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A Tutorial on Regularized Partial Correlation Networks

Sacha Epskamp and Eiko I. Fried
University of Amsterdam

Abstract

Recent years have seen an emergence of network modeling applied to moods, attitudes, and problems in the

realm of psychology. In this framework, psychological variables are understood to directly affect each other

rather than being caused by an unobserved latent entity. In this tutorial, we introduce the reader to estimating

the most popular network model for psychological data: the partial correlation network. We describe how

regularization techniques can be used to efficiently estimate a parsimonious and interpretable network

structure in psychological data. We show how to perform these analyses in R and demonstrate the method in

an empirical example on posttraumatic stress disorder data. In addition, we discuss the effect of the

hyperparameter that needs to be manually set by the researcher, how to handle non-normal data, how to

determine the required sample size for a network analysis, and provide a checklist with potential solutions for

problems that can arise when estimating regularized partial correlation networks.

Translational Abstract

Recent years have seen an emergence in the use of networks models in psychological research to explore

relationships of variables such as emotions, symptoms, or personality items. Networks have become partic-

ularly popular in analyzing mental illnesses, as they facilitate the investigation of how individual symptoms

affect one-another. This article introduces a particular type of network model: the partial correlation network,

and describes how this model can be estimated using regularization techniques from statistical learning. With

these techniques, a researcher can gain insight in predictive and potential causal relationships between the

measured variables. The article provides a tutorial for applied researchers on how to estimate these models,

how to determine the sample size needed for performing such an analysis, and how to investigate the stability

of results. We also discuss a list of potential pitfalls when using this methodology.

Keywords: Partial correlation networks, Regularization, Network modeling, Tutorial

Supplemental materials: http://dx.doi.org/10.1037/met0000167.supp

Recent years have seen increasing use of network modeling for

exploratory studies of psychological behavior as an alternative to

latent variable modeling (Borsboom & Cramer, 2013; Schmitt-

mann et al., 2013). In these so-called psychological networks

(Epskamp, Borsboom, & Fried, 2017), nodes represent psycholog-

ical variables such as mood states, symptoms, or attitudes, while

edges (links connecting two nodes) represent unknown statistical

relationships that need to be estimated. As a result, this class of

network models is strikingly different from social networks, in

which edges are known (Wasserman & Faust, 1994), posing novel

problems for statistical inference. A great body of technical liter-

ature exists on the estimation of network models (e.g., Foygel &

Drton, 2010; Friedman, Hastie, & Tibshirani, 2008; Hastie, Tib-

shirani, & Friedman, 2001, 2015; Meinshausen & Bühlmann,

2006). However, this line of literature often requires a more

technical background and does not focus on the unique problems

that come with analyzing psychological data, such as the handling

of ordinal data, how a limited sample size affects the results, and

the correspondence between network models and latent variable

models.

Currently, the most common model used to estimate psycholog-

ical networks based on continuous data is the partial correlation

network. Partial correlation networks are usually estimated using

regularization techniques originating from the field of machine
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learning. These techniques have been shown to perform well in

retrieving the true network structure (Foygel & Drton, 2010;

Friedman et al., 2008; Meinshausen & Bühlmann, 2006). Regu-

larization involves estimating a statistical model with an extra

penalty for model complexity. Doing so leads to a model to be

estimated that is sparse: many parameters are estimated to be

exactly zero. When estimating networks, this means that edges that

are likely to be spurious are removed from the model, leading to

networks that are simpler to interpret. Regularization therefore

jointly performs model-selection and parameter estimation. Regu-

larization techniques have grown prominent in many analytic

methods, ranging from regression analysis to principal component

analysis (Hastie, Tibshirani, & Wainwright, 2015). In this tutorial,

we will only discuss regularization in the context of network

estimation. For an overview of such methods applied more broadly

in psychological methods, we refer the reader to Chapman, Weiss,

and Duberstein (2016).

Regularized network estimation has already been used in a

substantive number of publications in diverse fields, such as

clinical psychology (e.g., Deserno, Borsboom, Begeer, &

Geurts, 2016; Fried, Epskamp, Nesse, Tuerlinckx, & Borsboom,

2016; Jaya, Hillmann, Reininger, Gollwitzer, & Lincoln, 2016;

Knefel, Tran, & Lueger-Schuster, 2016; Levine & Leucht,

2016; van Borkulo et al., 2015), psychiatry (e.g., Isvoranu,

Borsboom et al., 2016, Isvoranu, van Borkulo et al., 2016;

McNally, 2016), personality research (e.g., Costantini, Ep-

skamp et al., 2015; Costantini, Richetin et al., 2015), and health

sciences (e.g., Kossakowski et al., 2015; Langley, Wijn, Ep-

skamp, & Van Bork, 2015). What these articles have in com-

mon is that they assume observed variables to causally influ-

ence one another, leading to network models consisting of

nodes such as psychopathology symptoms (e.g., sad mood,

fatigue, and insomnia), items of personality domains like con-

scientiousness (e.g., impulse-control, orderliness, and industri-

ousness), or health behaviors (e.g., feeling full of energy, get-

ting sick easily, and having difficulties performing daily tasks).

From this network perspective, correlations among items stem

from mutual associations among variables, which differs from

the traditional perspective where latent variables are thought to

explain the correlation among variables (Schmittmann et al.,

2013). Psychological networks thus offer a different view of

item clusters: syndromes such as depression or anxiety disorder

in the realm of mental disorders (Borsboom, 2017; Cramer,

Waldorp, van der Maas, & Borsboom, 2010; Fried et al., 2017),

personality facets or domains such as extraversion or neuroti-

cism in personality research (Cramer et al., 2012; Mõttus and

Allerhand, 2017), health domains like physical or social func-

tioning in health research (Kossakowski et al., 2015), and the

g-factor in intelligence research (Van Der Maas et al., 2006,

2017). Important to note is that one does not have to adhere to

this network perspective (i.e., network theory) in order to use

the methods described in this tutorial (i.e., network methodol-

ogy): psychological networks can be powerful tools to explore

multicollinearity and predictive mediation, and can even be

used to highlight the presence of latent variables.

We are not aware of concise and clear introductions aimed at

empirical researchers that explain regularization. The goal of

this article is thus (a) to provide an introduction to regularized

partial correlation networks, (b) to outline the commands used

in R to estimate these models, and (c) to address the most

common problems and questions arising from analyzing regu-

larized partial correlation networks. The methodology intro-

duced in this tutorial comes with the assumption that the cases

(the rows of the spreadsheet) in the data set are independent,

which is usually the case in cross-sectional data. Applying these

methods to time-series data does not take temporal dependence

between consecutive cases into account. We refer the reader to

Epskamp, Waldorp, Mõttus, and Borsboom (2017) to a discus-

sion of extending this framework to such temporally ordered

data sets. While this tutorial is primarily aimed at empirical

researchers in psychology, the methodology can readily be

applied to other fields of research as well.

This tutorial builds on the work of two prior tutorials:

Costantini, Epskamp et al. (2015) focused on psychological

networks in the domain of personality research, described dif-

ferent types of networks ranging from correlation networks to

adaptive lasso networks (Krämer, Schäfer, & Boulesteix, 2009;

Zou, 2006), and introduced basic concepts such as centrality

estimation in Epskamp, Borsboom et al. (2017) introduced

several tests that allow researchers to investigate the accuracy

and stability of psychological networks and derived graph-

theoretical measures such as centrality, tackling the topics of

generalizability and replicability. The present tutorial goes be-

yond these articles in the following ways:

• Costantini, Epskamp et al. (2015) estimated the network

structure using a different form of regularization (adaptive

lasso; Zou, 2006), a different method for estimating the

parameters (node-wise regressions; (Meinshausen & Büh-

lmann, 2006), and a different method for selecting the

regularization tuning parameter (cross-validation; Krämer

et al., 2009). While an acceptable method for estimating

regularized partial correlation networks, this procedure

can lead to unstable results due to differences in the

cross-validation sample selection (see section 2.5.6 of

Costantini, Epskamp et al., 2015) and is not capable of

handling ordinal data. We estimate regularized partial

correlation networks via the Extended Bayesian Informa-

tion Criterion (EBIC) graphical lasso (Foygel & Drton,

2010), using polychoric correlations as input when data

are ordinal. We detail advantages of this methodology, an

important one being that it can be used with ordinal

variables that are very common in psychological research.

• We offer a detailed explanation of partial correlations and

how these should be interpreted. Especially since the work

of Costantini, Epskamp et al. (2015), researchers have

gained a better understanding of the interpretation of par-

tial correlation networks and their correspondence to mul-

ticollinearity and latent variable modeling. We summarize

the most recent insights in these topics.

• We provide a state-of-the-art FAQ addressing issues that

researchers regularly struggle with—including power analy-

sis and sample size recommendations that have been called

for repeatedly (Epskamp, Borsboom et al., 2017; Fried &

Cramer, 2017)—and offer novel solutions to these

challenges.

The following sections are structured as follows. First, we

introduce partial correlation networks and their estimation, pro-
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viding detailed information on how these networks can be

interpreted. Second, we explain regularization, an integral step

in the estimation of partial correlation networks to avoid spu-

rious relationships among items. Third, we explain how to best

deal with non-normal (e.g., ordinal) data when estimating par-

tial correlation networks. Fourth, we show researchers how to

estimate partial correlation networks in R using an empirical

example dataset. The fifth section covers replicability and

power analysis for partial correlation networks. In this section,

we present the simulation tool netSimulator, which allows

researchers to determine the sample size that would be required

to successfully examine a specific network structure. We also

summarize post hoc stability and accuracy analyses that are

described in detail elsewhere (Epskamp, Borsboom et al.,

2017). Finally, we conclude with solutions to the most com-

monly encountered problems when estimating network models

and cover supplemental topics such as comparing networks

given unequal sample sizes, unexpected negative relationships

among items, very strong positive relationships, or empty net-

works without any edges.

Partial Correlation Networks

The most commonly used framework for constructing a psy-

chological network on data that can be assumed to be multi-

variate normal is to estimate a network of partial correlation

coefficients (Borsboom & Cramer, 2013; McNally et al., 2015).

These coefficients range from �1 to 1 and encode the remain-

ing association between two nodes after controlling for all other

information possible, also known as conditional independence

associations. Partial correlation networks have also been called

concentration graphs (Cox & Wermuth, 1994) or Gaussian

graphical models (Lauritzen, 1996), and are part of a more

general class of statistical models termed pairwise Markov

random fields (see, e.g., Koller & Friedman, 2009 and Murphy,

2012 for an extensive description of pairwise Markov random

fields). The interpretation of partial correlation networks has

recently been described in the psychological literature (e.g.,

conceptual guides are included in Costantini, Epskamp et al.,

2015 and the online supplementary materials of Epskamp, Bors-

boom et al., 2017; an extensive technical introduction is in-

cluded in Epskamp, Waldorp et al., 2017). To keep the present

tutorial self-contained, we succinctly summarize the interpre-

tation of partial correlations below.

Drawing partial correlation networks. After partial corre-

lations have been estimated, they can be visualized in a

weighted network structure. Each node represents a variable

and each edge represents that two variables are not independent

after conditioning on all variables in the dataset. These edges

have a weight, edge weights, which are the partial correlation

coefficients described below. Whenever the partial correlation

is exactly zero, no edge is drawn between two nodes, indicating

that two variables are independent after controlling for all other

variables in the network. Several different software packages

can be used to visualize the network. For example, one could

use the freely available software packages cytoscape (Shannon

et al., 2003), gephi (Bastian et al., 2009), or R packages qgraph

(Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom,

2012), igraph (Csardi & Nepusz, 2006), Rgraphviz (Gentry et

al., 2011), or ggraph (Pedersen, 2017). The qgraph package has

commonly been used in psychological literature as it automates

many steps for drawing weighted networks and includes the

estimation methods discussed in this article. When drawing a

network model, the color and weight of an edges indicates its

magnitude and direction. Using qgraph, red lines indicate neg-

ative partial correlations, green (using the classic theme), or

blue (using the colorblind theme) lines indicate positive partial

correlations, with wider and more saturated lines indicating

stronger partial correlations (Epskamp et al., 2012).

Obtaining partial correlation networks. While multiple ways

exist to compute partial correlation coefficients (Cohen, Cohen,

West, & Aiken, 2003), we focus on two commonly used methods

that have been shown to obtain the partial correlations quickly.

First, the partial correlations can be directly obtained from the

inverse of a variance–covariance matrix. Let y represent a set of

item responses, which we can assume without loss of generality to

be centered. Let � (sigma) denote a variance–covariance matrix.

Then, the following states that we assume y to have a multivariate

normal distribution:

y � N(0, �).

Let K (kappa) denote the inverse of �, also termed the precision

matrix:

K � ��1,

then, element �ij (row i, column j of K) can be standardized to

obtain the partial correlation coefficient between variable yi and

variable yj, after conditioning on all other variables in y, y�(i,j)

(Lauritzen, 1996):

Cor(yi, yj | y�(i,j)) � �
�ij

��ii��jj

.

An alternative way to obtain the partial correlation coefficients

is by using node-wise regressions (Meinshausen & Bühlmann,

2006). If one was to perform a multiple regression in which y1 is

predicted from all other variables:

y1 � �10 � �12y2 � �13y3 � . . . � ε1,

followed by a similar regression model for y2:

y2 � �20 � �21y1 � �23y3 � . . . � ε2,

and similarly for y3, y4, etc., then, the same partial correlation

coefficient between yi and yj is proportional to either the regression

slope predicting yi from yj or the regression slope predicting yj

from yi (Pourahmadi, 2011):

Cor(yi, yj | y�(i,j)) �
�ijSD(εj)

SD(εi)
�

�jiSD(εi)

SD(εj)
,

in which SD stands for the standard deviation. Obtaining a partial

correlation coefficient by standardizing the precision matrix or

performing node-wise regressions will lead to the exact same

estimate.

Interpreting partial correlation networks. Partial correla-

tion networks allow for several powerful inferences. These points

are a summary of a more detailed and technical introduction by

Epskamp, Waldorp et al. (2017):
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• Partial correlation networks allow one to model unique

interactions between variables. If A correlates with B, and

B correlates with C, then we would naturally expect A to

correlate with C. An unconditional correlation of zero

between A and C would be unexpected as only few causal

structures would lead to such a correlational pattern.1 If

the data are normal, partial correlations can be interpreted

as pairwise interactions,2 of which we only need two to

model the correlational pattern: an interaction between A

and B and an interaction between B and C. This model will

contain one degree of freedom and thus leads to a testable

hypothesis (Epskamp, Rhemtulla, & Borsboom, 2017).

Such a point of view is akin to loglinear modeling of

categorical data (Agresti, 1990; Wickens, 1989), which is

structurally comparable to the partial correlation network

(Epskamp, Maris, Waldorp, & Borsboom, 2018).

• The partial correlation network maps out multicollinearity

and predictive mediation. As shown above, partial corre-

lations are closely related to coefficients obtained in mul-

tiple regression models: When an independent variable

does not predict the dependent variable, we would not

expect an edge in the network. The strength of the partial

correlation is furthermore directly related to the strength of

the regression coefficient. The edges connected to a single

node therefore show the researcher the expected result of

a multiple regression analysis. Unlike what can be seen

from a multiple regression analysis of a single dependent

variable, however, the network also shows which variables

would predict the independent variables. By linking sep-

arate multiple regression models, partial correlation net-

works allow for mapping out linear prediction and multi-

collinearity among all variables. This allows for insight

into predictive mediation: a network in which two vari-

ables are not directly connected but are indirectly con-

nected (e.g., A � B � C) indicates that A and C may be

correlated, but any predictive effect from A to C (or vice

versa) is mediated by B.

• Partial correlations can be indicative of potential causal

pathways. Conditional independence relationships, such as

those encoded by partial correlation coefficients, play a

crucial role in causal inference (Pearl, 2000). When all

relevant variables are assumed to be observed (i.e., no

latent variables), a partial correlation between variables A

and B would only be expected to be nonzero if A causes B,

B causes A, there is a reciprocal relationship between A

and B, or both A and B cause a third variable in the

network (Pearl, 2000; Koller & Friedman, 2009). To this

end, partial correlation networks are thought of as highly

exploratory hypothesis-generating structures, indicative of

potential causal effects. While exploratory algorithms ex-

ist that aim to discover directed (causal) networks, they

rely on strong assumptions such as acyclity (a variable

may not eventually cause itself (e.g., A ¡ B ¡ C ¡ A),

and are more strongly influenced by latent variables caus-

ing covariation (latent variables would induce directed

edges between observed variables implying a strong

causal hypothesis). Additionally, these models are not

easily identified or parameterized: Many equivalent di-

rected models can fit the data equally well, all differently

parameterized. Partial correlation networks, on the other

hand, are well identified (no equivalent models) and easily

parameterized using partial correlation coefficients. As

such, exploratively estimating undirected networks offer

an attractive alternative to exploratively estimating di-

rected networks, without the troublesome and poorly iden-

tified direction of effect.3

• Clusters in the network may highlight latent variables.

While partial correlations aim to highlight unique variance

between two variables, they retain shared variance due to

outside sources that cannot fully be partialed out by con-

trolling for other variables in the network. As a result, if a

latent variable causes covariation between two or more

variables in the network, it is expected that all these

variables will be connected in the network, forming a

cluster (Golino & Epskamp, 2017). Such clusters can thus

be indicative of latent variables (Epskamp, Waldorp et al.,

2017). We discuss the relationship between networks and

latent variable models in more detail at the end of this

article.

Lasso Regularization

Limiting spurious edges. As shown above, partial correla-

tions can readily be estimated by inverting the sample variance–

covariance matrix or by performing sequential multiple regres-

sions and standardizing the obtained coefficients. Estimating

parameters from data, however, always comes with sampling

variation, leading to estimates that are never exactly zero. Even

when two variables are conditionally independent, we still obtain

nonzero (although typically small) partial correlations that will be

represented as very weak edges in the network. These edges are

called spurious or false positives (Costantini, Epskamp et al.,

2015). In order to prevent overinterpretation and failures to repli-

cate estimated network structures, an important goal in network

estimation is to limit the number of spurious connections. One way

to do so is to test all partial correlations for statistical significance

and remove all edges that fail to reach significance (Drton &

Perlman, 2004). However, this poses a problem of multiple testing,

and correcting for this problem (e.g., by using a Bonferroni cor-

rection) results in a loss of power (Costantini, Epskamp et al.,

2015).4

The lasso. An increasingly popular method for limiting the

number of spurious edges—as well as for obtaining more inter-

pretable networks that better extrapolate to new samples—is to use

statistical regularization techniques. An especially prominent

1 Two possible options are if B is a common effect of A and C or if two
orthogonal latent variables cause covariation between A and B and between
B and C.

2 Not to be confused with interaction effects of two variables on an
outcome variable.

3 A partial correlation network should not be interpreted to equate the
skeleton of a causal model (a directed network with arrowheads removed),
as conditioning on a common effect can induce an edge in the partial
correlation network. In addition, latent variables can induce edges in both
directed and undirected networks. We discuss both common effects and
latent variables in detail below.

4 Unregularized partial correlations can also be seen to already reduce
spurious edges in a network comprised of marginal correlation coefficients
(Costantini, Epskamp et al., 2015).
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method of regularization is the least absolute shrinkage and se-

lection operator (lasso; Tibshirani, 1996), which, unlike other

regularization techniques, can lead to parameter estimates of ex-

actly zero. In essence, the lasso limits the sum of absolute partial

correlation coefficients; as a result, all estimates shrink, and some

become exactly zero. More technically, if S represents the sample

variance–covariance matrix, lasso aims to estimate K by maximiz-

ing the penalized likelihood function (Friedman et al., 2008):

log det(K) � trace(SK) � � �
�i,j	

| �ij |

Alternatively, lasso regularization can be applied on the indi-

vidual regression models if a network is estimated using node-wise

regressions (Meinshausen & Bühlmann, 2006).5 Using the lasso

results in a sparse network in which likely spurious edges are

removed (Epskamp, Kruis, & Marsman, 2017). The lasso utilizes

a tuning parameter � (lambda) that controls the level of sparsity.

As can be seen above, � directly controls how much the likelihood

is penalized for the sum of absolute parameter values. When the

tuning parameter is low, only a few edges are removed, likely

resulting in the retention of spurious edges. When the tuning

parameter is high, many edges are removed, likely resulting in the

removal of true edges in addition to the removal of spurious edges.

The tuning parameter therefore needs to be carefully selected to

create a network structure that minimizes the number of spurious

edges while maximizing the number of true edges (Foygel &

Drton, 2010; Foygel Barber & Drton, 2015).

Selecting the lasso tuning parameter. Typically, several net-

works are estimated under different values of � (Zhao & Yu,

2006). The different � values can be chosen from a logarithmically

spaced range between a maximal � value for which no edge is

retained (when � equals the largest absolute correlation; Zhao et

al., 2015), and some scalar times this maximal � value.6 Thus, the

lasso is commonly used to estimate a collection of networks rather

than a single network, ranging from a fully connected network to

a fully disconnected network. Next, one needs to select the best

network out of this collection of networks. This selection can be

done by optimizing the fit of the network to the data by minimizing

some information criterion. Minimizing the Extended Bayesian

Information Criterion (EBIC; Chen & Chen, 2008) has been shown

to work particularly well in retrieving the true network structure

(Foygel & Drton, 2010; Foygel Barber & Drton, 2015; van

Borkulo et al., 2014), especially when the generating network is

sparse (i.e., does not contain many edges). Lasso regularization

with EBIC model selection has been shown to feature high spec-

ificity all-around (i.e., not estimating edges that are not in the true

network) but a varying sensitivity (i.e., estimating edges that are in

the true network) based on the true network structure and sample

size. For example, sensitivity typically is less when the true net-

work is dense (contains many edges) or features some nodes with

many edges (hubs).

Choosing the EBIC hyperparameter. The EBIC uses a hy-

perparameter7 � (gamma) that controls how much the EBIC pre-

fers simpler models (fewer edges; Chen & Chen, 2008; Foygel &

Drton, 2010):

EBIC � �2L � E log (N) � 4
E log (P),

in which L denotes the log-likelihood, N the sample size, E the

number of nonzero edges, and P the number of nodes. This

hyperparameter � should not be confused with the lasso tuning

parameter �, and needs to be set manually. It typically is set

between 0 and 0.5 (Foygel & Drton, 2010), with higher values

indicating that simpler models (more parsimonious models with

fewer edges) are preferred. Setting the hyperparameter to 0 errs on

the side of discovery: More edges are estimated, including possible

spurious ones (the network has a higher sensitivity). Setting the

hyperparameter to 0.5, as suggested by Foygel and Drton (2010),

errs on the side of caution or parsimony: fewer edges are obtained,

avoiding most spurious edges but possibly missing some edges

(i.e., the network has a higher specificity). Even when setting the

hyperparameter to 0, the network will still be sparser compared to

a partial correlation network that does not employ any form of

regularization; setting � to 0 indicates that the EBIC reduces to the

standard BIC, which still prefers simple models.

Many variants of the lasso have been implemented in open-

source software (e.g., Krämer et al., 2009; Zhao et al., 2015). We

suggest the variant termed the graphical lasso (glasso; Friedman et

al., 2008), which is specifically aimed at estimating partial corre-

lation networks by inverting the sample variance–covariance ma-

trix. The glasso algorithm has been implemented in the glasso

package (Friedman, Hastie, & Tibshirani, 2014) for the statistical

programming language R (R Core Team, 2016). A function that

uses this package in combination with EBIC model selection as

described by Foygel and Drton (2010) has been implemented in

the R package qgraph (Epskamp et al., 2012), and can be called via

the bootnet package (Epskamp, Borsboom et al., 2017). The glasso

algorithm directly penalizes elements of the variance–covariance

matrix, which differs from other lasso network estimation methods

which typically aim to estimate a network structure by penalizing

regression coefficients in a series of multiple regression models

(Meinshausen & Bühlmann, 2006). We suggest using this routine

because it can be engaged using simple input commands and

because it only requires an estimate of the covariance matrix and

not the raw data, allowing one to use polychoric correlation ma-

trices when the data are ordinal (discussed below).

To exemplify the above-described method of selecting a best-

fitting regularized partial correlation network, we simulated a

dataset of 100 people and eight nodes (variables) based on the

chain graph shown in Figure 1. Such graphs are particularly

suitable for our example because the true network (the one we

want to recover with our statistical analysis) only features edges

among neighboring nodes visualized in a circle. This makes spu-

rious edges—any edge that connects non-neighboring nodes—

easy to identify visually. We used the qgraph package to estimate

100 different network structures, based on different values for

�, and computed the EBIC under different values of �. Figure 2

depicts a representative sample of 10 of these networks. Networks

1 through 7 feature spurious edges and err on the side of discovery,

5 In regularized node-wise regressions, partial correlations obtained
from the regression model for one node might slightly differ from partial
correlations obtained from the regression model for another node. A single
estimate can then be obtained by averaging the two estimated partial
correlations.

6 Current qgraph package version 1.4.4 uses 0.01 as scalar and estimates
100 networks by default.

7 A hyperparameter is a parameter that controls other parameters, and
usually needs to be set manually.
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while Networks 9 and 10 recover too few edges and err on the side

of caution. For each network, we computed the EBIC based on �

of 0, 0.25, and 0.5 (the hyperparameter the researchers needs to set

manually). The boldface values show the best fitting models,

indicating which models would be selected using a certain value of

�. When � � 0 was used, Network 7 was selected that featured

three weak spurious edges. When � was set to 0.25 or 0.5 (the

latter being the default in qgraph), respectively, Network 8 was

selected, which has the same structure as the true network shown

in Figure 1. These results show that in our case, varying � changed

the results only slightly. Importantly, this simulation does not

imply that � � 0.5 always leads to the true model; simulation work

has shown that 0.5 is fairly conservative and may result in omitting

true edges from the network (Foygel & Drton, 2010). In sum, the

choice of the hyperparameter is somewhat arbitrary and up to the

researcher, and depends on the relative importance assigned to

caution or discovery (Dziak, Coffman, Lanza, & Li, 2012). Which

of these � values work best is a complex function of the (usually

unknown) true network structure.

A note on sparsity. It is important to note that although lasso

regularization8 will lead to edges being removed from the network,

it does not present evidence that these edges are, in fact, zero

(Epskamp, Kruis et al., 2017). This is because lasso seeks to

maximize specificity; that is, it aims to include as few false

positives (edges that are not in the true model) as possible. As a

result, observing an estimated network that is sparse (containing

missing edges), or even observing an empty network, is in no way

evidence that there are, in fact, missing edges. Lasso estimation

may result in many false negatives, edges that are not present in the

estimated network but are present in the true network. This is

related to a well-known problem of null hypothesis testing: Not

rejecting the null-hypothesis is not evidence that the null hypoth-

esis is true (Wagenmakers, 2007). We might not include an edge

either because the data are too noisy or because the null hypothesis

is true; lasso regularization, like classical significance testing,

cannot differentiate between these two reasons. Quantifying evi-

dence for edge weights being zero is still a topic of future research

(Epskamp, 2017; Wetzels & Wagenmakers, 2012).

Non-Normal Data

Common challenges to estimating partial correlation networks re-

late to the assumption of multivariate normality. The estimation of

partial correlation networks is closely related to structural equation

modeling (Epskamp, Rhemtulla et al., 2017), and, as such, also

requires multivariate normal distributions. Not only does this mean

that the marginal distributions must be normal, all relationships be-

tween variables must also be linear. But what do we do with non-

normal (e.g., ordered categorical) data that are common in psycho-

logical data? Several solutions proposed in the structural equation

modeling literature may offer solutions to network modeling as well.

The assumption of normality can be relaxed by assuming that the

observed data are a transformation of a latent multivariate normally

distributed system (Liu, Lafferty, & Wasserman, 2009). Figure 3,

Panel (a) shows an example of such a model. In this model, squares

indicate observed variables, circles indicate normally distributed la-

tent variables and directed arrows indicate monotone (every value is

transformed into one unique value, keeping ordinality intact; higher

values in the original scale are also higher on the transformed scale)

transformation functions. Note that we do not assume measurement

error, which could be included by having multiple indicators per latent

variable (Epskamp, Rhemtulla et al., 2017). Here, we assume every

observed variable indicates one latent variable (Muthén, 1984).

The most common two scenarios are that the observed variables are

continuous, or that they consist of ordered categories. When observed

variables are continuous, but not normally distributed, the variables

can be transformed to have a marginal normal distribution. A pow-

erful method that has been used in network estimation is to apply a

nonparanormal transformation (Liu et al., 2009). This transformation

uses the cumulative distributions (encoding the probability that a

variable is below some level) to transform the distribution of the

observed variable to that of the latent normally distributed variable.

Figure 3, Panel (b) shows a simplified example on how two distribu-

tions can be linked by their cumulative distribution. Suppose X is

normally distributed, and Y is gamma distributed (potentially

skewed). Then, values of X can be mapped to the cumulative distri-

bution by using the probability function (in R: pnorm). These cumu-

lative probabilities can then be mapped to values of the gamma

distribution by using the quantile function (in R: qgamma). In prac-

tice, however, the distribution of Y (top right panel) is not known. The

density and cumulative density of X (left panels), on the other hand,

are known, and the cumulative distribution of Y can be estimated by

computing the empirical cumulative distribution function (in

R: ecdf). Thus, to map values of Y to values of the normally

distributed variable X, one needs to estimate a smooth transformation

8 These arguments apply for other frequentist model selection methods
as well, such as removing edges based on statistical significance.

Figure 1. True network structure used in simulation example. The network

represents a partial correlation network: nodes represent observed variables

and edges represent partial correlations between two variables after condition-

ing on all other variables. The simulated structure is a chain graph in which all

absolute partial correlation coefficients were drawn randomly between 0.3 and

0.4. See the online article for the color version of this figure.
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function between the bottom two panels. This is the core of the

nonparanormal transformation, which aims to map every unique

outcome of a variable (e.g., 1, 2, or 3) to one unique outcome of a

standard normal variable (e.g., �1.96, 0, 1.65). The huge.npn

function from the huge package (Zhao et al., 2015) can be used to this

end. Important to note is that this transformation assumes smoothly

increasing cumulative distributions, and will therefore not work when,

only a few possible answering options are present (such as in Likert

scales). When the data are binary, the transformed data will still be

binary, just using different labels than 0 and 1.

When only few item categories are available and the answer

options can be assumed to be ordinal (Stevens, 1946), one can make

use of threshold functions (Muthén, 1984) as the data transforming

functions. Now, the observed score is again assumed to be reflective

of a latent normally distributed score, but correlations between items

can directly be estimated without having to transform the data. An

example of such a threshold function is shown in Figure 3, Panel (c).

In this panel, three thresholds are estimated to accommodate four

answering categories (0, 1, 2, or 3). The normal distribution corre-

sponds to the latent item score and vertical bars correspond to the

thresholds; a person with a latent score below the first would score a

0, a person with a latent score between the first and second threshold

would score a 1, and so forth. After the thresholds are estimated, the

correlations between latent variables can be estimated pairwise. These

are termed polychoric correlations when both variables are ordinal

(Olsson, 1979), or polyserial correlations when only one of the two

variables is ordinal (Olsson, Drasgow, & Dorans, 1982). The lavCor

function from the lavaan package (Rosseel, 2012) can be used to

compute polychoric and polyserial correlations, which can subse-

quently be used as input to the glasso algorithm (Epskamp, 2016).

Regularized partial correlations using glasso with EBIC model selec-

tion based on polychoric correlations has become standard when

estimating psychopathology networks due to the high prevalence of

ordered-categorical data. An important limitation is that these meth-

ods rely on an assumption that the latent variables underlying the

observed ordinal variables are normally distributed, which might not

be plausible. For example, some psychopathological symptoms, such

as suicidal ideation, might plausibly have a real “zero” point—the

absence of a symptom. Properly handling such variables is still a topic

of future research (Epskamp, 2017).

When data are binary, one could also use tetrachoric and biserial

correlations (special cases of polychoric and polyserial correla-

tions, respectively). However, these data would not be best han-

dled using partial correlation networks because of the underlying

assumption of normality. When all variables are binary, one can

estimate the Ising Model using the IsingFit R package (van

Borkulo & Epskamp, 2014). The resulting network has a similar

interpretation as partial correlation networks, and is also estimated

using lasso with EBIC model selection (van Borkulo et al., 2014).

When the data consist of both categorical and continuous vari-

ables, the state-of-the-art network model is termed the mixed

graphical model, which is implemented in the mgm package (Hasl-

beck & Waldorp, 2016), also making use of lasso estimation with

EBIC model selection.

Example

In this section, we estimate a network based on the data of 221

people with a subthreshold posttraumatic stress disorder (PTSD)

diagnosis. The network features 20 PTSD symptoms. A detailed

description of the dataset can be found elsewhere (Armour, Fried,

Deserno, Tsai, & Pietrzak, 2017), and the full R code for this

analysis can be found in the supplementary materials.9

The following R code performs regularized estimation of a

partial correlation network using EBIC selection (Foygel &

9 We performed these analyses using R version 3.5.0, bootnet version
1.0.1 and qgraph version 1.4.4, using OSX version 10.11.6.

Figure 2. Ten different partial correlation networks estimated using lasso regularization. Setting the lasso

tuning parameter � that controls sparsity leads to networks ranging from densely connected to fully unconnected.

Data were simulated under the network represented in Figure 1. The fit of every network was assessed using the

EBIC, using hyperparameter � set to 0, 0.25 or 0.5. The bold-faced EBIC value is the best, indicating the network

which would be selected and returned using that � value. See the online article for the color version of this figure.
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Drton, 2010). This methodology has been implemented in the

EBICglasso function from the qgraph package (Epskamp et al.,

2012), which in turn utilizes the glasso package for the glasso

algorithm (Friedman et al., 2014). A convenient wrapper around

this (and several other network estimation methodologies such

as the Ising model and the mixed graphical model) is imple-

mented in the bootnet package (see Epskamp, Borsboom et al.,

2017 for an extensive description), which we use here in order

to perform (a) model estimation, (b) a priori sample size anal-

ysis, and (c) post hoc accuracy and stability analysis. This code

assumes the data is present in R under the object name data.

library(�bootnet�)

results <- estimateNetwork(

data,

default = “EBICglasso”,

corMethod = “cor_auto”,

tuning = 0.5)

In this code, library(�bootnet�) loads the package into

R, and the default = �EBICglasso� specifies that the

EBICglasso function from qgraph is used. The corMethod =

�cor_auto� argument specifies that the cor_auto function from

qgraph is used to obtain the necessary correlations. This function

automatically detects ordinal variables (variables with up to seven

unique integer values) and uses the lavaan package (Rosseel, 2012) to

estimate polychoric, polyserial, and Pearson correlations. Finally, the

tuning = 0.5 argument sets the EBIC hyperparameter, �, to 0.5.

After estimation, the network structure can be obtained using the

code:

Figure 3. Methods for relaxing the assumption of multivariate normality. (a) Observed variables (squares) assumed

to be transformations of multivariate normal latent variables (circles). (b) Visualization on how marginal distributions

can be used to transform a variable to have a normal marginal distribution. (c) Visualization of a threshold model, used

in polychoric and polyserial correlations. See the online article for the color version of this figure.
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results$graph

and the network can be plotted using the plot method of bootnet

using the code:

plot(results)

This function uses the qgraph function from the qgraph pack-

age to draw the network (Epskamp et al., 2012).10 By default,

edges are drawn using a colorblind-friendly theme (blue edges

indicate positive partial correlations and red edges indicate nega-

tive partial correlations). Nodes are placed using a modified ver-

sion of the Fruchterman-Reingold algorithm (Fruchterman & Re-

ingold, 1991) for weighted networks (Epskamp et al., 2012). This

algorithm aims to place nodes in an informative way by position-

ing connected nodes close to each other. A downside of the

Fruchterman-Reingold algorithm is that it can behave chaotically:

every input will lead to one exact output, but small differences in

the input (e.g., a difference of 0.01 in an edge weight or using a

different computer architecture) can lead to an entirely different

placement of nodes (nodes will likely be placed about the same

distance from one-another, but might be placed on a different side

of the plotting area). Thus, the eventual placement cannot be

interpreted in any substantial way, and might differ substantially

between two networks even when there are only very small dif-

ferences in the network structures. To compare two networks, one

should constrain the layout to be equal for both networks. One way

to do so is by using averageLayout from the qgraph package,

which was used in drawing Figure 4.11

Figure 4 shows the resulting network estimated under three

different values of �: 0, 0.25, and 0.5. Table 1 shows the descrip-

tion of the nodes. As expected, the network with the largest

hyperparameter has the fewest edges: the networks feature 105

edges with � � 0, 95 edges with � � 0.25, and 87 edges with � �

0.5.

We can further investigate how important nodes are in the

network using measures called centrality indices. These indices

can be obtained as followed:

centrality(results)

This code provides three commonly used centrality indices:

node strength, which takes the sum of absolute edge weights

connected to each node, closeness, which takes the inverse of the

sum of distances from one node to all other nodes in the network,

and betweenness, which quantifies how often one node is in the

shortest paths between other nodes. A more extensive overview of

these measures and their interpretation is described elsewhere

(Costantini, Epskamp et al., 2015; Epskamp, Borsboom et al.,

2017; Opsahl, Agneessens, & Skvoretz, 2010). All measures indicate

how important nodes are in a network, with higher values indicating

that nodes are more important. Figure 5 is the result of the function

centralityPlot and shows the centrality of all three networks

shown in Figure 4. For a substantive interpretation of the network

model obtained from this dataset we refer the reader to Armour et

al. (2017).

Sample Size Selection and Replicability

An increasingly important topic in psychological research is the

replicability of results (Open Science Collaboration, 2015). High-

dimensional exploratory network estimation, as presented in this

tutorial article, lends itself to generating many different measures

(e.g., edge weights, network structures, centrality indices) that may

or may not replicate or generalize across samples. Recent work has

put the importance of replicability in network modeling of psy-

chological data in the spotlight (Epskamp, Borsboom et al., 2017;

Fried & Cramer, 2017; Fried et al., in press; Fried et al., 2017;

Forbes, Wright, Markon, & Krueger, 2017, but see also Borsboom

et al., 2017). However, in is not easy to determine the replicability

of an estimated network. Many factors can influence the stability

and accuracy of results, such as the sample size, the true network

structure and other characteristics of the data.12 Even when a

network is estimated stably, measures derived from the network

structure (e.g., graph theoretical measures such as centrality met-

rics) might still not be interpretable. For example, all nodes in the

true network shown in Figure 1 have exactly the same betweenness

(0, all shortest paths do not go via third nodes). Thus, any differ-

ences in betweenness in estimated networks are due to chance,

regardless of sample size.

We therefore recommend sample size analyses both before and

after collecting the data for analysis. A priori sample size analyses

let researchers know if the sample size is appropriate for the

expected network structure, and post hoc stability analyses provide

researchers with information about the stability of their results. We

describe a priori sample size analysis in detail in the next section,

which has not been done before in the psychological network

literature, and then summarize post hoc stability analyses that are

explicated in detail elsewhere (Epskamp, Borsboom et al., 2017).

A Priori Sample Size Analysis

An important consideration for any statistical analysis is the

sample size required for an analysis, which is often referred to as

power analysis (Cohen, 1977). To perform such an analysis, one

needs to have a prior expectation of the effect size—the expected

strength of the true effect. In network modeling, the analogy to an

expected effect size is the expected weighted network: a high-

dimensional interplay of the network structure (zero and nonzero

edges) and the strength of edges (the weight of the nonzero edges).

For a partial correlation network of P nodes, one needs to have a

prior expectation on P(P � 1)/2 parameters (edges) to estimate

how well edges or any descriptive statistics derived from the

network structure, such as centrality indices, can be estimated

stably given a certain sample size.13

When estimating a network structure, three properties are of

primary interest (van Borkulo et al., 2014):

10 Any argument used in this plot method is used in the underlying
call to qgraph. The bootnet plot method has three different default
arguments than qgraph: (a) the cut argument is set to zero, (b) the
layout argument is set to �spring�, and (c) the theme argument is set
to �colorblind�. For more details on the these arguments and other
ways in which qgraph visualizes networks we refer the reader to
Epskamp et al. (2012) and the online documentation at https://
CRAN.R-project.org/package=qgraph.

11 See online supplemental materials for exact R codes.
12 For example, Borsboom et al. (2017) show how data-imputation

strategies can lead to unstable edge parameters even at large sample size.
13 Other network models, such as the Ising model, also require a prior

expectation for the P intercepts. The partial correlation network does not
require intercepts as data can be assumed centered.
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• Sensitivity: Also termed the true-positive rate, the propor-

tion of edges present in the true network that were detected

in the estimated network.

• Specificity: Also termed the true-negative rate, the propor-

tion of missing edges in the true network that were also

detected correctly to be absent edges in the estimated

network.

• The correlation between edge weights of the true network

and edge weights of the estimated network, or between

centrality estimates based on the true network and central-

ity estimates based on the estimated network.

A researcher wants sensitivity to increase with sample size and

preferably to be high (although a moderate sensitivity can be

acceptable as that at least indicates the strongest edges are discov-

ered). When specificity is low, the estimation procedure mistak-

enly detects many edges that are not present in the true network

(false positives). As a result, we argue that researchers always

want high specificity. Finally, the correlation indicates how well

the true network structure and the estimated network structure

mimic one-another. Especially when a researcher is interested in

analyzing the network structure as a whole (e.g., for shortest paths

analyses), the researcher wants this to be high. In addition to this

correlation, the correlation between between centrality indices of

the true network and the estimated network might also be of

interest, which can be low even though the edge weights are

estimated accurately (e.g., when centrality does not differ in the

true network, such as betweenness in Figure 1).

Simulation studies have shown that lasso regularized network

estimation generally results in a high specificity, while sensitivity

and correlation increases with sample size (Epskamp, 2016; Foy-

gel & Drton, 2010; van Borkulo et al., 2014). This means that

whenever lasso regularization is used, one can interpret edges that

are discovered by the method as likely to represent edges in the

true network, but should take into account that the method might

not discover some true edges. Unfortunately, the precise values of

sensitivity, specificity and different correlations are strongly influ-

enced by the expected network structure, similar to how the

expected effect size influences a power analysis. As a result,

judging the required sample size is far from trivial, but has been

called for multiple times in the recent literature (Epskamp, Bors-

boom et al., 2017; Fried & Cramer, 2017).

We recommend three ways forward on this issue: (a) more

research estimating network models from psychological data will

make clear what one could expect as a true network structure,

especially if researchers make the statistical parameters of their

network models publicly available; (b) researchers should simulate

network models under a wide variety of potential true network

structures, using different estimation methods; (c) researchers

should simulate data under an expected network structure to gain

some insight in the required sample size. To aid researchers in (b)

and (c), we have implemented the netSimulator function in

the bootnet package, which can be used to flexibly set up simula-

tion studies assessing sample size and estimation methods given an

expected network structure.

The netSimulator function can simulate data under a given

network model and expected network structure. Because partial

correlation networks feature many parameters, and the field of

estimating these models is still young, researchers cannot be ex-

pected to have strong theoretical expectations on the network

structure. One option is to simulate data under the parameters of a

previously published network model, which can be obtained by

Table 1

Description of Nodes Shown in Figure 4

Node Description

1 Intrusive thoughts
2 Nightmares
3 Flashbacks
4 Emotional cue reactivity
5 Psychological cue reactivity
6 Avoidance of thoughts
7 Avoidance of reminders
8 Trauma-related amnesia
9 Negative beliefs

10 Blame of self or others
11 Negative trauma-related emotions
12 Loss of interest
13 Detachment
14 Restricted affect
15 Irritability/anger
16 Self-destructive/reckless behavior
17 Hypervigilance
18 Exaggerated startle response
19 Difficulty concentrating
20 Sleep disturbance

Figure 4. Partial correlation networks estimated on responses of 221 subjects on 20 posttraumatic stress

disorder (PTSD) symptoms, with increasing levels of the lasso hyperparameter � (from left to right: (a) � � 0,

(b) � � 0.25, (c) � � 0.5). See the online article for the color version of this figure.
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reanalyzing the data of the original authors or, if the data are not

available, asking the original authors to send the adjacency matrix

encoding the edge weights. Below, we will conduct such a simu-

lation study by using the estimated network structure in Figure 4,

Panel (c) as the simulation baseline. Simulating data under lasso

regularized parameters, however, poses a problem in that these

parameters will be biased toward zero due to shrinkage, and

therefore might imply a weaker effect than can be expected. To

accommodate this, we can first fit the model by using lasso to

obtain a network structure (i.e., which edges are present), and then

refit a model with only those edges without lasso regularization

(see also Epskamp, Rhemtulla et al., 2017 on confirmatory partial

correlation network analysis). This can be done by using the refit

argument in estimateNetwork:

network <- estimateNetwork(data,

default = �EBICglasso�,

corMethod = �cor_auto�,

tuning = 0.5,

refit = TRUE)

Next, a simulation study can be performed using the following

R code:

simRes <- netSimulator(network$graph,

dataGenerator = ggmGenerator(ordinal =

TRUE, nLevels = 5),

default = �EBICglasso�,

nCases = c(100,250,500,1000,2500),

tuning = 0.5,

Figure 5. Closeness, betweenness, and degree centrality of the three networks described in Figure 4 with

increasing levels of the lasso hyperparameter �. Centrality indices are plotted using standardized z-scores in

order to facilitate interpretation. See the online article for the color version of this figure.
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nReps = 100,

nCores = 8)

The netSimulator can use any argument of

estimateNetwork, with a vector of options describing mul-

tiple conditions are estimated (e.g., tuning = c(0.25,

0.5)) would vary the tuning parameter). The first argument is

a weights matrix encoding an expected network (or a list with

a weights matrix and intercepts vector for the Ising model

which is not needed for partial correlation networks), the

dataGenerator argument specifies the data generating pro-

cess (can be ignored for nonordinal data), nCases encodes the

sample size conditions, nReps the number of repetitions per

condition, and nCores the number of computer cores to use.

Next, results can be printed:

simRes

or plotted:

plot(simRes)

plot(simRes,yvar = c(�strength�,�closeness�,

�betweenness�))

Figure 6 shows the corresponding plots. These plots may be

used to gain a rough insight into the required sample size, based on

the requirements of the researcher. For example, N � 250 achieves

a correlation between the “true” and estimated networks above 0.8

Figure 6. Simulation results using the estimated refitted posttraumatic stress disorder (PTSD) network as true

network structure. The top panel shows the sensitivity (true positive rate), specificity (true negative rate) and

correlation between true and estimated networks, and the bottom panel shows the correlation between true and

estimated centrality indices.
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for edge weights and strength, and above 0.7 for sensitivity.

Noteworthy is that specificity is moderate, but not as high as in

other studies (Epskamp, 2016; Foygel & Drton, 2010; van Borkulo

et al., 2014), possibly a result of the true network structure used

being very sparse (54% of the edges were zero in the generating

network).

Post Hoc Stability Analysis

After estimating a network, bootstrapping methods (Chernick,

2011; Efron, 1979) can be used to gain insight into the accuracy

and stability of the network parameters and descriptive statistics

based on the estimated network structure (e.g., centrality indices).

These are extensively discussed by Epskamp, Borsboom et al.

(2017), including a tutorial on how to perform these analyses using

the bootnet package. In short, bootnet can be used to perform

several types of bootstraps using the original data and the estima-

tion method. The two most important methods are:

boot1 <- bootnet(results, nCores = 8,

nBoots = 1000, type = �nonparametric�)

boot2 <- bootnet(results, nCores = 8,

nBoots = 1000, type = �case�)

The first bootstrap is a nonparametric bootstrap (using resa-

mpled data with replacement), which can be used to construct

confidence intervals around the regularized edge weights (Hastie

et al., 2015) and perform significance tests on the difference

between different edge weights (e.g., comparing edge A � B with

edge A � C) and different centrality indices (e.g., comparing node

strength centrality of node A vs. node B). Confidence intervals can

not be constructed for centrality indices (see the supplementary

materials of Epskamp, Borsboom et al., 2017). To assess the

stability of centrality indices, one can perform a case-dropping

bootstrap (subsampling without replacement). Based on these

bootstraps, the steps from Epskamp, Borsboom et al. (2017) can be

followed to create several plots, which we include for the network

in Figure 4, Panel (c) in the supplementary files to this article. The

plots show sizable sampling variation around the edge weights and

a poor stability for closeness and betweenness. Strength was more

stable, although not many nodes differed from each other signif-

icantly in strength. The results of the case-dropping bootstrap can

also be summarized in a coefficient, the CS-coefficient (correlation

stability), which quantifies the proportion of data that can be

dropped to retain with 95% certainty a correlation of at least 0.7

with the original centrality coefficients. Ideally this coefficient

should be above 0.5, and should be at least above 0.25. Strength

was shown to be stable (CS(cor � 0.7) 	 0.516) while closeness

(CS(cor � 0.7) 	 0.204) and betweenness (CS(cor � 0.7) 	 0.05)

were not. Thus, the post hoc analysis shows that the estimated

network structure and derived centrality indices should be inter-

preted with some care for our example network of PTSD symp-

toms.

Common Problems and Questions

Difficulties in interpreting networks. Regularized networks

can sometimes lead to network structures that are hard to interpret.

Here, we list several common problems and questions encountered

when estimating and interpreting these models, and try to provide

potential ways forward.

1. The estimated network has no or very few edges. This

can occur in the unlikely case when variables of interest

do not exhibit (partial) correlations. More likely, it occurs

when the sample size is too low for the number of nodes

in the network. The EBIC penalizes edge weights based

on sample size to avoid false positive associations, which

means that with increasing sample size, the partial cor-

relation network will be more and more similar to the

regularized partial correlation network. With smaller N

fewer edges will be retained. Figure 7, Panel (a) shows a

network estimated on the same data as Figure 4, but this

time with only 50 instead of the 221 participants: It is

devoid of any edges. A way to remediate this problem is

Figure 7. Network of 20 PTSD symptoms. Instead of the full data like in Figure 4 (221 subjects), only 50

subjects were used. Panel (a): Lasso hyperparameter � set to the default of 0.5; Panel (b): � set to 0 for discovery.

(a) � � 0.5, (b) � � 0. See the online article for the color version of this figure.
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by setting the hyperparameter lower (e.g., 0; see Figure 7,

Panel b), but note that this increases the likelihood that

the network will contain spurious edges. An alternative

solution is to reduce the variables of interest and estimate

a network based on a subset of variables, because fewer

nodes mean that fewer parameters are estimated. How-

ever, doing so would lead one to not use all the available

data, and might lead to failing to condition on relevant

nodes.

2. The network is densely connected (i.e., many edges)

including many unexpected negative edges and many

implausibly high partial correlations (e.g., higher than

0.8). As the lasso aims to remove edges and returns a

relatively sparse network, we would not expect densely

connected networks in any data that are not extremely

large. In addition, we would not expect many partial

correlations to be so high, as (partial) correlations above

0.8 indicate near-perfect collinearity between variables.

These structures can occur when the correlation matrix

used as input is not positive definite, which can occur

when a sample is too small, or when estimating poly-

choric correlations. Just as a variance has to be positive,

a variance–covariance matrix has to be positive-definite

(all eigenvalues higher than zero) or at least positive

semidefinite (all eigenvalues at least zero). When a

variance–covariance matrix is estimated pairwise, how-

ever, the resulting matrix is not guaranteed to be positive-

definite or positive-semi-definite. Polychoric correlation

matrices are estimated in such a pairwise manner. In case

of a nonpositive definite correlation matrix, cor_auto

will warn the user when it estimates a nonpositive defi-

nite correlation matrix and attempt to correct for this by

searching for a nearest positive definite matrix. This

matrix, however, can still lead to very unstable results.

When the network looks very strongly connected with

few (if any) missing edges and partial correlations near 1

and �1, the network structure is likely resulting from

such a problem and should not be interpreted. We suggest

that researchers always compare networks based on poly-

choric correlations with networks based on Spearman

correlations (they should look somewhat similar) to de-

termine if the estimation of polychoric correlations is the

source of this problem.

3. While in general the graph looks as expected (i.e., rela-

tively sparse), some edges are extremely high and/or

unexpectedly extremely negative. This problem is related

to the previous problem. The estimation of polychoric

correlations relies on the pairwise crossing of variables in

the dataset. When the sample size is relatively low, some

cells in the item by item frequency table can be low or

even zero (e.g., nobody was observed that scored a 2 on

one item and a 1 on another item). The estimation of

polychoric correlations is based on these frequency tables

and is biased whenever an expected frequency is too

small (i.e., below 10; Olsson, 1979). Low frequencies can

thus lead to biased polychoric correlations, which can

compound to large biases in the estimated partial corre-

lations. Another situation in which one might obtain low

frequencies is when the scores are highly skewed (Rig-

don & Ferguson, 1991), which unfortunately often is the

case in psychopathology data. Again, the network based

on polychoric correlations should be compared with a

network based on Spearman correlations. Obtaining very

different networks indicates that the estimation of the

polychoric correlations may not be trustworthy.

4. A network has negative edges where the researcher

would expect positive ones. This can occur when one

conditions on a common effect (Pearl, 2000). Suppose

one measures three variables: psychology students’

grades on a recent statistics test, their motivation to pass

the test, and the easiness of the test (Koller & Friedman,

2009). The grade is likely positively influenced by both

test easiness and student motivation, and we do not

expect any correlation between motivation and easiness:

Knowing a student is motivated does not help us predict

how difficult a professor makes a test. However, we can

artificially induce a negative partial correlation between

motivation and easiness by conditioning on a common

effect: If we know an unmotivated student obtained an A,

we now can expect that the test must have been very

easy. These negative relationships can occur when com-

mon effect relationships are present, and unexpected neg-

ative relationships might indicate common effect struc-

tures. Another way these unexpected negative

relationships can occur is if the network is based on a

subsample, defined by a function on the observed vari-

ables. This is because taking a subsample based on a

function of the observed variables is the same as condi-

tioning on a common effect (Muthén, 1989). For exam-

ple, a function of the observed variables might be the

sum-score. When using this sum-score to select people to

include in the analysis (e.g., to investigate the network

structure of subjects with severe symptoms compared

with subjects with less severe symptoms), then that sub-

sample is derived by conditioning on the sumscore (e.g.,

only people with a sumscore above 10 are included). This

will lead to spurious negative edges in the expected

network structure (Muthén, 1989). Results based on such

subsamples should be interpreted with care. In general,

this poses a somewhat curious problem: On the one hand,

we want to include as many variables as possible; on the

other hand, we want to avoid controlling for (i.e., condi-

tion on) common effects. Important to note is that one

would not expect negative partial correlations to occur if

the common cause model is true and all variables are

scored such that factor loadings are positive (Holland &

Rosenbaum, 1986), as such negative relationships where

one would expect positive ones can be of particular

interest to the researcher.

Comparing networks. Another common question is if one

can compare two different groups of people (e.g., clinical patients

and healthy controls) regarding the connectivity or density of their

networks (i.e., the number of edges)? The answer depends on the

differences in sample size. As mentioned before, the EBIC is a
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function of the sample size: The lower the sample size, the more

parsimonious the network structure. This means that comparing

the connectivity of two networks is meaningful if they were

estimated on roughly the same sample size, but that differences

should not be compared if this assumption is not met (e.g., see

Rhemtulla et al., 2016). One option is to perform a permutation

test (Van Borkulo et al., 2017). A permutation test is a data-driven

method in which all data are first pooled and then randomly

assigned to two groups, resulting in two estimated networks.

Repeating this process a number of times (e.g., 1,000) leads to a

distribution of differences between networks given that the two

groups come from the same population. This distribution can

subsequently be used to perform statistical tests on differences of

the network structure between the two groups. The permutation

test is implemented in the R package NetworkComparisonTest.

Network models versus latent variables. A final common

question relates to how much network modeling and latent variable

modeling overlap. Network modeling has been proposed as an

alternative to latent variable modeling. As such, researchers might

wonder if fitting a network model can provide evidence that the

data are indeed generated by a system of variables causally influ-

encing each other, and not from a common cause model where the

covariance between variables is explained by one or more under-

lying latent variables (Schmittmann et al., 2013)? The short answer

is no. While psychological networks have been introduced as an

alternative modeling framework to latent variable modeling, and

are capable of strongly changing the point of focus from the

common shared variance to unique variance between variables

(Costantini, Epskamp et al., 2015), they cannot disprove the latent

variable model. This is because there is a direct equivalence

between network models and latent variable models (Epskamp et

al., 2018; Epskamp, Rhemtulla et al., 2017; Kruis & Maris, 2016;

Marsman, Maris, Bechger, & Glas, 2015; Van Der Maas et al.,

2006). As discussed above, a latent variable causing covariation on

multiple items should lead to a fully connected cluster of items if

they are modeled as a network.

While the presence of a latent variable results in a fully

connected cluster in the network, this does not mean that when

the estimated network does not contain fully connected clusters,

the latent variable model must be false. As explained above, the

lasso retaining an edge can provide evidence that an edge is

present, but not retaining an edge does not provide evidence that

the edge is not present because an edge could simply not be

estimated due to a lack of power. We refer the reader to Epskamp,

Kruis et al. (2017) for a more detailed discussion on this topic and

to Epskamp, Rhemtulla et al. (2017) for methodology on statisti-

cally comparing the fit of a network model and to that of a latent

variable model. Finally, just because two models are equivalent

does not mean that they are equally plausible. For example, a

lattice shaped network structure (nodes ordered on a grid and

connected only to neighbors) is equivalent to some latent variable

model, but the latent variable model is complicated and very

implausible (many latent variables would be needed to explain the

data; Marsman et al., 2015).

Even when one expects a network model to largely explain the

data, it may be implausible to assume that no latent variables cause

any covariation in the network model (Chandrasekaran, Parrilo, &

Willsky, 2012; Epskamp, Rhemtulla et al., 2017; Fried & Cramer,

2017). To this end, estimating causal networks can lead to faulty

causal hypotheses in the presence of latent variables. This issue is

less problematic when estimating (undirected) partial correlation

networks, as no direction of effect is coupled to the estimated

edges. Methodologies to combine latent variable modeling and

network modeling are currently being developed, which would

allow researchers to use strengths from one framework to over-

come weaknesses of the other framework. To overcome induced

edges from latent variables, one can estimate a network structure

after taking covariation due to one or more common causes into

account (termed a residual network; Chandrasekaran et al., 2012;

Chen, Li, Liu, & Ying, 2016; Epskamp, Rhemtulla et al., 2017;

Pan, Ip, & Dube, 2017). Another way of combining network

models with latent variable models is to use latent variables as

nodes in a network (termed a latent network; Epskamp, Rhemtulla

et al., 2017). Doing so can cope with potential measurement error

in the observed variables, allowing for powerful exploratory model

search on the structural effects between latent variables (Guyon,

Falissard, & Kop, 2017). Finally, statistical tests to distinguish

sparse networks from latent variable models are currently being

developed (Van Bork, 2015).

Conclusion

This article contains a tutorial on how to estimate psychological

networks using a popular estimation technique: Lasso regulariza-

tion with the EBIC model selection. This method provides a

network of partial correlation coefficients with a limited number of

spurious edges and can be based on either continuous or ordered-

categorical data. This methodology has grown prominent in the

past years and is featured in an increasing number of publications

throughout various fields of psychological research. In addition,

this article (a) discusses in detail what partial correlations and

partial correlation networks are and how these should be inter-

preted, (b) shows how researchers can estimate these network

models in psychological data sets, (c) introduces a new simulation

tool to perform power analysis for psychological networks, (d)

summarizes post hoc stability and accuracy analyses, and (e)

describes how to deal with most commonly encountered issues

when estimating and interpreting regularized partial correlation

networks.

The methods described in this article are only appropriate when

the cases in the data can reasonably be assumed to be independent.

As this is plausible in cross-sectional analysis, we have exempli-

fied the methodology by analyzing such a dataset. Several authors

criticize cross-sectional analysis for not being able to separate

within- and between-person variation (Bos et al., 2017; Hamaker,

2012; Molenaar, 2004), and propose to study longitudinal data in

order to capture within-person relationships (Bringmann et al.,

2013). We refer the reader to Epskamp, Waldorp et al. (2017) for

discussion on this topic and simulation studies studying cross-

sectional analysis, and to Weinberger (2015) for a discussion on

the causal interpretation of relationships when within-subject vari-

ation is lacking. The methods discussed in this paper can readily be

applied to within-person data to obtain network structures not

confounded by between-subjects effects (Epskamp, Waldorp et al.,

2017). For a recent tutorial on this methodology, we refer the

reader to Costantini et al. (2017). A downside of this method is that

temporal information is not taken into account when estimating

network structures. One way to estimate partial correlation

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

631REGULARIZED PARTIAL CORRELATION NETWORKS



networks while taking temporal information into account is by

using the graphical vector-autoregression model (graphical VAR;

Epskamp, Waldorp et al., 2017; Fisher, Reeves, Lawyer, Medaglia,

& Rubel, 2017; Wild et al., 2010), for which lasso regularization

techniques have been worked out (Abegaz & Wit, 2013; Rothman,

Levina, & Zhu, 2010). EBIC model selection using these routines

has been implemented in the R packages sparseTSCGM (Abegaz

& Wit, 2015; aimed at estimating genetic networks) and graphi-

calVAR (Epskamp, 2015; aimed at estimating n � 1 psychological

networks).

The use of network modeling in psychology is still a young field

and is not without challenges. Several related topics were beyond

the scope of this tutorial and are discussed elsewhere in the

literature. For an overview of challenges and future directions in

network modeling of psychological data we refer the reader to

Fried and Cramer (2017) and Epskamp (2017). Psychological

network analysis is a novel field that is rapidly changing and

developing. We have not seen an accessible description of the most

commonly used estimation procedure in the literature: Lasso reg-

ularization using EBIC model selection to estimate a sparse partial

correlation network. This article addresses this gap by providing an

overview of this common and promising method.
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