A Tutorial on Stochastic Approximation Algorithms
for Training Restricted Boltzmann Machines and
Deep Belief Nets

Kevin Swersky, Bo Chen, Ben Marlin and Nando de Freitas
Department of Computer science
University of British Columbia
BC, Canada
Email: {kswersky,bochen,bmarlin,nangi@cs.ubc.ca

Abstract—In this study, we provide a direct comparison of at a single iteration. They called this procedure Contrasti
the Stochastic Maximum Likelihood algorithm and Contrastive Divergence (CD). In [11], Laurent Younes proposed a method
Divergence for training Restricted Boltzmann Machines usig for training general Boltzmann Machines (of which an RBM
the MNIST data set. We demonstrate that Stochastic Maximum . ; . . .

Likelihood is superior when using the Restricted Boltzmann is a special case) by. u;lng_a perS|stenft chain of sgmples to
Machine as a classifier, and that the algorithm can be greatly representthe model distribution, from which only one itiera
improved using the technique of iterate averaging from the &ld of Gibbs sampling needs to be run per iteration. We will refer
of stochastic approximation. We further show that training with to this algorithm as Stochastic Maximum Likelihood (SML).
optimal parameters for classification does not necessariliead to In [12] it was shown that for classification with an RBM,

optimal results when Restricted Boltzmann Machines are steked SML outperf dCD. H it ired h I
to form a Deep Belief Network. In our experiments we observe outperiorme - MOWever, It required a much smaller

that fine tuning a Deep Belief Network significantly changeshie l€arning rate to work effectively, making CD much faster for
distribution of the latent data, even though the parameter tianges the initial stages of learning. As we will show, this is not

are negligible. necessarily true.

I. INTRODUCTION

Deep belief networks have recently been successfully ap-_, . : . -
. : o . This paper addresses several issues regarding the training
plied to many problems in the areas of classification, dimen:

sionality reduction [1], collaborative filtering [2], semtic of RBMs and Deep Belief Networks. It discusses, briefly, the

hashing [3], and more. In the past they were generally tmingsymptotlc theory of stochastic approximation that gosern

from random weight initializations using backpropa a,tiorwany of the existing algorithms. This theory provides some
9 g bropag uidelines for understanding the behaviour of the algorith

however this suffered from the tendency to get stuck in po et, the field is so immature, that it is useful to analyze

local minima, making such deep networks inferior compaoed t . . .
carefully all the empirical choices (parameters, trainprg-

more shallow architectures with only one or two hidden layer edures) that researchers are currently adopting to thaiset
[4]. Deep architectures have the potential to be extreme] . : y bting
) . : ature learning architectures. Some of the tricks, ofteh n
useful, as it has been shown that in some domains such as . . : .
. L . méntioned in papers, end up playing a crucial role. For these
representing logic circuits, deep architectures can ssprie X -
. . . : . reasons, this paper embarks on an empirical study of these
functions much more efficiently (i.e. with exponentiallyver . . - : L
. . . __choices in the hope of providing useful practical guideine
parameters) than shallow ones [5]. Invariance is also aoimp

tant motivating factor for considering hierarchical stures for people entering this area of research.
(6], {71, (81, [9].

In [10] it was shown that it is possible to train a deep
network by learning each layer greedily in an unsupervisedWe run a series of experiments which explore various
manner as a Restricted Boltzmann Machine (RBM). Thimplementation issues and strategies for training RBMs. We
mean-field hidden unit activations in one RBM would be useqatovide a direct comparison between SML and CD for training
as the features for the next RBM, and so forth. In orddéwoth RBMs and Deep Belief Networks, and we show that
to train the RBMs with Maximum Likelihood, they run ausing the appropriate techniques, it is possible to make SML
blocked Gibbs sampler for many iterations in order to draefficient even with a high learning rate. Next, we explore the
unbiased samples from the model distribution to generatdsaues related to training Deep Belief Networks, includimg
good gradient approximation. This is slow and impracticagffects of fine tuning on the weights in the network as well as
however they found that they could train an RBM efficiently byhe performance of the features learned from the RBMs before
always starting from the data, and truncating the Gibbsrchaind after backpropagation.

. . .h A. Training RBMs

\. ‘/V For a giveni.i.d. data sete = {d,ds,...dy} the goal of
training an RBM s to find the set of weights that maximize

Fig. 1. An RBM with visible unitsv and hidden hintsi. The parameters the average |Og-|lke||h00d of the data:

W correspond to the strengths of the edge connections.

N
W* = arg max % Zlog (Z exp(—E((v = dy, h,W)))

w
II. RBMs

An RBM, shown in Figure 1, is a bipartite probabilistic
graphical model corresponding to the following distrilouiti

—log (Z(W)) .

The partial derivative with respect td/;; of the objective

P, hIW) = e exp (< E(v, b, W) above s given by:

1
Z(W)
wherev € V denotes the observation nodéss H the latent | &
random variables ané” € RP*X the parameters governing SO dinhip(WWv =d) = > Y wikip(v', W W),
the interactions between the visible units and the< hidden n=lhcH v eV h'eld
units. The termE(v, h, W) is called the energy function and
Z(W) is a normalizing term given by: where d;,, refers to theit" unit of the n'* data instance.

The sum on the left hand side can be computed exactly,
Z(W) = Z Z p(v', ' [W). however the expectation on the right hand side (also called
v'EV h'EH the expectation under the model distribution) is intraletab

When following the maximum likelihood principle, the goalin order to calculate it, one can do alternating blockedbSib
of learning in an RBM is to maximize the marginal probabilitsampling from the conditionals(|v) andp(v|h). This leads

of the datap(v|WW) given by: to a Maximum Likelihood algorithm which requires an infinite
1 number of Gibbs transitions per update to fully characéeriz
p(o|W) = Z00) > exp(—E(v,h,W)). the expectation. In practice one would not be able to run

heH the Gibbs chain forever, but it would be run for a large

In the binary case wher& = {0, 1}D and H = {0, 1}K the number of tr_ansitio_ns to generate approximate samples from
the model distribution. Unfortunately, for RBMs with many
visible and hidden units this algorithm is prohibitivelyosl

Geoff Hinton [14] proposed a modification of the maximum
E(v,h, W) = _ZZ“iWijhj - Zvici - Zhjbj. : [14] propos ificati ximu
=1 j=1

energy function can be expressed as:

likelihood updates known as contrastive divergence. The ke
difference is that the Gibbs chain is started at the data, and
Here we have added a bias terms for the visible units and thg for only a few steps. The algorithm for taking one step,
hidden units, which are parameterizeddgndb respectively. CD-1, proceeds as follows:
We can absorb these terms 6 by simply adding a visible
unit and a hidden unit which are always setlto -

In general, RBMs can be used to model many types of data,l) Sample®) from []; p(hjlv_= d), then sampleo(*)
and a procedure for derving RBMs for general exponential ~ from the conditional], p(v;|h®) and finally A(*) from

i=1 j=1

family models can be found in [13]. For simplicity, we restri [T, p(hs[o™).
our description to the binary case. 2) Perform a CD-1 update:
RBMs have the property that given the hidden units, all of
the_= visible units be_come ind_ependent an_d given the visible Wi(»t) _ Wi('t_l) . [dzﬁ@ 7@@%0)
units, all of the hidden units become independent. Thus J J J J

we can sample from the conditionatgv;|h) and p(h;|v), . _
i€{1,..,D}, j € {1,..,K} exactly since they are logistic 3) Increaset to ¢ + 1 and iterate again.

functions taking the form: One important consideration with these algorithms is that
K during the parameter updates, we can replace the sampled
plv; =1h, W) =0 Z Wijh; with their expected valueB'[h|v]. This process is called Rao-
= Blackwellisation and the resulting estimator has loweraraze

Proposition 1. The variance of the Rao-Blackwellised esti-
matedE(h|d) is lower than the variance of the Monte Carlo
whereo(a) = 10y estimate withdh.

D) than the versions given above:

p(hj = 1|’U,W) =0 <Z Wij’U,'

i=1

Proof: B. Stochastic Approximation

Stochastic approximation algorithms are designed to min-

_ 2
V(dh) = E(d*h*) —E(dh)* imize the expected los§W), with W ¢ RP*K over the
[

= E[E(d*h?|d)] — E[E(dh|d)]* distribution of the dataP(v):
= E[V(dh|d) + E(dh|d)?] — E[E(dh|d)]? - L .
= ,v)p(v)dv.
— E[V(dhld)] + V[E(dhld)] W)= [Lo
> V[E(dh|d)] (For simplicity of presentation only, we have marginalized
= V[dE(h|d)]O the hidden units.) The goal is to find a stationary péint of
the gradient of this loss function, which under mild contipu
The Rao-Blackwellised CD update is given by: conditions is given by:
N = [vravap -
W= Wy, |4, 0(2 Wud>) a(Z Wi f)

Multiplying both sides of this equation by%F, wherel is

It has been shown in [15] that in general, the fixed poinfs(D X &) x (D x K') matrix, addingl¥” to both sides of the

of CD will differ from those of Maximum Likelihood, but cduation, and finally discretizing by simulating®) ~ P(v)
assuming the data is generated from an RBM it can be shoﬁ%thachL(W(t)dv(Z)SIZ ar|1 po.'?]t elstlmate of the integral, we
that asymptotically they both share the Maximum Likelihoo8 tain the standar algorithm:

solution as a fixed point [16]. In [17] conditions were given WD — o _ EFVL(W(” ,U(t))
to guarantee convergence of CD, however they are difficult to t ’ ’
satisfy in practice. Adding and subtracting(1W®)) gives the celebrated Robins-

Prior to the advent of COs; Laurent Younes devised aMonro update:
Stochastic Approximation algorithm for Maximum Likelihdo

training of general Boltzmann Machines, however we focud ™) = W — (W(t))+ I |gW®)—vLWw®, »®)
on the RBM variant. Instead of resetting the chain to the data ® ® ® 0]
after each parameter update, the previous state of the whain Where M = g(W) — VLW, v) is typically a

kept and used for the next iteration of the algorithm. It capounded martmgale difference. It can be interpreted as the
even with one Gibbs transition per iteration. The algoritism observability of the entire dataset.

given as follows (for one step of Gibbs sampling): Several authors, see for example [18], have shown that
the sequencg W)} converges tolV* and proved central

limits showing thaty/t(W® — W*) converges in law to

_ Akt —1
1) If + = 1 then generate a random samplé'~") flom . ;c1o mean Gaussian distribution with variarice They

Hj p(hjlv = d). ~ ~ have also shown that the lowest asymptotic variahceis
2) Sample o" from [[,p(v;i|h*~V) and ") from obtained for Newton’s method, which corresponds to the
I1; p(h;[0®). choiceI'"t = Vg(W™). This observation has motivated the
3) Perform a Robins-Monro parameter update (with Ragyroposal of stochastic Newton algorithms [19], [20]. Utier
Blackwellisation): nately, among other drawbacks, the Hessian matgxiv *) is
typically unknown a priori and can be difficult and expensive
(t=1) (t) to estimate. There is a remarkably simple way around this
W = Wi e d U<; W”d> (Z Wi)] difficulty: averaging
The averaging method, proposed in [21], uses the following
4) Increaset to t + 1 and iterate again. two-time-scale approximation:
_The theory of stoc_hastic approxima_tion (SA)_ provides us WD — WO O Lw®)
with tools for analysing the asymptotic behaviour of these D) w1
algorithms. The standard proofs apply directly to the sastio W = W - ;(W — W(t)), (1)

maximum likelihood (SML) method proposed by Younes. It is

trickier to analyse the convergence of CD, but the theotly stwhere v(*) is a scalar learning rate and, cIearW

says a lot about the trick®.g. momentum, constant learning+ S _ W0, Several authors, see for instance [22] have
rates) used to make CD work in practice. For this reason, ansied martingale tools to show that this averaging procedure
to guide our experiments later on, we review briefly sonatains the optimal rate when® = 1/t*, with a €
ideas of stochastic approximation that are of relevanceuto d1/2,1). That is, the distribution of the normalized error
problem. Of course, the theory is mostly asymptotic. We will/t(W®) — W *) is asymptotically normal with zero mean and
therefore conduct a comprehensive empirical evaluatidhef covariance~*, as defined previously for Newton's method —
many routinely used training tricks. both methods achieve the optimal rate.

The slower decaying learning rafie/t* allows the algo- Markov chain, but are biased to be near the data. The latter
rithms to take bigger steps (an important practical requirshould make the analysis simpler, but the lack of an obvious
ment), while the averaging “squezes” the estimates in thgapunov function complicates matters.
vicinity of the optimumW™*. In fact, one can even choose
a constant learning rate(t) = v and still be able prove this) e i
theoretical result [23], [24], [25]. This is typically dorveith In order to USE:‘ RBMs effectively, it is essential that one
the ordinary differential equation (ODE) method of proc8]2 chooses appropriate parameters. There are also many other

For a recent treatment of the ODE method for multiple timd@ctors involved in training RBMs that can have a significant
scales and fixed (or bounded) learning rates see [27]. impact on their performance. This section of the paper erglo

Recall the typical SA algorithm with learning rate various strategies that can be _applied during_the_ training o
RBMs which can be used to improve classification perfor-

WD = WO —yg(WD) 4 [g(W®) - vLw®, v(t))} mance.
There are many ways to assess the performance of an RBM,
Since the “noise” termg(W ")) — VL(W®,v®), vanishes these include log-likelihood, train misclassificationcerrest
asymptotically, one can interpret a SA algorithm as an Eulgfisclassification error, reconstruction error, and samplen-
discretization of the fO”OWing multivariate continuotigie erated from the model. While |dea||y one would choose |0g_
ODE: _ likelihood as well as test error for assessing the perfooman
W(r) = —g(W(r)). of training an RBM for classification, calculating the log-

The SA fixed points in the limit correspond to the attractordk@lihood is intractable for all but trivially small RBMsirsce
of the ODE. For a constant learning rate, the weigfitswill the number of possible states in the model grows exponbntial

follow the ODE trajectories, instead of converging to a weiq With the number of units. We choose test error as our perfor-
value. This has been exploited in tracking applicationshinn t MaNce measure since in addition to showing approximately
past [26]. how well the model is being trained, it also gives an indicato

While this simple ODE maps to the stochastic gradieﬁ’tflhowé"’e”tthte mOdelFiSBI?/Ib:‘e tolgen_;e.ralti_ze to new data(lj. "

- n order to train an or classification, we append the
update, higher order ODEs can be shown to map to more SOBel unit to the visible vectop to form the vectofp—<
phisticated updates, such as gradient descent with momen{ﬁ - whereu. correspond to the inout feature vect%ri(els
[28]. These SA algorithms with momentum have also beén’x Uy, COTTESp P P
analyzed to some extent in [29]. in the case of a raw image) ande C corresponds to the class

There is a map between dynamical systems governed Iapel of v. T_h|s is tram.ed as an ordinary RBM and the most
ODEs and learning in Boltzmann machines. While son{g(ely class is given by:
people think about dynamics others think about algorithn@ass(v) = argmaxlog(z exp(—E(v =< ¢, v, >,h, W))).
The two are the same. This connection has been explored to a c'eC heH
limited extend in the learning field [30], [31], but we belev |t \was shown in [2] that the time complexity to find the
much more needs to be done. . _most likely class for a single data point@ K x |C|) where

lterate averaging has also been considered by theorelicign| s the number of possible classes. The error reported in
working with convex problems and aiming to get finite t'm%_ur experiments corresponds to the proportion of properly
bounds, see for example [32] and the many references thereiqsified points on the test set.

In the case of the SML algorithm with decaying learning gqor each experiment, we usé0 hidden units. It is expected
rates, it is straightforward to prove convergence in thessenha; more hidden units will improve classification perfor-
that it is possible to specify a potential (Lyapunov) fuooti nance but then it becomes prohibitive to run many exper-
so that the maximum of this function coincides with one Qfents; in general the model is computationally imprattica
the stationary points of the likelihood function. The Lyapy \yhen the number of hidden units is too large. We also use
function needed is, obviously, the log-likelihood functitself mini patches of100 points, and a justification for this is
in this case. The alg.orlthm iterates are then shown to begﬁen in a later section. We use the MNIST [36] training
super-martingale, which is guaranteed to ascend on average and evaluate error on the provided test set since this
toward a maximum of the likelihood-function. In the proofg|ios us to directly ensure that our results are comparable
one also needs to use the Poisson equation to deal Wiflyrent published works. MNIST has the advantage of being
the fact that the St?‘t‘?s are not independent but are sampl&ge|| studied data set, and there are many papers providing
from a Markov chain; see for example [33]. The treatmepfonchmark results. However, in the future these experisnent
of convergence of these algorithms has parallels with whatdhqyid be repeated on a variety of data sets from different

done in the study and design of Monte Carlo EM and adaptiyesks in order to gain a more general insight on the behavior
MCMC algorithms [34]. To a lesser extent, the treatment {§ rgMs.

also related to the family of stochastic algorithms used in] .
In the case of CD, on the other hand, the Lyapunov functionTo begin, we tested CD-1 and SML over a range of
is not obvious. Moreover, the samples are not drawn fromparameter settings in order to determine reasonable values

IIl. EXPERIMENTS WITH SHALLOW RBMs

and to get a sense of their robustness. We randomly selectehere after each update we choose the next mini batch by
500 training instances, and 100 testing instances per classrementing, and|K;| denotes the size of thé&" mini-batch.
from the MNIST training set and ran each algorithm #50 Once we have gone through the eakh we set! = 1 and
iterations using a grid search over the parameter settinggcle through the data again for the next set of updates.
We ran experiments with several values for the learning rateWe test the effectiveness of this procedure by splitting the
parameter;: {0.1,0.01,0.001}. We also included momentumdata into several smaller data sets called mini-batches, an
terms [37] to smooth the trajectory of the gradient descglet r perform SGD by cycling through each batch; selecting one
as follows: each time we perform a gradient evaluation. We experimer-

10 g iment with CD-1 with batch sizes{100, 1000,60000}. Note

ij that 60000 corresponds to the full data set, where the only

I = B+ I8V + % Vi, log(p(o| W = 1)) stochasticity comes from the sampling involved in CDWe

AR VR 1) did not obtain results for batch sizes smaller tH&0 since

i i ij there is a computational cost from memory accesses and for
Momentum is a way to average the gradient of the current ité@ops in Matlab which makes SGD on batches this small
ation with the gradients of previous iterations, thus srhimgt impractical. Note that each iteration in the plot corregpon
the trajectory. A similar method that does this on a separdfeone pass through the full data set.
time scale is Polyak Averaging, which is discussed later in We found empirically that using mini-batches provides an
Section 3.4. We tesf with the values{0,0.3,0.5,0.8}. improvement in the convergence of the optimization. What is

Finally, we experimented with weight decay, where amore surprising is that smaller mini-batches seem to cgaver

L2 penalty is added to the objective function to encourad@ @ lower test error than the methods that use a higher batch
smaller weights. The update with weight decay (not inclgdirSize. For the remainder of this paper we continue using the
momentum) is: mini-batch procedure with batches 0f0 points.

Wi(jt) = Wi(jtil) + 0V, log(p(o| W) — >‘Wi(jt71)a C. Binary v.s. Soft Data

where A\ regulates the strength of the weight decay term. While the RBMs presented in this paper are designed for
We test with the following values for the weight decaybinary data, [39] use several tricks that violate this pphe
{0.001, 0.0001, 0.00001}. yet still yield good results. The first trick is to normalizeet
We found that CD-1 works best with a learning rate0of ~data so that each pixel falls [, 1], which we call “soft data”.
and a weight decay of.001 and momentum of.8 while This can be interpreted as the probability that the pixel in a
SML works best with a learning rate 6f1, a weight decay given image will be turned on. The second trick is used in

of 0.001 and a momentum of.3. their implementation of CD, where instead of sampliig ~
o p(v|h(©)), andh() ~ p(h[o™M), they usep(v]|h(?)) in the place
B. Mini-Batches of vV, This means that they sample the second set of hidden

Stochastic gradient descent (SGD) is a procedure for apaits by A1) ~ p(h|p(v|h(?))). We will call this using “soft
timizing a function with gradient descent in the presencamples”. We experiment with all four combinations of using
of noise where only approximations to the gradient can Hgnary v.s. soft values with CD-1. In order to binarize the¢ada
obtained. In the case where the objective function relies wre threshold the pixel values &t25.
data, noise is injected into the process when selectingessibs We found that sampling the second set of visible units
of data for each evaluation of the gradient. SGD has beproperly is an important part of the algorithm, and that this
shown to be an effective optimization procedure for martyick should not be employed when seeking good classificatio
machine learning problems, often converging to the optimpérformance. Normalizing the data appears to give better pe
test error much faster than deterministic procedures [3&prmance, perhaps because it retains more informationtabou
Given a data seg, the ordinary gradient descent update fothe original images which is lost in the binarization. Other
an RBM is given by: distributions for visible units have been proposed inatgdi

Gaussian and the Truncated Exponential [40] and these may
| X be more appropriate for this kind of data.
t) _ (1) = (t—1)
Wiy =Wy “Hny ; Vi, Log (p(da| W) D. Polyak Averaging
With mini-batches, we would split this data set inf6 Generally when learning with Stochastic Approximation,
disjoint (usually equally sized) sets, denotigd Starting with a % schedule is used to ensure convergence. This tends to
I =1 each update is given by: make learning quite slow, and if the noise is sufficiently Bma
then a constant learning rate can be used instead. This is

B (t-1) 1 or(t—1) what is usually done for training RBMs. As we will show,
Wit =W +77m > Vs, log(p(d'[W=1)) adopting the Polyak averaging method described in II-B can
Haer also help improve results. The updates for the parameters in

CD 1 no avg/momentum|
CD 1 avg/momentum
SML avg/no momentum
SML avg/momentum

0.11

0.1

Test Error

Iteration

Fig. 2. Error versus iterations for CD with momentum and agerg, CD
with momentum and no averaging, and averaged SML with antowit
momentum. (Best viewed in colour.)

this modification are given by:

(c) (d)

t t—1 -1
Wz‘(j) = Wz‘(j) + anijlog(p(v|W(t))) Fig. 3. Receptive fields for an RBM trained with Contrastivigeligence. (a)
®) (t—1) 1 (t—1) . weight decay = 0.01, (b) weight decay = 0.001, (c) weight gec®.0001,
Wi =Wy — Z(I/Vz — I/Vl(j)) (d) annealed weight decay from 0.01 to 0.001. Momentum igifa0.8

When the algorithm terminates at tinfe we returnW—U(T)
instead ole.(-T). It has been proven that this algorithm proand we choose a randomly selected subset of hidden units
vides the optimal rate of asymptotic convergence. Thetiotui {0 display. The pixels corresponding to weights larger than
is that the iterates will converge quickly to a neighborhoo@® Shown in white, and weights smaller than are shown
around the solution and then oscillate. Taking the averalje Plack. All intermediate values are displayed in varying
of these oscillations will yield the true solution. Of coeys Shades of gray. For a momentum @8 and weight decay
intuition also tells us that if we start averaging before th@f 0.001 some of the filters remain blank and uninteresting
oscillation begins, the averaged estimates at these tinigrst m despite a good test error score. These blank filters comespo
actually be worse than the unaveraged ones. In practicestwe!® dead units. They are never activated for any data points,
the algorithm run for a few iterations before we begin theravend thus no leaming occurs. It seems reasonable that each
aging process. It is also possible to combine momentum wiffier should contribute to the modelling of the data, othieaw
averaging, and below we show the results for using averagift§y Simply waste computational resources. A suprisinglres
starting at iteratior50 with and without momentum. To keepOccurs when we change the value of the weight decayiit
the graph uncluttered, we omit SML without averaging, sind8€ previously blank filters become more interesting, thioug
it did not show any real improvement after the’" iteration. due to the higher penalty they are not quite as prominens Thi
Figure 11I-D shows that averaging improves the test err§99gests a new strategy where we anneal the weight decay
scores of both algorithms, while providing a significant infrom & high value to a low value over the course of training,
crease in stability. Indeed using averaging with a highrieay N orQer to force the.RBM to utilize as many hidden units as
rate, we were able to achieve comparable results to [2PpSsible. We start with a weight decay@t, and lower it to
However, while they took approximately 18 hours to achieye01 after 5 iterations and finally.001 after 10 iterations.
their best results, Polyak Averaging allows us to achieeeth ~We applied a similar procedure to mometum, testing the

after only a feW minutes of training. VaIUeS{0,0.E),O.S}. We were Similal’ly able to utilize more
) hidden units when annealing momentum fréno 0.8 over
E. The Annealed Weight Decay/Momentum Strategy the course of training. The code from [39] uses a similar

We now take a qualitative look at the receptive fieldannealing trick, however to our knowledge this is never
produced by CD-1, as shown in Figure 3. Also referred to &kplicity mentioned in any papers.
filters, these are plots of the weights coming into each hidde We found empirically that the annealing strategy achieves
unit from each visible unit. We can display these as imagesJower error, and that annealing weight decay or momentum

both yield very similar results. Annealing with SML did not

0.11

improve test error. SML appears to utilize most of the hidden Lambda =0
UnitS. 01r Lambda =10 |]
Lambda = 25
0.00- Lambdafso |
F. Sparse RBMs Lambda = 100

A variant of the standard RBM is the sparse RBM from Lee 0081
et al. [41]. This is obtained by adding a regularizer to thié fu
data negative log likelihood so that it becomes:

0.07

Test Error

0.06 -

~log P(e]W) = —— Zlog (Z P(d, h|W)) oos}

heH
N 2 0.04
+)\Z< ZE J”|d”’W]) ’ 003, s 10 15 2 2 30 3 40 45 50
n=1 Iteration
where p is a small constant corresponding to the number @

of times each hidden unit should be activated on average, _ _
and \ corresponds to the penalty strength. If we expand tling- Wl(tf])a%g?;gﬁ?‘;d;ﬁ%{er%r‘ﬁ’gﬂfmf the sparsity paréene: for Sparse
regularization term we get: '

K 2
2 (ﬁ 2 Elhnldn, W] -)
K N N
= Z Z Z Jn|dn7W [jn/|dn/’W]

N
= 3 2 Bl W] =

If p is sufficiently small, then we this regularizer penalize
pairwise correlations between the hidden activations thédi
ent data points. There have been several attempts to mc
lateral inhibition in neural architctures, e.g. [42]. Geally
these impose a penalty on pairwise activities between hidc
units within the same data point. In our experiments th
produced many dead units, and was notoriously difficult 1
learn. If the)\ is set too high in Lee’s version, the same
phenomenon also occurs, however this regularizer appear:
be much less sensitive to this issue. As an implementation
detail, since we are training with mini-batches of data, wdd: 5. Filters leamed by a Sparse RBM. The majority appearapture
follow Lee’s guidelines, and only update the hidden un‘lltarlous strokes.
biases. Updating the rest of the weights according to the

regularizer produces inferior results. It should be noted in e show in Figure 5 that the Sparse RBM does indeed learn

[43] an alternative approach was adopted where they simphore stroke filters than a standard RBM.

subtracted a small constant from the hidden unit biasescht ea We should mention that there have been successful app"ca-

iteration. This appeared to produce qualitatively simiésults. tions of sparse RBMs in [6] but these used Gaussian visible
To assess the effectiveness of sparsity, we evaluated {@sits which may behave quite differently with this regutari

error as the sparsity parametechanged as shown in Figuresince they have negative as well as positive values.
4. Forp we used a value 00.02. Interestingly, momentum

appears to hurt the performance of sparse RBMs, so we ségit Conclusions on Shallow Learning

to 0. The rest of the parameters remain the same, and followingn this limited set of experiments, an RBM with a properly

Lee’s procedure we use the CD learning rule. tuned SML always beats an RBM with a properly tuned
Some degree of sparsity does appear to help test er@wntrastive Divergence. This is reasonable, since CD ig mos

performance, although without momentum the results are fikely a biased estimator. These results are also consisftn

as good as the non-sparse case. Whé&ntoo high this seems those obtained in [12]. It seems fairly clear that for shallo

to hurt performance. Interestingly, the majority of desee@n training of generative binary RBMs for classification, SML i

average code size occurs whargoes from0 to 5. Finally, superior.

| =3

There are many tricks that can improve the performance

Algorithm [Test Error (%) |

. . CD using best strategies from aboye 1.2

pf _both_algorlthms, and thgse experiments helped to reveal SML using best strategies from aboje 157
insight into some of the pitfalls people might come across CD weight decay 0.000] 1.12
when trying to match published results. In the next section, SML Weighé C:eCfly 0.0001 114
; ; CD default settings 1.10

we look at the issue of deep learning, and whether proper Sparse REM With COX = & T

training in the shallow case leads to improved results in the

deep case. TABLE |

TESTERRORRATES FORCD AND SML.

IV. DEEPBELIEF NETWORKS

Current state of the art training of DBNs, see Figure 6, | Algorithm [Test Error (%)]

involves training each layer greedily as an RBM, passing the MLR original data 7.78
mean-field approximation to the hidden unit activations as MLR augmented dat3 1.59
features for the next RBM, followed by a global fine tunin MLR top hidden Jayer 1o

) Y y g g MLR augmented data with sparse RBM 2.83
phase with backpropagation. Note that in the greedy phase no DBN fine tuned 1.10

label information is given, and it is only provided duringeth TABLE Il

fine tuning phase as the output of the network. The idea Offae EFFECT OF FEATURES LEARNED BY A STACK OIRBMS, AND BY FINE
DBN is to automatically learn low level features in the lower TUNING A DBN

layers, and higher level concepts in the higher layers irtword

to more accurately capture the statistical regularitiess@nt
in the data. A different perspective given in [44] casts diee

training of a DBN as a regularizer for a Multilayer Perceptro the very least, the dominance it seemed to hold over CD in the

shallow case does not seem to translate to the deep case. The

best results came from using CD-1 with the default parameter

provided by [39]. Presumably this is because these parasnete

h2 have been tuned specifically for good performance in a Deep

Belief Network.

. . .hl In order to choose good RBM parameters for use in a

N/ DBN, perhaps a different error metric could be used that
. .V would be more indicative of the performance of the DBN.
Fig. 6. A Deep Belief Network with visible units and hidden hintsq,
ho, etc. The edges are now directed.

One possibility is to use the reconstruction error, which is
the difference between the data and the generated data
caused by one iteration of samplihg~ p(h|d), followed by
v ~ p(v|h). This may be more appropriate for predicting the

A. Application of Shallow Parameters quality of the features learned by the unsupervised pouion

Having discovered good parameters and strategies for traitPN training.
ing a shallow RBM for classification, we trained a DBN t
see if these strategies would also perform well in a deep
setting. For CD we annealed the momentum fi@to 0.8 and From this point forward, we use CD-1 with the default
for SML, we used a momentum ©f3. For both algorithms parameters provided by Geoff Hinton's code. We now explore
we used a learning rate df.1, a weight decay of.001, the affect of fine tuning on a DBN by training a stack of RBMs
and we used the standaf0-500-2000 architecture given greedily, and then comparing the difference in error before:
in [1]. Each layer was trained fos0 iterations with Polyak after performing backpropagation.

Averaging beginning at the0!" iteration. Fine tuning with In order to assess the degree to which unsupervised learning
backpropagation was applied 80 iterations using Conjugate of higher level features improves classification, and hovelmu
Gradient with3 line searches on mini-batches 4f00 points. backpropagation helps, we augmented the original data with
To determine the effect of sparsity in DBNs, we also pretrathe higher level features obtained before backpropagatioh

the deep network using Sparse RBMs. The results can be stained a Multinomial Logistic Regression (MLR) classifier

in Table | We also trained MLR classifiers on the original data, and on

Surprisingly, using good shallow parameters did not yielidhe features from the top hidden layer only. The results are
the best results in the deep network case. In fact, lowerisgown in Table II
the weight decay slightly lowers the test set error in thepdee Clearly the additional features improve classification- sig
case, even though it raised test set error in the shallow. casiéicantly, and using more features including the original
This indicates that perhaps test error is not the ideal madri data seems to help. Supervised backpropagation changes the
use when choosing the parameters of an RBM to initializeimtermediate weights (and thus, features) to allow for gnea
DBN. Another surprising result is that SML performs aboutnear separability in the top level of features, and gives t
the same, if not slightly worse than CD in the deep case. Best results. Since most of the gain seems to come from

The Effect of Fine Tuning

[Layer | Mean Difference] Max. Difference | Initial Magnitude |

1 0.0009 0.0030 0.0436 or
2 0.0020 0.0067 0.0564
3 0.0015 0.0138 0.0181 81
TABLE Il 6l
MEAN AND MAXIMUM SQUARED DISTANCE BETWEEN RECEPTIVE FIELDS
OF EACH LAYER BEFORE AND AFTER BACKPROPAGATION at

the initial greedy learning, it may be possible to use these
features directly with a nonlinear classifier such as Suppor 2|
Vector Machines with a nonlinear Kernel, or Random Forests, .|
instead of using backpropagation. Such procedures mag yiel
improved results, or at least they might be faster to train.

Visually, the changes in the weights due to this fine tuning -s-
step are barely noticeable, suggesting that the origisilifes o
learned by the stacked RBMs were quite good to begin with. -15
To quantify this, we also show the average squared diffe@®nc
and the maximum squared differences between the weights
before and after backpropagation in Table Ill. To get a sense
of scale, we also show the averaged squared magnitude of the,
weights before backpropagation. It is clear that they lardl
change up until the final layer, where some clearly change by l
a large magnitude, while on average they mostly stay fairly
stable.

While it appears that the weights have been perturbed only or
slightly, there is certainly some degree of change which is
evident in the change in classification performance. A chffié
way of visualizing this effect is to see what happens to the
actual data in the last hidden layer before and after bagkpro
agation. To do this, we appended class labels to the data anc
trained ar94-1000-500-250-2 deep autoencoder with Gaussian [
activations in the last hidden layer [1]. This is differemrh
a DBN classifier in that the network is unrolled after greedy !
training so that the last layer becomes the middle layer. The
unrolled autoencoder initially has symmetric weights, thig e — 5 s m 1 20 v
constraint is not maintained during backpropagation. Aadat
point is reconstructed by sending it through the autoencode
to the 794-unit output layer. After initial greedy training, we
applied30 epochs of backpropagation to minimize the crosgig, 7. 2500 data points from MNIST in ttzdimensional hidden layer of
entropy error between the reconstructed data, and thelactudeep autoencoder (a) before and (b) after backpropagdieh class has
data. In figure 7 we show the results before and after applyiH?f” given a unique color/marker combination. (Best vieimecolour.)
backpropagation to the projected mean-field data in the last
hidden layer. A very pronounced separation of the clasgesta
place. It was found that tuning generative RBMs for good classifi-

cation performance in the shallow setting does not nedgssar
V. CONCLUSION translate to optimal performance in the deep learningregtti

This paper investigated strategies for training RBMs tbhis is most likely caused by the fact that stacked RBMs and
achieve good classification performance in the shallow aAdeedforward neural network are two different models, and s
deep learning settings. We examined many tricks that are u§Ptimizing one should not necessarily lead to optimal ttssul
to to improve the performance of RBMs, as well as introducd@ the other.

a few previously unused ones. We also compared StochastitVe also examined the training of Deep Belief Networks,
Maximum Likelihood with Contrastive Divergence, and founduch as the effects of global fine tuning through backprop-
that for training RBMs, SML consistently outperforms CDagation, as well as alternative strategies for utilizingssl

Surprisingly, this did not seem to carry over to the deep ,caseformation during the greedy stages. It was found that
where they performed somewhat equally. backpropagation hardly changes the weights learned frem th

oF

(b) After backpropagation

greedy stage, and yet it has a non-negligible impact on the] A. vuille, “The convergence of contrastive divergesgdn Advances in

final results. Again, this may simply be caused by using one) roce .))
18] A. Benveniste, M. Métivier, and P. PrioureAdaptive algorithms and

model to initialize another. Interestingly, it was showratth

most of the gains in performance are actually made during the)

greedy stage, and that in this context the gains made thrOLfgoff

backpropagation are fairly small.

This paper has a number of shortcomings, however. Firstly,
the experiments were only performed on the MNIST data sét!!

and at this point it seems that we have reached the Ii

by

for improvements that can be made on this data set using

these models, making it incredibly difficult to determine i
improvements are genuine, or simply the effect of noise.

o

order for these results to be conclusive, it will be necgssar

to carry these experiments out on a variety of data sets, ol&¥

a large number of runs to factor out noise, and to truly s

which tricks are the most useful across many different tasks

In addition, classification is only one type of problem, an

other problems such as regression and coding should alsgh¢

considered.

ACKNOWLEDGEMENTS

gl

(28]

This work was supported by NSERC and CIFAR'’s Neuraf°!

Computation and Adaptive Perception Program.
REFERENCES

1

[2]

G. Hinton and R. Salakhutdinov, “Reducing the dimenaldy of data
with neural networks,’Science vol. 313, no. 5786, pp. 504-507, 2006.
R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted IBmann
machines for collaborative filtering,” innternational Conference on
Machine learning 2007, pp. 791-798.

R. Salakhutdinov and G. Hinton, “Semantic hashingsjternational
Journal of Approximate Reasoning008.

Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, and Wlontreal,
“Greedy layer-wise training of deep networks,” Advances in Neural
Information Processing SystemsMIT Press, 2007.

Y. Bengio and Y. Le Cun, “Scaling learning algorithms tds Al,”
Large-Scale Kernel Machinge2007.

H. Lee, R. Grosse, R. Ranganath, and A. Ng, “Convolutiateep belief
networks for scalable unsupervised learning of hieraethiepresenta-
tions,” in International Conference on Machine Learnjri2p09.

L. Wiskott and T. Sejnowski, “Slow feature analysis: Wpervised
learning of invariances,Neural Computationvol. 14, no. 4, pp. 715-
770, 2002.

J. Hawkins and D. George, “Hierarchical temporal memdpncepts,
theory and terminology,” Numenta, Tech. Rep., 2006.

I. J. Goodfellow, Q. V. Le, A. M. Saxe, H. Lee, and A. Y. NgMea-
suring invariances in deep networkg¥tvances in neural information
processing system&009.

G. Hinton, S. Osindero, and Y. Teh, “A fast learning altfon for deep
belief nets,”"Neural Computationvol. 18, no. 7, pp. 1527-1554, 2006.
L. Younes, “Parametric inference for imperfectly obh&zl Gibbsian
fields,” Probability Theory and Related Fieldsol. 82, no. 4, pp. 625—
645, 1989.

T. Tieleman, “Training restricted Boltzmann machinesing approxima-
tions to the likelihood gradient,” ilnternational conference on Machine
Learning 2008, pp. 1064-1071.

M. Welling, M. Rosen-Zvi, and G. Hinton, “Exponentiarhily harmo-
niums with an application to information retrievalkdvances in neural
information processing systemsl. 17, pp. 1481-1488, 2005.

G. E. Hinton, “Training products of experts by minimig contrastive
divergence,’Neural Computationvol. 14, p. 2002, 2002.

M. Carreira-Perpinan and G. Hinton, “On contrastiveetijence learn-
ing,” in Artificial Intelligence and Statisti¢gsvol. 2005, 2005.

B. Marlin, “A direct proof that the true RBM parameterseaa fixed
point of both ML and CD1 in the asymptotic setting,” 2008.

(3]
(4]

(5]
(6]

(7]

(8]
El

[10]

[11]

(12]

(13]

[14]
[15]

[16]

[30]
(31]
(32]

(33]

(34]
(35]
(36]

(37]

(38]
(39]

[40]

[41]

[42]

[43]

[44]

Neural Information Processing Systen2904.

stochastic approximations Springer-Verlag, 1990.

D. Ruppert, “A Newton-Raphson version of the multieaei Robbins-
Monro procedure,’Ann. Statist. vol. 13, no. 1, pp. 236-245, 1985.

J. Spall, “Adaptive stochastic approximation by thegitaneous pertur-
bation method,"lEEE Conference on Decision and Contrpp. 3872—
3879, 1998.

B. T. Polyak, “A new method of stochastic approximatitype,” Av-
tomat. i Telemekh.no. 7, pp. 98-107, 1990.

B. Polyak and A. Juditsky, “Acceleration of stochas#ipproximation
by averaging,”SIAM Journal on Control and Optimizatipwol. 30, p.
838, 1992.

H. J. Kushner and H. Huang, “Averaging methods for thegngstotic
analysis of learning and adaptive systems, with small aujest rate,”
SIAM J. Control Optim.vol. 19, no. 5, pp. 635-650, 1981.

——, “Asymptotic properties of stochastic approxinuats with constant
coefficients,”SIAM J. Control Optim.vol. 19, no. 1, pp. 87-105, 1981.
H. J. Kushner and G. G. Yirtochastic Approximation Algorithms and
Applications Springer-Verlag, 1997.

L. Ljung and T. SoderstroniTheory and practice of recursive identifi-
cation MIT Press, 1983.

V. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint
Cambridge University Press, 2008.

A. Bhaya and E. Kaszkurewicz, “Steepest descent witimerdum for
quadratic functions is a version of the conjugate gradieethod,”
Neural Networksvol. 17, no. 1, pp. 65 — 71, 2004.

R. Sharma, W. Sethares, and J. Bucklew, “Analysis of motmm
adaptive filtering algorithms,JEEE Transactions on Signal Processing
vol. 46, no. 5, pp. 1430-1434, May 1998.

J. J. Hopfield, “Hopfield network,Scholarpedia 2007.

M. Welling, “Herding Dynamic Weights for Partially Obsred Random
Field Models,” inUAI, 2009.

A. Juditsky, A. Nazin, A. Tsybakov, and N. Vayatis, “Gealization er-
ror bounds for aggregation by mirror descent with averagjiAgvances
in neural information processing systenZ005.

B. Delyon, “General results on the convergence of sstih algo-
rithms,” IEEE Transactions on Automatic Controlol. 41, no. 9, pp.
1245-1255, 1996.

C. Andrieu and J. Thoms, “A tutorial on adaptive MCMGStatistics
and Computingvol. 18, no. 4, pp. 343-373, 2008.

D. P. Bertsekas and J. N. Tsitsikli®yeuro-Dynamic Programming
Athena Scientific, 1996.

Y. LeCun and C. Cortes, “The MNIST database of handemittligits,”
NEC Research Institute, http://yann. lecun. com/exdsthimiex. html
B. Polyak, “Some methods of speeding up the convergesfcéer-
ative methods,"USSR Computational Mathematics and Mathematical
Physics. vol. 4, pp. 1-17, 1964.

L. Bottou and O. Bousquet, “The tradeoffs of large sckdarning,”
Advances in neural information processing systewat 20, 2007.

R. Salakhutdinov and G. Hinton, “Training a deep autwmefer or a
classifier on MNIST digits — source code,” 2006.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblf&xploring
Strategies for Training Deep Neural Networkgpurnal of Machine
Learning Researchvol. 1, pp. 1-40, 2009.

H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief redanfor
visual area V2,”Advances in neural information processing systems
vol. 20, 2008.

P. Garrigues and B. Olshausen, “Learning horizontaineations in a
sparse coding model of natural image&dvances in Neural Information
Processing Systemsol. 20, pp. 505-512, 2008.

H. Larochelle and Y. Bengio, “Classification using distnative re-
stricted Boltzmann machines,” imternational Conference on Machine
learning, 2008, pp. 536-543.

D. Erhan, P. Manzagol, Y. Bengio, S. Bengio, and P. \imicéThe
difficulty of training deep architectures and the effect afupervised
pre-training,” AISTATS 2009.

