
A Tutorial on Stochastic Approximation Algorithms
for Training Restricted Boltzmann Machines and

Deep Belief Nets
Kevin Swersky, Bo Chen, Ben Marlin and Nando de Freitas

Department of Computer science
University of British Columbia

BC, Canada
Email: {kswersky,bochen,bmarlin,nando}@cs.ubc.ca

Abstract—In this study, we provide a direct comparison of
the Stochastic Maximum Likelihood algorithm and Contrastive
Divergence for training Restricted Boltzmann Machines using
the MNIST data set. We demonstrate that Stochastic Maximum
Likelihood is superior when using the Restricted Boltzmann
Machine as a classifier, and that the algorithm can be greatly
improved using the technique of iterate averaging from the field
of stochastic approximation. We further show that training with
optimal parameters for classification does not necessarilylead to
optimal results when Restricted Boltzmann Machines are stacked
to form a Deep Belief Network. In our experiments we observe
that fine tuning a Deep Belief Network significantly changes the
distribution of the latent data, even though the parameter changes
are negligible.

I. I NTRODUCTION

Deep belief networks have recently been successfully ap-
plied to many problems in the areas of classification, dimen-
sionality reduction [1], collaborative filtering [2], semantic
hashing [3], and more. In the past they were generally trained
from random weight initializations using backpropagation,
however this suffered from the tendency to get stuck in poor
local minima, making such deep networks inferior compared to
more shallow architectures with only one or two hidden layers
[4]. Deep architectures have the potential to be extremely
useful, as it has been shown that in some domains such as
representing logic circuits, deep architectures can represent
functions much more efficiently (i.e. with exponentially fewer
parameters) than shallow ones [5]. Invariance is also an impor-
tant motivating factor for considering hierarchical structures
[6], [7], [8], [9].

In [10] it was shown that it is possible to train a deep
network by learning each layer greedily in an unsupervised
manner as a Restricted Boltzmann Machine (RBM). The
mean-field hidden unit activations in one RBM would be used
as the features for the next RBM, and so forth. In order
to train the RBMs with Maximum Likelihood, they run a
blocked Gibbs sampler for many iterations in order to draw
unbiased samples from the model distribution to generate a
good gradient approximation. This is slow and impractical,
however they found that they could train an RBM efficiently by
always starting from the data, and truncating the Gibbs chain

at a single iteration. They called this procedure Contrastive
Divergence (CD). In [11], Laurent Younes proposed a method
for training general Boltzmann Machines (of which an RBM
is a special case) by using a persistent chain of samples to
represent the model distribution, from which only one iteration
of Gibbs sampling needs to be run per iteration. We will refer
to this algorithm as Stochastic Maximum Likelihood (SML).
In [12] it was shown that for classification with an RBM,
SML outperformed CD. However, it required a much smaller
learning rate to work effectively, making CD much faster for
the initial stages of learning. As we will show, this is not
necessarily true.

This paper addresses several issues regarding the training
of RBMs and Deep Belief Networks. It discusses, briefly, the
asymptotic theory of stochastic approximation that governs
many of the existing algorithms. This theory provides some
guidelines for understanding the behaviour of the algorithms.
Yet, the field is so immature, that it is useful to analyze
carefully all the empirical choices (parameters, trainingpro-
cedures) that researchers are currently adopting to train these
feature learning architectures. Some of the tricks, often not
mentioned in papers, end up playing a crucial role. For these
reasons, this paper embarks on an empirical study of these
choices in the hope of providing useful practical guidelines
for people entering this area of research.

We run a series of experiments which explore various
implementation issues and strategies for training RBMs. We
provide a direct comparison between SML and CD for training
both RBMs and Deep Belief Networks, and we show that
using the appropriate techniques, it is possible to make SML
efficient even with a high learning rate. Next, we explore the
issues related to training Deep Belief Networks, includingthe
effects of fine tuning on the weights in the network as well as
the performance of the features learned from the RBMs before
and after backpropagation.

Fig. 1. An RBM with visible unitsv and hidden hintsh. The parameters
W correspond to the strengths of the edge connections.

II. RBM S

An RBM, shown in Figure 1, is a bipartite probabilistic
graphical model corresponding to the following distribution:

p(v, h|W) =
1

Z(W)
exp (−E(v, h, W)) ,

wherev ∈ V denotes the observation nodes,h ∈ H the latent
random variables andW ∈ R

D×K the parameters governing
the interactions between theD visible units and theK hidden
units. The termE(v, h, W) is called the energy function and
Z(W) is a normalizing term given by:

Z(W) =
∑

v′∈V

∑

h′∈H

p(v′, h′|W).

When following the maximum likelihood principle, the goal
of learning in an RBM is to maximize the marginal probability
of the datap(v|W) given by:

p(v|W) =
1

Z(W)

∑

h∈H

exp (−E(v, h, W)) .

In the binary case whereV = {0, 1}D andH = {0, 1}K the
energy function can be expressed as:

E(v, h, W) = −
D∑

i=1

K∑

j=1

viWijhj −
D∑

i=1

vici −
K∑

j=1

hjbj .

Here we have added a bias terms for the visible units and the
hidden units, which are parameterized byc andb respectively.
We can absorb these terms intoW by simply adding a visible
unit and a hidden unit which are always set to1.

In general, RBMs can be used to model many types of data,
and a procedure for derving RBMs for general exponential
family models can be found in [13]. For simplicity, we restrict
our description to the binary case.

RBMs have the property that given the hidden units, all of
the visible units become independent and given the visible
units, all of the hidden units become independent. Thus
we can sample from the conditionalsp(vi|h) and p(hj |v),
i ∈ {1, ..., D}, j ∈ {1, ..., K} exactly since they are logistic
functions taking the form:

p(vi = 1|h, W) = σ




K∑

j=1

Wijhj




p(hj = 1|v, W) = σ

(
D∑

i=1

Wijvi

)
,

whereσ(a) = 1
1+exp(−a) .

A. Training RBMs

For a giveni.i.d. data sete = {d1, d2, ...dN} the goal of
training an RBM is to find the set of weights that maximize
the average log-likelihood of the data:

W ∗ = argmax
W

1

N

N∑

n=1

log

(
∑

h∈H

exp(−E((v = dn, h, W))

)

− log (Z(W)) .

The partial derivative with respect toWij of the objective
above is given by:

1

N

N∑

n=1

∑

h∈H

dinhjp(h|W, v = d) −
∑

v′∈V

∑

h′∈H

v′ih
′

jp(v′, h′|W),

where din refers to theith unit of the nth data instance.
The sum on the left hand side can be computed exactly,
however the expectation on the right hand side (also called
the expectation under the model distribution) is intractable.
In order to calculate it, one can do alternating blocked-Gibbs
sampling from the conditionalsp(h|v) andp(v|h). This leads
to a Maximum Likelihood algorithm which requires an infinite
number of Gibbs transitions per update to fully characterize
the expectation. In practice one would not be able to run
the Gibbs chain forever, but it would be run for a large
number of transitions to generate approximate samples from
the model distribution. Unfortunately, for RBMs with many
visible and hidden units this algorithm is prohibitively slow.
Geoff Hinton [14] proposed a modification of the maximum
likelihood updates known as contrastive divergence. The key
difference is that the Gibbs chain is started at the data, and
run for only a few steps. The algorithm for taking one step,
CD-1, proceeds as follows:

1) Sampleĥ(t) from
∏

j p(hj |v = d), then samplẽv(t)

from the conditional
∏

i p(vi|ĥ(t)) and finally h̃(t) from∏
j p(hj |ṽ(t)).

2) Perform a CD-1 update:

W
(t)
ij = W

(t−1)
ij + ηt

[
diĥ

(t)
j − ṽ

(t)
i h̃

(t)
j

]

3) Increaset to t + 1 and iterate again.

One important consideration with these algorithms is that
during the parameter updates, we can replace the sampledh̃
with their expected valuesE[h|v]. This process is called Rao-
Blackwellisation and the resulting estimator has lower variance
than the versions given above:

Proposition 1. The variance of the Rao-Blackwellised esti-
matedE(h|d) is lower than the variance of the Monte Carlo
estimate withdh.

Proof:

V(dh) = E(d2h2) − E(dh)2

= E[E(d2h2|d)] − E[E(dh|d)]2

= E[V(dh|d) + E(dh|d)2] − E[E(dh|d)]2

= E[V(dh|d)] + V[E(dh|d)]

≥ V[E(dh|d)]

= V[dE(h|d)]�

The Rao-Blackwellised CD update is given by:

W
(t)
ij = W

(t−1)
ij +ηt

[
diσ

(
D∑

i=1

Wijdi

)
− ṽ

(t)
i σ

(
D∑

i=1

Wij ṽ
(t)
i

)]

It has been shown in [15] that in general, the fixed points
of CD will differ from those of Maximum Likelihood, but
assuming the data is generated from an RBM it can be shown
that asymptotically they both share the Maximum Likelihood
solution as a fixed point [16]. In [17] conditions were given
to guarantee convergence of CD, however they are difficult to
satisfy in practice.

Prior to the advent of CD-1, Laurent Younes devised a
Stochastic Approximation algorithm for Maximum Likelihood
training of general Boltzmann Machines, however we focus
on the RBM variant. Instead of resetting the chain to the data
after each parameter update, the previous state of the chainwas
kept and used for the next iteration of the algorithm. It can
be shown that this algorithm generates a consistent estimator,
even with one Gibbs transition per iteration. The algorithmis
given as follows (for one step of Gibbs sampling):

1) If t = 1 then generate a random samplẽh(t−1) from∏
j p(hj |v = d).

2) Sample ṽ(t) from
∏

i p(vi|h̃(t−1)) and h̃(t) from∏
j p(hj |ṽ(t)).

3) Perform a Robins-Monro parameter update (with Rao-
Blackwellisation):

W
(t)
ij = W

(t−1)
ij +ηt

[
diσ

(
D∑

i=1

Wijdi

)
− ṽ

(t)
i σ

(
D∑

i=1

Wij ṽ
(t)
i

)]

4) Increaset to t + 1 and iterate again.

The theory of stochastic approximation (SA) provides us
with tools for analysing the asymptotic behaviour of these
algorithms. The standard proofs apply directly to the stochastic
maximum likelihood (SML) method proposed by Younes. It is
trickier to analyse the convergence of CD, but the theory still
says a lot about the tricks (e.g.momentum, constant learning
rates) used to make CD work in practice. For this reason, and
to guide our experiments later on, we review briefly some
ideas of stochastic approximation that are of relevance to our
problem. Of course, the theory is mostly asymptotic. We will
therefore conduct a comprehensive empirical evaluation ofthe
many routinely used training tricks.

B. Stochastic Approximation

Stochastic approximation algorithms are designed to min-
imize the expected lossl(W), with W ∈ R

D×K , over the
distribution of the dataP (v):

l(W) =

∫
L(W, v)p(v)dv.

(For simplicity of presentation only, we have marginalizedout
the hidden units.) The goal is to find a stationary pointW ⋆ of
the gradient of this loss function, which under mild continuity
conditions is given by:

g(W) =

∫
∇L(W, v)p(v)dv = 0.

Multiplying both sides of this equation by− 1
t
Γ, whereΓ is

a (D×K)× (D ×K) matrix, addingW to both sides of the
equation, and finally discretizing by simulatingv(t) ∼ P (v)
so that∇L(W (t), v(t)) is an point-estimate of the integral, we
obtain the standard SA algorithm:

W (t+1) = W (t) − 1

t
Γ∇L(W (t), v(t)).

Adding and subtractingg(W (t)) gives the celebrated Robins-
Monro update:

W (t+1) = W (t)−1

t
Γg(W (t))+

1

t
Γ
[
g(W (t)) −∇L(W (t), v(t))

]

where M (t) = g(W (t)) − ∇L(W (t), v(t)) is typically a
bounded martingale difference. It can be interpreted as the
“noise” in the estimate of the gradient as a result of partial
observability of the entire dataset.

Several authors, see for example [18], have shown that
the sequence{W (t)} converges toW ⋆ and proved central
limits showing that

√
t(W (t) − W ⋆) converges in law to

a zero mean Gaussian distribution with varianceΣ. They
have also shown that the lowest asymptotic varianceΣ⋆ is
obtained for Newton’s method, which corresponds to the
choiceΓ−1 = ∇g(W ⋆). This observation has motivated the
proposal of stochastic Newton algorithms [19], [20]. Unfortu-
nately, among other drawbacks, the Hessian matrix∇g(W ⋆) is
typically unknown a priori and can be difficult and expensive
to estimate. There is a remarkably simple way around this
difficulty: averaging.

The averaging method, proposed in [21], uses the following
two-time-scale approximation:

W (t+1) = W (t) − γ(t)∇L(W (t), v(t))

W
(t+1)

= W
(t) − 1

t
(W

(t) − W (t)), (1)

where γ(t) is a scalar learning rate and, clearly,W
(t)

=
1
t

∑t

m=1 W (m). Several authors, see for instance [22], have
used martingale tools to show that this averaging procedure
attains the optimal rate whenγ(t) = 1/tα, with α ∈
(1/2, 1). That is, the distribution of the normalized error√

t(W (t)−W ⋆) is asymptotically normal with zero mean and
covarianceΣ⋆, as defined previously for Newton’s method —
both methods achieve the optimal rate.

The slower decaying learning rate1/tα allows the algo-
rithms to take bigger steps (an important practical require-
ment), while the averaging “squezes” the estimates in the
vicinity of the optimumW ⋆. In fact, one can even choose
a constant learning rateγ(t) = γ and still be able prove this
theoretical result [23], [24], [25]. This is typically donewith
the ordinary differential equation (ODE) method of proof [26].
For a recent treatment of the ODE method for multiple time-
scales and fixed (or bounded) learning rates see [27].

Recall the typical SA algorithm with learning rateγ:

W (t+1) = W (t) − γg(W (t)) + γ
[
g(W (t)) −∇L(W (t), v(t))

]

Since the “noise” term,g(W (t)) − ∇L(W (t), v(t)), vanishes
asymptotically, one can interpret a SA algorithm as an Euler
discretization of the following multivariate continuous-time
ODE:

Ẇ (τ) = −g(W (τ)).

The SA fixed points in the limit correspond to the attractors
of the ODE. For a constant learning rate, the weightsW will
follow the ODE trajectories, instead of converging to a unique
value. This has been exploited in tracking applications in the
past [26].

While this simple ODE maps to the stochastic gradient
update, higher order ODEs can be shown to map to more so-
phisticated updates, such as gradient descent with momentum
[28]. These SA algorithms with momentum have also been
analyzed to some extent in [29].

There is a map between dynamical systems governed by
ODEs and learning in Boltzmann machines. While some
people think about dynamics others think about algorithms.
The two are the same. This connection has been explored to a
limited extend in the learning field [30], [31], but we believe
much more needs to be done.

Iterate averaging has also been considered by theoreticians
working with convex problems and aiming to get finite time
bounds, see for example [32] and the many references therein.

In the case of the SML algorithm with decaying learning
rates, it is straightforward to prove convergence in the sense
that it is possible to specify a potential (Lyapunov) function
so that the maximum of this function coincides with one of
the stationary points of the likelihood function. The Lyapunov
function needed is, obviously, the log-likelihood function itself
in this case. The algorithm iterates are then shown to be a
super-martingale, which is guaranteed to ascend on average
toward a maximum of the likelihood-function. In the proof,
one also needs to use the Poisson equation to deal with
the fact that the states are not independent but are samples
from a Markov chain; see for example [33]. The treatment
of convergence of these algorithms has parallels with what is
done in the study and design of Monte Carlo EM and adaptive
MCMC algorithms [34]. To a lesser extent, the treatment is
also related to the family of stochastic algorithms used in
reinforcement learning [35].

In the case of CD, on the other hand, the Lyapunov function
is not obvious. Moreover, the samples are not drawn from a

Markov chain, but are biased to be near the data. The latter
should make the analysis simpler, but the lack of an obvious
Lyapunov function complicates matters.

III. E XPERIMENTS WITH SHALLOW RBMS

In order to use RBMs effectively, it is essential that one
chooses appropriate parameters. There are also many other
factors involved in training RBMs that can have a significant
impact on their performance. This section of the paper explores
various strategies that can be applied during the training of
RBMs which can be used to improve classification perfor-
mance.

There are many ways to assess the performance of an RBM,
these include log-likelihood, train misclassification error, test
misclassification error, reconstruction error, and samples gen-
erated from the model. While ideally one would choose log-
likelihood as well as test error for assessing the performance
of training an RBM for classification, calculating the log-
likelihood is intractable for all but trivially small RBMs since
the number of possible states in the model grows exponentially
with the number of units. We choose test error as our perfor-
mance measure since in addition to showing approximately
how well the model is being trained, it also gives an indicator
of how well the model is able to generalize to new data.

In order to train an RBM for classification, we append the
label unit to the visible vectorv to form the vectorv =<
c, vu > wherevu correspond to the input feature vector (pixels
in the case of a raw image) andc ∈ C corresponds to the class
label of v. This is trained as an ordinary RBM and the most
likely class is given by:

class(v) = arg max
c′∈C

log(
∑

h∈H

exp(−E(v =< c′, vu >, h, W))).

It was shown in [2] that the time complexity to find the
most likely class for a single data point isO(K × |C|) where
|C| is the number of possible classes. The error reported in
our experiments corresponds to the proportion of properly
classified points on the test set.

For each experiment, we use500 hidden units. It is expected
that more hidden units will improve classification perfor-
mance, but then it becomes prohibitive to run many exper-
iments; in general the model is computationally impractical
when the number of hidden units is too large. We also use
mini-batches of100 points, and a justification for this is
given in a later section. We use the MNIST [36] training
set and evaluate error on the provided test set since this
allows us to directly ensure that our results are comparableto
current published works. MNIST has the advantage of being
a well studied data set, and there are many papers providing
benchmark results. However, in the future these experiments
should be repeated on a variety of data sets from different
tasks in order to gain a more general insight on the behavior
of RBMs.

A. Learning Rate, Momentum, and Weight Decay

To begin, we tested CD-1 and SML over a range of
parameter settings in order to determine reasonable values

and to get a sense of their robustness. We randomly selected
500 training instances, and 100 testing instances per class
from the MNIST training set and ran each algorithm for250
iterations using a grid search over the parameter settings.
We ran experiments with several values for the learning rate
parameterη: {0.1, 0.01, 0.001}. We also included momentum
terms [37] to smooth the trajectory of the gradient descent rule
as follows:

I
(0)
ij = 0

I
(t)
ij = β ∗ I

(t−1)
ij + η ∗ ∇Wij

log(p(v|W (t−1)))

W
(t)
ij = W

(t−1)
ij + I

(t)
ij .

Momentum is a way to average the gradient of the current iter-
ation with the gradients of previous iterations, thus smoothing
the trajectory. A similar method that does this on a separate
time scale is Polyak Averaging, which is discussed later in
Section 3.4. We testβ with the values{0, 0.3, 0.5, 0.8}.

Finally, we experimented with weight decay, where an
L2 penalty is added to the objective function to encourage
smaller weights. The update with weight decay (not including
momentum) is:

W
(t)
ij = W

(t−1)
ij + η(t)∇Wij

log(p(v|W (t−1))) − λW
(t−1)
ij ,

where λ regulates the strength of the weight decay term.
We test with the following values for the weight decay:
{0.001, 0.0001, 0.00001}.

We found that CD-1 works best with a learning rate of0.1
and a weight decay of0.001 and momentum of0.8 while
SML works best with a learning rate of0.1, a weight decay
of 0.001 and a momentum of0.3.

B. Mini-Batches

Stochastic gradient descent (SGD) is a procedure for op-
timizing a function with gradient descent in the presence
of noise where only approximations to the gradient can be
obtained. In the case where the objective function relies on
data, noise is injected into the process when selecting subsets
of data for each evaluation of the gradient. SGD has been
shown to be an effective optimization procedure for many
machine learning problems, often converging to the optimal
test error much faster than deterministic procedures [38].
Given a data sete, the ordinary gradient descent update for
an RBM is given by:

W
(t)
ij = W

(t−1)
ij + η

1

N

N∑

n=1

∇Wij
log(p(dn|W (t−1)))

With mini-batches, we would split this data set intoK
disjoint (usually equally sized) sets, denotedKl. Starting with
l = 1 each update is given by:

W
(t)
ij = W

(t−1)
ij + η

1

|Kl|
∑

d′∈Kl

∇Wij
log(p(d′|W (t−1)))

Where after each update we choose the next mini batch by
incrementingl, and|Kl| denotes the size of thelth mini-batch.
Once we have gone through the eachKl we set l = 1 and
cycle through the data again for the next set of updates.

We test the effectiveness of this procedure by splitting the
data into several smaller data sets called mini-batches, and
perform SGD by cycling through each batch; selecting one
each time we perform a gradient evaluation. We experimer-
iment with CD-1 with batch sizes{100, 1000, 60000}. Note
that 60000 corresponds to the full data set, where the only
stochasticity comes from the sampling involved in CD-1. We
did not obtain results for batch sizes smaller than100 since
there is a computational cost from memory accesses and for
loops in Matlab which makes SGD on batches this small
impractical. Note that each iteration in the plot corresponds
to one pass through the full data set.

We found empirically that using mini-batches provides an
improvement in the convergence of the optimization. What is
more surprising is that smaller mini-batches seem to converge
to a lower test error than the methods that use a higher batch
size. For the remainder of this paper we continue using the
mini-batch procedure with batches of100 points.

C. Binary v.s. Soft Data

While the RBMs presented in this paper are designed for
binary data, [39] use several tricks that violate this principle,
yet still yield good results. The first trick is to normalize the
data so that each pixel falls in[0, 1], which we call “soft data”.
This can be interpreted as the probability that the pixel in a
given image will be turned on. The second trick is used in
their implementation of CD, where instead of samplingṽ(1) ∼
p(v|h̃(0)), andh̃(1) ∼ p(h|ṽ(1)), they usep(v|h̃(0)) in the place
of ṽ(1). This means that they sample the second set of hidden
units by h̃(1) ∼ p(h|p(v|h̃(0))). We will call this using “soft
samples”. We experiment with all four combinations of using
binary v.s. soft values with CD-1. In order to binarize the data,
we threshold the pixel values at0.25.

We found that sampling the second set of visible units
properly is an important part of the algorithm, and that this
trick should not be employed when seeking good classification
performance. Normalizing the data appears to give better per-
formance, perhaps because it retains more information about
the original images which is lost in the binarization. Other
distributions for visible units have been proposed including
Gaussian and the Truncated Exponential [40] and these may
be more appropriate for this kind of data.

D. Polyak Averaging

Generally when learning with Stochastic Approximation,
a 1

t
schedule is used to ensure convergence. This tends to

make learning quite slow, and if the noise is sufficiently small
then a constant learning rate can be used instead. This is
what is usually done for training RBMs. As we will show,
adopting the Polyak averaging method described in II-B can
also help improve results. The updates for the parameters in

0 10 20 30 40 50 60 70 80 90 100
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Iteration

T
es

t E
rr

or

CD 1 no avg/momentum
CD 1 avg/momentum
SML avg/no momentum
SML avg/momentum

Fig. 2. Error versus iterations for CD with momentum and averaging, CD
with momentum and no averaging, and averaged SML with and without
momentum. (Best viewed in colour.)

this modification are given by:

W
(t)
ij = W

(t−1)
ij + η∇Wij

log(p(v|W (t−1)))

Wij
(t)

= Wij
(t−1) − 1

t
(Wij

(t−1) − W
(t)
ij)

When the algorithm terminates at timeT we returnWij
(T)

instead ofW (T)
ij . It has been proven that this algorithm pro-

vides the optimal rate of asymptotic convergence. The intuition
is that the iterates will converge quickly to a neighborhood
around the solution and then oscillate. Taking the average
of these oscillations will yield the true solution. Of course,
intuition also tells us that if we start averaging before the
oscillation begins, the averaged estimates at these times might
actually be worse than the unaveraged ones. In practice, we let
the algorithm run for a few iterations before we begin the aver-
aging process. It is also possible to combine momentum with
averaging, and below we show the results for using averaging
starting at iteration50 with and without momentum. To keep
the graph uncluttered, we omit SML without averaging, since
it did not show any real improvement after the50th iteration.

Figure III-D shows that averaging improves the test error
scores of both algorithms, while providing a significant in-
crease in stability. Indeed using averaging with a high learning
rate, we were able to achieve comparable results to [22].
However, while they took approximately 18 hours to achieve
their best results, Polyak Averaging allows us to achieve them
after only a few minutes of training.

E. The Annealed Weight Decay/Momentum Strategy

We now take a qualitative look at the receptive fields
produced by CD-1, as shown in Figure 3. Also referred to as
filters, these are plots of the weights coming into each hidden
unit from each visible unit. We can display these as images,

(a) (b)

(c) (d)

Fig. 3. Receptive fields for an RBM trained with Contrastive Divergence. (a)
weight decay = 0.01, (b) weight decay = 0.001, (c) weight decay = 0.0001,
(d) annealed weight decay from 0.01 to 0.001. Momentum is fixed at 0.8

and we choose a randomly selected subset of hidden units
to display. The pixels corresponding to weights larger than1
are shown in white, and weights smaller than−1 are shown
in black. All intermediate values are displayed in varying
shades of gray. For a momentum of0.8 and weight decay
of 0.001 some of the filters remain blank and uninteresting
despite a good test error score. These blank filters correspond
to dead units. They are never activated for any data points,
and thus no learning occurs. It seems reasonable that each
filter should contribute to the modelling of the data, otherwise
they simply waste computational resources. A suprising result
occurs when we change the value of the weight decay to0.01:
the previously blank filters become more interesting, though
due to the higher penalty they are not quite as prominent. This
suggests a new strategy where we anneal the weight decay
from a high value to a low value over the course of training,
in order to force the RBM to utilize as many hidden units as
possible. We start with a weight decay of0.1, and lower it to
0.01 after 5 iterations and finally0.001 after 10 iterations.

We applied a similar procedure to mometum, testing the
values{0, 0.5, 0.8}. We were similarly able to utilize more
hidden units when annealing momentum from0 to 0.8 over
the course of training. The code from [39] uses a similar
annealing trick, however to our knowledge this is never
explicity mentioned in any papers.

We found empirically that the annealing strategy achieves
a lower error, and that annealing weight decay or momentum

both yield very similar results. Annealing with SML did not
improve test error. SML appears to utilize most of the hidden
units.

F. Sparse RBMs

A variant of the standard RBM is the sparse RBM from Lee
et al. [41]. This is obtained by adding a regularizer to the full
data negative log likelihood so that it becomes:

− log P (e|W) = − 1

N

N∑

n=1

log

(
∑

h∈H

P (dn, h|W)

)

+ λ
K∑

j=1

(
1

N

N∑

n=1

E[hjn|dn, W] − p

)2

,

where p is a small constant corresponding to the number
of times each hidden unit should be activated on average,
and λ corresponds to the penalty strength. If we expand the
regularization term we get:

K∑

j=1

(
1

N

N∑

n=1

E[hjn|dn, W] − p

)2

=

K∑

j=1

1

N2

N∑

n=1

N∑

n′=1

E[hjn|dn, W]E[hjn′ |dn′ , W]

− p

N

N∑

n=1

E[hjn|dn, W] − p2.

If p is sufficiently small, then we this regularizer penalizes
pairwise correlations between the hidden activations of differ-
ent data points. There have been several attempts to model
lateral inhibition in neural architctures, e.g. [42]. Generally
these impose a penalty on pairwise activities between hidden
units within the same data point. In our experiments this
produced many dead units, and was notoriously difficult to
learn. If the λ is set too high in Lee’s version, the same
phenomenon also occurs, however this regularizer appears to
be much less sensitive to this issue. As an implementation
detail, since we are training with mini-batches of data, we
follow Lee’s guidelines, and only update the hidden unit
biases. Updating the rest of the weights according to the
regularizer produces inferior results. It should be noted that in
[43] an alternative approach was adopted where they simply
subtracted a small constant from the hidden unit biases at each
iteration. This appeared to produce qualitatively similarresults.

To assess the effectiveness of sparsity, we evaluated test
error as the sparsity parameterλ changed as shown in Figure
4. For p we used a value of0.02. Interestingly, momentum
appears to hurt the performance of sparse RBMs, so we set it
to 0. The rest of the parameters remain the same, and following
Lee’s procedure we use the CD learning rule.

Some degree of sparsity does appear to help test error
performance, although without momentum the results are not
as good as the non-sparse case. Whenλ is too high this seems
to hurt performance. Interestingly, the majority of decrease in
average code size occurs whenλ goes from0 to 5. Finally,

0 5 10 15 20 25 30 35 40 45 50
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Iteration

T
es

t E
rr

or

Lambda = 0
Lambda = 5
Lambda = 10
Lambda = 25
Lambda = 50
Lambda = 100

(a)

Fig. 4. (a) Error for different values of the sparsity parameter λ for Sparse
RBMs with averaging and0 momentum.

Fig. 5. Filters learned by a Sparse RBM. The majority appear to capture
various strokes.

we show in Figure 5 that the Sparse RBM does indeed learn
more stroke filters than a standard RBM.

We should mention that there have been successful applica-
tions of sparse RBMs in [6] but these used Gaussian visible
units which may behave quite differently with this regularizer
since they have negative as well as positive values.

G. Conclusions on Shallow Learning

In this limited set of experiments, an RBM with a properly
tuned SML always beats an RBM with a properly tuned
Contrastive Divergence. This is reasonable, since CD is most
likely a biased estimator. These results are also consistent with
those obtained in [12]. It seems fairly clear that for shallow
training of generative binary RBMs for classification, SML is
superior.

There are many tricks that can improve the performance
of both algorithms, and these experiments helped to reveal
insight into some of the pitfalls people might come across
when trying to match published results. In the next section,
we look at the issue of deep learning, and whether proper
training in the shallow case leads to improved results in the
deep case.

IV. D EEPBELIEF NETWORKS

Current state of the art training of DBNs, see Figure 6,
involves training each layer greedily as an RBM, passing the
mean-field approximation to the hidden unit activations as
features for the next RBM, followed by a global fine tuning
phase with backpropagation. Note that in the greedy phase no
label information is given, and it is only provided during the
fine tuning phase as the output of the network. The idea of a
DBN is to automatically learn low level features in the lower
layers, and higher level concepts in the higher layers in order
to more accurately capture the statistical regularities present
in the data. A different perspective given in [44] casts greedy
training of a DBN as a regularizer for a Multilayer Perceptron.

Fig. 6. A Deep Belief Network with visible unitsv and hidden hintsh1,
h2, etc. The edges are now directed.

A. Application of Shallow Parameters

Having discovered good parameters and strategies for train-
ing a shallow RBM for classification, we trained a DBN to
see if these strategies would also perform well in a deep
setting. For CD we annealed the momentum from0 to 0.8 and
for SML, we used a momentum of0.3. For both algorithms
we used a learning rate of0.1, a weight decay of0.001,
and we used the standard500-500-2000 architecture given
in [1]. Each layer was trained for50 iterations with Polyak
Averaging beginning at the40th iteration. Fine tuning with
backpropagation was applied for30 iterations using Conjugate
Gradient with3 line searches on mini-batches of1000 points.
To determine the effect of sparsity in DBNs, we also pretrain
the deep network using Sparse RBMs. The results can be seen
in Table I

Surprisingly, using good shallow parameters did not yield
the best results in the deep network case. In fact, lowering
the weight decay slightly lowers the test set error in the deep
case, even though it raised test set error in the shallow case.
This indicates that perhaps test error is not the ideal metric to
use when choosing the parameters of an RBM to initialize a
DBN. Another surprising result is that SML performs about
the same, if not slightly worse than CD in the deep case. At

Algorithm Test Error (%)

CD using best strategies from above 1.2
SML using best strategies from above 1.22

CD weight decay 0.0001 1.12
SML weight decay 0.0001 1.14

CD default settings 1.10
Sparse RBM with CD,λ = 5 1.87

TABLE I
TESTERRORRATES FORCD AND SML.

Algorithm Test Error (%)

MLR original data 7.78
MLR augmented data 1.59

MLR top hidden layer 1.67
MLR augmented data with sparse RBM 2.83

DBN fine tuned 1.10

TABLE II
THE EFFECT OF FEATURES LEARNED BY A STACK OFRBMS, AND BY FINE

TUNING A DBN

the very least, the dominance it seemed to hold over CD in the
shallow case does not seem to translate to the deep case. The
best results came from using CD-1 with the default parameters
provided by [39]. Presumably this is because these parameters
have been tuned specifically for good performance in a Deep
Belief Network.

In order to choose good RBM parameters for use in a
DBN, perhaps a different error metric could be used that
would be more indicative of the performance of the DBN.
One possibility is to use the reconstruction error, which is
the difference between the datad, and the generated datãv
caused by one iteration of sampling̃h ∼ p(h|d), followed by
ṽ ∼ p(v|h̃). This may be more appropriate for predicting the
quality of the features learned by the unsupervised portionof
DBN training.

B. The Effect of Fine Tuning

From this point forward, we use CD-1 with the default
parameters provided by Geoff Hinton’s code. We now explore
the affect of fine tuning on a DBN by training a stack of RBMs
greedily, and then comparing the difference in error beforeand
after performing backpropagation.

In order to assess the degree to which unsupervised learning
of higher level features improves classification, and how much
backpropagation helps, we augmented the original data with
the higher level features obtained before backpropagationand
trained a Multinomial Logistic Regression (MLR) classifier.
We also trained MLR classifiers on the original data, and on
the features from the top hidden layer only. The results are
shown in Table II

Clearly the additional features improve classification sig-
nificantly, and using more features including the original
data seems to help. Supervised backpropagation changes the
intermediate weights (and thus, features) to allow for greater
linear separability in the top level of features, and gives the
best results. Since most of the gain seems to come from

Layer Mean Difference Max. Difference Initial Magnitude

1 0.0009 0.0030 0.0436
2 0.0020 0.0067 0.0564
3 0.0015 0.0138 0.0181

TABLE III
MEAN AND MAXIMUM SQUARED DISTANCE BETWEEN RECEPTIVE FIELDS

OF EACH LAYER BEFORE AND AFTER BACKPROPAGATION

the initial greedy learning, it may be possible to use these
features directly with a nonlinear classifier such as Support
Vector Machines with a nonlinear Kernel, or Random Forests,
instead of using backpropagation. Such procedures may yield
improved results, or at least they might be faster to train.

Visually, the changes in the weights due to this fine tuning
step are barely noticeable, suggesting that the original features
learned by the stacked RBMs were quite good to begin with.
To quantify this, we also show the average squared differences
and the maximum squared differences between the weights
before and after backpropagation in Table III. To get a sense
of scale, we also show the averaged squared magnitude of the
weights before backpropagation. It is clear that they hardly
change up until the final layer, where some clearly change by
a large magnitude, while on average they mostly stay fairly
stable.

While it appears that the weights have been perturbed only
slightly, there is certainly some degree of change which is
evident in the change in classification performance. A different
way of visualizing this effect is to see what happens to the
actual data in the last hidden layer before and after backprop-
agation. To do this, we appended class labels to the data and
trained a794-1000-500-250-2 deep autoencoder with Gaussian
activations in the last hidden layer [1]. This is different from
a DBN classifier in that the network is unrolled after greedy
training so that the last layer becomes the middle layer. The
unrolled autoencoder initially has symmetric weights, butthis
constraint is not maintained during backpropagation. A data
point is reconstructed by sending it through the autoencoder
to the794-unit output layer. After initial greedy training, we
applied30 epochs of backpropagation to minimize the cross-
entropy error between the reconstructed data, and the actual
data. In figure 7 we show the results before and after applying
backpropagation to the projected mean-field data in the last
hidden layer. A very pronounced separation of the classes takes
place.

V. CONCLUSION

This paper investigated strategies for training RBMs to
achieve good classification performance in the shallow and
deep learning settings. We examined many tricks that are used
to to improve the performance of RBMs, as well as introduced
a few previously unused ones. We also compared Stochastic
Maximum Likelihood with Contrastive Divergence, and found
that for training RBMs, SML consistently outperforms CD.
Surprisingly, this did not seem to carry over to the deep case,
where they performed somewhat equally.

−15 −10 −5 0 5 10 15
−10

−8

−6

−4

−2

0

2

4

6

8

10

(a) Before backpropagation

−10 −5 0 5 10 15 20 25 30
−15

−10

−5

0

5

10

15

20

(b) After backpropagation

Fig. 7. 2500 data points from MNIST in the2-dimensional hidden layer of
a deep autoencoder (a) before and (b) after backpropagation. Each class has
been given a unique color/marker combination. (Best viewedin colour.)

It was found that tuning generative RBMs for good classifi-
cation performance in the shallow setting does not necessarily
translate to optimal performance in the deep learning setting.
This is most likely caused by the fact that stacked RBMs and
a feedforward neural network are two different models, and so
optimizing one should not necessarily lead to optimal results
in the other.

We also examined the training of Deep Belief Networks,
such as the effects of global fine tuning through backprop-
agation, as well as alternative strategies for utilizing class
information during the greedy stages. It was found that
backpropagation hardly changes the weights learned from the

greedy stage, and yet it has a non-negligible impact on the
final results. Again, this may simply be caused by using one
model to initialize another. Interestingly, it was shown that
most of the gains in performance are actually made during the
greedy stage, and that in this context the gains made through
backpropagation are fairly small.

This paper has a number of shortcomings, however. Firstly,
the experiments were only performed on the MNIST data set,
and at this point it seems that we have reached the limit
for improvements that can be made on this data set using
these models, making it incredibly difficult to determine if
improvements are genuine, or simply the effect of noise. In
order for these results to be conclusive, it will be necessary
to carry these experiments out on a variety of data sets, over
a large number of runs to factor out noise, and to truly see
which tricks are the most useful across many different tasks.
In addition, classification is only one type of problem, and
other problems such as regression and coding should also be
considered.

ACKNOWLEDGEMENTS

This work was supported by NSERC and CIFAR’s Neural
Computation and Adaptive Perception Program.

REFERENCES

[1] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,”Science, vol. 313, no. 5786, pp. 504–507, 2006.

[2] R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann
machines for collaborative filtering,” inInternational Conference on
Machine learning, 2007, pp. 791–798.

[3] R. Salakhutdinov and G. Hinton, “Semantic hashing,”International
Journal of Approximate Reasoning, 2008.

[4] Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, and U.Montreal,
“Greedy layer-wise training of deep networks,” inAdvances in Neural
Information Processing Systems. MIT Press, 2007.

[5] Y. Bengio and Y. Le Cun, “Scaling learning algorithms towards AI,”
Large-Scale Kernel Machines, 2007.

[6] H. Lee, R. Grosse, R. Ranganath, and A. Ng, “Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representa-
tions,” in International Conference on Machine Learning, 2009.

[7] L. Wiskott and T. Sejnowski, “Slow feature analysis: Unsupervised
learning of invariances,”Neural Computation, vol. 14, no. 4, pp. 715–
770, 2002.

[8] J. Hawkins and D. George, “Hierarchical temporal memory: Concepts,
theory and terminology,” Numenta, Tech. Rep., 2006.

[9] I. J. Goodfellow, Q. V. Le, A. M. Saxe, H. Lee, and A. Y. Ng.,“Mea-
suring invariances in deep networks,”Advances in neural information
processing systems, 2009.

[10] G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep
belief nets,”Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006.

[11] L. Younes, “Parametric inference for imperfectly observed Gibbsian
fields,” Probability Theory and Related Fields, vol. 82, no. 4, pp. 625–
645, 1989.

[12] T. Tieleman, “Training restricted Boltzmann machinesusing approxima-
tions to the likelihood gradient,” inInternational conference on Machine
Learning, 2008, pp. 1064–1071.

[13] M. Welling, M. Rosen-Zvi, and G. Hinton, “Exponential family harmo-
niums with an application to information retrieval,”Advances in neural
information processing systems, vol. 17, pp. 1481–1488, 2005.

[14] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,”Neural Computation, vol. 14, p. 2002, 2002.

[15] M. Carreira-Perpinan and G. Hinton, “On contrastive divergence learn-
ing,” in Artificial Intelligence and Statistics, vol. 2005, 2005.

[16] B. Marlin, “A direct proof that the true RBM parameters are a fixed
point of both ML and CD1 in the asymptotic setting,” 2008.

[17] A. Yuille, “The convergence of contrastive divergences,” in Advances in
Neural Information Processing Systems, 2004.

[18] A. Benveniste, M. Métivier, and P. Priouret,Adaptive algorithms and
stochastic approximations. Springer-Verlag, 1990.

[19] D. Ruppert, “A Newton-Raphson version of the multivariate Robbins-
Monro procedure,”Ann. Statist., vol. 13, no. 1, pp. 236–245, 1985.

[20] J. Spall, “Adaptive stochastic approximation by the simultaneous pertur-
bation method,”IEEE Conference on Decision and Control, pp. 3872–
3879, 1998.

[21] B. T. Polyak, “A new method of stochastic approximationtype,” Av-
tomat. i Telemekh., no. 7, pp. 98–107, 1990.

[22] B. Polyak and A. Juditsky, “Acceleration of stochasticapproximation
by averaging,”SIAM Journal on Control and Optimization, vol. 30, p.
838, 1992.

[23] H. J. Kushner and H. Huang, “Averaging methods for the asymptotic
analysis of learning and adaptive systems, with small adjustment rate,”
SIAM J. Control Optim., vol. 19, no. 5, pp. 635–650, 1981.

[24] ——, “Asymptotic properties of stochastic approximations with constant
coefficients,”SIAM J. Control Optim., vol. 19, no. 1, pp. 87–105, 1981.

[25] H. J. Kushner and G. G. Yin,Stochastic Approximation Algorithms and
Applications. Springer-Verlag, 1997.

[26] L. Ljung and T. Söderström,Theory and practice of recursive identifi-
cation. MIT Press, 1983.

[27] V. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint.
Cambridge University Press, 2008.

[28] A. Bhaya and E. Kaszkurewicz, “Steepest descent with momentum for
quadratic functions is a version of the conjugate gradient method,”
Neural Networks, vol. 17, no. 1, pp. 65 – 71, 2004.

[29] R. Sharma, W. Sethares, and J. Bucklew, “Analysis of momentum
adaptive filtering algorithms,”IEEE Transactions on Signal Processing,
vol. 46, no. 5, pp. 1430–1434, May 1998.

[30] J. J. Hopfield, “Hopfield network,”Scholarpedia, 2007.
[31] M. Welling, “Herding Dynamic Weights for Partially Observed Random

Field Models,” inUAI, 2009.
[32] A. Juditsky, A. Nazin, A. Tsybakov, and N. Vayatis, “Generalization er-

ror bounds for aggregation by mirror descent with averaging,” Advances
in neural information processing systems, 2005.

[33] B. Delyon, “General results on the convergence of stochastic algo-
rithms,” IEEE Transactions on Automatic Control, vol. 41, no. 9, pp.
1245–1255, 1996.

[34] C. Andrieu and J. Thoms, “A tutorial on adaptive MCMC,”Statistics
and Computing, vol. 18, no. 4, pp. 343–373, 2008.

[35] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Programming.
Athena Scientific, 1996.

[36] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
NEC Research Institute, http://yann. lecun. com/exdb/mnist/index. html.

[37] B. Polyak, “Some methods of speeding up the convergenceof iter-
ative methods,”USSR Computational Mathematics and Mathematical
Physics., vol. 4, pp. 1–17, 1964.

[38] L. Bottou and O. Bousquet, “The tradeoffs of large scalelearning,”
Advances in neural information processing systems, vol. 20, 2007.

[39] R. Salakhutdinov and G. Hinton, “Training a deep autoencoder or a
classifier on MNIST digits — source code,” 2006.

[40] H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin,“Exploring
Strategies for Training Deep Neural Networks,”Journal of Machine
Learning Research, vol. 1, pp. 1–40, 2009.

[41] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for
visual area V2,”Advances in neural information processing systems,
vol. 20, 2008.

[42] P. Garrigues and B. Olshausen, “Learning horizontal connections in a
sparse coding model of natural images,”Advances in Neural Information
Processing Systems, vol. 20, pp. 505–512, 2008.

[43] H. Larochelle and Y. Bengio, “Classification using discriminative re-
stricted Boltzmann machines,” inInternational Conference on Machine
learning, 2008, pp. 536–543.

[44] D. Erhan, P. Manzagol, Y. Bengio, S. Bengio, and P. Vincent, “The
difficulty of training deep architectures and the effect of unsupervised
pre-training,” AISTATS, 2009.

