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ABSTRACT

Thompson sampling is an algorithm for online decision prob-

lems where actions are taken sequentially in a manner that

must balance between exploiting what is known to maxi-

mize immediate performance and investing to accumulate

new information that may improve future performance. The

algorithm addresses a broad range of problems in a compu-

tationally efficient manner and is therefore enjoying wide

use. This tutorial covers the algorithm and its application,

illustrating concepts through a range of examples, including

Bernoulli bandit problems, shortest path problems, product

recommendation, assortment, active learning with neural

networks, and reinforcement learning in Markov decision

processes. Most of these problems involve complex informa-

tion structures, where information revealed by taking an

action informs beliefs about other actions. We will also dis-

cuss when and why Thompson sampling is or is not effective

and relations to alternative algorithms.

Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband and Zheng
Wen (2018), “A Tutorial on Thompson Sampling”, Foundations and Trends R© in
Machine Learning: Vol. 11, No. 1, pp 1–96. DOI: 10.1561/2200000070.
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1

Introduction

The multi-armed bandit problem has been the subject of decades of

intense study in statistics, operations research, electrical engineering,

computer science, and economics. A “one-armed bandit” is a somewhat

antiquated term for a slot machine, which tends to “rob” players of their

money. The colorful name for our problem comes from a motivating

story in which a gambler enters a casino and sits down at a slot machine

with multiple levers, or arms, that can be pulled. When pulled, an arm

produces a random payout drawn independently of the past. Because

the distribution of payouts corresponding to each arm is not listed, the

player can learn it only by experimenting. As the gambler learns about

the arms’ payouts, she faces a dilemma: in the immediate future she

expects to earn more by exploiting arms that yielded high payouts in

the past, but by continuing to explore alternative arms she may learn

how to earn higher payouts in the future. Can she develop a sequential

strategy for pulling arms that balances this tradeoff and maximizes the

cumulative payout earned? The following Bernoulli bandit problem is a

canonical example.

Example 1.1. (Bernoulli Bandit) Suppose there are K actions, and

when played, any action yields either a success or a failure. Action

3
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4 Introduction

k ∈ {1, ..., K} produces a success with probability θk ∈ [0, 1]. The

success probabilities (θ1, .., θK) are unknown to the agent, but are

fixed over time, and therefore can be learned by experimentation. The

objective, roughly speaking, is to maximize the cumulative number of

successes over T periods, where T is relatively large compared to the

number of arms K.

The “arms” in this problem might represent different banner ads

that can be displayed on a website. Users arriving at the site are shown

versions of the website with different banner ads. A success is associated

either with a click on the ad, or with a conversion (a sale of the item

being advertised). The parameters θk represent either the click-through-

rate or conversion-rate among the population of users who frequent the

site. The website hopes to balance exploration and exploitation in order

to maximize the total number of successes.

A naive approach to this problem involves allocating some fixed

fraction of time periods to exploration and in each such period sampling

an arm uniformly at random, while aiming to select successful actions

in other time periods. We will observe that such an approach can be

quite wasteful even for the simple Bernoulli bandit problem described

above and can fail completely for more complicated problems.

Problems like the Bernoulli bandit described above have been studied

in the decision sciences since the second world war, as they crystallize the

fundamental trade-off between exploration and exploitation in sequential

decision making. But the information revolution has created significant

new opportunities and challenges, which have spurred a particularly

intense interest in this problem in recent years. To understand this,

let us contrast the Internet advertising example given above with the

problem of choosing a banner ad to display on a highway. A physical

banner ad might be changed only once every few months, and once

posted will be seen by every individual who drives on the road. There is

value to experimentation, but data is limited, and the cost of of trying

a potentially ineffective ad is enormous. Online, a different banner ad

can be shown to each individual out of a large pool of users, and data

from each such interaction is stored. Small-scale experiments are now a

core tool at most leading Internet companies.

Full text available at: http://dx.doi.org/10.1561/2200000070
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Our interest in this problem is motivated by this broad phenomenon.

Machine learning is increasingly used to make rapid data-driven deci-

sions. While standard algorithms in supervised machine learning learn

passively from historical data, these systems often drive the generation

of their own training data through interacting with users. An online

recommendation system, for example, uses historical data to optimize

current recommendations, but the outcomes of these recommendations

are then fed back into the system and used to improve future recom-

mendations. As a result, there is enormous potential benefit in the

design of algorithms that not only learn from past data, but also explore

systemically to generate useful data that improves future performance.

There are significant challenges in extending algorithms designed to

address Example 1.1 to treat more realistic and complicated decision

problems. To understand some of these challenges, consider the problem

of learning by experimentation to solve a shortest path problem.

Example 1.2. (Online Shortest Path) An agent commutes from home

to work every morning. She would like to commute along the path that

requires the least average travel time, but she is uncertain of the travel

time along different routes. How can she learn efficiently and minimize

the total travel time over a large number of trips?

Figure 1.1: Shortest path problem.

Full text available at: http://dx.doi.org/10.1561/2200000070



6 Introduction

We can formalize this as a shortest path problem on a graph

G = (V, E) with vertices V = {1, ..., N} and edges E. An example

is illustrated in Figure 1.1. Vertex 1 is the source (home) and vertex N

is the destination (work). Each vertex can be thought of as an intersec-

tion, and for two vertices i, j ∈ V , an edge (i, j) ∈ E is present if there

is a direct road connecting the two intersections. Suppose that traveling

along an edge e ∈ E requires time θe on average. If these parameters

were known, the agent would select a path (e1, .., en), consisting of a

sequence of adjacent edges connecting vertices 1 and N , such that the

expected total time θe1
+...+θen

is minimized. Instead, she chooses paths

in a sequence of periods. In period t, the realized time yt,e to traverse

edge e is drawn independently from a distribution with mean θe. The

agent sequentially chooses a path xt, observes the realized travel time

(yt,e)e∈xt
along each edge in the path, and incurs cost ct =

∑
e∈xt

yt,e

equal to the total travel time. By exploring intelligently, she hopes to

minimize cumulative travel time
∑T

t=1 ct over a large number of periods

T .

This problem is conceptually similar to the Bernoulli bandit in

Example 1.1, but here the number of actions is the number of paths

in the graph, which generally scales exponentially in the number of

edges. This raises substantial challenges. For moderate sized graphs,

trying each possible path would require a prohibitive number of samples,

and algorithms that require enumerating and searching through the

set of all paths to reach a decision will be computationally intractable.

An efficient approach therefore needs to leverage the statistical and

computational structure of problem.

In this model, the agent observes the travel time along each edge

traversed in a given period. Other feedback models are also natural: the

agent might start a timer as she leaves home and checks it once she

arrives, effectively only tracking the total travel time of the chosen path.

This is closer to the Bernoulli bandit model, where only the realized

reward (or cost) of the chosen arm was observed. We have also taken the

random edge-delays yt,e to be independent, conditioned on θe. A more

realistic model might treat these as correlated random variables, reflect-

ing that neighboring roads are likely to be congested at the same time.

Rather than design a specialized algorithm for each possible statistical

Full text available at: http://dx.doi.org/10.1561/2200000070
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model, we seek a general approach to exploration that accommodates

flexible modeling and works for a broad array of problems. We will see

that Thompson sampling accommodates such flexible modeling, and

offers an elegant and efficient approach to exploration in a wide range

of structured decision problems, including the shortest path problem

described here.

Thompson sampling – also known as posterior sampling and probabil-

ity matching – was first proposed in 1933 (Thompson, 1933; Thompson,

1935) for allocating experimental effort in two-armed bandit problems

arising in clinical trials. The algorithm was largely ignored in the

academic literature until recently, although it was independently re-

discovered several times in the interim (Wyatt, 1997; Strens, 2000) as

an effective heuristic. Now, more than eight decades after it was intro-

duced, Thompson sampling has seen a surge of interest among industry

practitioners and academics. This was spurred partly by two influential

articles that displayed the algorithm’s strong empirical performance

(Chapelle and Li, 2011; Scott, 2010). In the subsequent five years, the

literature on Thompson sampling has grown rapidly. Adaptations of

Thompson sampling have now been successfully applied in a wide vari-

ety of domains, including revenue management (Ferreira et al., 2015),

marketing (Schwartz et al., 2017), web site optimization (Hill et al.,

2017), Monte Carlo tree search (Bai et al., 2013), A/B testing (Graepel

et al., 2010), Internet advertising (Graepel et al., 2010; Agarwal, 2013;

Agarwal et al., 2014), recommendation systems (Kawale et al., 2015),

hyperparameter tuning (Kandasamy et al., 2018), and arcade games

(Osband et al., 2016a); and have been used at several companies, includ-

ing Adobe, Amazon (Hill et al., 2017), Facebook, Google (Scott, 2010;

Scott, 2015), LinkedIn (Agarwal, 2013; Agarwal et al., 2014), Microsoft

(Graepel et al., 2010), Netflix, and Twitter.

The objective of this tutorial is to explain when, why, and how to

apply Thompson sampling. A range of examples are used to demon-

strate how the algorithm can be used to solve a variety of problems and

provide clear insight into why it works and when it offers substantial

benefit over naive alternatives. The tutorial also provides guidance on

approximations to Thompson sampling that can simplify computation

Full text available at: http://dx.doi.org/10.1561/2200000070
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as well as practical considerations like prior distribution specification,

safety constraints and nonstationarity. Accompanying this tutorial we

also release a Python package1 that reproduces all experiments and

figures presented. This resource is valuable not only for reproducible

research, but also as a reference implementation that may help prac-

tioners build intuition for how to practically implement some of the

ideas and algorithms we discuss in this tutorial. A concluding section

discusses theoretical results that aim to develop an understanding of

why Thompson sampling works, highlights settings where Thompson

sampling performs poorly, and discusses alternative approaches studied

in recent literature. As a baseline and backdrop for our discussion of

Thompson sampling, we begin with an alternative approach that does

not actively explore.

1Python code and documentation is available at https://github.com/iosband/
ts_tutorial.

Full text available at: http://dx.doi.org/10.1561/2200000070
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