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Abstract. The cross-entropy (CE) method is a new generic approach to combinatorial and multi-extremal

optimization and rare event simulation. The purpose of this tutorial is to give a gentle introduction to the CE

method. We present the CE methodology, the basic algorithm and its modifications, and discuss applications

in combinatorial optimization and machine learning.
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rare events

Many everyday tasks in operations research involve solving complicated optimization

problems. The travelling salesman problem (TSP), the quadratic assignment problem

(QAP) and the max-cut problem are a representative sample of combinatorial optimiza-

tion problems (COP) where the problem being studied is completely known and static.

In contrast, the buffer allocation problem (BAP) is a noisy estimation problem where the

objective function needs to be estimated since it is unknown. Discrete event simulation

is one method for estimating an unknown objective function.

The purpose of this tutorial is to show that the CE method provides a simple, efficient

and general method for solving such problems. Moreover, we wish to show that the CE

method is also valuable for rare event simulation, where very small probabilities need to

be accurately estimated – for example in reliability analysis, or performance analysis of

telecommunication systems. This tutorial is intended for a broad audience of operations

research specialists, computer scientists, mathematicians, statisticians and engineers. Our

aim is to explain the foundations of the CE method and consider various applications.

∗Corresponding author.
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The CE method was motivated by an adaptive algorithm for estimating probabilities

of rare events in complex stochastic networks (Rubinstein, 1997), which involves variance

minimization. It was soon realized (Rubinstein, 1999, 2001) that a simple cross-entropy

modification of Rubinstein (1997) could be used not only for estimating probabilities

of rare events but for solving difficult COPs as well. This is done by translating the

“deterministic” optimization problem into a related “stochastic” optimization problem

and then using rare event simulation techniques similar to Rubinstein (1997). Several

recent applications demonstrate the power of the CE method (Rubinstein, 1999) as a

generic and practical tool for solving NP-hard problems.

The CE method involves an iterative procedure where each iteration can be broken

down into two phases:

1. Generate a random data sample (trajectories, vectors, etc.) according to a specified

mechanism.

2. Update the parameters of the random mechanism based on the data to produce a

“better” sample in the next iteration.

The significance of the CE method is that it defines a precise mathematical frame-

work for deriving fast, and in some sense “optimal” updating/learning rules, based on

advanced simulation theory. Other well-known randomized methods for combinatorial

optimization problems are simulated annealing (Aarts and Korst, 1989), tabu search

(Glover and Laguna, 1993), and genetic algorithms (Goldberg, 1989). Recent related

work on randomized combinatorial optimization includes the nested partitioning method

(Shi and Olafsson, 2000) and the ant colony optimization meta-heuristic (Colorni et al.,

1996; Dorigo, Di Caro, and Gambardella, 1999; Gutjahr, 2000).

Many COPs can be formulated as optimization problems concerning a weighted

graph. As mentioned before, in CE a deterministic optimization problem is translated into

an associated stochastic optimization problem. Depending on the particular problem, we

introduce randomness in either (a) the nodes or (b) the edges of the graph. We speak of

stochastic node networks (SNN) in the former case and stochastic edge networks (SEN)

in the latter. Examples of SNN problems are the maximal cut (max-cut) problem, the

buffer allocation problem and clustering problems. Examples of SEN problems are the

travelling salesman problem, the quadratic assignment problem, the clique problem, and

optimal policy search in Markovian decision problems (MDPs).

It should be emphasized that the CE method may be successfully applied to both

deterministic and stochastic COPs. In the latter the objective function itself is random

or needs to be estimated via simulation. Stochastic COPs typically occur in stochastic

scheduling, flow control and routing of data networks and in various simulation-based

optimization problems (Rubinstein and Melamed, 1998), such as the optimal buffer

allocation problem (Alon et al., 2005).

Estimation of the probability of rare events is essential for guaranteeing adequate

performance of engineering systems. For example, consider a telecommunications sys-

tem that accepts calls from many customers. Under normal operating conditions each
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client may be rejected with a very small probability. Naively, in order to estimate this

small probability we would need to simulate the system under normal operating con-

ditions for a long time. A better way to estimate this probability is to use importance

sampling (IS), which is a well-known variance reduction technique in which the system

is simulated under a different set of parameters – or, more generally, a different proba-

bility distribution – so as to make the occurrence of the rare event more likely. A major

drawback of the IS technique is that the optimal reference (also called tilting) parameters

to be used in IS are usually very difficult to obtain. The advantage of the CE method

is that it provides a simple adaptive procedure for estimating the optimal reference pa-

rameters. Moreover, the CE method also enjoys asymptotic convergence properties. For

example, it is shown in Homem-de-Mello and Rubinstein (2002) that for static mod-

els – cf. Remark 2.1 – under mild regularity conditions the CE method terminates with

probability 1 in a finite number of iterations, and delivers a consistent and asymptotically

normal estimator for the optimal reference parameters. Recently the CE method has

been successfully applied to the estimation of rare event probabilities in dynamic mod-

els, in particular queueing models involving both light and heavy tail input distributions

(de Boer, Kroese and Rubinstein, 2002; Kroese and Rubinstein, 2004). In addition to

rare event simulation and combinatorial optimization, the CE method can be efficiently

applied for continuous multi-extremal optimization, see Rubinstein (1999) and the recent

CE book (Rubinstein and Kroese, 2004).

An increasing number of applications is being found for the CE method. Recent pub-

lications on applications of the CE method include: buffer allocation (Alon et al., 2005);

static simulation models (Homem-de-Mello and Rubinstein, 2002); queueing models of

telecommunication systems (de Boer, 2000; de Boer, Kroese, and Rubinstein, 2004);

neural computation (Dubin, 2002, 2004); control and navigation (Helvik and Wittner,

2001); DNA sequence alignment (Keith and Kroese, 2002); scheduling (Margolin, 2002,

2004); vehicle routing (Chepuri and Homem-de-Mello, 2005); reinforcement learning

(Mannor, Rubinstein, and Gat, 2003; Menache, Mannor, and Shimkin, 2005); project

management (Cohen, Golany, and Shtub, 2005); heavy-tail distributions (Asmussen,

Kroese, and Rubinstein, 2005); (Kroese and Rubinstein, 2004); CE convergence (Margolin,

2005); network reliability (Hui et al., 2005); repairable systems (Ridder, 2005); and max-

cut and bipartition problems (Rubinstein, 2002).

It is not our intention here to compare the CE method with other heuristics. Our

intention is mainly to demonstrate its beauty and simplicity and promote CE for further

applications to combinatorial and multi-extremal optimization and rare event simulation.

The rest of the tutorial is organized as follows. In Section 1 we present two toy

examples that illustrate the basic methodology behind the CE method. The general theory

and algorithms are detailed in Section 2. In Section 3 we discuss various applications and

examples of using the CE method for solving COPs. In Section 4 two useful modifications

of the CE method are discussed. Further developments are briefly reviewed in Section 5.

The CE home page, featuring many links, articles, references, tutorials and computer

programs on CE, can be found at: http://www.cemethod.org/
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Figure 1. Shortest path from A to B.

1. Methodology: Two examples

In this section we illustrate the methodology of the CE method via two toy examples;

one dealing with rare event simulation, and the other with combinatorial optimization.

1.1. A rare event simulation example

Consider the weighted graph of figure 1, with random weights X1, . . . , X5. Suppose

the weights are independent of each other and are exponentially distributed with means

u1, . . . , u5, respectively. Define X = (X1, . . . , X5) and u = (u1, . . . , u5). Denote the

probability density function (pdf) of X by f (·; u); thus,

f (x; u) = exp

(

−

5
∑

j=1

x j

u j

)

5
∏

j=1

1

u j

. (1)

Let S(X) be the total length of the shortest path from node A to node B. We wish to

estimate from simulation

ℓ = P(S(X) ≥ γ ) = EI{S(X)≥γ }, (2)

that is, the probability that the length of the shortest path S(X) will exceed some fixed γ .

A straightforward way to estimate ℓ in (2) is to use Crude Monte Carlo (CMC)

simulation. That is, we draw a random sample X1, . . . , XN from the distribution of X

and use

1

N

N
∑

i=1

I{S(Xi )≥γ } (3)

as the unbiased estimator of ℓ. However, for large γ the probability ℓ will be very small

and CMC requires a very large simulation effort, that is, N needs to be very large in order

to estimate ℓ accurately – that is, to obtain a small relative error, for example of 1%. A

better way is to perform the simulation is to use importance sampling (IS). That is, let
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g be another probability density such that g(x) = 0 ⇒ I{S(x)≥γ } f (x) = 0. Using the

density g we can represent ℓ as

ℓ =

∫

I{S(x)≥γ }

f (x)

g(x)
g(x) dx = Eg I{S(X)≥γ }

f (X)

g(X)
, (4)

where the subscript g means that the expectation is taken with respect to g, which is

called the importance sampling (IS) density. An unbiased estimator of ℓ is

ℓ̂ =
1

N

N
∑

i=1

I{S(Xi )≥γ } W (Xi ), (5)

where ℓ̂ is called the importance sampling (IS) or the likelihood ratio (LR) estimator,

W (x) = f (x)/g(x) (6)

is called the likelihood ratio (LR), and X1, . . . , XN is a random sample from g, that is,

X1, . . . , Xn are iid random vectors with density g. In the particular case where there is no

“change of measure”, i.e., g = f , we have W = 1, and the LR estimator in (6) reduces

to the CMC estimator (3).

If we restrict ourselves to g such that X1, . . . , X5 are independent and exponentially

distributed with means v1, . . . , v5, then

W (x; u, v) :=
f (x; u)

f (x; v)
= exp

(

−

5
∑

j=1

x j

(

1

u j

−
1

v j

)

)

5
∏

j=1

v j

u j

. (7)

In this case the “change of measure” is determined by the parameter vector v = (v1, . . . ,

v5). The main problem now is how to select a v which gives the most accurate estimate

of ℓ for a given simulation effort. One of the strengths of the CE method for rare event

simulation is that it provides a fast way to determine/estimate the optimal parameters.

To this end, without going into the details, a quite general CE algorithm for rare event

estimation is outlined below.

Algorithm 1.1

1. Define v̂0 := u. Set t := 1 (iteration counter).

2. Generate a random sample X1, . . . , XN according to the pdf f (·; v̂t−1). Calculate the

performances S(Xi ) for all i , and order them from smallest to biggest, S(1) ≤ · · · ≤

S(N ). Let γ̂t be the (1−ρ) sample quantile of performances: γ̂t := S(⌈(1−ρ)N⌉), provided

this is less than γ . Otherwise, put γ̂t := γ .

3. Use the same sample to calculate, for j = 1, . . . , n (= 5),

v̂t, j =

∑N
i=1 I{S(Xi )≥γ̂t }W (Xi ; u, v̂t−1) X i j
∑N

i=1 I{S(Xi )≥γ̂t }W (Xi ; u, v̂t−1)
.
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Table 1

Convergence of the sequence {(γ̂t , v̂t )}.

t γ̂t v̂t

0 0.250 0.400 0.100 0.300 0.200

1 0.575 0.513 0.718 0.122 0.474 0.335

2 1.032 0.873 1.057 0.120 0.550 0.436

3 1.502 1.221 1.419 0.121 0.707 0.533

4 1.917 1.681 1.803 0.132 0.638 0.523

5 2.000 1.692 1.901 0.129 0.712 0.564

4. If γ̂t = γ then proceed to step 5; otherwise set t := t + 1 and reiterate from step 2.

5. Let T be the final iteration. Generate a sample X1, . . . , XN1
according to the pdf

f (·; v̂T ) and estimate ℓ via the IS estimate

ℓ̂ =
1

N1

N1
∑

i=1

I{S(Xi )≥γ }W (Xi ; u, v̂T ).

Note that in steps 2–4 the optimal IS parameter is estimated. In the final step (step 5) this

parameter is used to estimate the probability of interest. We need to supply the fraction

ρ (typically between 0.01 and 0.1) and the parameters N and N1 in advance.

As an example, consider the case where the nominal parameter vector u is given by

(0.25, 0.4, 0.1, 0.3, 0.2). Suppose we wish to estimate the probability that the minimum

path is greater than γ = 2. Crude Monte Carlo with 107 samples gave an estimate

1.65 · 10−5 with an estimated relative error, RE, (that is, Var(ℓ̂)1/2/ℓ) of 0.165. With 108

samples we got the estimate 1.30 · 10−5 with RE 0.03.

Table 1 displays the results of the CE method, using N = 1,000 and ρ = 0.1. This

table was computed in less than half a second.

Using the estimated optimal parameter vector of v̂5 = (1.692, 1.901, 0.129, 0.712,

0.564), the final step with N1 = 105 gave now an estimate of 1.34·10−5 with an estimated

RE of 0.03. The simulation time was only 3 seconds, using a Matlab implementation on a

Pentium III 500 MHz processor. In contrast, the CPU time required for the CMC method

with 107 samples is approximately 630 seconds, and with 108 samples approximately

6350. We see that with a minimal amount of work we have reduced our simulation effort

(CPU time) by roughly a factor of 2000.

1.2. A combinatorial optimization example

Consider a binary vector y = (y1, . . . , yn). Suppose that we do not know which compo-

nents of y are 0 and which are 1. However, we have an “oracle” which for each binary
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Figure 2. A black box for decoding vector y.

input vector x = (x1, . . . , xn) returns the performance or response,

S(x) = n −

n
∑

j=1

|x j − y j |,

representing the number of matches between the elements of x and y. Our goal is to

present a random search algorithm which reconstructs1 (decodes) the unknown vector y

by maximizing the function S(x) on the space of n-dimensional binary vectors.

A naive way to find y is to repeatedly generate binary vectors X = (X1, . . . , Xn)

such that X1, . . . , Xn are independent Bernoulli random variables with success proba-

bilities p1, . . . , pn . We write X ∼ Ber(p), where p = (p1, . . . , pn). Note that if p = y,

which corresponds to the degenerate case of the Bernoulli distribution, we have S(X) = n,

X = y, and the naive search algorithm yields the optimal solution with probability 1.

The CE method for combinatorial optimization consists of casting the underlying prob-

lem into the rare event framework (2) and then creating a sequence of parameter vectors

p̂0, p̂1, . . . and levels γ̂1, γ̂2, . . . , such that the sequence γ̂1, γ̂2, . . . converges to the opti-

mal performance (n here) and the sequence p̂0, p̂1, . . . converges to the optimal parameter

vector (y here). Again, the CE procedure – which is similar to the rare event procedure

described in Algorithm 1.1 – is outlined below, without detail.

Algorithm 1.2

1. Start with some p̂0, say p̂0 = (1/2, 1/2, . . . , 1/2). Let t := 1.

2. Draw a sample X1, . . . , XN of Bernoulli vectors with success probability vector

p̂t−1. Calculate the performances S(Xi ) for all i , and order them from smallest to

biggest, S(1) ≤ · · · ≤ S(N ). Let γ̂t be (1 − ρ) sample quantile of the performances:

γ̂t = S(⌈(1−ρ)N⌉).

1 Of course, in this toy example the vector y can be easily reconstructed from the input vectors (0, 0, . . . , 0),

(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) only.



26 DE BOER ET AL.

Table 2

The convergence of the parameter vector.

t γ̂t p̂t

0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

1 7 0.60 0.40 0.80 0.40 1.00 0.00 0.20 0.40 0.00 0.00

2 9 0.80 0.80 1.00 0.80 1.00 0.00 0.00 0.40 0.00 0.00

3 10 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00

4 10 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00

3. Use the same sample to calculate p̂t = ( p̂t,1, . . . , p̂t,n) via

p̂t, j =

∑N
i=1 I{S(Xi )≥γ̂t } I{X i j =1}
∑N

i=1 I{S(Xi )≥γ̂t }

, (8)

j = 1, . . . , n, where Xi = (X i1, . . . , X in).

4. If the stopping criterion is met, then stop; otherwise set t := t +1 and reiterate from

step 2.

A possible stopping criterion is to stop when γ̂t does not change for a number of

subsequent iterations. Another possible stopping criterion is to stop when the vector p̂t

has converged to a degenerate – that is, binary – vector.

Note that the interpretation of 8 is very simple: to update the j th success proba-

bility we count how many vectors of the last sample X1, . . . , XN have a performance

greater than or equal to γ̂t and have the j th coordinate equal to 1, and we divide (nor-

malize) this by the number of vectors that have a performance greater than or equal to

γ̂t .

As an example, consider the case n = 10, where y = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0). Us-

ing a sample N = 50, ρ = 0.1 and the initial parameter vector p̂0 = (1/2, 1/2, . . . , 1/2),

Algorithm 1.2 yields the results given in Table 2.

We see that the p̂t and γ̂t converge very quickly to the optimal degenerated CE

parameter vector p∗ = y and optimal performance γ ∗ = n, respectively.

Remark 1.1 (Likelihood ratio term). Note that algorithms 1.1 and 1.2 are almost the

same. The most important difference is the absence of the likelihood ratio term W in

step 3 of Algorithm 1.2. The reason is that the choice of the initial parameter vector

p̂0 is quite arbitrary, so using W would be meaningless, while in rare event simula-

tion it is an essential part of the estimation problem. For more details see Remark 2.4

below.
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2. The main algorithm(s)

2.1. The CE method for rare event simulation

In this subsection we discuss the main ideas behind the CE algorithm for rare event

simulation. When reading this section, the reader is encouraged to refer back to the toy

example presented in Section 1.1.

Let X = (X1, . . . , Xn) be a random vector taking values in some space X . Let

{ f (·; v)} be a family of probability density functions (pdfs) on X , with respect to some

base measure ν. Here v is a real-valued parameter (vector). Thus,

EH (X) =

∫

X

H (x) f (x; v) ν(dx),

for any (measurable) function H . In most (or all) applications ν is either a counting

measure or the Lebesgue measure. In the former case f is often called a probability mass

function, but in this paper we will always use the generic terms density or pdf. For the

rest of this section we take for simplicity v(dx) = dx.

Let S be some real-valued function on X . Suppose we are interested in the prob-

ability that S(x) is greater than or equal to some real number γ , under f (·; u). This

probability can be expressed as

ℓ = Pu(S(X) ≥ γ ) = Eu I{S(X)≥γ }.

If this probability is very small, say smaller than 10−5, we call {S(X) ≥ γ } a rare event.

A straightforward way to estimate ℓ is to use crude Monte-Carlo simulation: Draw

a random sample X1, . . . , XN from f (·; u); then

1

N

N
∑

i=1

I{S(Xi )≥γ }

is an unbiased estimator of ℓ. However this poses serious problems when {S(X) ≥ γ }

is a rare event. In that case a large simulation effort is required in order to estimate ℓ

accurately, i.e., with small relative error or a narrow confidence interval.

An alternative is based on importance sampling: take a random sample X1, . . . , XN

from an importance sampling (different) density g on X , and evaluate ℓ using the LR

estimator (see (5))

ℓ̂ =
1

N

N
∑

i=1

I{S(Xi )≥γ }

f (Xi ; u)

g(Xi )
. (9)

It is well known that the best way to estimate ℓ is to use the change of measure with

density

g∗(x) :=
I{S(x)≥γ } f (x; u)

ℓ
. (10)
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Namely, by using this change of measure we have in (9)

I{S(Xi )≥γ }

f (Xi ; u)

g∗(Xi )
= ℓ,

for all i . In other words, the estimator (9) has zero variance, and we need to produce only

N = 1 sample.

The obvious difficulty is of course that this g∗ depends on the unknown parameter

ℓ. Moreover, it is often convenient to choose a g in the family of densities { f (·; v)}. The

idea now is to choose the parameter vector, called the reference parameter (sometimes

called tilting parameter) v such that the distance between the densities g∗ and f (·; v) is

minimal. A particular convenient measure of distance between two densities g and h is

the Kullback-Leibler distance, which is also termed the cross-entropy between g and h.

The Kullback-Leibler distance is defined as:

D(g, h) = Eg ln
g(X)

h(X)
=

∫

g(x) ln g(x) dx −

∫

g(x) ln h(x) dx.

We note that D is not a “distance” in the formal sense; for example, it is not symmetric.

Minimizing the Kullback-Leibler distance between g∗ in (10) and f (·; v) is equiv-

alent to choosing v such that –
∫

g∗(x) ln f (x; v) dx is minimized, which is equivalent to

solving the maximization problem

max
v

∫

g∗(x) ln f (x; v) dx. (11)

Substituting g∗ from (10) into (11) we obtain the maximization program

max
v

∫

I{S(x)≥γ } f (x; u)

ℓ
ln f (x; v) dx, (12)

which is equivalent to the program

max
v

D(v) = max
v

Eu I{S(X)≥γ } ln f (X; v), (13)

where D is implicitly defined above. Using again importance sampling, with a change

of measure f (·; w) we can rewrite (13) as

max
v

D(v) = max
v

Ew I{S(X)≥γ } W (X; u, w) ln f (X; v), (14)

for any reference parameter w , where

W (x; u, w) =
f (x; u)

f (x; w)
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is the likelihood ratio, at x, between f (·; u) and f (·; w). The optimal solution of (14) can

be written as

v∗ = argmax
v

Ew I{S(X)≥γ } W (X; u, w) ln f (X; v). (15)

We may estimate v∗ by solving the following stochastic program (also called stochastic

counterpart of (14))

max
v

D̂(v) = max
v

1

N

N
∑

i=1

I{S(Xi )≥γ } W (Xi ; u, w) ln f (Xi ; v), (16)

where X1, . . . , XN is a random sample from f (·; w). In typical applications the function

D̂ in (16) is convex and differentiable with respect to v, see also Rubinstein and Shapiro

(1993) and, thus, the solution of (16) may be readily obtained by solving (with respect

to v) the following system of equations:

1

N

N
∑

i=1

I{S(Xi )≥γ } W (Xi ; u, w) ∇ ln f (Xi ; v) = 0, (17)

where the gradient is with respect to v.

The advantage of this approach is that the solution of (17) can often be calculated

analytically. In particular, this happens if the distributions of the random variables belong

to a natural exponential family (NEF). For further details see Rubinstein and Kroese

(2004) and Example 2.1 below.

It is important to note that with w = u the CE program (16) is useful only in the case

where the probability of the “target event” {S(X) ≥ γ } is not too small, say ℓ ≥ 10−5.

For rare event probabilities, however (when, say, ℓ < 10−5), the program (16) is difficult

to carry out. Namely, due to the rareness of the events {S(Xi ) ≥ γ }, most of the indicator

random variables I{S(Xi )≥γ }, i = 1, . . . , N will be zero, for moderate N . The same holds

for the derivatives of D̂(v) as given in the left-hand side of (17).

A multi-level algorithm can be used to overcome this difficulty. The idea is to

construct a sequence of reference parameters {vt , t ≥ 0} and a sequence of levels

{γt , t ≥ 1}, and iterate in both γt and vt (see Algorithm 2.1 below).

We initialize by choosing a not very small ρ, say ρ = 10−2 and by defining

v0 = u. Next, we let γ1 (γ1 < γ ) be such that, under the original density f (x; u),

the probability ℓ1 = Eu I{S(X)≥γ1} is at least ρ. We then let v1 be the optimal CE ref-

erence parameter for estimating ℓ1, and repeat the last two steps iteratively with the

goal of estimating the pair {ℓ, v∗}. In other words, each iteration of the algorithm

consists of two main phases. In the first phase γt is updated, in the second vt is up-

dated. Specifically, starting with v0 = u we obtain the subsequent γt and vt as

follows:
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1. Adaptive updating of γt . For a fixed vt−1, let γt be a (1 − ρ)-quantile of S(X) under

vt−1. That is, γt satisfies

Pvt−1
(S(X) ≥ γt ) ≥ ρ, (18)

Pvt−1
(S(X) ≤ γt ) ≥ 1 − ρ, (19)

where X ∼ f (·; vt−1).

A simple estimator γ̂t of γt can be obtained by drawing a random sample X1, . . . , XN

from f (·; vt−1), calculating the performances S(Xi ) for all i , ordering them from

smallest to biggest: S(1) ≤ · · · ≤ S(N ) and finally, evaluating the (1 − ρ) sample

quantile as

γ̂t = S(⌈(1−ρ)N⌉). (20)

Note that S( j) is called the j-th order-statistic of the sequence S(X1), . . . , S(XN ). Note

also that γ̂t is chosen such that the event {S(X) ≥ γ̂t} is not too rare (it has a probability

of around ρ), and therefore updating the reference parameter via a procedure such as

(22) is not void of meaning.

2. Adaptive updating of vt . For fixed γt and vt−1, derive vt from the solution of the

following CE program

max
v

D(v) = max
v

Evt−1
I{S(X)≥γt }W (X; u, vt−1) ln f (X; v). (21)

The stochastic counterpart of (21) is as follows: for fixed γ̂t and v̂t−1, derive v̂t from

the solution of following program

max
v

D̂(v) = max
v

1

N

N
∑

i=1

I{S(Xi )≥γ̂t }W (Xi ; u, v̂t−1) ln f (Xi ; v). (22)

Thus, at the first iteration, starting with v̂0 = u, to get a good estimate for v̂1, the

target event is artificially made less rare by (temporarily) using a level γ̂1 which is chosen

smaller than γ . The value for v̂1 obtained in this way will (hopefully) make the event

{S(X) ≥ γ } less rare in the next iteration, so in the next iteration a value γ̂2 can be used

which is closer to γ itself. The algorithm terminates when at some iteration t a level is

reached which is at least γ and thus the original value of γ can be used without getting

too few samples.

As mentioned before, the optimal solutions of (21) and (22) can often be obtained

analytically, in particular when f (x; v) belongs to a NEF.

The above rationale results in the following algorithm.
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Algorithm 2.1 (Main CE Algorithm for Rare Event Simulation)

1. Define v̂0 = u. Set t = 1 (iteration = level counter).

2. Generate a sample X1, . . . , XN from the density f (·; vt−1) and compute the sample

(1 − ρ)-quantile γ̂t of the performances according to (20), provided γ̂t is less than γ .

Otherwise set γ̂t = γ .

3. Use the same sample X1, . . . , XN to solve the stochastic program (22). Denote the

solution by v̂t .

4. If γ̂t < γ , set t = t + 1 and reiterate from step 2. Else proceed with step 5.

5. Estimate the rare-event probability ℓ using the LR estimate

ℓ̂ =
1

N1

N1
∑

i=1

I{S(Xi )≥γ } W (Xi ; u, v̂T ), (23)

where T denotes the final number of iterations (= number of levels used).

Example 2.1 We return to the example in Section 1.1. In this case, from (1) we have

∂

∂v j

ln f (x; v) =
x j

v2
j

−
1

v j

,

so that the j th equation of (17) becomes

N
∑

i=1

I{S(Xi )≥γ } W (Xi ; u, w)

(

X i j

v2
j

−
1

v j

)

= 0, j = 1, . . . , 5;

therefore

v j =

∑N
i=1 I{S(Xi )≥γ }W (Xi ; u, w) X i j
∑N

i=1 I{S(Xi )≥γ }W (Xi ; u, w)
, (24)

which leads to the updating formula in step 3 of Algorithm 1.1. Actually, one can show

that if the distributions belong to a natural exponential family, the updating formula

always becomes (24).

We have intentionally used the notation γ̂t and v̂t in Algorithm 2.1 above, rather than

the more obvious γt and vt , in order to distinguish it from its deterministic counterpart,

which is obtained by replacing sample means and sample quantiles by expectations and

quantiles. For easy reference and better insight we present below the deterministic version

of Algorithm 2.1. We have omitted the IS step in the algorithm below.
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Algorithm 2.2 (Deterministic version of the CE algorithm)

1. Define v0 := u. Set t = 1.

2. Calculate γt as

γt := max{s : Pvt−1
(S(X) ≥ s) ≥ ρ}, (25)

provided this is less than γ ; otherwise put γt := γ .

3. Calculate vt as

vt = argmax
v

Evt−1
I{S(X)≥γt }W (X; u, vt−1) ln f (X; v). (26)

4. If γt = γ , then stop; otherwise set t := t + 1 and reiterate from step 2.

Remark 2.1 (Static Simulation). The above method has been formulated for finite-

dimensional random vectors only; this is sometimes referred to as static simulation.

For infinite-dimensional random vectors or stochastic processes we need a more subtle

treatment.

We will not go into details here, but the main point is that Algorithm 2.1 holds true

without much alteration and can be readily applied to estimation problems involving both

light and heavy tail distributions (de Boer, Kroese, and Rubinstein, 2004; Rubinstein and

Kroese, 2004; Asmussen, Kroese, and Rubinstein, 2005).

Remark 2.2 (Variance Minimization). An alternative way to obtain a good reference

parameter is to choose v such that the variance, or equivalently, the second moment, of

the IS estimator is minimal. In other words we wish to find

∗v = argmin
v

Ev

[

I{S(X)≥γ } W (X; u, v)
]2

. (27)

More generally, using again the principle of importance sampling, this is equivalent to

finding

∗v = argmin
v

Ew I{S(X)≥γ } W (X; u, v) W (X; u, w) (28)

for any reference parameter w . As in (16), we can estimate ∗v as the solution to the

stochastic program

min
v

V̂ (v) = min
v

1

N

N
∑

i=1

I{S(Xi )≥γ } W (Xi ; u, v) W (Xi ; u, w), (29)

where X1, . . . , XN is a random sample from f (·; w). However, the evaluation of (29) in

general involves complicated numerical optimization, and it is much more convenient to

use the closed-form updating formulas that follow from CE minimization.
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2.2. The CE-method for combinatorial optimization

In this subsection we discuss the main ideas behind the CE algorithm for combinatorial

optimization. When reading this section, the reader is encouraged to refer back to the toy

example in Section 1.2.

Consider the following general maximization problem. LetX be a finite set of states,

and let S be a real-valued performance function on X . We wish to find the maximum

of S over X , and the corresponding state(s) at which this maximum is attained. Let us

denote the maximum by γ ∗. Thus,

S(x∗) = γ ∗ = max
x∈X

S(x). (30)

The starting point in the methodology of the CE method is to associate an estimation

problem with the optimization problem (30). To this end we define a collection of indicator

functions {I{S(x)≥γ }} onX for various thresholds or levels γ ∈ R. Next, let { f (·; v), v ∈ V}

be a family of (discrete) pdfs on X , parameterized by a real-valued parameter (vector) v.

For a certain u ∈ V we associate with (30) the problem of estimating the number

ℓ(γ ) = Pu(S(X) ≥ γ ) =
∑

x

I{S(x)≥γ } f (x; u) = Eu I{S(X)≥γ }, (31)

where Pu is the probability measure under which the random state X has pdf f (·; u), and

Eu denotes the corresponding expectation operator. We will call the estimation problem

(31) the associated stochastic problem (ASP). To indicate how (31) is associated with

(30), suppose for example that γ is equal to γ ∗ and that f (·; u) is the uniform density on

X . Note that, typically, ℓ(γ ∗) = f (x∗; u) = 1/|X | – where |X | denotes the number of

elements in X – is a very small number. Thus, for γ = γ ∗ a natural way to estimate ℓ(γ )

would be to use the LR estimator (23) with reference parameter v∗ given by

v∗ = argmax
v

Eu I{S(X)≥γ } ln f (X; v). (32)

This parameter could be estimated by

v̂∗ = argmax
v

1

N

N
∑

i=1

I{S(Xi )≥γ } ln f (Xi ; v), (33)

where the Xi are generated from pdf f (·; u).

It is plausible that if γ is close to γ ∗ then f (·; v∗) assigns most of its probability

mass close to x∗, and thus can be used to generate an approximate solution to (30).

However, it is important to note that the estimator (33) is only of practical use when

I{S(X)≥γ } = 1 for enough samples. This means for example that when γ is close to γ ∗, u

needs to be such that Pu(S(X) ≥ γ ) is not too small. Thus, the choice of u and γ in (31)

are closely related. On the one hand we would like to choose γ as close as possible to

γ ∗, and find (an estimate of) v∗ via the procedure above, which assigns almost all mass
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to state(s) close to the optimal state. On the other hand, we would like to keep γ relative

small in order to obtain an accurate (low RE) estimator for v∗.

The situation is very similar to the rare event simulation case of Section 2.1. The idea,

based essentially on Algorithm 2.1, is again to adopt a two-phase multi-level approach

in which we simultaneously construct a sequence of levels γ̂1, γ̂2, . . . , γ̂T and parameter

(vectors) v̂1, v̂2, . . . , v̂T such that γ̂T is close to the optimal γ ∗ and v̂T is such that the

corresponding density assigns high probability mass to the collection of states that give

a high performance.

This strategy is embodied in the following procedure, see e.g., Rubinstein (1999):

Algorithm 2.3 (Main CE Algorithm for Optimization)

1. Define v̂0 = u. Set t = 1 (level counter).

2. Generate a sample X1, . . . , XN from the density f (·; vt−1) and compute the sample

(1 − ρ)-quantile γ̂t of the performances according to (20).

3. Use the same sample X1, . . . , XN and solve the stochastic program (22) with W = 1.

Denote the solution by v̂t .

4. If for some t ≥ d , say d = 5,

γ̂t = γ̂t−1 = · · · = γ̂t−d, (34)

then stop (let T denote the final iteration); otherwise set t = t + 1 and reiterate from

step 2.

Note that the stopping criterion, the initial vector v̂0, the sample size N and the number

ρ have to be specified in advance, but that the rest of the algorithm is “self-tuning”.

Remark 2.3 (Smoothed Updating). Instead of updating the parameter vector v̂t−1 to v̂t

directly via (33) we often use a smoothed updating procedure in which

v̂t = α ŵ t + (1 − α) v̂t−1, (35)

where ŵ t is the vector derived via (22) with W = 1. This is especially relevant for

optimization problems involving discrete random variables. The main reason why this

heuristic smoothed updating procedure performs better is that it prevents the occurrences

of 0s and 1s in the parameter vectors; once such an entry is 0 or 1, it often will remain

so forever, which is undesirable. We found empirically that a value of α between 0.4 ≤

α ≤ 0.9 gives the best results. Clearly for α = 1 we have the original updating rule in

Algorithm 2.3.

In many applications we observed numerically that the sequence of pdfs f (·; v̂0),

f (·; v̂1), . . . converges to a degenerate measure (Dirac measure), assigning all probability

mass to a single state xT , for which, by definition, the function value is greater than or

equal to γ̂T .
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Remark 2.4 (Similarities and Differences). Despite the great similarity between Algo-

rithm 2.1 and Algorithm 2.3 it is important to note a number of differences. For example,

the role of the initial reference parameter u is significantly different. In Algorithm 2.1 u is

the unique nominal parameter for estimating Pu(S(X) ≥ γ ). However, in Algorithm 2.3

the choice for the initial parameter u is fairly arbitrary; it is only used to define the ASP.

In contrast to Algorithm 2.1 the ASP for Algorithm 2.3 is redefined after each iteration.

In particular, in steps 2 and 3 of Algorithm 2.3 we determine the optimal reference pa-

rameter associated with Pv̂t−1
(S(X) ≥ γ̂t ), instead of Pu(S(X) ≥ γ̂t ). Consequently, the

likelihood ratio term W that plays a crucial role in Algorithm 2.1 does not appear in

Algorithm 2.3.

The above procedure can, in principle, be applied to any discrete and continu-

ous (multi-extremal) optimization problem. However, for each individual problem two

essential ingredients need to be supplied.

1. We need to specify how the samples are generated. In other words, we need to specify

the family of pdfs { f (·; v)}.

2. We need to calculate the updating rules for the parameters, based on cross-entropy

minimization.

In general there are many ways to generate samples from X , and it is not always

immediately clear which way of generating the sample will yield better results or easier

updating formulas.

Example 2.2. We return to the example from Section 1.2. In this case, the random vector

X = (X1, . . . , Xn) ∼ Ber(p), and the parameter vector v is p. Consequently, the pdf

is

f (X; p) =

n
∏

i=1

p
X i

i (1 − pi )
1−X i ,

and since each X j can only be 0 or 1,

∂

∂p j

ln f (X; p) =
X j

p j

−
1 − X j

1 − p j

=
1

(1 − p j )p j

(X j − p j ).

Now we can find the maximum in (33) by setting the first derivatives w.r.t. p j to zero,

for j = 1, . . . , n:

∂

∂p j

N
∑

i=1

I{S(Xi )≥γ } ln f (Xi ; p) =
1

(1 − p j ) p j

N
∑

i=1

I{S(Xi )≥γ } (X i j − p j ) = 0.
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Thus, we get

p j =

∑N
i=1 I{S(Xi )≥γ } X i j

∑N
i=1 I{S(Xi )≥γ }

, (36)

which immediately implies (8).

Several remarks are in order.

Remark 2.5 (Maximum Likelihood Estimation). It is interesting to note the connection

between (33) and maximum likelihood estimation (MLE). In the MLE problem we are

given data x1, . . . , xN which are thought to be the outcomes of i.i.d. random variables

X1, . . . , XN (random sample) each having a distribution f (·; v), where the parameter

(vector) v is an element of some set V . We wish to estimate v on the basis of the

data x1, . . . , xN . The maximum likelihood estimate (MLE) is that parameter v̂ which

maximizes the joint density of X1, . . . , XN for the given data x1, . . . , xN . In other words,

v̂ = argmax
v

N
∏

i=1

f (xi ; v).

The corresponding random variable, obtained by replacing xi with Xi is called the max-

imum likelihood estimator (MLE as well), also denoted by v̂. Since ln(·) is an increasing

function we have

v̂ = argmax
v

N
∑

i=1

ln f (Xi ; v). (37)

Solving (37) is similar to solving (33). The only difference is the indicator function

I{S(Xi )≥γ }. We can write Step 3 in Algorithm 2.3 as

v̂t = argmax
v

∑

Xi :S(Xi )≥γ̂t

ln f (Xi ; v).

In other words, v̂t is equal to the MLE of v̂t−1 based only on the vectors xi in the

random sample for which the performance is greater than or equal to γ̂t . For example, in

Example 2.2 the MLE of p j based on a random sample X1, . . . , XN is

p̂ j =

∑N
i=1 X i j

N
.

Thus, if we base the MLE only on those vectors that have performance greater than or

equal to γ , we obtain (36) immediately.

Remark 2.6 (Parameters). The choice for the sample size N and the parameter ρ depends

on the size of the problem and the number of parameters in the ASP. In particular, for

a SNN-type problem it is suggested to take the sample size as N = c n, where n is the

number of nodes and c a constant (c > 1), say 5 ≤ c ≤ 10. In contrast, for a SEN-type

problem it is suggested to take N = c n2, where n2 is the number of edges in the network.
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It is crucial to realize that the sample sizes N = c n and N = c n2 (with c > 1) are

associated with the number of ASP parameters (n and n2) that one needs to estimate for

the SNN and SEN problems, respectively (see also the max-cut and the TSP examples

below). Clearly, in order to reliably estimate k parameters, one needs to take at least a

sample N = c k for some constant c > 1. Regarding ρ, it is suggested to take ρ around

0.01, provided n is reasonably large, say n ≥ 100; and it is suggested to take a larger ρ,

say ρ ≈ ln(n)/n, for n < 100.

Alternatively, the choice of N and ρ can be determined adaptively. For example, in

Homem-de-Mello and Rubinstein (2002) an adaptive algorithm is proposed that adjusts

N automatically. The FACE algorithm of Section 4 is another option.

3. Various applications

In this section we discuss applications of the CE method to two typical COPs. We start

in Section 3.1 with an SNN problem – the max-cut problem. We explain how to apply

the CE method for this problem and provide two simple examples. In Section 3.2 we

consider a typical SEN problem – the travelling salesman problem. We demonstrate the

usefulness of the CE method and its fast convergence in a number of numerical examples.

We further illustrate the dynamics of the CE method and show how fast the reference

parameters converge.

3.1. The max-cut problem

The max-cut problem in a graph can be formulated as follows. Given a weighted graph

G(V, E) with node set V = {1, . . . , n} and edge set E , partition the nodes of the graph

into two subsets V1 and V2 such that the sum of the weights of the edges going from

one subset to the other is maximized. We assume the weights are non-negative. We

note that the max-cut problem is an NP-hard problem. Without loss of generality, we

assume that the graph is complete. For simplicity we assume the graph is not directed. We

can represent the possibly zero edge weights via a non-negative, symmetric cost matrix

C = (ci j ) where ci j denotes the weight of the edge from i to j .

Formally, a cut is a partition {V1, V2} of V . For example, if V = {1, . . . , 6}, then

{{1, 3, 4}, {2, 5, 6}} is a possible cut. The cost of a cut is the sum of the weights across

the cut. As an example, consider the following 6 × 6 cost matrix

C =





















0 c12 c13 0 0 0

c21 0 c23 c24 0 0

c31 c32 0 c34 c35 0

0 c42 c43 0 c45 c46

0 0 c53 c54 0 c56

0 0 0 c64 c65 0





















(38)

corresponding to the graph in figure 3.
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Figure 3. A 6-node network with the cut {{1, 3, 4}, {2, 5, 6}}.

For example, the cost of the cut {{1, 3, 4}, {2, 5, 6}} is

c12 + c32 + c35 + c42 + c45 + c46.

It will be convenient to represent a cut via a cut vector x = (x1, . . . , xn), where xi = 1

if node i belongs to the same partition as node 1, and 0 otherwise. By definition x1 = 1.

For example, the cut in figure 3 can be represented via the cut vector (1, 0, 1, 1, 0, 0).

Let X be the set of all cut vectors x = (1, x2, . . . , xn) and let S(x) be the corre-

sponding cost of the cut. We wish to maximize S via the CE method. Thus, (a) we need

to specify how the random cut vectors are generated, and (b) calculate the correspond-

ing updating formulas. The most natural and easiest way to generate the cut vectors is

to let X2, . . . , Xn be independent Bernoulli random variables with success probabilities

p2, . . . , pn , exactly as in the second toy example, see Section 1.2. It immediately follows,

see Example 2.2, that the updating formula in Algorithm 2.3 at the t th iteration is given

by

p̂t, j =

∑N
i=1 I{S(Xi )≥γ̂t } I{X i j =1}
∑N

i=1 I{S(Xi )≥γ̂t }

, j = 2, . . . , n. (39)

Remark 3.1 (r -partitions). We can readily extend the procedure to the case in which the

node set V is partitioned into r > 2 subsets {V1, . . . , Vr } such that the sum of the total

weights of all edges going from the subset Vi to subset V j , i, j = 1, . . . , r, (i �= j) is

maximized. In this case one can follow the basic steps of Algorithm 2.3 using independent

r point distributions instead of independent Bernoulli distributions.

To illustrate the convergence of the CE algorithm we provide an example in which

the exact optimal updating parameter is computed via (32) rather than estimated via (33).

In other words, instead of Algorithm 2.3 its deterministic version Algorithm 2.2 is used

(with W = 1 in (26)).
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Example 3.1. Consider the 5-node graph with the cost matrix

C =

















0 1 3 5 6

1 0 3 6 5

3 3 0 2 2

5 6 2 0 2

6 5 2 2 0

















. (40)

It is readily seen that in this case the optimal cut vector is x∗ = (1, 1, 0, 0, 0) with

S(x∗) = γ ∗ = 28.

We shall show next that in the “deterministic” version of Algorithm 2.3 the param-

eter vectors p0, p1, . . . converge to the optimal p∗ = (1, 1, 0, 0, 0) after two iterations,

provided ρ = 10−1 and p0 = (1, 1/2, 1/2, 1/2, 1/2).

In the first step of the first iteration, we have to determine γ1 from

γt = max
{

γ s.t. Ept−1
I{S(X)≥γ } ≥ 0.1

}

. (41)

Under parameter vector p0, S(X) can take values, {0, 10, 15, 18, 19, 20, 21, 26, 28} with

probabilities {1, 1, 4, 2, 2, 2, 2, 1, 1}/16. Hence, we find γ1 = 26. In the second step, we

need to solve

pt = argmax
p

Ept−1
I{S(X)≥γt } ln f (X; p), (42)

which has a solution similar to (36), namely

pt, j =
Ept−1

I{S(X)≥γt } X j

Ept−1
I{S(X)≥γt }

.

There are only two vectors x for which S(x) ≥ 26, namely (1, 1, 1, 0, 0) and (1, 1, 0, 0, 0),

and both have probability 1/16 under p0. Thus,

p1, j =































2/16

2/16
= 1 for j = 1, 2,

1/16

2/16
=

1

2
for j = 3,

0

2/16
= 0 for j = 4, 5.

In the second iteration S(X) is 26 or 28 with probability 1/2. Thus, step (41) yields the

(optimal) γ2 = 28, and step (42) gives p2 = (1, 1, 0, 0, 0).

Example 3.2 (A synthetic max-cut problem). Since the max-cut problem is NP hard

(Garey and Johnson, 1979; Papadimitriou and Yannakakis, 1991), no efficient method
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for solving the max-cut problem exists. The naive total enumeration routine is only

feasible for small graphs, say for those with n ≤ 30 nodes. Although the Branch-and-

Bound heuristic can solve medium size problems exactly, it too will run into problems

when n becomes large.

In order to verify the accuracy of the CE method we construct an artificial graph

such that the solution is available in advance. In particular, for m ∈ {1, . . . , n} consider

the following symmetric cost matrix:

C =

(

Z11 B12

B21 Z22

)

, (43)

where Z11 is an m × m symmetric matrix in which all the upper-diagonal elements

are generated from a U(a, b) distribution (and all lower-diagonal elements follow by

symmetry), Z22 is a (n − m) × (n − m) symmetric matrix which is generated in a similar

way as Z11, and all the other elements are c, apart from the diagonal elements, which are

of course 0.

It is not difficult to see that for c > b(n − m)/m, by construction, the optimal cut

is given by V ∗ = {V ∗
1 , V ∗

2 }, with

V ∗
1 = {1, . . . , m} and V ∗

2 = {m + 1, . . . , n}, (44)

and the optimal value of the cut is

γ ∗ = c m (n − m).

Of course the same optimal solution and optimal value can be found for the general

case where the elements in Z11 and Z22 are generated via an arbitrary bounded support

distribution with the maximal value of the support less than b.

Table 3 lists a typical output of Algorithm 2.3 applied to the synthetic max-cut

problem, for a network with n = 400 nodes. In this table we list besides the (1 − ρ)-

quantile of the performances γ̂t also the best of the performances in each iteration, denoted

by St,(N ), and the Euclidean distance

‖ p̂t − p∗‖ =

√

( p̂t,i − p∗
i )2,

as a measure how close the reference vector is to the optimal reference vector p∗ =

(1, 1, . . . , 1, 0, 0, . . . , 0).

In this particular example, m = 200 and the Z11 and Z22 are generated from the

U(0, 1) distribution. The elements in B12 and B21 are constant c = 1. The CE parameter

are chosen as follows: rarity parameter ρ = 0.1; smoothing parameter α = 1.0 (no

smoothing); stopping constant d = 3; and number of samples per iteration N = 1000.

The CPU time is only 100 seconds, using a Matlab implementation on a pentium

III, 500 MHz processor. We see that the CE algorithm converges quickly, yielding the

exact optimal solution 40000 in less than 23 iterations.
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Table 3

A typical performance of Algorithm 2.3 for the syn-

thetic max-cut problem with n = 400, d = 3, ρ = 0.1,

α = 1.0, N = 1000.

t γ̂t St,(N ) ‖ p̂t − p∗‖

1 30085.3 30320.9 9.98

2 30091.3 30369.4 10.00

3 30113.7 30569.8 9.98

4 30159.2 30569.8 9.71

5 30350.8 30652.9 9.08

6 30693.6 31244.7 8.37

7 31145.1 31954.8 7.65

8 31711.8 32361.5 6.94

9 32366.4 33050.3 6.27

10 33057.8 33939.9 5.58

11 33898.6 34897.9 4.93

12 34718.9 35876.4 4.23

13 35597.1 36733.0 3.60

14 36368.9 37431.7 3.02

15 37210.5 38051.2 2.48

16 37996.7 38654.5 1.96

17 38658.8 39221.9 1.42

18 39217.1 39707.8 1.01

19 39618.3 40000.0 0.62

20 39904.5 40000.0 0.29

21 40000.0 40000.0 0.14

22 40000.0 40000.0 0.00

23 40000.0 40000.0 0.00

Figures 4 and 5 illustrate the convergence of the reference vectors pt to the optimal p∗.

3.2. The travelling salesman problem

The travelling salesman problem (TSP) can be formulated as follows. Consider a weighted

graph G with n nodes, labelled 1, 2, . . . , n. The nodes represent cities, and the edges

represent the roads between the cities. Each edge from i to j has weight or cost ci j ,

representing the length of the road. The problem is to find the shortest tour that visits all

the cities exactly once2 (except the starting city, which is also the terminating city), see

figure 6.

Without loss of generality, let us assume that the graph is complete, and that some of

the weights may be +∞. LetX be the set of all possible tours and let S(x) the total length

2 In some versions of the TSP cities can be visited more than once.
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Figure 4. Sequence of reference vectors for the synthetic max-cut problem with 400 nodes. Iterations

0,1,. . . ,9.
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Figure 5. Sequence of reference vectors for the synthetic max-cut problem with 400 nodes. Iterations

10,. . . , 19.
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Figure 6. Find the shortest tour x visiting all nodes.

of tour x ∈ X . We can represent each tour via a permutation of (1, . . . , n). For example

for n = 4, the permutation (1, 3, 2, 4) represents the tour 1 → 3 → 2 → 4 → 1. In

fact, we may as well represent a tour via a permutation x = (x1, . . . , xn) with x1 = 1.

From now on we identify a tour with its corresponding permutation, where x1 = 1. We

may now formulate the TSP as follows:

min
x∈X

S(x) = min
x∈X

{

n−1
∑

i=1

cxi ,xi+1
+ cxn,1

}

. (45)

Note that the number of elements in X is typically very large:

|X | = (n − 1)! (46)

This is exactly the setting of Section 2.2, so we can use the CE-Method to solve (45).

Note however that we need to modify Algorithm 2.3 since we have here a minimization

problem.

In order to apply the CE algorithm we need to specify (a) how to generate the

random tours, and (b) how to update the parameters at each iteration.

The easiest way to explain how the tours are generated and how the parameters are

updated is to relate (45) to an equivalent minimization problem. Let

X̃ = {(x1, . . . , xn) : x1 = 1, xi ∈ {1, . . . , n}, i = 2, . . . , n},

be the set of vectors that correspond to paths that start and end in 1 and can visit the

same city more than once. Note that |X̃ | = nn−1, and X ⊂ X̃ . When n = 4, we have for

example x = (1, 3, 1, 3) ∈ X̃ , corresponding to the path 1 → 3 → 1 → 3 → 1. Again

we will identify the vectors with their corresponding paths. Define the function S̃ on X̃

by S̃(x) = S(x), if x ∈ X and S̃(x) = ∞, otherwise. Then, obviously (45) is equivalent



TUTORIAL ON THE CROSS-ENTROPY METHOD 45

to the minimization problem

minimize S̃(x) over x ∈ X̃ . (47)

A simple method to generate a random path X = (X1, . . . , Xn) in X̃ is to use a Markov

chain of the graph G, starting at node 1, and stopping after n steps. Let P = (pi j )

denote the one-step transition matrix of this Markov chain. We assume that the diagonal

elements of P are 0, and that all other elements of P are strictly positive, but otherwise

P is a general n × n stochastic matrix.

The pdf f (·; P) of X is thus parameterized by the matrix P and its logarithm is

given by

ln f (x; P) =

n
∑

r=1

∑

i, j

I{x∈X̃ i j (r )} ln pi j ,

where X̃ i j (r ) is the set of all paths in X̃ for which the r th transition is from node i to

j . The updating rules for this modified optimization problem follow from 22 (W = 1),

with {S(Xi ) ≥ γ } replaced with {S̃(Xi ) ≤ γ }, under the condition that the rows of

P sum up to 1. Using Lagrange multipliers u1, . . . , un we obtain the maximization

problem

max
P

min
u

[

EP I{S̃(X)≤γ } ln f (X; P) +

n
∑

i=1

ui

(

n
∑

j=1

pi j − 1

)]

.

Differentiating the expression within square brackets above with respect to pi j , yields,

for all j = 1, . . . , n,

EP I{S̃(X)≤γ }

∑n
r=1 I{X∈X̃ i j (r )}

pi j

+ ui = 0.

Summing over j = 1, . . . , n gives EP I{S̃(X)≤γ }

∑n
r=1 I{X∈X̃ i (r )} = −ui , where X̃ i (r ) is

the set of paths for which the r -th transition starts from node i . It follows that the optimal

pi j is given by

pi j =
EP I{S̃(X)≤γ }

∑n
r=1 I{X∈X̃ i j (r )}

EP I{S̃(X)≤γ }

∑n
r=1 I{X∈X̃ i (r )}

.

The corresponding estimator is

p̂i j =

∑N
k=1 I{S̃(Xk )≤γ }

∑n
r=1 I{Xk∈X̃ i j (r )}

∑N
k=1 I{S̃(Xk )≤γ }

∑n
r=1 I{Xk∈X̃ i (r )}

. (48)
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This has a very simple interpretation. To update pi j we simply take the fraction of times

that the transitions from i to j occurred, taking only those paths into account that have

a total length less than or equal to γ .

This is how we could, in principle, carry out the sample generation and parameter

updating for problem (47). We generate the path via a Markov process with transition

matrix P , and use updating formula (48). However, in practice, we would never generate

the paths in this way, since the majority of these paths would be irrelevant since they

would not constitute a tour, and therefore their S̃ values would be ∞. In order to avoid

the generation of irrelevant paths, we proceed as follows.

Algorithm 3.1 (Generation of permutations (tours) in the TSP)

1. Define P (1) = P and X1 = 1. Let k = 1.

2. Obtain P (k+1) from P (k) by first setting the Xk-th column of P (k) to 0 and then

normalizing the rows to sum up to 1. Generate Xk+1 from the distribution formed by

the Xk-th row of P (k).

3. If k = n − 1 then stop; otherwise set k = k + 1 and reiterate from step 2.

It is important to realize that the updating formula remains the same; by using

Algorithm 3.1 we are merely speeding-up our naive way of generating the tours. More-

over, since we now only generate tours, the updated value for pi j can be estimated

as

p̂i j =

∑N
k=1 I{S(Xk )≤γ } I{Xk∈Xi j }
∑N

k=1 I{S(Xk )≤γ }

, (49)

where Xi j is the set of tours in which the transition from i to j is made. This has the

same “natural” interpretation as discussed for (48).

To complete the algorithm, we need to specify the initialization conditions and

the stopping criterion. For the initial matrix P̂0 we could simply take all off-diagonal

elements equal to 1/(n − 1) and for the stopping criterion use formula (34).

Numerical Examples

To demonstrate the usefulness of the CE algorithm and its fast and accurate convergence

we provide a number of numerical examples. The first example concerns the benchmark

TSP problem ft53 taken from the URL

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/atsp/
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Table 4

A typical performance of Algorithm 2.3 for the TSP problem ft53

with n = 53 nodes, d = 5, ρ = 0.01, α = 0.7, N = 10 n2 = 28090.

t γ̂t St,(1) Pmm
t fdiff

1 23234.00 21111.00 0.0354 0.3243

2 20611.00 18586.00 0.0409 0.3744

3 18686.00 16819.00 0.0514 0.3707

4 17101.00 14890.00 0.0465 0.3676

5 15509.00 13459.00 0.0698 0.3635

6 14449.00 12756.00 0.0901 0.3492

7 13491.00 11963.00 0.0895 0.3404

8 12773.00 11326.00 0.1065 0.3250

9 12120.00 10357.00 0.0965 0.3291

10 11480.00 10216.00 0.1034 0.3167

11 11347.00 9952.00 0.1310 0.3017

12 10791.00 9525.00 0.1319 0.3111

13 10293.00 9246.00 0.1623 0.3049

14 10688.00 9176.00 0.1507 0.2726

15 9727.00 8457.00 0.1346 0.3203

16 9263.00 8424.00 0.1436 0.2929

17 9422.00 8614.00 0.1582 0.2490

18 9155.00 8528.00 0.1666 0.2468

19 8661.00 7970.00 0.1352 0.2543

20 8273.00 7619.00 0.1597 0.2360

21 8096.00 7485.00 0.1573 0.2163

22 7868.00 7216.00 0.1859 0.1889

23 7677.00 7184.00 0.2301 0.1737

24 7519.00 7108.00 0.2421 0.1569

25 7420.00 7163.00 0.2861 0.1495

26 7535.00 7064.00 0.3341 0.1508

27 7506.00 7072.00 0.3286 0.1576

28 7199.00 7008.00 0.3667 0.1341

29 7189.00 7024.00 0.3487 0.1212

30 7077.00 7008.00 0.4101 0.0998

31 7068.00 7008.00 0.4680 0.1051

Table 4 presents the performance of the CE Algorithm for the problem ft53, which

defines an asymmetric fully connected graph of size 53, where the value of each edge

ci j is given.

The CE parameters were: stopping parameter d = 5, rarity parameter ρ = 0.01, sample

size N = 10 n2 = 28090 and smoothing parameter α = 0.7. The relative experimental

error of the solution is

ε =
γ̂T − γ ∗

γ ∗
= 1.5%,
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Table 5

Case studies for the TSP.

File n T̄ γ̄1 γ̄T γ ∗ ε̄ ε∗ ε∗ CPU

br17 17 23.8 68.2 39.0 39 0.0 0.0 0.0 9

ftv33 34 31.2 3294.0 1312.2 1286 2.0 0.0 6.2 73

ftv35 36 31.5 3714.0 1490.0 1473 1.2 0.4 1.8 77

ftv38 39 33.8 4010.8 1549.8 1530 1.3 0.4 3.2 132

p43 43 44.5 9235.5 5624.5 5620 0.1 0.0 0.1 378

ftv44 45 35.5 4808.2 1655.8 1613 2.7 1.3 3.3 219

ftv47 48 40.2 5317.8 1814.0 1776 2.1 0.6 4.1 317

ry48p 48 40.8 40192.0 14845.5 14422 2.9 1.9 5.0 345

ft53 53 39.5 20889.5 7103.2 6905 2.9 2.5 3.5 373

ftv55 56 40.0 5835.8 1640.0 1608 2.0 0.2 4.3 408

ftv64 65 43.2 6974.2 1850.0 1839 0.6 0.0 1.4 854

ftv70 71 47.0 7856.8 1974.8 1950 1.3 0.4 3.7 1068

ft70 70 42.8 64199.5 39114.8 38673 1.1 0.3 1.9 948

whereγ ∗ = 6905 is the best known solution. The CPU time was approximately 6 minutes.

In Table 4 St,(1) denotes the length of smallest tour in iteration t . We also included the two

quantities Pmm
t and fdiff, which give extra information about the dynamics. Specifically,

fdiff is the proportion, out of N , of different values for the performance function, for the

current iteration t ; and Pmm
t is the minimum of the maximum elements in each row of

matrix P̂t .

Similar performances were found for other TSP problems in the benchmark library

above. Table 5 presents the performance of Algorithm 2.3 for a selection of case studies

from this library. In all numerical results we use the same CE parameters as for the ft53

problem, that is ρ = 10−2, N = 10 n2, α = 0.7 (smoothing parameter in (35)) and

d = 5 (in (34)). To study the variability in the solutions, each problem was repeated

10 times. In Table 5 n denotes the number of nodes of the graph, T̄ denotes the aver-

age total number of iterations needed before stopping, γ̄1 and γ̄ T denote the average

initial and average final estimates of the optimal solution, γ ∗ denotes the best known

(optimal) solution, ε̄ denotes the average percentage relative experimental error based

on 10 replications, ε∗ and ε∗ denote the smallest and the largest percentage relative error

among the 10 generated solutions, and finally CPU denotes the average CPU time in

seconds.

We found that decreasing the sample size N from N = 10 n2 to N = 5 n2 all

relative experimental errors ε in Table 5 increase at most by a factor of 1.5.

Dynamics

Finally, as an illustration of the dynamics of the CE algorithm, we display below the

sequence of matrices P̂0, P̂1, . . . for a TSP with n = 10 cities, where the optimal tour is
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(1, 2, 3, . . . , 10, 1).

P̂0 =









































0.00 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

0.11 0.00 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11

0.11 0.11 0.00 0.11 0.11 0.11 0.11 0.11 0.11 0.11

0.11 0.11 0.11 0.00 0.11 0.11 0.11 0.11 0.11 0.11

0.11 0.11 0.11 0.11 0.00 0.11 0.11 0.11 0.11 0.11

0.11 0.11 0.11 0.11 0.11 0.00 0.11 0.11 0.11 0.11

0.11 0.11 0.11 0.11 0.11 0.11 0.00 0.11 0.11 0.11

0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.00 0.11 0.11

0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.00 0.11

0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.00









































.

P̂1 =









































0.00 0.31 0.04 0.08 0.04 0.19 0.08 0.08 0.12 0.08

0.04 0.00 0.33 0.08 0.17 0.08 0.08 0.04 0.04 0.12

0.08 0.08 0.00 0.23 0.04 0.04 0.12 0.19 0.08 0.15

0.12 0.19 0.08 0.00 0.12 0.08 0.08 0.08 0.19 0.08

0.08 0.08 0.19 0.08 0.00 0.23 0.08 0.04 0.15 0.08

0.04 0.04 0.08 0.04 0.12 0.00 0.50 0.08 0.08 0.04

0.23 0.08 0.08 0.04 0.08 0.04 0.00 0.27 0.08 0.12

0.08 0.15 0.04 0.04 0.19 0.08 0.08 0.00 0.27 0.08

0.08 0.08 0.04 0.12 0.08 0.15 0.08 0.04 0.00 0.35

0.21 0.08 0.17 0.08 0.04 0.12 0.08 0.12 0.08 0.00









































.

P̂2 =









































0.00 0.64 0.03 0.06 0.04 0.04 0.06 0.04 0.04 0.06

0.03 0.00 0.58 0.07 0.07 0.05 0.05 0.03 0.03 0.08

0.05 0.05 0.00 0.52 0.04 0.03 0.08 0.04 0.05 0.15

0.04 0.13 0.05 0.00 0.22 0.18 0.05 0.04 0.25 0.05

0.06 0.04 0.09 0.04 0.00 0.60 0.04 0.03 0.04 0.06

0.03 0.03 0.05 0.03 0.04 0.00 0.71 0.05 0.05 0.03

0.20 0.04 0.05 0.03 0.05 0.03 0.00 0.51 0.05 0.04

0.05 0.08 0.03 0.04 0.23 0.05 0.05 0.00 0.42 0.05

0.05 0.05 0.04 0.07 0.07 0.10 0.05 0.03 0.00 0.54

0.50 0.05 0.04 0.05 0.04 0.08 0.05 0.14 0.05 0.00









































.
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P̂3 =









































0.00 0.76 0.02 0.04 0.03 0.03 0.04 0.03 0.03 0.04

0.02 0.00 0.73 0.05 0.05 0.04 0.04 0.02 0.02 0.05

0.03 0.03 0.00 0.70 0.02 0.02 0.05 0.02 0.03 0.09

0.02 0.07 0.03 0.00 0.59 0.10 0.03 0.02 0.13 0.03

0.04 0.03 0.06 0.03 0.00 0.73 0.03 0.02 0.03 0.04

0.02 0.02 0.04 0.02 0.03 0.00 0.79 0.04 0.04 0.02

0.12 0.02 0.03 0.02 0.03 0.02 0.00 0.69 0.03 0.02

0.03 0.05 0.02 0.02 0.14 0.03 0.03 0.00 0.66 0.03

0.03 0.03 0.02 0.05 0.05 0.06 0.03 0.02 0.00 0.71

0.69 0.03 0.02 0.03 0.02 0.05 0.03 0.09 0.03 0.00









































.

P̂4 =









































0.00 0.82 0.01 0.03 0.02 0.02 0.03 0.02 0.02 0.03

0.01 0.00 0.80 0.03 0.03 0.03 0.03 0.01 0.01 0.04

0.02 0.02 0.00 0.79 0.02 0.01 0.03 0.02 0.02 0.07

0.01 0.04 0.02 0.00 0.73 0.06 0.02 0.01 0.09 0.02

0.03 0.02 0.04 0.02 0.00 0.81 0.02 0.01 0.02 0.03

0.01 0.01 0.03 0.01 0.02 0.00 0.84 0.03 0.03 0.01

0.09 0.02 0.02 0.01 0.02 0.01 0.00 0.78 0.02 0.02

0.02 0.03 0.01 0.02 0.09 0.02 0.02 0.00 0.76 0.02

0.02 0.02 0.02 0.03 0.03 0.05 0.02 0.01 0.00 0.79

0.78 0.02 0.02 0.02 0.02 0.03 0.02 0.06 0.02 0.00









































.

P̂5 =









































0.00 0.86 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.01 0.00 0.85 0.03 0.03 0.02 0.02 0.01 0.01 0.03

0.02 0.02 0.00 0.84 0.01 0.01 0.03 0.01 0.02 0.05

0.01 0.03 0.01 0.00 0.80 0.05 0.01 0.01 0.06 0.01

0.02 0.02 0.03 0.02 0.00 0.85 0.02 0.01 0.02 0.02

0.01 0.01 0.02 0.01 0.02 0.00 0.88 0.02 0.02 0.01

0.06 0.01 0.02 0.01 0.02 0.01 0.00 0.84 0.02 0.01

0.02 0.02 0.01 0.01 0.07 0.02 0.02 0.00 0.82 0.02

0.02 0.02 0.01 0.02 0.02 0.03 0.02 0.01 0.00 0.84

0.84 0.02 0.01 0.02 0.01 0.03 0.02 0.05 0.02 0.00









































.

An illustration of the dynamics is given in figure 7.
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Figure 7. Convergence of the reference parameter (matrix) for a 10 node TSP.
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4. Modifications

In this section we consider several modifications of the basic CE algorithm. We start by

discussing alternative loss functions that favor samples with higher performance more

than other samples. We continue with a fully automated version of the CE algorithm.

This modified version allows automatic tuning of all the parameters of the CE algorithm.

4.1. Alternative performance functions

Consider the maximization problem, see (30),

max
x∈X

S(x),

where S(x) is some positive objective function defined on X . In the associated stochastic

problem, see (31), we consider instead estimating the rare-event probability

ℓ(γ ) = Eu I{S(X)≥γ }.

Note that this can be written as

ℓ(γ ) = Euϕ(S(X); γ ),

where ϕ(s; γ ) is the indicator I{s≥γ }, that is,

ϕ(s; γ ) =

{

1 if s ≥ γ,

0 if s < γ,
(50)

for s ≥ 0. Recall that the main CE Algorithm 2.3 contains the steps (a) updating γ̂t

via (20) and (b) updating v̂t via the (analytic) solution of (22). A natural modification

of Algorithm 2.3 would be to update vt using an alternative function ϕ(s; γ ). For a

maximization problem such a function should be increasing in s for each fixed γ ≥ 0,

and decreasing in γ for each fixed s ≥ 0. In particular one could use

ϕ(s; γ ) = ψ(s)I{s≥γ },

for some increasing function ψ(s).

Using such a ϕ(s; γ ) instead of the indicator (50) we now proceed similar as before.

Specifically, the updating step (a) of γ̂t remains exactly the same, and the updating step

(b) of v̂t now reduces to the solution of the following program

max
v

D̂(v) = max
v

1

N

N
∑

i=1

I{S(Xi )≥γ̂t } ψ(S(Xi )) ln f (Xi ; v). (51)
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Numerical evidence suggests that ψ(s) = s can lead to some speed-up of the algorithm.

As an example, for the max-cut problem we obtain in this case (see (39)) the analytic

updating formulas

p̂t,i =

∑N
k=1 I{S(Xk )≥γ̂t } S(Xi ) Xki
∑N

k=1 I{S(Xk )≥γ̂t } S(Xi )
, (52)

i = 2, . . . , n.

However, other numerical experiments suggest that high power polynomials,

ψ(s) = sβ with large β, and the Boltzmann function ψ(s) = e−s/β are not advisable, as

they may lead more easily to local minima.

4.2. Fully adaptive CE algorithm

We present a modification of Algorithm 2.3, called the fully automated CE (FACE)

algorithm in which the sample size is updated adaptively at each iterations t of the

algorithm, i.e., N = Nt . In addition, this modification is able to identify some “difficult”

and pathological problems.

Consider a maximization problem and let

St,(1) ≤ · · · ≤ St,(Nt )

denote the ordered sample performances of the Nt samples at the t-th iterations. To ease

notations, we denote St,(Nt ) by S∗
t .

The main assumption in the FACE Algorithm is that at the end of each iteration t the

updating of the parameters is done on the basis of a fixed number, N elite say, of the best

performing samples, the so-called elite samples. Thus, the set of elite samples Et consist

of those N elite samples in {X1, . . . , XNt
} for which the performances S(X1), . . . , S(XNt

)

are highest. The updating steps 2 and 3 of Algorithm 2.3 are modified such that

γ̂t = S(Nt −N elite+1),

and

v̂t = argmax
v

∑

Xi ∈Et

ln f (Xi ; v).

Note that γ̂t is equal to the worst sample performance of the best N elite sample perfor-

mances, and S∗
t is the best of the elite performances (indeed, of all performances).

In the FACE algorithm the parameters ρ and N of Algorithm 2.3 are updated

adaptively. Specifically, they are “replaced” by a single parameter: the number of elite

samples N elite. The above updating rules are consistent with Algorithm 2.3 provided we

view ρ in Algorithm 2.3 as the parameter which changes inversely proportional to Nt :

ρt = N elite/Nt .



54 DE BOER ET AL.

Figure 8. The flowchart for the FACE algorithm.

It was found experimentally that a sound choice is N elite = c0 n and N elite = c0 n2

for SNNs and SENs, respectively, where c0 is a fixed positive constant (usually in the

interval 0.01 ≤ c0 ≤ 0.1). The easiest way to explain FACE is via the flow chart in

figure 8.

For each iteration t of FACE algorithm we design a sampling plan which ensures

with high probability that

S∗
t > S∗

t−1. (53)

Note that (53) implies improvement of the maximal order statistics (best elite perfor-

mance) at each iteration. To ensure (53) with high probability, we allow Nt to vary at
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each iteration t in a quite wide range

N min ≤ Nt ≤ N max,

where, say, for an SNN-type problem, N min = n and N max = 20 n. Note that we always

start each iteration by generating N min samples. If at any iteration t , while increasing

Nt we obtain simultaneously that Nt = N max and (53) is violated, then we directly

proceed with updating (γ̂t , v̂t ) according to Algorithm 2.3 before proceeding with the

next iteration of the FACE Algorithm. However, if FACE keeps generating samples of

size N max for several iterations in turn, say, for c = 3 iterations and (53) is violated then

we stop, and announce that FACE identified a “hard” problem for which the estimate of

the optimal solution is unreliable.

Besides if St,(Nt ) > St−1,(Nt−1), we also continue with the next iteration if

γ̂t > γ̂t−1. (54)

Note that (54) implies improvement of the worst elite sample performance γ̂t at each

iteration.

Similar to Algorithm 2.3 we initialize by choosing some v̂0. For example, for the

max-cut problem we choose (using p instead of v) p̂0 = p0 = (1, 1/2, . . . , 1/2). We

assume that the FACE parameters N min, N max, α and the stopping constant d are chosen

in advance. For example, for the max-cut problem we take N min = n. We let t = 1 and

N1 = N min and proceed as follows:

Algorithm 4.1 (FACE Algorithm)

1. At iteration t, t = 1, 2, . . . take an initial sample of size Nt , with N min ≤ Nt ≤ N max

from f (·; v̂t−1).

2. If (53) or (54) holds, proceed with the updating steps (20) and (22) using the Nt

samples in Step 1.

3. If (53) and (54) are violated, check whether or not

S∗
t = · · · = S∗

t−d . (55)

If so, stop and deliver S∗
t as an estimate of the optimal solution. Call such S∗

t a reliable
estimate of the optimal solution. If (55) does not hold, and if Nt < N max, increase Nt

by 1, recalculate S∗
t and γ̂t , and go to Step 2.

4. If Nt = N max and each of (53), (54) and (55) is violated, proceed with (20) and (22)

using the N max samples mentioned in Step 1 and go to step 2.

5. If Nt = N max for several iterations in turn, say for c = 3 iterations, and each of (53),

(54) and (55) are violated, stop and announce that FACE identified a “hard” problem.

Call St,(Nt ) an unreliable estimate of the optimal solution.



56 DE BOER ET AL.

The stopping criterion (55) means that the best samples in the last d iterations are

the same. Note that if (53) holds for all t ≥ 1 we automatically obtain that Nt = N min

for all t . In such case FACE reduces to the original Algorithm 2.3. We found that FACE

typically speeds up the convergence up to 2 times as compared to CE with fixed N and ρ.

5. Further developments

In this section we present two additional applications of the CE method. In Section 5.1 we

consider the problem of vector quantization and clustering. We describe a straightforward

application of the CE method to this problem, and demonstrate high performance of the

CE method. In Section 5.2 we consider the problem of learning the optimal policy in

Markovian decision processes.

5.1. Vector quantization and clustering analysis

The clustering problem reads as follows: given a dataset Z = {z1, . . . , zn} of points in

some d-dimensional Euclidean region, partition the data into K “clusters” R1, . . . , RK

(with Ri ∩ R j = ∅, for i �= j , and ∪ j R j = Z), such that some empirical loss function

is minimized. A typical loss function is (Webb, 1999):

K
∑

j=1

∑

z∈R j

‖z − c j‖
2, (56)

where

c j =
1

|R j |

∑

z∈R j

z (57)

presents the centroid of the points of cluster R j . Denoting by x = (x1, . . . , xn) the vector

with xi = j when zi ∈ R j , and letting zi j = I{xi = j} zi , we can write (56) as the following

function of x:

S(x) =

K
∑

j=1

n
∑

i=1

I{xi = j} ‖zi j − c j‖
2, (58)

where the centroids are given as

c j =
1

n j

n
∑

i=1

zi j ,

with n j =
∑n

i=1 I{xi = j} the number of points in the j th cluster.

As we mentioned, our goal is to find a partition {R j } and a corresponding vector

of centroids (c1, . . . , cK ) that minimizes (56). In the terminology of vector quantization
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(Webb, 1999), we wish to “quantize” or “encode” the vectors in Z in such a way that

each vector is represented by one of K source vectors c1, . . . , cK , such that the loss (56)

of this representation is minimized. Most well-known clustering and vector quantization

methods update the vector of centroids, starting from some initial choice (c0,1, . . . , c0,K )

and using iterative (typically gradient-based procedures). It is important to realize that

in that case (56) is seen as a function of the centroids, where each point z is assigned

to the nearest centroid, thus determining the clusters. It is well known these type of

problems (optimization with respect to the centroids) are multi-extremal and depending

on the initial value of the clusters the gradient-based procedures converge to a local

minimum rather than global minimum. A standard heuristic to minimize (57) is the

K-means algorithm (Webb, 1999).

We can optimize (58) via the CE method, by viewing it as a minimal cut (min-cut)

problem with K partitions. In particular, each partition R1, . . . , RK is represented via a

partition vector x ∈ X = {1, . . . , n}K as defined above. The “trajectory generation” of

the CE Algorithm 2.3 consists of drawing random X ∈ X according to an n-dimensional

discrete distribution with independent marginals, such that P(X i = j) = pi j , i =

1, . . . , m, j = 1, . . . , K . The updating rules are again very simple. For K = 2 we may,

alternatively, use X ∼ Ber(p). In that case the updating rules are given in (39), with ≥

replaced with ≤.

Example 5.1. Let n = 5 and K = 2. To generate a feasible cluster we draw X from a 5-

dimensional Bernoulli distribution Ber(p) with independent marginals. Assume that the

outcome from a particular generation from Ber(p) is x = (1, 0, 0, 1, 0). The associated

partition is, clearly, {R1, R2} = {{1, 4}, {2, 3, 5}}. In this case the loss and the centroids

can be explicitly calculated, provided the points z1, z2, z3, z4, z5 are given. Namely,

the loss is

(‖z1 − c1‖
2 + ‖z4 − c1‖

2)

+ (‖z2 − c2‖
2 + ‖z3 − c2‖

2 + ‖z5 − c2‖
2),

(59)

and the centroids are

c1 =
1

2
(z1 + z4), c2 =

1

3
(z2 + z3 + z5), (60)

respectively.

The CE method for clustering works well even if the dataset is noisy. This is in con-

trast to most clustering methods that often require stochastic approximation procedures,

which are very slow.
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Figure 9. The CE results for vector quantization of the 2-D banana data set. Circles designate the final cluster

centers produced by CE. Triangles are cluster centers of the K -means algorithm.

Numerical example

Consider as an application of CE the minimization of the loss function, given by (56) for

a simple 2-dimensional clustering data set with m = 5 clusters and 700 points (depicted

by the small dots in figure 9). The resulting locations of the cluster centers obtained

by the CE Algorithm are depicted in figure 9 by the large filled circles. Figure 9 also

compares the performance of the CE method with the standard K -means one (circles

and triangles in figure 9 correspond to the final cluster centers produced by CE and the

K -means algorithm, respectively). Although we found that K -means is a little faster (it

takes approximately 2 seconds for K -means versus 49 for CE), it readily follows from

figure 9 that CE is more accurate than K -means, (the average distortion is 1.428 and

2.408 for CE and K -means, respectively).

5.2. Markovian decision process

The Markovian decision process (MDP) model is standard in artificial intelligence,

machine learning, operation research and related fields. We review briefly some basic
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definitions and concepts related to the MDP model. For details see for example Puterman

(1994) and Bertsekas (1995).

An MDP is defined by a tuple (Z,A,P, r ) where

1. Z = {1, . . . , n} is a finite set of states.

2. A = {1, . . . , m} is the set of possible actions by the decision maker. We assume it is

the same for every state – to ease notations.

3. P is the transition probability matrix with elements P(z′ | z, a) presenting the tran-

sition probability from state z to state z′, when action a is chosen.

4. r (z, a) is the reward for performing action a in state z (r may be a random variable).

At each time instance k the decision maker observes the current state zk , and

determines the action to be taken (say ak). As a result, a reward given by r (zk, ak),

denoted by rk , is received and a new state z′ is chosen according to P(z′ | zk, ak). A

policy π is a rule that determines, for each history Hk = z1, a1, . . . , zk−1, ak−1, zk of

states and actions, the probability distribution of the decision maker’s actions at time

k. A policy is called Markov if each action depends only on the current state zk and

time k. A Markov policy is called stationary if it does not depend on the time k. The

goal of the decision maker is to maximize a certain reward as a function of the policy.

There are several reward criteria of interest, see Puterman (1994) for a discussion. In this

exposition we consider the total reward criterion which applies when there exists a finite

stopping time τ at which the process terminates. The objective is to maximize the total

reward

V (π, z0) = Eπ

τ−1
∑

k=0

rk, (61)

starting from some fixed state z0. Here Eπ denotes the expectation with respect to some

probability measure induced by the policy π . We will restrict our attention to stochastic

shortest path MDPs, where it is assumed that the process starts from a specific initial state

z0 = zstart, and that there is a absorbing state zfin with zero reward. The objective is given

in (61), with τ being the stopping time at which zfin is reached (which we will assume

will always happen eventually). For stochastic shortest path MDPs, it is a well known

(Puterman, 1994) fact that there exists a stationary Markov policy which maximizes

V (π, z0).

If the model (r and P) is known, then there are several efficient methods, such

as value iteration and policy iteration, for finding the optimal policy (Puterman, 1994).

However, when the transition probability or the reward in an MDP are unknown, the prob-

lem is much more difficult, and is referred to as a learning one. A well-known framework

for learning algorithms is reinforcement learning (RL), where an agent learns the be-

havior of the system through trial-and-error with an unknown dynamic environment,

see Kaelbling, Littman, and Moore (1996). For reviews of RL see Barto and Sutton
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(1998), Bertsekas and Tsitsiklis (1995), Kaelbling, Littman, and Moore (1996). Note

that many of learning algorithm for MDPs rely on the Stochastic Approximation Algo-

rithm and convergence is typically slow. Using the CE method to search for the optimal

policy is similar to certain approaches in RL that attempt to search the policy space (or

a subset thereof). Notable policy search algorithms used in RL are: a direct search in

the policy space of Rosenstein and Barto (2001); a policy gradient search approach of

Baxter, Bartlett, and Weaver (2001); and the actor critic framework of Barto, Sutton, and

Anderson (1983). See also Sutton et al. (2000), and Konda and Tsitsiklis (2003).

Policy learning via the CE method

Since for the shortest path MDP an optimal stationary policy exists, we can represent

each stationary policy as a vector x = (x1, . . . , xn) with xi ∈ {1, . . . , m} being the action

taken when visiting state i . Writing the expectation in 61 as

S(x) = Ex

τ−1
∑

k=0

r (Zk, Ak), (62)

where Z0, Z1, . . . are the states visited, and A0, A1, . . . the actions taken, we see that the

optimization problem 61 is of the form 30. From a CE point of view we consider the

maximization problem 62 as a noisy maximization problem. The idea now is to combine

the random policy generation and the random trajectory generation in the following way:

At each stage of the CE algorithm we generate random policies and random trajectories

using an auxiliary n × m matrix P = (pza), such that for each state z we choose action

a with probability pza . Once this “policy matrix” P is defined, each iteration of the CE

algorithm comprises the following two standard phases:

1. Generation of N random trajectories (Z0, A0, Z1, A1, . . . , Zτ , Aτ ) using the auxiliary

policy matrix P . The cost of each trajectory is computed via

Ŝ(X) =

τ−1
∑

j=0

r (Zk, Ak). (63)

2. Updating of the parameters of the policy matrix (pza) on the basis of the data collected

at the first phase.

The matrix P is typically initialized to a uniform matrix (pi j = 1/m). Generation

of random trajectories for MDP is straightforward and is given for completeness. All one

has to do is to start the trajectory from the initial state z0 = zstart and follow the trajectory

by generating at each new state according to the probability distribution of P , until the

absorbing state zfin is reached at time τ , say.
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Algorithm 5.1 (Trajectory generation for MDP)
Input: P auxiliary policy matrix.

1. Start from the given initial state Z0 = zstart, set k = 0.

2. Generate an action Ak according to the Zk th row of P , calculate the reward rk =

r (Zk, Ak) and generate a new state Zk+1 according to P(· | Zk, Ak). Set k = k + 1.

Repeat until zk = zfin.

3. Output the total reward of the trajectory (Z0, A0, Z1, A1, . . . , Zτ ), given by (63).

Given the N trajectories X1, . . . , XN and their scores, Ŝ(X1), . . . , Ŝ(XN ), one can

update the parameter matrix (pza) using the CE method, namely as per

p̂t,za =

∑N
k=1 I{Ŝ(Xk )≥γ̂t }

I{Xk∈Xza}
∑N

k=1 I{Ŝ(Xk )≥γ̂t }
I{Xk∈Xz}

, (64)

where the event {Xk ∈ Xz} means that the trajectory Xk contains a visit to state z and

the event {Xk ∈ Xza} means the trajectory corresponding to policy Xk contains a visit to

state z in which action a was taken.

We now explain how to take advantage of the Markovian nature of the problem.

Let us think of a maze where a certain trajectory starts badly, that is, the path is not

efficient in the beginning, but after some time it starts moving quickly towards the goal.

According to (64), all the updates are performed in a similar manner in every state in

the trajectory. However, the actions taken in the states that were sampled near the target

were successful, so one would like to “encourage” these actions. Using the Markovian

property one can substantially improve the above algorithm by considering for each state

the part of the reward from the visit to that state onwards. We therefore use the same

trajectory and simultaneously calculate the performance for every state in the trajectory

separately. The idea is that each choice of action in a given state affects the reward from

that point on, disregarding the past.

The sampling Algorithm 5.1 does not change in Steps 1 and 2. The difference is in

Step 3. Given a policy X and a trajectory (Z0, A0, Z1, A1, . . . , Zτ , Aτ ) we calculate the

performance from every state until termination. For every state z = Z j in the trajectory

the (estimated) performance is Ŝz(X) =
∑τ−1

k= j rk . The updating formula for p̂za is

similar to (64), however each state z is updated separately according to the (estimated)

performance Ŝz(X) obtained from state z onwards.

p̂t,za =

∑N
k=1 I{Ŝz(Xk )≥γ̂t,z}

I{Xk∈Xza}

∑N
k=1 I{Ŝz(Xk )≥γ̂t,z}

I{Xk∈Xz}

. (65)

A crucial point here is to understand that in contrast to (64) the CE optimization is carried

for every state separately and a different threshold parameter γ̂t,z is used for every state

z, at iteration t . This facilitates faster convergence for “easy” states where the optimal
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policy is easy to find. Numerical results indicate that the CE algorithm with updating

(65) is much faster then that with updating (64).

Numerical results

The CE method with the updating rule (65) and trajectory generation according to

Algorithm 5.1 was implemented for a maze problem, which presents a two-dimensional

grid world. We assume that

1. The moves in the grid are allowed in four possible directions with the goal to move

from the upper-left corner to the lower-right corner.

2. The maze contains obstacles (“walls”) into which movement is not allowed.

3. The reward for every allowed movement until reaching the goal is −1.

In addition we introduce:

1. A small (failure) probability not to succeed moving in an allowed direction.

2. A small probability of succeeding moving in the forbidden direction (“moving through

the wall”).

3. A high cost for the moves in a forbidden direction.

In figure 10 we present the results for 20×20 maze. We set the following parameters:

N = 1000, ρ = 0.03, α = 0.7. The initial policy was a uniformly random one. The

cost of the moves were assumed to be random variables uniformly distributed between

0.5 and 1.5 and uniformly distribute between 25 and 75 for the allowed and forbidden

moves, respectively. Note that the expected cost for the allowed and forbidden moves are

equal to 1 and 50, respectively. The success probabilities in the allowed and forbidden

states were taken 0.95 and 0.05, respectively. The arrows z → z′ in figure 10 indicate

that at the current iteration the probability of going from z to z′ is at least 0.01. In other

words, if a corresponds to the action that will lead to state z′ from z then we will plot an

arrow from z to z′ provided pza > 0.01.

In all our experiments CE found the target exactly, within 5–10 iterations and

CPU time was less than one minute (on a 500 MHz Pentium processor). Note that the

successive iterations of the policy in figure 10 quickly converge to the optimal policy.

Additional numerical results can be found in Dubin (2002). Extensions, other reward

criteria, and further applications appear in Mannor, Rubinstein, and Gat (2003). These

results demonstrate that the CE algorithm may serve as a policy learning algorithm. In

contrast to the popular Q-learning (e.g. Dayan and Watkins, 1992) and value iteration

(e.g. Bertsekas and Tsitsiklis, 1995) based algorithms, no information is propagated back,

but rather the policy is learned directly.
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Figure 10. Performance of the CE Algorithm for the 20×20 maze. Each arrow indicates a probability > 0.01

of going in that direction.

6. Discussion and future directions

In this tutorial we introduced the CE method, a new generic approach to efficiently

solve difficult deterministic and stochastic optimization problems (both combinatorial

and continuous multi-extremal), and to adaptively find efficient estimators for rare event

probabilities. We presented the CE methodology, the basic algorithm and its modifica-

tions, and discussed its applications to several combinatorial optimization and machine

learning problems. We showed that the CE method is a simple, versatile and easy usable

tool. Another virtue of the CE method is its robustness with respect to its parameters. In

most cases, there is a wide range of parameters N , ρ, α and p, P that leads to the desired

solution with high probability, although sometimes choosing an appropriate parametriza-

tion and sampling scheme is more of an art than a science. Moreover, the foundations

of the CE method are based on some well known classical probabilistic and statistical

principles, and are therefore fairly problem-independent.

Although, as mentioned, it is out of the scope of this tutorial to give a detailed com-

parison between the CE method and other heuristics we shall point out a few similarities

and differences. The main difference between the CE method and simulating annealing
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(Aarts and Korst, 1989) is that the latter can be viewed as a local search algorithm

whereas the CE is a global search one, and thus, it is less likely – at least in principle – to

get stuck in a local optimal solution. The CE method and genetic algorithms (Goldberg,

1989) share the common idea of picking samples at random and improve the way the

samples are generated from generation to generation. In both methods, the solutions

fitness is estimated according to a score/performance function. When running genetic

algorithms the genetic encoding of the solution is problem-specific and often requires sig-

nificant effort. In addition, there are many parameters that appear to be critical - crossover

and mutation probabilities and sample size. The way the CE method chooses the next

sample is less ambiguous, as the change of population generation parameter is optimal

in “Kullback-Leiber distance” sense. Also the ant colony optimization (ACO) method

(Dorigo, Di Caro, and Gambardella, 1999) bears similarities with the CE method, espe-

cially for SEN. The difference is the way the next generation of solutions is generated.

In ACO good solutions in the previous generation increase the probability that solutions

in subsequent generations follow a similar path. The generation of future solutions is not

based on a principled calculation, but rather on problem dependent heuristics. We note

that methods in the spirit of tabu search (Glover and Laguna, 1993) and guided local

search (Voudouris, 2003) that penalize the neighborhood of previously examined solu-

tions, use a completely different mechanism. Finally, we do not claim that the CE method

always finds the optimal solution. Although the numerical results with CE are typically

quite reliable, there is no guarantee that it will not get trapped in a local minimum, at

times.

There are several research topics that call for further development. First, the re-

silience of the CE method to local minima has been observed in many applications but

is still not well understood. It seems that the CE method tends to overcome local min-

ima based on both the randomization mechanism involving the elite sampling and the

smoothed updating.

Second, the convergence of the CE method deserves further study. Convergence

results concerning the CE method can be found in several sources. Typically, these

are asymptotic in nature, similar to existing convergence results for genetic algorithms,

simulated annealing and ant colony algorithms. As a result they do not always shed much

light on the actual (non-asymptotic) behavior of the algorithm. In the context of rare event

simulation, which can be readily adopted to combinatorial optimization, convergence of

CE is given in Homem-de-Mello and Rubinstein (2002). The basic assumption there

is that the probability of a rare event does not vanish in a neighborhood of the optimal

solution. The algorithm proposed in Homem-de-Mello and Rubinstein (2002) is the same

as Algorithm 2.1, only that ρ and N are determined adaptively. Another convergence

theorem in the rare event setting is given in Lieber (1998). Margolin (2005) provides

asymptotical convergence results of two modifications of the main CE Algorithm 2.3. The

proof is similar to that of Gutjahr (2000) for the ant colony optimization. This asymptotic

result provides no guidance on convergence rates. Much more on the convergence of CE

should be done, in particular finding bounds of convergence rates, at least for some

particular difficult optimization problems.
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Another research issue is to develop and investigate some alternative stopping rules.

The current heuristic rule only indicates the lack of improvement in the past few iterations

and when the CE method stops it may happen that it is not even a local optimum. Finally,

we consider application of the CE method to constrained optimization problems, and in

particular to constrained integer programs, as a challenging topic which would be worth

exploring.

For further reading we refer to the monograph (Rubinstein and Kroese, 2004).
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