of the posterior

density. A modified particle filter known as the regularized par-

ticle filter (RPF) was proposed [31] as a potential solution to the

above problem.

The RPF is identical to the SIR filter, except for the resam-

pling stage. The RPF resamples from a continuous approxima-

tion of the posterior density , whereas the SIR resam-

ples from the discrete approximation (64). Specifically, in the

RPF, samples are drawn from the approximation

(73)

where

(74)

is the rescaled Kernel density , is the Kernel band-

width (a scalar parameter), is the dimension of the state

vector , and , are normalized weights. The

Kernel density is a symmetric probability density function such

that

The Kernel and bandwidth are chosen to minimize the

mean integrated square error (MISE) between the true posterior

density and the corresponding regularized empirical representa-

tion in (73), which is defined as

MISE (75)

where denotes the approximation to given by

the right-hand side of (73).7 In the special case of all the samples

having the same weight, the optimal choice of the kernel is the

Epanechnikov kernel [31]

if

otherwise

(76)

where is the volume of the unit hypersphere in . Fur-

thermore, when the underlying density is Gaussian with a unit

covariance matrix, the optimal choice for the bandwidth is [31]

(77)

(78)

Algorithm 6: Regularized Particle Filter

RPF

FOR

— Draw

— Assign the particle a weight, ,

according to (48)

END FOR

Calculate total weight: SUM

FOR

— Normalize:

END FOR

Calculate using (51)

IF

— Calculate the empirical covariance

matrix of ,

— Compute such that .

— Resample using algorithm 2:

RESAMPLE ,

— FOR

Draw from the Epanechnikov

Kernel

— END FOR

END IF

Alhough the results of (76) and (77) and (78) are optimal only

in the special case of equally weighted particles and underlying

Gaussian density, these results can still be used in the general

case to obtain a suboptimal filter. One iteration of the RPF is de-

scribed by Algorithm 6. The RPF only differs from the generic

particle filter described by Algorithm 3 as a result of the addi-

tion of the regularization steps when conducting the resampling.

Note also that the calculation of the empirical covariance matrix

7As observed by one of the anonymous reviewers, it is worth noting that the
use of the Kernel approximation become increasingly less appropriate as the
dimensionality of the state increases.



ARULAMPALAM et al.: TUTORIAL ON PARTICLE FILTERS 183

TABLE I
TABLE OF THE ALGORITHMS USED, THE SECTIONS OF THE ARTICLE,

AND FIGURES THAT RELATE TO THE ALGORITHMS, AND RMSE VALUES

(AVERAGED OVER 100 MC RUNS)

is carried out prior to the resampling and is therefore a func-

tion of both the and . This is done since the accuracy of

any estimate of a function of the distribution can only decrease

as a result of the resampling. If quantities such as the mean and

covariance of the samples are to be output, then these should be

calculated prior to resampling.

By following the above procedure, we generate an i.i.d.

random sample drawn from (73).

In terms of complexity, the RPF is comparable with SIR since

it only requires additional generations from the kernel

at each time step. The RPF has the theoretic disadvantage that

the samples are no longer guaranteed to asymtotically approx-

imate those from the posterior. In practical scenarios, the RPF

performance is better than the SIR in cases where sample im-

poverishment is severe, for example, when the process noise is

small.

VI. EXAMPLE

Here, we consider the following set of equations as an illus-

trative example:

(79)

(80)

or equivalently

(81)

(82)

where

(83)

and where and are zero mean Gaussian random

variables with variances and , respectively. We use

and . This example has been analyzed

before in many publications [5], [17], [25].

We consider the performance of the algorithms detailed in

Table I. In order to qualitatively gauge performance and dis-

cuss resulting issues, we consider one exemplar run. In order to

quantify performance, we use the traditional measure of per-

formance: the Root Mean Squared Error (RMSE). It should

be noted that this measure of performance is not exceptionally

meaningful for this multimodal problem. However, it has been

used extensively in the literature and is included here for that

reason and because it facilitates quantitative comparison.

For reference, the true states for the exemplar run are shown

in Fig. 1 and the measurements in Fig. 2.

Fig. 1. Figure of the true values of the state x as a function of k for the
exemplar run.

Fig. 2. Figure of the measurements z of the states x shown in Fig. 1 for the
same exemplar run.

The approximate grid-based method uses 50 states with cen-

ters equally spaced on . All the particle filters have 50

particles and employ resampling at every time step ( ).

The auxiliary particle filter uses . The regu-

larized particle filter uses the kernel and bandwidth described in

Section V-B3.

To visualize the densities inferred by the approximate grid-

based and particle filters, the total probability mass at any time

in each of 50 equally spaced regions on is shown as

images in Figs. 5–9. At any given time (and in any vertical slice

through the image), darker regions represent higher probability

than lighter regions. A graduated scale relating intensity to prob-

ability mass in a pixel is shown next to each image.

A. EKF

The EKFs local linearization and Gaussian approxima-

tion are not a sufficient description of the nonlinear and

non-Gaussian nature of the example. Once the EKF cannot

adequately approximate the bimodal nature of the underlying
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Fig. 3. Evolution of the EKFs mean estimate of the state.

Fig. 4. Evolution of the upper and lower 2� positions of the state as estimated
by the EKF (dotted) with the true state also shown (solid).

posterior, the Gaussian approximation fails—the EKF is prone

to either choosing the “wrong” mode or just sitting on the

average between the modes. As a result of this inability to

adequately approximate the density, the linearization approxi-

mation becomes poor.

This can be seen from Fig. 3. The mean of the filter is rarely

close to the true state. Were the density to be Gaussian, one

would expect the state to be within two standard deviations of

the mean approximately 95% of the time. From Fig. 4, it is ev-

ident that there are times when the distribution is sufficiently

broad to capture the true state in this region but that there are

also times when the filter becomes highly overconfident of a bi-

ased estimate of the state. The implication of this is that it is very

difficult to detect inconsistent EKF errors automatically online.

The RMSE measure indicates that the EKF is the least accu-

rate of the algorithms at approximating the posterior. The ap-

proximations made by the EKF are inappropriate in this ex-

ample.

Fig. 5. Image representing evolution of probability density for approximate
grid-based filter.

B. Approximate Grid-Based Filter

This example is low dimensional, and therefore, one would

expect that an approximate grid-based approach would perform

well. Fig. 5 shows this is indeed the case. The grid-based ap-

proximation is able to model the multimodality of the problem.

Using the approximate grid-based filter rather than an EKF

yields a marked reduction in RMS errors. A particle filter with

particles conducts operations per iteration, whereas

an approximate grid-based filter carries out operations

with cells. It is therefore surprising that the RMS errors for

the approximate grid are larger than those of the particle filter.

The authors suspect that this is an artifact of the grid being fixed;

the resolution of the algorithm is predefined, and the fixed posi-

tion of the grid points means that the grid points near 25 con-

tribute significantly to the error when the true state is far from

these values.

C. SIR Particle Filter

Using the prior distribution as the importance density is in

some sense regarded as a standard SIR particle filter and, there-

fore, is an appropriate particle filter algorithm with which to

begin. As can be seen from Fig. 6, the SIR particle filter gives

disappointing results with the low number of particles used here.

The speckled appearance of the figure is a result of sampling a

low number of particles from the (broad) prior. It is an artifact

resulting from the inadequate amount of sampling.

The RMSE metric shows a marginal improvement over the

approximate grid-based filter. To achieve smaller errors, one

could simply increase the number of particles, but here, we will

now investigate the effect of using the alternative particle filter

algorithms described up to this point.

D. Auxiliary Particle Filter

One way to reduce errors might be that the proposed par-

ticle positions are chosen badly. One might therefore think that

choosing the proposed particles in a more intelligent manner

would yield better results. An auxiliary particle filter would then
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Fig. 6. Image representing evolution of probability density for SIR particle
filter.

Fig. 7. Image representing evolution of probability density for auxiliary
particle filter.

seem to be an appropriate candidate replacement algorithm for

SIR. Here, we have as a sample from .

As shown by Fig. 7, for this example, the auxiliary particle

filter performs well. There is arguably less speckle in Fig. 7

than in Fig. 6, and the probability mass appears to be better

concentrated around the true state. However, one might think

this problem is not very well suited to an auxiliary particle filter

since the prior is often much broader than the likelihood. When

the prior is broad, those particles with a noise realization that

happens to have a high likelihood are resampled many times.

There is no guarantee that other samples from the prior will

also lie in the same region of the state space since only a single

point is being used to characterize the filtered density for each

particle.

The RMS errors are slightly reduced from those for SIR.

Fig. 8. Image representing evolution of probability density for regularized
particle filter.

E. Regularized Particle Filter

Using the regularized particle filter results in a smoothing of

the approximation to the posterior. This is apparent from Fig. 8.

The speckle is reduced and the peaks broadened when compared

with the previous particle filters’ images.

The regularized particle filter gives very similar RMS errors

to the SIR particle filter. The regularization does not result in a

significant reduction in errors for this data set.

F. “Likelihood” Particle Filter

All the aforementioned particle filters share the prior as a pro-

posal density. For this example, much of the time, the likelihood

is far tighter than the prior. As a result, the posterior is closer

in similarity to the likelihood than to the prior. The importance

density is an approximation to the posterior. Therefore, using

a better approximation based on the likelihood, rather than the

prior, can be expected to improve performance.

Fig. 9 shows that the use of such an importance density (see

the Appendix for details) yields a reduction in speckle and that

the peaks of the density are closer on average to the true state

than for any of the other particle filters.

The RMS errors are similar to those for the Auxiliary particle

filter.

G. Crucial Step in the Application of a Particle Filter

The RMS errors indicate that in highly nonlinear environ-

ments, a nonlinear filter such as an approximate grid-based filter

or particle filter offers an improvement in performance over an

EKF. This improvement results from approximating the density

rather than the models.

When using a particle filter, one can often expect and fre-

quently achieve an improvement in performance by using far

more particles or alternatively by employing regularization or

using an auxiliary particle filter. For this example, a slight im-

provement in RMS errors is possible by using an importance

density other than . The authors assert that an im-

portance density tuned to a particular problem will yield an ap-

propriate trade off between the number of particles and the com-
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Fig. 9. Image representing evolution of probability density for “likelihood”
particle filter.

putational expense necessary for each particle, giving the best

qualitative performance with affordable computational effort.

The crucial point to convey is that all the refinements of

the particle filter assume that the choice of importance density

has already been made. Choosing the importance density to be

well suited to a given application requires careful thought. The

choice made is crucial.

VII. CONCLUSIONS

For a particular problem, if the assumptions of the Kalman

filter or grid-based filters hold, then no other algorithm can out-

perform them. However, in a variety of real scenarios, the as-

sumptions do not hold, and approximate techniques must be em-

ployed.

The EKF approximates the models used for the dynamics and

measurement process in order to be able to approximate the

probability density by a Gaussian. Approximate grid-based fil-

ters approximate the continuous state space as a set of discrete

regions. This necessitates the predefinition of these regions and

becomes prohibitively computationally expensive when dealing

with high-dimensional state spaces [3]. Particle filtering approx-

imates the density directly as a finite number of samples. A

number of different types of particle filter exist, and some have

been shown to outperform others when used for particular ap-

plications. However, when designing a particle filter for a par-

ticular application, it is the choice of importance density that is

critical.

APPENDIX

IMPORTANCE DENSITY FOR “LIKELIHOOD” PARTICLE FILTER

This Appendix describes the importance density for the “like-

lihood” particle filter, which is intended to illustrate the crucial

nature of the choice of importance density in a particle filter.

This importance density is not intended to be generically appli-

cable but to be one chosen to work well for the specific problem

and parameters described in Section VI.

To keep the notation simple, throughout this Appendix,

. For a uniform prior on , the density can be

written by Bayes’ rule as

otherwise.
(84)

We can then sample [samples are repeat-

edly drawn from until one is drawn such

that , i.e., one such that ]. Then,

can be chosen to be a pair of delta functions

(85)

This can then be used to form a “Likelihood” based impor-

tance density that samples conditional on and indepen-

dently from

(86)

The weight of the sample can be calculated according to (47)

(87)

(88)

(89)

Now, , and are constant; there-

fore, they disappear, leaving

(90)

Now, the ratio of to needs careful consid-

eration. Although the values of and might

be initially thought to be proportional, they are probability den-

sities defined with respect to a different measure (i.e., a dif-

ferent parameterization of the space). Since integrates

to unity over while integrates to unity over ,

the ratio of the probability densities is then proportional to the

inverse of the ratio of the lengths, and . The ratio of

to is the determinant of the Jacobian of the

transformation from to

(91)

An expression for the weight is then forthcoming:

(92)

The particle filter that results from this sampling procedure is

given in Algorithm 7.

Therefore, rather than draw samples from the state evolu-

tion distribution and then weight them according to their likeli-

hood, samples are drawn from the likelihood and then assigned

weights on the basis of the state evolution distribution.
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Algorithm 7: “Likelihood” Particle Filter

LPF

FOR

— REPEAT

Draw

— UNTIL

— IF

— ELSE

— END IF

—

END FOR

Calculate total weight: SUM

FOR

— Normalize:

END FOR

Calculate using (51)

IF

— Resample using algorithm 2:

RESAMPLE

END IF
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